mirror of
https://github.com/huggingface/peft.git
synced 2025-10-20 15:33:48 +08:00
Use hub_online_once
in trainable token tests (#2701)
Also fix a minor import nit where `TrainableTokensWrapper` was not added to `utils/__init__.py`. Fixed the corresponding imports as well. Another housekeeping job is to move hub_online_once to testing_utils.py since it has grown to be used in a lot of places and testing_utils.py is the better place to keep such utilities.
This commit is contained in:
@ -35,6 +35,7 @@ from .other import (
|
||||
WEIGHTS_NAME,
|
||||
AuxiliaryTrainingWrapper,
|
||||
ModulesToSaveWrapper,
|
||||
TrainableTokensWrapper,
|
||||
_freeze_adapter,
|
||||
_get_batch_size,
|
||||
_get_input_embeddings_name,
|
||||
@ -82,6 +83,7 @@ __all__ = [
|
||||
"ModulesToSaveWrapper",
|
||||
"PeftType",
|
||||
"TaskType",
|
||||
"TrainableTokensWrapper",
|
||||
"_freeze_adapter",
|
||||
"_get_batch_size",
|
||||
"_get_input_embeddings_name",
|
||||
|
@ -48,8 +48,8 @@ from peft import (
|
||||
get_peft_model,
|
||||
)
|
||||
|
||||
from .testing_common import PeftCommonTester, hub_online_once
|
||||
from .testing_utils import device_count, load_dataset_english_quotes, set_init_weights_false
|
||||
from .testing_common import PeftCommonTester
|
||||
from .testing_utils import device_count, hub_online_once, load_dataset_english_quotes, set_init_weights_false
|
||||
|
||||
|
||||
PEFT_DECODER_MODELS_TO_TEST = [
|
||||
|
@ -20,7 +20,7 @@ from transformers import AutoModelForCausalLM
|
||||
|
||||
from peft import AutoPeftModelForCausalLM, BoneConfig, LoraConfig, PeftConfig, PeftModel, TaskType, get_peft_model
|
||||
|
||||
from .testing_common import hub_online_once
|
||||
from .testing_utils import hub_online_once
|
||||
|
||||
|
||||
PEFT_MODELS_TO_TEST = [("peft-internal-testing/test-lora-subfolder", "test")]
|
||||
|
@ -34,7 +34,7 @@ from peft import (
|
||||
from peft.tuners import lora
|
||||
from peft.utils import ModulesToSaveWrapper
|
||||
|
||||
from .testing_common import hub_online_once
|
||||
from .testing_utils import hub_online_once
|
||||
|
||||
|
||||
class DummyModel(torch.nn.Module):
|
||||
|
@ -37,7 +37,8 @@ from peft import (
|
||||
)
|
||||
from peft.utils.other import ModulesToSaveWrapper
|
||||
|
||||
from .testing_common import PeftCommonTester, hub_online_once
|
||||
from .testing_common import PeftCommonTester
|
||||
from .testing_utils import hub_online_once
|
||||
|
||||
|
||||
PEFT_SEQ_CLS_MODELS_TO_TEST = [
|
||||
|
@ -18,8 +18,8 @@ from transformers import AutoModelForCausalLM
|
||||
|
||||
from peft import LoraConfig, TaskType, get_peft_model
|
||||
|
||||
from .testing_common import PeftCommonTester, hub_online_once
|
||||
from .testing_utils import set_init_weights_false
|
||||
from .testing_common import PeftCommonTester
|
||||
from .testing_utils import hub_online_once, set_init_weights_false
|
||||
|
||||
|
||||
PEFT_DECODER_MODELS_TO_TEST = [
|
||||
|
@ -23,8 +23,9 @@ from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokeni
|
||||
|
||||
from peft import AutoPeftModel, LoraConfig, PeftModel, TrainableTokensConfig, get_peft_model
|
||||
from peft.tuners.trainable_tokens.layer import TrainableTokensLayer
|
||||
from peft.utils import get_peft_model_state_dict
|
||||
from peft.utils.other import TrainableTokensWrapper
|
||||
from peft.utils import TrainableTokensWrapper, get_peft_model_state_dict
|
||||
|
||||
from .testing_utils import hub_online_once
|
||||
|
||||
|
||||
class ModelEmb(torch.nn.Module):
|
||||
@ -103,6 +104,9 @@ class TestTrainableTokens:
|
||||
|
||||
@pytest.fixture
|
||||
def model(self, model_id):
|
||||
with hub_online_once(model_id):
|
||||
# This must not be a yield fixture so that we don't carry the hub_online_once
|
||||
# behavior over to the rest of the test that uses this fixture
|
||||
return AutoModelForCausalLM.from_pretrained(model_id)
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -58,8 +58,7 @@ from peft.tuners.tuners_utils import (
|
||||
from peft.utils import INCLUDE_LINEAR_LAYERS_SHORTHAND, ModulesToSaveWrapper, infer_device
|
||||
from peft.utils.constants import DUMMY_MODEL_CONFIG, MIN_TARGET_MODULES_FOR_OPTIMIZATION
|
||||
|
||||
from .testing_common import hub_online_once
|
||||
from .testing_utils import require_bitsandbytes, require_non_cpu
|
||||
from .testing_utils import hub_online_once, require_bitsandbytes, require_non_cpu
