Files
oneDNN/tests/benchdnn/softmax/softmax.cpp
2025-03-12 15:08:59 -07:00

450 lines
18 KiB
C++

/*******************************************************************************
* Copyright 2019-2025 Intel Corporation
* Copyright 2024 Arm Ltd. and affiliates
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <algorithm>
#include <random>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "oneapi/dnnl/dnnl.h"
#include "utils/fill.hpp"
#include "utils/parallel.hpp"
#include "dnnl_common.hpp"
#include "dnnl_memory.hpp"
#include "softmax/softmax.hpp"
namespace softmax {
dnnl_status_t init_pd(init_pd_args_t<prb_t> &init_pd_args) {
const prb_t *prb = init_pd_args.prb;
res_t *res = init_pd_args.res;
bool force_f32_dt = init_pd_args.force_f32_dt;
auto dst_d = dnn_mem_t::init_md(prb->ndims, prb->dims.data(),
force_f32_dt ? dnnl_f32 : prb->ddt, prb->dtag);
dnnl_alg_kind_t alg_kind = dnnl_softmax_accurate;
if (prb->alg == LOGSOFTMAX) alg_kind = dnnl_softmax_log;
attr_args_t attr_args;
attr_args.prepare_post_ops_mds(prb->attr, prb->ndims, prb->dims.data());
auto dnnl_attr = make_benchdnn_dnnl_wrapper(
create_dnnl_attr(prb->attr, attr_args));
if (prb->dir & FLAG_FWD) {
auto src_d = dnn_mem_t::init_md(prb->ndims, prb->dims.data(),
force_f32_dt ? dnnl_f32 : prb->sdt, prb->stag);
auto prop = prb->dir & FLAG_INF ? dnnl_forward_inference
: dnnl_forward_training;
TIME_C_PD(DNN_SAFE_STATUS(dnnl_softmax_forward_primitive_desc_create(
&init_pd_args.pd, init_pd_args.engine, prop, alg_kind,
init_pd_args.src_md ? init_pd_args.src_md : src_d, dst_d,
prb->axis, dnnl_attr)));
} else {
// Re-create dst_md with source tag if dst was not specified, immitating
// default value.
if (prb->dtag == tag::any) {
dst_d = dnn_mem_t::init_md(prb->ndims, prb->dims.data(),
force_f32_dt ? dnnl_f32 : prb->ddt, prb->stag);
}
auto diff_src_d = dnn_mem_t::init_md(prb->ndims, prb->dims.data(),
force_f32_dt ? dnnl_f32 : prb->sdt, tag::any);
auto diff_dst_d = dnn_mem_t::init_md(prb->ndims, prb->dims.data(),
force_f32_dt ? dnnl_f32 : prb->ddt, tag::any);
TIME_C_PD(DNN_SAFE_STATUS(dnnl_softmax_backward_primitive_desc_create(
&init_pd_args.pd, init_pd_args.engine, alg_kind, diff_src_d,
diff_dst_d, dst_d, prb->axis, init_pd_args.hint, dnnl_attr)));
}
return dnnl_success;
}
int fill_data_fwd(const prb_t *prb, dnn_mem_t &mem_dt, dnn_mem_t &mem_fp) {
const auto nelems = mem_fp.nelems();
if (nelems == 0) return OK;
// Refer to modes documentation for filling principles.
if (has_bench_mode_bit(mode_bit_t::bitwise)) {
return fill_random_real(mem_dt, mem_fp, nullptr);
}
if (has_bench_mode_bit(mode_bit_t::perf)) {
return fill_random_real(
mem_dt, mem_fp, nullptr, get_perf_fill_cfg(mem_dt.dt()));
}
int64_t outer_size = 0, inner_size = 0, axis_size = 0;
get_sizes(prb, outer_size, inner_size, axis_size);
// Fill data the way it tests two modes: max_val < 0 and max_val >= 0;
// Test max_val < 0 by using only negative numbers to check correct max_val
// subtraction, mostly if library used signed value, not abs.
