Files
oneDNN/tests/benchdnn/reorder/reorder.cpp
2025-05-28 15:07:11 -07:00

634 lines
24 KiB
C++

/*******************************************************************************
* Copyright 2017-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <cstring>
#include <stdlib.h>
#include "oneapi/dnnl/dnnl.h"
// TODO: refactor the driver to avoid using extra flags of a memory descriptor.
#include "common/memory_desc.hpp"
#include "utils/fill.hpp"
#include "utils/parallel.hpp"
#include "dnn_types.hpp"
#include "dnnl_common.hpp"
#include "dnnl_memory.hpp"
#include "reorder.hpp"
namespace reorder {
int fill_mem(const prb_t *prb, data_kind_t kind, dnn_mem_t &mem_dt,
dnn_mem_t &mem_fp) {
const auto nelems = mem_fp.nelems();
if (nelems == 0) return OK;
// Refer to modes documentation for filling principles.
if (has_bench_mode_bit(mode_bit_t::bitwise)) {
return fill_random_real(mem_dt, mem_fp, nullptr);
}
if (has_bench_mode_bit(mode_bit_t::perf)) {
return fill_random_real(
mem_dt, mem_fp, nullptr, get_perf_fill_cfg(mem_dt.dt()));
}
const auto conf = prb->get_conf(kind);
const float gen[] = {
conf->max, // saturate to max
conf->min, // saturate to min
0.f,
0.25f,
0.5f,
1.f,
1.5f,
2.f,
16.f,
64.f,
};
const auto table_size = sizeof(gen) / sizeof(gen[0]);
// MIOpen doesn't work properly when tensors are filled with 0xFF.
const bool zero_out_wa = is_amd_gpu();
benchdnn_parallel_nd(nelems, [&](int64_t i) {
const int64_t table_idx = kind == SRC
? (i % table_size)
: ((i * (table_size + 1) / table_size) % table_size);
mem_fp.set_f32_elem(
i, round_to_nearest_representable(conf->dt, gen[table_idx]));
if (zero_out_wa) mem_dt.set_elem(i, 0);
});
SAFE(mem_dt.reorder(mem_fp), WARN);
return OK;
}
dnn_mem_t setup_compensation_memory(const prb_t *prb, flag_bit_t flag) {
dnn_mem_t m;
if (prb->is_reorder_with_compensation(flag)) {
dims_t dims = prb->get_compensation_dims(flag);
int ndims = static_cast<int>(dims.size());
auto md = dnn_mem_t::init_md(ndims, dims.data(), dnnl_s32, tag::abx);
m = dnn_mem_t(md, get_cpu_engine(), /* prefill = */ false);
}
return m;
};
int compare_compensation(const prb_t *prb, dnn_mem_map_t &mem_map,
dnn_mem_map_t &ref_mem_map, res_t *res) {
// Note: following check relies on certain assumptions on CPU. These
// assumptions may not hold for GPU. In addition, it's prohibit to work
// with raw pointers directly for buffer type of memory.
if (!is_cpu(get_test_engine())) return FAIL;
const auto &mem_got = mem_map[DNNL_ARG_DST];
const auto &mem_s8_comp_ref = ref_mem_map[DNNL_ARG_SRC_1];
const auto &mem_zp_comp_ref = ref_mem_map[DNNL_ARG_SRC_2];
const auto padded_nelems = mem_got.nelems(true);
// Note: internally offset is aligned on 4, otherwise it's UB.
size_t first_comp_offset = rnd_up(padded_nelems, 4);
int *comp_handle
= reinterpret_cast<int *>((char *)mem_got + first_comp_offset);
const auto cmp_compensation = [&](const dnn_mem_t &mem_ref, int comp_mask) {
// Idea behind this check:
// Using knowledge from the library where `comp_handle` starts, and that
// memory utilizes blocking over OC and G, if present, we wrap that
// piece of memory which is described by shortened tag coming from prb
// into a separate memory and reorder it to plain so that it is a
// straight comparison of values in native plain layout.
auto comp_md = dnn_mem_t::init_md(mem_ref.ndims(), mem_ref.dims(),
mem_ref.dt(), trim_tag_by_mask(prb->dtag, comp_mask));
// Predefined handle_info won't use prefilling no matter what.
dnn_mem_t comp_m(comp_md, mem_ref.engine(), /* prefill = */ false,
{false, comp_handle});
compare::compare_t cmp;
cmp.set_zero_trust_percent(100.f); // No sense in zero trust test.
