mirror of
https://github.com/uxlfoundation/oneDNN.git
synced 2025-10-20 10:03:50 +08:00
219 lines
8.7 KiB
C++
219 lines
8.7 KiB
C++
/*******************************************************************************
|
|
* Copyright 2024-2025 Intel Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*******************************************************************************/
|
|
|
|
/// @example deconvolution.cpp
|
|
/// > Annotated version: @ref deconvolution_example_cpp
|
|
|
|
/// @page deconvolution_example_cpp_brief
|
|
/// @brief This C++ API example demonstrates how to create and execute a
|
|
/// [Deconvolution](@ref dev_guide_convolution) primitive in forward propagation
|
|
/// mode.
|
|
|
|
/// @page deconvolution_example_cpp Deconvolution Primitive Example
|
|
/// \copybrief deconvolution_example_cpp_brief
|
|
///
|
|
/// Key optimizations included in this example:
|
|
/// - Creation of optimized memory format from the primitive descriptor;
|
|
/// - Primitive attributes with fused post-ops.
|
|
///
|
|
/// @include deconvolution.cpp
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "example_utils.hpp"
|
|
#include "oneapi/dnnl/dnnl.hpp"
|
|
|
|
using namespace dnnl;
|
|
|
|
void deconvolution_example(dnnl::engine::kind engine_kind) {
|
|
|
|
// Create execution dnnl::engine.
|
|
dnnl::engine engine(engine_kind, 0);
|
|
|
|
// Create dnnl::stream.
|
|
dnnl::stream engine_stream(engine);
|
|
|
|
// Tensor dimensions.
|
|
const memory::dim N = 3, // batch size
|
|
IC = 32, // input channels
|
|
IH = 13, // input height
|
|
IW = 13, // input width
|
|
OC = 64, // output channels
|
|
KH = 3, // weights height
|
|
KW = 3, // weights width
|
|
PH_L = 1, // height padding: left
|
|
PH_R = 1, // height padding: right
|
|
PW_L = 1, // width padding: left
|
|
PW_R = 1, // width padding: right
|
|
SH = 4, // height-wise stride
|
|
SW = 4, // width-wise stride
|
|
// In a convolution operation, the output height and
|
|
// width are computed as:
|
|
// OH = (IH - KH + PH_L + PH_R) / SH + 1
|
|
// OW = (IW - KW + PW_L + PW_R) / SW + 1
|
|
// However, in a deconvolution operation, the computation
|
|
// is reversed:
|
|
OH = (IH - 1) * SH - PH_L - PH_R + KH, // output height
|
|
OW = (IW - 1) * SW - PW_L - PW_R + KW; // output width
|
|
|
|
// Source (src), weights, bias, and destination (dst) tensors
|
|
// dimensions.
|
|
memory::dims src_dims = {N, IC, IH, IW};
|
|
memory::dims weights_dims = {OC, IC, KH, KW};
|
|
memory::dims bias_dims = {OC};
|
|
memory::dims dst_dims = {N, OC, OH, OW};
|
|
|
|
// Strides, padding dimensions.
|
|
memory::dims strides_dims = {SH, SW};
|
|
memory::dims padding_dims_l = {PH_L, PW_L};
|
|
memory::dims padding_dims_r = {PH_R, PW_R};
|
|
|
|
// Allocate buffers.
|
|
std::vector<float> src_data(product(src_dims));
|
|
std::vector<float> weights_data(product(weights_dims));
|
|
std::vector<float> bias_data(OC);
|
|
std::vector<float> dst_data(product(dst_dims));
|
|
|
|
// Initialize src, weights, and dst tensors.
|
|
std::generate(src_data.begin(), src_data.end(), []() {
|
|
static int i = 0;
|
|
return std::cos(i++ / 10.f);
|
|
});
|
|
std::generate(weights_data.begin(), weights_data.end(), []() {
|
|
static int i = 0;
|
|
return std::sin(i++ * 2.f);
|
|
});
|
|
std::generate(bias_data.begin(), bias_data.end(), []() {
|
|
static int i = 0;
|
|
return std::tanh(float(i++));
|
|
});
|
|
|
|
// Create memory objects for tensor data (src, weights, dst). In this
|
|
// example, NCHW layout is assumed for src and dst, and OIHW for weights.
|
|
auto user_src_mem = memory(
|
|
{src_dims, memory::data_type::f32, memory::format_tag::nchw},
|
|
engine);
|
|
auto user_weights_mem = memory(
|
|
{weights_dims, memory::data_type::f32, memory::format_tag::oihw},
|
|
engine);
|
|
auto user_dst_mem = memory(
|
|
{dst_dims, memory::data_type::f32, memory::format_tag::nchw},
|
|
engine);
|
|
|
|
// Create memory descriptors with format_tag::any for the primitive. This
|
|
// enables the deconvolution primitive to choose memory layouts for an
|
|
// optimized primitive implementation, and these layouts may differ from the
|
|
// ones provided by the user.