|
||||
|
||||
|
||||
# Implements tests for regex matching logic common for all BaseTuner subclasses, and
|
||||
|
@ -20,9 +20,7 @@ import re
|
||||
import shutil
|
||||
import tempfile
|
||||
import warnings
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import replace
|
||||
from unittest import mock
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
@ -61,14 +59,17 @@ from peft import (
|
||||
)
|
||||
from peft.tuners.lora import LoraLayer
|
||||
from peft.tuners.tuners_utils import BaseTunerLayer
|
||||
from peft.utils import _get_submodules, infer_device
|
||||
from peft.utils.other import AuxiliaryTrainingWrapper, ModulesToSaveWrapper, TrainableTokensWrapper
|
||||
from peft.utils import (
|
||||
AuxiliaryTrainingWrapper,
|
||||
ModulesToSaveWrapper,
|
||||
TrainableTokensWrapper,
|
||||
_get_submodules,
|
||||
infer_device,
|
||||
)
|
||||
|
||||
from .testing_utils import get_state_dict
|
||||
from .testing_utils import get_state_dict, hub_online_once
|
||||
|
||||
|
||||
HUB_MODEL_ACCESSES = {}
|
||||
|
||||
CONFIG_TESTING_KWARGS = (
|
||||
# IA³
|
||||
{
|
||||
@ -189,59 +190,6 @@ CLASSES_MAPPING = {
|
||||
DECODER_MODELS_EXTRA = {"cpt": (CPTConfig, CONFIG_TESTING_KWARGS[15])}
|
||||
|
||||
|
||||
@contextmanager
|
||||
def hub_online_once(model_id: str):
|
||||
"""Set env[HF_HUB_OFFLINE]=1 (and patch transformers/hugging_face_hub to think that it was always that way)
|
||||
for model ids that were seen already so that the hub is not contacted twice for the same model id in said context.
|
||||
The cache (`HUB_MODEL_ACCESSES`) also tracks the number of cache hits per model id.
|
||||
|
||||
The reason for doing a context manager and not patching specific methods (e.g., `from_pretrained`) is that there
|
||||
are a lot of places (`PeftConfig.from_pretrained`, `get_peft_state_dict`, `load_adapter`, ...) that possibly
|
||||
communicate with the hub to download files / check versions / etc.
|
||||
|
||||
Note that using this context manager can cause problems when used in code sections that access different resources.
|
||||
Example:
|
||||
|
||||
```
|
||||
def test_something(model_id, config_kwargs):
|
||||
with hub_online_once(model_id):
|
||||
model = ...from_pretrained(model_id)
|
||||
self.do_something_specific_with_model(model)
|
||||
```
|
||||
It is assumed that `do_something_specific_with_model` is an absract method that is implement by several tests.
|
||||
Imagine the first test simply does `model.generate([1,2,3])`. The second call from another test suite however uses
|
||||
a tokenizer (`AutoTokenizer.from_pretrained(model_id)`) - this will fail since the first pass was online but didn't
|
||||
use the tokenizer and we're now in offline mode and cannot fetch the tokenizer. The recommended workaround is to
|
||||
extend the cache key (`model_id` passed to `hub_online_once` in this case) by something in case the tokenizer is
|
||||
used, so that these tests don't share a cache pool with the tests that don't use a tokenizer.
|
||||
"""
|
||||
global HUB_MODEL_ACCESSES
|
||||
override = {}
|
||||
|
||||
try:
|
||||
if model_id in HUB_MODEL_ACCESSES:
|
||||
override = {"HF_HUB_OFFLINE": "1"}
|
||||
HUB_MODEL_ACCESSES[model_id] += 1
|
||||
else:
|
||||
if model_id not in HUB_MODEL_ACCESSES:
|
||||
HUB_MODEL_ACCESSES[model_id] = 0
|
||||
with (
|
||||
# strictly speaking it is not necessary to set the environment variable since most code that's out there
|
||||
# is evaluating it at import time and we'd have to reload the modules for it to take effect. It's
|
||||
# probably still a good idea to have it if there's some dynamic code that checks it.
|
||||
mock.patch.dict(os.environ, override),
|
||||
mock.patch("huggingface_hub.constants.HF_HUB_OFFLINE", override.get("HF_HUB_OFFLINE", False) == "1"),
|
||||
mock.patch("transformers.utils.hub._is_offline_mode", override.get("HF_HUB_OFFLINE", False) == "1"),
|
||||
):
|
||||
yield
|
||||
except Exception:
|
||||
# in case of an error we have to assume that we didn't access the model properly from the hub
|
||||
# for the first time, so the next call cannot be considered cached.
|
||||
if HUB_MODEL_ACCESSES.get(model_id) == 0:
|
||||
del HUB_MODEL_ACCESSES[model_id]
|
||||
raise
|
||||
|
||||
|
||||
class PeftCommonTester:
|
||||
r"""
|
||||
A large testing suite for testing common functionality of the PEFT models.
