Files
oneDNN/examples/primitives/augru.cpp

206 lines
8.3 KiB
C++

/*******************************************************************************
* Copyright 2022-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/// @example augru.cpp
/// > Annotated version: @ref augru_example_cpp
/// @page augru_example_cpp_brief
/// @brief This C++ API example demonstrates how to create and execute an
/// [AUGRU RNN](@ref dev_guide_rnn) primitive in forward training propagation mode.
/// @page augru_example_cpp AUGRU RNN Primitive Example
/// \copybrief augru_example_cpp_brief
///
/// Key optimizations included in this example:
/// - Creation of optimized memory format from the primitive descriptor.
///
/// @include augru.cpp
#include <algorithm>
#include <cmath>
#include <iostream>
#include <string>
#include <vector>
#include "example_utils.hpp"
#include "oneapi/dnnl/dnnl.hpp"
using namespace dnnl;
void augru_example(dnnl::engine::kind engine_kind) {
if (engine_kind == engine::kind::gpu)
throw example_allows_unimplemented {
"No AUGRU implementation is available for GPU.\n"};
// Create execution dnnl::engine.
dnnl::engine engine(engine_kind, 0);
// Create dnnl::stream.
dnnl::stream engine_stream(engine);
// Tensor dimensions.
const memory::dim N = 26, // batch size
T = 6, // time steps
C = 12, // channels
G = 3, // gates
L = 1, // layers
D = 1; // directions
// Source (src), weights, bias, attention, and destination (dst) tensors
// dimensions.
memory::dims src_dims = {T, N, C};
memory::dims attention_dims = {T, N, 1};
memory::dims weights_dims = {L, D, C, G, C};
memory::dims bias_dims = {L, D, G, C};
memory::dims dst_dims = {T, N, C};
// Allocate buffers.
std::vector<float> src_layer_data(product(src_dims));
std::vector<float> attention_data(product(attention_dims));
std::vector<float> weights_layer_data(product(weights_dims));
std::vector<float> weights_iter_data(product(weights_dims));
std::vector<float> bias_data(product(bias_dims));
std::vector<float> dst_layer_data(product(dst_dims));
// Initialize src, weights, and bias tensors.
std::generate(src_layer_data.begin(), src_layer_data.end(), []() {
static int i = 0;
return std::cos(i++ / 10.f);
});
std::generate(attention_data.begin(), attention_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(weights_layer_data.begin(), weights_layer_data.end(), []() {
static int i = 0;
return std::sin(i++ * 2.f);
});
std::generate(bias_data.begin(), bias_data.end(), []() {
static int i = 0;
return std::tanh(float(i++));
});
// Create memory descriptors and memory objects for src, bias, and dst.
auto src_layer_md = memory::desc(
src_dims, memory::data_type::f32, memory::format_tag::tnc);
auto attention_md = memory::desc(
attention_dims, memory::data_type::f32, memory::format_tag::tnc);
auto bias_md = memory::desc(
bias_dims, memory::data_type::f32, memory::format_tag::ldgo);
auto dst_layer_md = memory::desc(
dst_dims, memory::data_type::f32, memory::format_tag::tnc);
auto src_layer_mem = memory(src_layer_md, engine);
auto attention_mem = memory(attention_md, engine);
auto bias_mem = memory(bias_md, engine);
auto dst_layer_mem = memory(dst_layer_md, engine);
// Create memory objects for weights using user's memory layout. In this
// example, LDIGO is assumed.
auto user_weights_layer_mem = memory(
{weights_dims, memory::data_type::f32, memory::format_tag::ldigo},
engine);
auto user_weights_iter_mem = memory(
{weights_dims, memory::data_type::f32, memory::format_tag::ldigo},
engine);
// Write data to memory object's handle.