int status = cmp.compare(mem_ref, comp_m, attr_t(), res);
// Shift original compensation pointer for next compensation
comp_handle += comp_m.nelems(true);
return status;
};
if (mem_s8_comp_ref.ndims())
SAFE(cmp_compensation(mem_s8_comp_ref,
prb->get_compensation_mask(FLAG_S8S8_COMP)),
WARN);
if (mem_zp_comp_ref.ndims())
SAFE(cmp_compensation(
mem_zp_comp_ref, prb->get_compensation_mask(FLAG_ZP_COMP)),
WARN);
return res->state == FAILED ? FAIL : OK;
}
dnnl_status_t init_pd(init_pd_args_t<prb_t> &init_pd_args) {
const prb_t *prb = init_pd_args.prb;
res_t *res = init_pd_args.res;
bool force_f32_dt = init_pd_args.force_f32_dt;
auto dims = prb->dims;
for (int d = 0; d < prb->ndims; ++d)
if (prb->runtime_dim_mask & (1 << d)) dims[d] = DNNL_RUNTIME_DIM_VAL;
auto src_d = dnn_mem_t::init_md(prb->ndims, dims.data(),
force_f32_dt ? dnnl_f32 : prb->sdt, prb->stag, prb->strides[0]);
auto dst_d = dnn_mem_t::init_md(prb->ndims, dims.data(),
force_f32_dt ? dnnl_f32 : prb->ddt, prb->dtag, prb->strides[1]);
// Prepare and assign extra for dst_md.
auto &extra = static_cast<dnnl_memory_desc_t>(dst_d)->extra;
extra.flags = dnnl::impl::memory_extra_flags::none;
if (prb->is_reorder_with_compensation(FLAG_ANY)) {
for (const auto &i_oflag : prb->oflag) {
if (i_oflag.first & FLAG_S8S8_COMP) {
extra.flags |= dnnl::impl::memory_extra_flags::
compensation_conv_s8s8;
extra.compensation_mask = i_oflag.second;
const float s8_scale_factor = reorder_rescale_factor();
const bool need_rescale = s8_scale_factor != 1.f;
if (need_rescale) {
extra.flags |= dnnl::impl::memory_extra_flags::scale_adjust;
extra.scale_adjust = s8_scale_factor;
}
}
if (i_oflag.first & FLAG_ZP_COMP) {
extra.flags |= dnnl::impl::memory_extra_flags::
compensation_conv_asymmetric_src;
extra.asymm_compensation_mask = i_oflag.second;
}
}
}
auto src_engine = init_pd_args.engine;
auto dst_engine = init_pd_args.engine;
if (is_gpu()) {
switch (prb->cross_engine) {
case CPU2GPU: src_engine = get_cpu_engine(); break;
case GPU2CPU: dst_engine = get_cpu_engine(); break;
default: break;
}
}
auto dnnl_attr = make_benchdnn_dnnl_wrapper(
create_dnnl_attr(prb->attr, attr_args_t()));
init_pd_args.is_iterator_supported = false;
TIME_C_PD(DNN_SAFE_STATUS(dnnl_reorder_primitive_desc_create(
&init_pd_args.pd, init_pd_args.src_md ? init_pd_args.src_md : src_d,
src_engine, dst_d, dst_engine, dnnl_attr)));
return dnnl_success;
}
void skip_unimplemented_prb(const prb_t *prb, res_t *res) {
const auto sdt = prb->sdt;
const auto ddt = prb->ddt;
skip_unimplemented_data_type({sdt, ddt}, prb->dir, res);
skip_unimplemented_sum_po(prb->attr, res, dnnl_reorder, sdt);
skip_unimplemented_binary_po(prb->attr, res);
skip_unimplemented_prelu_po(prb->attr, res, dnnl_reorder);
const bool s32_src_ok = IMPLICATION(sdt == dnnl_s32,
ddt != dnnl_f8_e5m2 && ddt != dnnl_f8_e4m3 && ddt != dnnl_bf16
&& ddt != dnnl_f16);
const bool s32_dst_ok = IMPLICATION(ddt == dnnl_s32,
sdt != dnnl_f8_e5m2 && sdt != dnnl_f8_e4m3 && sdt != dnnl_bf16
&& sdt != dnnl_f16);
if (!s32_src_ok || !s32_dst_ok) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Mixed (xf8,xf16)<-->s32 support is limited.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
if (is_cpu()) {
bool scales_ok = true;
#if !defined(DNNL_X64) || DNNL_X64 == 0
{
// reference reorder supports only a subset of scale policies
const std::vector<policy_t> supported_policy
= {policy_t::COMMON, policy_t::PER_DIM_0,
policy_t::PER_DIM_1, policy_t::PER_DIM_01};
for (auto arg : {DNNL_ARG_SRC, DNNL_ARG_DST}) {
scales_ok = std::any_of(supported_policy.cbegin(),
supported_policy.cend(), [&](const policy_t policy) {
return prb->attr.scales.get(arg).policy == policy;
});
}
}
#endif
if (!scales_ok) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Generic CPU doesn't support specified "
"scale mask.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
if (prb->is_reorder_with_compensation(FLAG_ANY)) {