// Test max_val >= 0 by exceeding `exp_ovfl_arg` value to check answer
// does not contain +infinity (nan).
// Distribute several top-1 values to check softmax works right. Also use
// bit more top-2 values so they contribute in final exp sum as well. Fill
// much more values with top-3 to check we apply correct maths for whole
// input.
// Filling data such way prevents cancellation error for LOGSOFTMAX due to
// log(sum(x_j)) won't be close to zero as in case of single top-1 value.
static const std::vector<std::uniform_int_distribution<>> igen_top_fp {
std::uniform_int_distribution<>(1, 2),
std::uniform_int_distribution<>(2, 5),
std::uniform_int_distribution<>(5, 8)};
static const std::vector<std::uniform_int_distribution<>> igen_top_int8 {
std::uniform_int_distribution<>(1, 1),
std::uniform_int_distribution<>(1, 1),
std::uniform_int_distribution<>(0, 4)};
std::vector<std::uniform_int_distribution<>> igen_top
= dnnl_data_type_size(prb->ddt) == 1 ? igen_top_int8 : igen_top_fp;
// Do fixed partitioning to have same filling for any number of threads.
const int64_t chunk_size = 64;
const int64_t n_chunks = div_up(nelems, chunk_size);
benchdnn_parallel_nd(n_chunks, [&](int64_t idx_chunk) {
int64_t idx_start = idx_chunk * chunk_size;
int64_t idx_end = MIN2(idx_start + chunk_size, outer_size);
std::minstd_rand msr(idx_start + 1);
msr.discard(1);
const int sign = (idx_chunk % 2 != 0 && prb->sdt != dnnl_u8) ? -1 : 1;
const int exp_ovfl_arg = 88 * sign;
std::vector<int> top_val {
exp_ovfl_arg + 2, exp_ovfl_arg + 1, exp_ovfl_arg};
for_(int64_t idx = idx_start; idx < idx_end; ++idx)
for (int64_t in = 0; in < inner_size; in++) {
std::vector<int64_t> n_top {
igen_top[0](msr), igen_top[1](msr), igen_top[2](msr)};
int i = 2;
int64_t n_sum = n_top[0] + n_top[1] + n_top[2];
// Adjust number of top elements to fit axis_size if needed
while (n_sum > axis_size) {
n_sum -= n_top[i];
n_top[i] -= std::min(n_top[i], n_sum + n_top[i] - axis_size);
n_sum += n_top[i];
i--;
}
// If number of top elements is less the axis_size, set a random
// index to start dense filling from.
std::uniform_int_distribution<> igen_as_idx(0, axis_size - n_sum);
msr.discard(2);
int64_t axis_idx_start = igen_as_idx(msr);
i = 0;
for (int64_t as = 0; as < axis_size; as++) {
auto offset = inner_size * (idx * axis_size + as) + in;
float value
= std::max(lowest_dt(mem_dt.dt()), lowest_dt(prb->ddt));
if (as >= axis_idx_start && as < axis_idx_start + n_sum) {
value = top_val[i];
n_top[i]--;
if (n_top[i] == 0) i++;
}
mem_fp.set_elem(offset,
round_to_nearest_representable(mem_dt.dt(), value));
}
}
});
SAFE(mem_dt.reorder(mem_fp), WARN);
return OK;
}
int fill_data_bwd(data_kind_t data_kind, const prb_t *prb, dnn_mem_t &mem_dt,
dnn_mem_t &mem_fp, int seed) {
const auto nelems = mem_fp.nelems();
if (nelems == 0) return OK;
// Refer to modes documentation for filling principles.
if (has_bench_mode_bit(mode_bit_t::bitwise)) {
return fill_random_real(mem_dt, mem_fp, nullptr);
}
if (has_bench_mode_bit(mode_bit_t::perf)) {
return fill_random_real(
mem_dt, mem_fp, nullptr, get_perf_fill_cfg(mem_dt.dt()));
}
// TODO: replace with some better filling mechanism.
const int range = ((seed % 2 == 0) || mem_dt.dt() == dnnl_f16) ? 8 : 128;
// to avoid any cancellation error it's better to have d_dst and dst of
// different signs (refer to ref computations).