|
|
auto deconv_src_md = memory::desc(
|
|
src_dims, memory::data_type::f32, memory::format_tag::any);
|
|
auto deconv_weights_md = memory::desc(
|
|
weights_dims, memory::data_type::f32, memory::format_tag::any);
|
|
auto deconv_dst_md = memory::desc(
|
|
dst_dims, memory::data_type::f32, memory::format_tag::any);
|
|
|
|
// Create memory descriptor and memory object for input bias.
|
|
auto user_bias_md = memory::desc(
|
|
bias_dims, memory::data_type::f32, memory::format_tag::a);
|
|
auto user_bias_mem = memory(user_bias_md, engine);
|
|
|
|
// Write data to memory object's handle.
|
|
write_to_dnnl_memory(src_data.data(), user_src_mem);
|
|
write_to_dnnl_memory(weights_data.data(), user_weights_mem);
|
|
write_to_dnnl_memory(bias_data.data(), user_bias_mem);
|
|
|
|
// Create primitive post-ops (ReLU).
|
|
const float alpha = 0.f;
|
|
const float beta = 0.f;
|
|
post_ops deconv_ops;
|
|
deconv_ops.append_eltwise(algorithm::eltwise_relu, alpha, beta);
|
|
primitive_attr deconv_attr;
|
|
deconv_attr.set_post_ops(deconv_ops);
|
|
|
|
// Create primitive descriptor.
|
|
// Here we use deconvolution which is a transposed convolution.
|
|
// The way the weights are applied is the key difference between convolution
|
|
// and deconvolution. In a convolution, the weights are used to reduce
|
|
// the input data, while in a deconvolution, they are used to expand
|
|
// the input data.
|
|
auto deconv_pd = deconvolution_forward::primitive_desc(engine,
|
|
prop_kind::forward_training, algorithm::deconvolution_direct,
|
|
deconv_src_md, deconv_weights_md, user_bias_md, deconv_dst_md,
|
|
strides_dims, padding_dims_l, padding_dims_r, deconv_attr);
|
|
|
|
// For now, assume that the src, weights, and dst memory layouts generated
|
|
// by the primitive and the ones provided by the user are identical.
|
|
auto deconv_src_mem = user_src_mem;
|
|
auto deconv_weights_mem = user_weights_mem;
|
|
auto deconv_dst_mem = user_dst_mem;
|
|
|
|
// Reorder the data in case the src and weights memory layouts generated by
|
|
// the primitive and the ones provided by the user are different. In this
|
|
// case, we create additional memory objects with internal buffers that will
|
|
// contain the reordered data. The data in dst will be reordered after the
|
|
// deconvolution computation has finalized.
|
|
if (deconv_pd.src_desc() != user_src_mem.get_desc()) {
|
|
deconv_src_mem = memory(deconv_pd.src_desc(), engine);
|
|
reorder(user_src_mem, deconv_src_mem)
|
|
.execute(engine_stream, user_src_mem, deconv_src_mem);
|
|
}
|
|
|
|
if (deconv_pd.weights_desc() != user_weights_mem.get_desc()) {
|
|
deconv_weights_mem = memory(deconv_pd.weights_desc(), engine);
|
|
reorder(user_weights_mem, deconv_weights_mem)
|
|
.execute(engine_stream, user_weights_mem, deconv_weights_mem);
|
|
}
|
|
|
|
if (deconv_pd.dst_desc() != user_dst_mem.get_desc()) {
|
|
deconv_dst_mem = memory(deconv_pd.dst_desc(), engine);
|
|
}
|
|
|
|
// Create the primitive.
|
|
auto deconv_prim = deconvolution_forward(deconv_pd);
|
|
|
|
// Primitive arguments.
|
|
std::unordered_map<int, memory> deconv_args;
|
|
deconv_args.insert({DNNL_ARG_SRC, deconv_src_mem});
|
|
deconv_args.insert({DNNL_ARG_WEIGHTS, deconv_weights_mem});
|
|
deconv_args.insert({DNNL_ARG_BIAS, user_bias_mem});
|
|
deconv_args.insert({DNNL_ARG_DST, deconv_dst_mem});
|
|
|
|
// Primitive execution: deconvolution with ReLU.
|
|
deconv_prim.execute(engine_stream, deconv_args);
|
|
|
|
// Reorder the data in case the dst memory descriptor generated by the
|
|
// primitive and the one provided by the user are different.
|
|
if (deconv_pd.dst_desc() != user_dst_mem.get_desc()) {
|
|
reorder(deconv_dst_mem, user_dst_mem)
|
|
.execute(engine_stream, deconv_dst_mem, user_dst_mem);
|
|
} else
|
|
user_dst_mem = deconv_dst_mem;
|
|
|
|
// Wait for the computation to finalize.
|
|
engine_stream.wait();
|
|
|
|
// Read data from memory object's handle.
|
|
read_from_dnnl_memory(dst_data.data(), user_dst_mem);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
return handle_example_errors(
|
|
deconvolution_example, parse_engine_kind(argc, argv));
|
|
}
|