const bool dt_ok = ddt == dnnl_s8;
if (!dt_ok) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Compensation is supported only for s8 "
"dst data type.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
const bool attr_ok = prb->attr.zero_points.is_def()
&& prb->attr.post_ops.is_def();
if (!attr_ok) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Compensation is supported with scale "
"attribute only.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
const bool rt_ok = prb->runtime_dim_mask == 0;
if (!rt_ok) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Compensation is not supported for "
"runtime dimensions.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
const auto comp_mask = prb->get_compensation_mask(FLAG_ANY);
bool masks_ok = true;
for (auto arg : {DNNL_ARG_SRC, DNNL_ARG_DST}) {
const auto &e = prb->attr.scales.get(arg);
if (!e.is_def()) {
int e_mask = attr_t::get_default_mask(e.policy);
masks_ok = masks_ok && e_mask == comp_mask;
}
}
if (!masks_ok) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Compensation mask doesn't coincide "
"with scaling mask.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
#if !defined(DNNL_X64) || DNNL_X64 == 0
// Simple reorder doesn't provide decent coverage for compensated
// cases. Shut them down unconditionally by default.
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Generic CPU doesn't support compensation "
"cases uniformly.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
#endif
}
const auto &dst_scales = prb->attr.scales.get(DNNL_ARG_DST);
if (!dst_scales.is_def()
&& attr_t::get_default_mask(dst_scales.policy) > 0
&& prb->runtime_dim_mask != 0) {
// Destination scale is not supported for runtime dimensions since
// the implementation logic inverts dst scales and requires
// scratchpad for `mask > 0` cases which is impossible to estimate
// with runtime dims.
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Destination scale is not supported for "
"runtime dimensions.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
const auto &src_scales = prb->attr.scales.get(DNNL_ARG_SRC);
if (!src_scales.is_def() && !dst_scales.is_def()) {
if (attr_t::get_default_mask(src_scales.policy)
!= attr_t::get_default_mask(dst_scales.policy)
&& prb->is_reorder_with_compensation(FLAG_ANY)) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: Compensation cases when both scales "
"specified but with different masks isn't supported.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
}
if (sdt == dnnl_s4 || ddt == dnnl_s4 || sdt == dnnl_u4
|| ddt == dnnl_u4) {
BENCHDNN_PRINT(2, "[SKIP][%s:%d]: Int4 support is limited.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
const bool f16_src_ok = IMPLICATION(
sdt == dnnl_f16, ddt == dnnl_f16 || ddt == dnnl_f32);
const bool f16_dst_ok = IMPLICATION(
ddt == dnnl_f16, sdt == dnnl_f16 || sdt == dnnl_f32);
if (!f16_src_ok || !f16_dst_ok) {
BENCHDNN_PRINT(2, "[SKIP][%s:%d]: f16 support is limited.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
// CPU xf8 reorders only support xf8<->(f16,f32) combinations
const bool xf8_src_ok
= IMPLICATION(ddt == dnnl_f8_e5m2 || ddt == dnnl_f8_e4m3,
sdt == dnnl_f16 || sdt == dnnl_f32);
const bool xf8_dst_ok
= IMPLICATION(sdt == dnnl_f8_e5m2 || sdt == dnnl_f8_e4m3,
ddt == dnnl_f16 || ddt == dnnl_f32);
if (!xf8_src_ok || !xf8_dst_ok) {
BENCHDNN_PRINT(2, "[SKIP][%s:%d]: f8 support is limited.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
}
if (is_gpu()) {
if (prb->runtime_dim_mask != 0) {
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: GPU doesn't support runtime dimensions.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
if (prb->is_reorder_with_compensation(FLAG_ANY)) {
// Reorders w/ compensation are not supported by design: zp_comp is
// done in kernels directly, but s8s8 instructions are available in
// HW.