// softmax := (d_dst - SUM (d_dst * dst); keep +d_dst and -dst.
// logsoftmax := d_dst - exp(dst) * SUM (d_dst); keep -d_dst and +dst.
// seed decides about the sign; 1 for SOFTMAX, 0 for LOGSOFTMAX
const float sign = seed % 2 == 0 ? 1.f : -1.f;
benchdnn_parallel_nd(nelems, [&](int64_t i) {
const float gen = ((11 * i) + 37 + 19 * seed) % range;
float coeff = data_kind == DIFF_DST ? sign * 1.f : sign * (1.f / range);
float value = coeff * gen;
mem_fp.set_elem(i, value);
});
SAFE(mem_dt.reorder(mem_fp), WARN);
return OK;
}
void skip_unimplemented_prb(const prb_t *prb, res_t *res) {
skip_unimplemented_data_type({prb->sdt, prb->ddt}, prb->dir, res);
skip_unimplemented_sum_po(prb->attr, res, dnnl_softmax, prb->sdt);
skip_unimplemented_prelu_po(prb->attr, res, dnnl_softmax);
if (prb->attr.post_ops.find(attr_t::post_ops_t::kind_t::SUM) != -1) {
res->state = SKIPPED;
res->reason = skip_reason::case_not_supported;
return;
}
}
void skip_invalid_prb(const prb_t *prb, res_t *res) {
// See `skip_invalid_inplace` for details.
if (prb->inplace) {
skip_invalid_inplace(res, prb->sdt, prb->ddt, prb->stag, prb->dtag);
if (res->state == SKIPPED) return;
}
}
void setup_cmp(compare::compare_t &cmp, const prb_t *prb, data_kind_t kind,
const args_t &ref_args) {
const auto trh_dt = (prb->dir & FLAG_FWD) ? prb->ddt : prb->sdt;
const bool is_flt_or_dbl = trh_dt == dnnl_f32 || trh_dt == dnnl_f64;
const float trh_coeff_log = prb->alg == LOGSOFTMAX ? 5 : 1;
const float trh_coeff_f32 = is_flt_or_dbl ? 10.f : 1.f;
const float trh_coeff_bwd = (prb->dir & FLAG_FWD) ? 1.f : 4.f;
const float trh_f32 = trh_coeff_log * trh_coeff_bwd * trh_coeff_f32
* epsilon_dt(trh_dt);
#if DNNL_AARCH64 || defined(DNNL_SYCL_HIP) || defined(DNNL_SYCL_CUDA)
// MIOpen and ACL softmax accumulate in F16, but oneDNN now expects accumulation in
// F32, this partially reverts 6727bbe8. For more information on ACL softmax, see
// https://github.com/uxlfoundation/oneDNN/issues/1819
// Similarly, for bf16 on AArch64, the relaxed threshold is necessary due to
// minor accuracy drops observed compared to f32
const float trh = trh_f32;
#else
const bool is_strict_acc
= prb->attr.acc_mode == dnnl_accumulation_mode_strict
|| prb->attr.acc_mode == dnnl_accumulation_mode_f32;
const bool is_relaxed_xf16
= !is_strict_acc && (trh_dt == dnnl_f16 || trh_dt == dnnl_bf16);
// Relaxed xf16 computation can get an ulp difference with f32 ref values.
const float trh = is_flt_or_dbl || is_relaxed_xf16 ? trh_f32 : 0.f;
#endif
cmp.set_threshold(trh);
const int64_t axis_size = prb->dims[prb->axis];
const int64_t n_zeros = (prb->ddt == dnnl_s8 || prb->ddt == dnnl_u8)
? (axis_size - 1)
: MAX2(0, axis_size - 8);
float zero_trust_percent = 100.f * n_zeros / axis_size;
// Note:
// * Logsoftmax over axis of size `1` does not make any sense.