|
||||
|
@ -11,9 +11,11 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import unittest
|
||||
from contextlib import contextmanager
|
||||
from functools import lru_cache, wraps
|
||||
from unittest import mock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
@ -41,6 +43,10 @@ from peft.import_utils import (
|
||||
)
|
||||
|
||||
|
||||
# Globally shared model cache used by `hub_online_once`.
|
||||
_HUB_MODEL_ACCESSES = {}
|
||||
|
||||
|
||||
torch_device, device_count, memory_allocated_func = get_backend()
|
||||
|
||||
|
||||
@ -241,3 +247,60 @@ def set_init_weights_false(config_cls, kwargs):
|
||||
else:
|
||||
kwargs["init_weights"] = False
|
||||
return kwargs
|
||||
|
||||
|
||||
@contextmanager
|
||||
def hub_online_once(model_id: str):
|
||||
"""Set env[HF_HUB_OFFLINE]=1 (and patch transformers/hugging_face_hub to think that it was always that way)
|
||||
for model ids that were already to avoid contacting the hub twice for the same model id in the context. The global
|
||||
variable `_HUB_MODEL_ACCESSES` tracks the number of hits per model id between `hub_online_once` calls.
|
||||
|
||||
The reason for doing a context manager and not patching specific methods (e.g., `from_pretrained`) is that there
|
||||
are a lot of places (`PeftConfig.from_pretrained`, `get_peft_state_dict`, `load_adapter`, ...) that possibly
|
||||
communicate with the hub to download files / check versions / etc.
|
||||
|
||||
Note that using this context manager can cause problems when used in code sections that access different resources.
|
||||
Example:
|
||||
|
||||
```
|
||||
def test_something(model_id, config_kwargs):
|
||||
with hub_online_once(model_id):
|
||||
model = ...from_pretrained(model_id)
|
||||
self.do_something_specific_with_model(model)
|
||||
```
|
||||
It is assumed that `do_something_specific_with_model` is an absract method that is implement by several tests.
|
||||
Imagine the first test simply does `model.generate([1,2,3])`. The second call from another test suite however uses
|
||||
a tokenizer (`AutoTokenizer.from_pretrained(model_id)`) - this will fail since the first pass was online but didn't
|
||||
use the tokenizer and we're now in offline mode and cannot fetch the tokenizer. The recommended workaround is to
|
||||
extend the cache key (`model_id` passed to `hub_online_once` in this case) by something in case the tokenizer is
|
||||
used, so that these tests don't share a cache pool with the tests that don't use a tokenizer.
|
||||
|
||||
It is best to avoid using this context manager in *yield* fixtures (normal fixtures are fine) as this is equivalent
|
||||
to wrapping the whole test in the context manager without explicitly writing it out, leading to unexpected
|
||||
`HF_HUB_OFFLINE` behavior in the test body.
|
||||
"""
|
||||
global _HUB_MODEL_ACCESSES
|
||||
override = {}
|
||||
|
||||
try:
|
||||
if model_id in _HUB_MODEL_ACCESSES:
|
||||
override = {"HF_HUB_OFFLINE": "1"}
|
||||
_HUB_MODEL_ACCESSES[model_id] += 1
|
||||
else:
|
||||
if model_id not in _HUB_MODEL_ACCESSES:
|
||||
_HUB_MODEL_ACCESSES[model_id] = 0
|
||||
with (
|
||||
# strictly speaking it is not necessary to set the environment variable since most code that's out there
|
||||
# is evaluating it at import time and we'd have to reload the modules for it to take effect. It's
|
||||
# probably still a good idea to have it if there's some dynamic code that checks it.
|
||||
mock.patch.dict(os.environ, override),
|
||||
mock.patch("huggingface_hub.constants.HF_HUB_OFFLINE", override.get("HF_HUB_OFFLINE", False) == "1"),
|
||||
mock.patch("transformers.utils.hub._is_offline_mode", override.get("HF_HUB_OFFLINE", False) == "1"),
|
||||
):
|
||||
yield
|
||||
except Exception:
|
||||
# in case of an error we have to assume that we didn't access the model properly from the hub
|
||||
# for the first time, so the next call cannot be considered cached.
|
||||
if _HUB_MODEL_ACCESSES.get(model_id) == 0:
|
||||
del _HUB_MODEL_ACCESSES[model_id]
|
||||
raise
|
||||
|
Reference in New Issue
Block a user