BENCHDNN_PRINT(2,
"[SKIP][%s:%d]: GPU doesn't support cases with "
"compensation.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
auto is_blocked_format = [](const std::string &format_tag) {
// if the user provided tag has a capital letter,
// that indicates it's a blocked format, otherwise it's plain
for (const auto &c : format_tag) {
if (std::isupper(c)) { return true; }
}
return false;
};
// Skip blocked format tags and 4 bit formats for Nvidia/AMD/Generic SYCL backends
if (is_generic_gpu()) {
const bool is_4bit_format
= is_subbyte_type(prb->sdt) || is_subbyte_type(prb->ddt);
// sycl reorder implementation does not support grouped zero points / scales
bool zero_point_has_groups = !prb->attr.scales.is_def();
bool scales_has_groups = !prb->attr.zero_points.is_def();
if (is_blocked_format(prb->stag) || is_blocked_format(prb->dtag)
|| is_4bit_format || scales_has_groups
|| zero_point_has_groups) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
}
}
}
}
void skip_invalid_prb(const prb_t *prb, res_t *res) {
#if DNNL_CPU_RUNTIME == DNNL_RUNTIME_NONE \
|| DNNL_GPU_RUNTIME == DNNL_RUNTIME_NONE
auto cross_engine = prb->cross_engine;
if (cross_engine == CPU2GPU || cross_engine == GPU2CPU) {
BENCHDNN_PRINT(2,
"[INVALID][%s:%d]: Cross-engine case isn't supported when just "
"one runtime is enabled.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::invalid_case;
return;
}
#endif
if (!prb->attr.zero_points.is_def(DNNL_ARG_DST)
&& prb->attr.post_ops.find(attr_t::post_ops_t::kind_t::SUM) != -1) {
BENCHDNN_PRINT(2,
"[INVALID][%s:%d]: Zero-points can't be used with sum "
"post-op.\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::invalid_case;
return;
}
const bool is_src_zp_ok = is_integral_dt(prb->sdt)
|| prb->attr.zero_points.is_def(DNNL_ARG_SRC);
const bool is_dst_zp_ok = is_integral_dt(prb->ddt)
|| prb->attr.zero_points.is_def(DNNL_ARG_DST);
if (!(is_src_zp_ok && is_dst_zp_ok)) {
BENCHDNN_PRINT(2,
"[INVALID][%s:%d]: Non-integral data types don't support "
"zero-points\n",
__FILE__, __LINE__);
res->state = SKIPPED;
res->reason = skip_reason::invalid_case;
return;
}
}
void setup_cmp(compare::compare_t &cmp, const prb_t *prb, data_kind_t kind,
const args_t &ref_args) {
// This value can be exact without scales. Scales may affect the value.
// Avoid any scales logic involved until needed.
cmp.set_zero_trust_percent(80.f);
// `f8_e4m3` range is very short which makes inputs convert into NaNs.
cmp.set_op_output_has_nans(prb->sdt == dnnl_f8_e4m3);
// Additional check to avoid false-positive result from f32->s32 conversion
// in case of sum post-op on GPU happening when two max_dt values
// are summed together.
const auto reorder_add_check
= [&](const compare::compare_t::driver_check_func_args_t &args) {
if (args.dt == dnnl_s32 && args.got == max_dt(args.dt)
&& is_gpu()) {
// 128.f = float(INT_MAX) - BENCHDNN_S32_TO_F32_SAT_CONST;
return args.diff == 128.f;
}
return false;
};
cmp.set_driver_check_function(reorder_add_check);
}
std::vector<int> supported_exec_args(dir_t dir) {
static const std::vector<int> exec_args = {
DNNL_ARG_FROM,
DNNL_ARG_TO,
};
return exec_args;
};
int init_ref_memory_args(dnn_mem_map_t &ref_mem_map, dnn_mem_map_t &mem_map,
dnnl_primitive_t prim, const prb_t *prb, res_t *res,
dnnl_primitive_t prim_ref) {
if (has_bench_mode_modifier(mode_modifier_t::no_ref_memory)) return OK;
const auto &ref_engine = get_cpu_engine();
for (auto &entry : mem_map) {
const int exec_arg = entry.first;
// The function targets regular exec_args that are positive.