// * Logsoftmax for u8 dst does not make any sense either.
if (prb->alg == LOGSOFTMAX && (axis_size == 1 || prb->ddt == dnnl_u8))
zero_trust_percent = 100.f;
if (prb->dir & FLAG_BWD) zero_trust_percent = 30.f;
cmp.set_zero_trust_percent(zero_trust_percent);
const auto softmax_add_check
= [&](const compare::compare_t::driver_check_func_args_t &args) {
#if DNNL_AARCH64_USE_ACL
auto diff_trh = epsilon_dt(args.dt);
#else
auto diff_trh = epsilon_dt(dnnl_f32);
#endif
// SSE4.1 and OpenCL rdiff tolerance is too high for
// certain scenarios.
// Additionally, OpenCL expf implementation may return 1e-38f
// values for big negative numbers. This is the guard from
// such values.
return args.diff < diff_trh;
};
cmp.set_driver_check_function(softmax_add_check);
}
std::vector<int> supported_exec_args(dir_t dir) {
static const std::vector<int> exec_fwd_args = {
DNNL_ARG_SRC,
DNNL_ARG_DST,
};
static const std::vector<int> exec_bwd_args = {
DNNL_ARG_DST,
DNNL_ARG_DIFF_SRC,
DNNL_ARG_DIFF_DST,
};
return (dir & FLAG_FWD) ? exec_fwd_args : exec_bwd_args;
};
fill_cfg_t binary_po_fill_cfg(
int exec_arg, const dnn_mem_t &mem, const attr_t &attr) {
fill_cfg_t cfg;
const int post_ops_range = DNNL_ARG_ATTR_MULTIPLE_POST_OP(31)
- DNNL_ARG_ATTR_MULTIPLE_POST_OP(0);
const bool is_post_ops_arg = (exec_arg & post_ops_range);
if (is_post_ops_arg) {
// Config secures only positive values since softmax output is
// positive, and using negative values leads to the cancellation
// effect.
const int bin_po_idx
= exec_arg / DNNL_ARG_ATTR_MULTIPLE_POST_OP_BASE - 1;
assert(bin_po_idx < attr.post_ops.len());
const auto alg = attr.post_ops.entry[bin_po_idx].kind;
cfg = fill_cfg_t(mem.dt(), 0.f, 16.f, /* int = */ true, alg,
"softmax_binary_post_op");
}
return cfg;
}
int init_ref_memory_args(dnn_mem_map_t &ref_mem_map, dnn_mem_map_t &mem_map,
dnnl_primitive_t prim, const prb_t *prb, res_t *res,
dnnl_primitive_t prim_ref) {
if (has_bench_mode_modifier(mode_modifier_t::no_ref_memory)) return OK;
const auto &ref_engine = get_cpu_engine();
const bool is_fwd_prim = is_fwd_prop_kind(query_prop_kind(query_pd(prim)));
for (auto &entry : mem_map) {
const int exec_arg = entry.first;
// The function targets regular exec_args that are positive.
// Negative args are used by bitwise and are broken in the `default`
// branch due to `&` always returns `true`.
if (exec_arg <= 0) continue;
auto &mem = entry.second; // `mem` is modified by filler (reorder).