write_to_dnnl_memory(src_layer_data.data(), src_layer_mem);
write_to_dnnl_memory(attention_data.data(), attention_mem);
write_to_dnnl_memory(bias_data.data(), bias_mem);
write_to_dnnl_memory(weights_layer_data.data(), user_weights_layer_mem);
write_to_dnnl_memory(weights_iter_data.data(), user_weights_iter_mem);
// Create memory descriptors for weights with format_tag::any. This enables
// the AUGRU primitive to choose the optimized memory layout.
auto augru_weights_layer_md = memory::desc(
weights_dims, memory::data_type::f32, memory::format_tag::any);
auto augru_weights_iter_md = memory::desc(
weights_dims, memory::data_type::f32, memory::format_tag::any);
// Optional memory descriptors for recurrent data.
auto src_iter_md = memory::desc();
auto dst_iter_md = memory::desc();
// Create primitive descriptor.
auto augru_pd
= augru_forward::primitive_desc(engine, prop_kind::forward_training,
rnn_direction::unidirectional_left2right, src_layer_md,
src_iter_md, attention_md, augru_weights_layer_md,
augru_weights_iter_md, bias_md, dst_layer_md, dst_iter_md);
// For now, assume that the weights memory layout generated by the primitive
// and the ones provided by the user are identical.
auto augru_weights_layer_mem = user_weights_layer_mem;
auto augru_weights_iter_mem = user_weights_iter_mem;
// Reorder the data in case the weights memory layout generated by the
// primitive and the one provided by the user are different. In this case,
// we create additional memory objects with internal buffers that will
// contain the reordered data.
if (augru_pd.weights_desc() != user_weights_layer_mem.get_desc()) {
augru_weights_layer_mem = memory(augru_pd.weights_desc(), engine);
reorder(user_weights_layer_mem, augru_weights_layer_mem)
.execute(engine_stream, user_weights_layer_mem,
augru_weights_layer_mem);
}
if (augru_pd.weights_iter_desc() != user_weights_iter_mem.get_desc()) {
augru_weights_iter_mem = memory(augru_pd.weights_iter_desc(), engine);
reorder(user_weights_iter_mem, augru_weights_iter_mem)
.execute(engine_stream, user_weights_iter_mem,
augru_weights_iter_mem);
}
// Create the memory objects from the primitive descriptor. A workspace is
// also required for AUGRU.
// NOTE: Here, the workspace is required for later usage in backward
// propagation mode.
auto src_iter_mem = memory(augru_pd.src_iter_desc(), engine);
auto weights_iter_mem = memory(augru_pd.weights_iter_desc(), engine);
auto dst_iter_mem = memory(augru_pd.dst_iter_desc(), engine);
auto workspace_mem = memory(augru_pd.workspace_desc(), engine);
// Create the primitive.
auto augru_prim = augru_forward(augru_pd);
// Primitive arguments
std::unordered_map<int, memory> augru_args;
augru_args.insert({DNNL_ARG_SRC_LAYER, src_layer_mem});
augru_args.insert({DNNL_ARG_AUGRU_ATTENTION, attention_mem});
augru_args.insert({DNNL_ARG_WEIGHTS_LAYER, augru_weights_layer_mem});
augru_args.insert({DNNL_ARG_WEIGHTS_ITER, augru_weights_iter_mem});
augru_args.insert({DNNL_ARG_BIAS, bias_mem});
augru_args.insert({DNNL_ARG_DST_LAYER, dst_layer_mem});
augru_args.insert({DNNL_ARG_SRC_ITER, src_iter_mem});
augru_args.insert({DNNL_ARG_DST_ITER, dst_iter_mem});
augru_args.insert({DNNL_ARG_WORKSPACE, workspace_mem});
// Primitive execution: AUGRU.
augru_prim.execute(engine_stream, augru_args);
// Wait for the computation to finalize.
engine_stream.wait();
// Read data from memory object's handle.
read_from_dnnl_memory(dst_layer_data.data(), dst_layer_mem);
}
int main(int argc, char **argv) {
return handle_example_errors(augru_example, parse_engine_kind(argc, argv));
}