// Negative args are used by bitwise and are broken in the `default`
// branch due to `&` always returns `true`.
if (exec_arg <= 0) continue;
auto &mem = entry.second; // `mem` is modified by filler (reorder).
// Scratchpad memory relates to a primitive. If reference needs it,
// use switch below to define a memory desc for it.
if (exec_arg != DNNL_ARG_SCRATCHPAD) {
ref_mem_map.emplace(exec_arg,
dnn_mem_t(mem.md_, dnnl_f32, tag::abx, ref_engine,
/* prefill = */ false));
}
auto &ref_mem = ref_mem_map[exec_arg];
switch (exec_arg) {
case DNNL_ARG_FROM: {
SAFE(fill_mem(prb, SRC, mem, ref_mem), WARN);
// Additional inputs to compare compensation buffers.
ref_mem_map.emplace(DNNL_ARG_SRC_1,
setup_compensation_memory(prb, FLAG_S8S8_COMP));
ref_mem_map.emplace(DNNL_ARG_SRC_2,
setup_compensation_memory(prb, FLAG_ZP_COMP));
} break;
case DNNL_ARG_TO: {
const auto &po = prb->attr.post_ops;
const int sum_idx = po.find(attr_t::post_ops_t::SUM);
// MIOpen doesn't work properly when tensors are filled with 0xFF.
if (sum_idx >= 0 || is_amd_gpu()) {
SAFE(fill_mem(prb, DST, mem, ref_mem), WARN);
// Bitwise mode for sum requires a copy due to data for
// post-op will be overwritten and it must be refreshed.
if (has_bench_mode_bit(mode_bit_t::bitwise)) {
SAFE(mem_map.at(-exec_arg).reorder(ref_mem), WARN);
}
}
} break;
default:
SAFE(init_ref_memory_args_default_case(
exec_arg, mem, ref_mem, prb->attr, res),
WARN);
break;
}
// Don't keep reference memory if it is not used further.
if (!has_bench_mode_bit(mode_bit_t::corr)) ref_mem_map.clear();
}
return OK;
}
int createit(std::vector<benchdnn_dnnl_wrapper_t<dnnl_primitive_t>> &v_prim,
const prb_t *prb, res_t *res) {
v_prim.resize(1);
SAFE(init_prim(prb->ctx_init, v_prim[0], init_pd, prb, res), WARN);
return OK;
}
int checkit(std::vector<benchdnn_dnnl_wrapper_t<dnnl_primitive_t>> &v_prim,
const prb_t *prb, res_t *res) {
if (has_bench_mode_bit(mode_bit_t::exec)) {
SAFE(check_total_size(res), WARN);
}
if (has_bench_mode_bit(mode_bit_t::corr)) {
SAFE(check_caches(v_prim[0], prb, res), WARN);
}
return OK;
}
int doit(const std::vector<benchdnn_dnnl_wrapper_t<dnnl_primitive_t>> &v_prim,
const prb_t *prb, res_t *res) {
set_zmalloc_max_expected_size(res->mem_size_args.zmalloc_expected_size);
const auto &prim = v_prim[0];
dnn_mem_map_t mem_map, ref_mem_map;
init_memory_args<prb_t>(mem_map, prb, prim, supported_exec_args(prb->dir));
TIME_FILL(SAFE(
init_ref_memory_args(ref_mem_map, mem_map, prim, prb, res), WARN));
args_t args(mem_map), ref_args(ref_mem_map);
SAFE(execute_and_wait(prim, args, res), WARN);
if (has_bench_mode_bit(mode_bit_t::corr)) {
// Remove extra desc so that reorders with compensation could have
// proper reorder from blocked layout to plain for comparison.
auto &dst_dt = mem_map[DNNL_ARG_DST];
dnnl::impl::memory_extra_desc_t empty_extra {};
const auto orig_dst_extra = dst_dt.md_->extra;
dst_dt.md_->extra = empty_extra;
// Validate main reorder part.
check_correctness(prb, {DST}, args, ref_args, setup_cmp, res, prb->dir);
// Restore extra for compensation comparison and performance mode.
dst_dt.md_->extra = orig_dst_extra;
// Validate compensated reorder part.
if (prb->is_reorder_with_compensation(FLAG_ANY)) {
compare_compensation(prb, mem_map, ref_mem_map, res);
}
}
SAFE(check_bitwise(prim, {DST}, args, prb->attr, prb->inplace, res), WARN);
return measure_perf(prb->ctx_exe, res, prim, args);
}
} // namespace reorder