// Scratchpad memory relates to a primitive. If reference needs it,
// use switch below to define a memory desc for it.
if (exec_arg != DNNL_ARG_SCRATCHPAD) {
ref_mem_map.emplace(exec_arg,
dnn_mem_t(mem.md_, dnnl_f32, tag::abx, ref_engine));
}
auto &ref_mem = ref_mem_map[exec_arg];
switch (exec_arg) {
case DNNL_ARG_SRC:
SAFE(fill_data_fwd(prb, mem, ref_mem), WARN);
// Need a copy of source data for inplace mode for bitwise
// testing.
if (has_bench_mode_bit(mode_bit_t::bitwise) && prb->inplace) {
auto &src_copy = mem_map.at(-exec_arg);
SAFE(bool(src_copy) ? OK : FAIL, WARN);
SAFE(src_copy.reorder(mem), WARN);
}
break;
case DNNL_ARG_DST:
if (!is_fwd_prim) {
const bool neg_sign = prb->alg == SOFTMAX ? true : false;
SAFE(fill_data_bwd(DST, prb, mem, ref_mem, neg_sign), WARN);
}
break;
case DNNL_ARG_DIFF_DST: {
const bool neg_sign = prb->alg == SOFTMAX ? true : false;
SAFE(fill_data_bwd(DIFF_DST, prb, mem, ref_mem, !neg_sign),
WARN);
// Need a copy of source data for inplace mode for bitwise
// testing.
if (has_bench_mode_bit(mode_bit_t::bitwise) && prb->inplace) {
auto &diff_dst_copy = mem_map.at(-exec_arg);
SAFE(bool(diff_dst_copy) ? OK : FAIL, WARN);
SAFE(diff_dst_copy.reorder(mem), WARN);
}
} break;
default: {
const auto &binary_fill_cfg
= binary_po_fill_cfg(exec_arg, mem, prb->attr);
std::unordered_map<int, fill_cfg_t> fill_cfg_map {
{DNNL_ARG_SRC_1, binary_fill_cfg}};
SAFE(init_ref_memory_args_default_case(exec_arg, mem, ref_mem,
prb->attr, res, fill_cfg_map),
WARN);
} break;
}
// Don't keep reference memory if it is not used further.
if (!has_bench_mode_bit(mode_bit_t::corr)) ref_mem_map.clear();
}
return OK;
}
std::vector<data_kind_t> get_kinds_to_check(const prb_t *prb) {
std::vector<data_kind_t> check_kinds;
if (prb->dir & FLAG_FWD) {
check_kinds = {DST};
} else if (prb->dir & FLAG_BWD) {
check_kinds = {SRC};
} else {
assert(!"unexpected!");
SAFE_V(FAIL);
}
assert(!check_kinds.empty());
return check_kinds;
}
int createit(std::vector<benchdnn_dnnl_wrapper_t<dnnl_primitive_t>> &v_prim,
const prb_t *prb, res_t *res) {
v_prim.resize(1);
SAFE(init_prim(prb->ctx_init, v_prim[0], init_pd, prb, res), WARN);
return OK;
}
int checkit(std::vector<benchdnn_dnnl_wrapper_t<dnnl_primitive_t>> &v_prim,
const prb_t *prb, res_t *res) {
if (has_bench_mode_bit(mode_bit_t::exec)) {
SAFE(check_total_size(res), WARN);
}
if (has_bench_mode_bit(mode_bit_t::corr)) {
SAFE(check_caches(v_prim[0], prb, res), WARN);
}
return OK;
}
int doit(const std::vector<benchdnn_dnnl_wrapper_t<dnnl_primitive_t>> &v_prim,
const prb_t *prb, res_t *res) {
const auto &prim = v_prim[0];
dnn_mem_map_t mem_map, ref_mem_map;
init_memory_args<prb_t>(mem_map, prb, prim, supported_exec_args(prb->dir));
TIME_FILL(SAFE(
init_ref_memory_args(ref_mem_map, mem_map, prim, prb, res), WARN));
args_t args(mem_map), ref_args(ref_mem_map);
SAFE(execute_and_wait(prim, args, res), WARN);
check_correctness(
prb, get_kinds_to_check(prb), args, ref_args, setup_cmp, res);
SAFE(check_bitwise(prim, get_kinds_to_check(prb), args, prb->attr,
prb->inplace, res),
WARN);
return measure_perf(prb->ctx_exe, res, prim, args);
}
} // namespace softmax