mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
Compare commits
2 Commits
a3197b1ec5
...
v0.13.1
Author | SHA1 | Date | |
---|---|---|---|
b8da272660 | |||
61c57f4f65 |
2
setup.py
2
setup.py
@ -15,7 +15,7 @@
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
|
||||
VERSION = "0.13.0"
|
||||
VERSION = "0.13.1"
|
||||
|
||||
extras = {}
|
||||
extras["quality"] = [
|
||||
|
@ -17,7 +17,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
__version__ = "0.13.0"
|
||||
__version__ = "0.13.1"
|
||||
|
||||
from .auto import (
|
||||
AutoPeftModel,
|
||||
|
@ -456,6 +456,10 @@ def set_peft_model_state_dict(
|
||||
)
|
||||
if low_cpu_mem_usage:
|
||||
load_result = model.load_state_dict(peft_model_state_dict, strict=False, assign=True)
|
||||
# ensure that the correct device is set
|
||||
for module in model.modules():
|
||||
if hasattr(module, "_move_adapter_to_device_of_base_layer"):
|
||||
module._move_adapter_to_device_of_base_layer(adapter_name)
|
||||
else:
|
||||
load_result = model.load_state_dict(peft_model_state_dict, strict=False)
|
||||
|
||||
|
@ -55,8 +55,11 @@ from peft import (
|
||||
PromptEncoderConfig,
|
||||
TaskType,
|
||||
get_peft_model,
|
||||
get_peft_model_state_dict,
|
||||
inject_adapter_in_model,
|
||||
prepare_model_for_kbit_training,
|
||||
replace_lora_weights_loftq,
|
||||
set_peft_model_state_dict,
|
||||
)
|
||||
from peft.tuners import boft
|
||||
from peft.utils import SAFETENSORS_WEIGHTS_NAME, infer_device
|
||||
@ -3226,3 +3229,51 @@ class TestPTuningReproducibility:
|
||||
|
||||
torch.testing.assert_close(output_loaded, output_peft)
|
||||
torch.testing.assert_close(gen_loaded, gen_peft)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires a GPU")
|
||||
@pytest.mark.single_gpu_tests
|
||||
class TestLowCpuMemUsageDifferentDevices:
|
||||
"""Test for the low CPU memory usage option for loading PEFT models.
|
||||
|
||||
There are already tests for this in test_initialization.py but here we want to specifically test diverging devices
|
||||
for the model and state_dict.
|
||||
|
||||
"""
|
||||
|
||||
model_id = "hf-internal-testing/tiny-random-OPTForCausalLM"
|
||||
|
||||
@pytest.mark.parametrize("device_model, device_sd", [("cpu", "cuda"), ("cuda", "cpu")])
|
||||
def test_low_cpu_mem_usage_model_model_on_gpu_state_dict_on_cpu_works(self, device_model, device_sd):
|
||||
inputs = {"input_ids": torch.randint(0, 100, (1, 10)), "attention_mask": torch.ones(1, 10)}
|
||||
inputs = {k: v.to(device_model) for k, v in inputs.items()}
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(self.model_id).to(device_model)
|
||||
lora_config = LoraConfig(init_lora_weights=False, target_modules="all-linear")
|
||||
model = get_peft_model(model, lora_config)
|
||||
model.eval()
|
||||
logits_not_low_cpu_mem = model(**inputs).logits
|
||||
|
||||
state_dict = get_peft_model_state_dict(model)
|
||||
peft_model_state_dict = {}
|
||||
# remap the state dict so that it can be correctly loaded, and move weights to the other device
|
||||
prefix = "base_model.model."
|
||||
for k, v in state_dict.items():
|
||||
k = k[len(prefix) :]
|
||||
peft_model_state_dict[k] = v.to(device_sd)
|
||||
|
||||
del model
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(self.model_id).to(device_model)
|
||||
model.eval()
|
||||
inject_adapter_in_model(lora_config, model, low_cpu_mem_usage=True)
|
||||
load_result = set_peft_model_state_dict(model, peft_model_state_dict, low_cpu_mem_usage=True)
|
||||
|
||||
# sanity check: all lora keys are matched
|
||||
assert not any("lora" in k for k in load_result.missing_keys)
|
||||
assert not any("lora" in k for k in load_result.unexpected_keys)
|
||||
|
||||
logits_low_cpu_mem = model(**inputs).logits
|
||||
|
||||
assert torch.allclose(logits_low_cpu_mem, logits_not_low_cpu_mem)
|
||||
assert {p.device.type for p in model.parameters()} == {device_model}
|
||||
|
Reference in New Issue
Block a user