Files
oneDNN/examples/graph/gpu_opencl_getting_started.cpp

373 lines
16 KiB
C++

/*******************************************************************************
* Copyright 2024-2025 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
/// @example gpu_opencl_getting_started.cpp
/// > Annotated version: @ref graph_gpu_opencl_getting_started_cpp
/// @page graph_gpu_opencl_getting_started_cpp_brief
/// @brief This is an example to demonstrate how to build a simple graph and run on
/// OpenCL GPU runtime.
/// @page graph_gpu_opencl_getting_started_cpp Getting started with OpenCL extensions and Graph API
/// \copybrief graph_gpu_opencl_getting_started_cpp_brief
///
/// > Example code: @ref gpu_opencl_getting_started.cpp
///
/// Some key take-aways included in this example:
///
/// * how to build a graph and get several partitions
/// * how to create engine, allocator and stream
/// * how to compile a partition
/// * how to execute a compiled partition
///
/// Some assumptions in this example:
///
/// * Only workflow is demonstrated without checking correctness
/// * Unsupported partitions should be handled by users themselves
///
/// @page graph_gpu_opencl_getting_started_cpp
/// @section graph_gpu_opencl_getting_started_cpp_headers Public headers
///
/// To start using oneDNN graph, we must include the @ref dnnl_graph.hpp header
/// file into the application. If you also want to run with OpenCL device, you
/// need include @ref dnnl_graph_ocl.hpp header as well. All the C++ APIs reside
/// in namespace `dnnl::graph`.
/// @page graph_gpu_opencl_getting_started_cpp
/// @snippet gpu_opencl_getting_started.cpp Headers and namespace
//[Headers and namespace]
#include "oneapi/dnnl/dnnl_graph.hpp"
#include "oneapi/dnnl/dnnl_ocl.hpp"
using namespace dnnl::graph;
#include <assert.h>
#include <iostream>
#include <memory>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <CL/cl_ext.h>
#include "example_utils.hpp"
#include "graph_example_utils.hpp"
using data_type = logical_tensor::data_type;
using layout_type = logical_tensor::layout_type;
using dim = logical_tensor::dim;
using dims = logical_tensor::dims;
//[Headers and namespace]
/// @page graph_gpu_opencl_getting_started_cpp
/// @section graph_gpu_opencl_getting_started_cpp_tutorial ocl_getting_started_tutorial() function
///
void ocl_getting_started_tutorial() {
dim N = 8, IC = 3, OC1 = 96, OC2 = 96;
dim IH = 227, IW = 227, KH1 = 11, KW1 = 11, KH2 = 1, KW2 = 1;
dims conv0_input_dims {N, IC, IH, IW};
dims conv0_weight_dims {OC1, IC, KH1, KW1};
dims conv0_bias_dims {OC1};
dims conv1_weight_dims {OC1, OC2, KH2, KW2};
dims conv1_bias_dims {OC2};
/// @page graph_gpu_opencl_getting_started_cpp
/// @subsection graph_gpu_opencl_getting_started_cpp_get_partition Build Graph and Get Partitions.
///
/// In this section, we are trying to build a graph containing the pattern
/// like `conv0->relu0->conv1->relu1`. After that, we can get all of
/// partitions which are determined by backend.
///
/// To build a graph, the connection relationship of different ops must be
/// known.In oneDNN graph, #dnnl::graph::logical_tensor is used to express
/// such relationship.So, next step is to create logical tensors for these
/// ops including inputs and outputs.
///
/// @note It's not necessary to provide concrete shape/layout information at
/// graph partitioning stage. Users can provide these information till
/// compilation stage.
///
/// Create input/output #dnnl::graph::logical_tensor for the first
/// `Convolution` op.
/// @snippet gpu_opencl_getting_started.cpp Create conv's logical tensor
//[Create conv's logical tensor]
logical_tensor conv0_src_desc {0, data_type::f32};
logical_tensor conv0_weight_desc {1, data_type::f32};
logical_tensor conv0_dst_desc {2, data_type::f32};
//[Create conv's logical tensor]
/// Create first `Convolution` op (#dnnl::graph::op) and attaches attributes
/// to it, such as `strides`, `pads_begin`, `pads_end`, `data_format`, etc.
/// @snippet gpu_opencl_getting_started.cpp Create first conv
//[Create first conv]
op conv0(0, op::kind::Convolution, {conv0_src_desc, conv0_weight_desc},
{conv0_dst_desc}, "conv0");
conv0.set_attr<dims>(op::attr::strides, {4, 4});
conv0.set_attr<dims>(op::attr::pads_begin, {0, 0});
conv0.set_attr<dims>(op::attr::pads_end, {0, 0});
conv0.set_attr<dims>(op::attr::dilations, {1, 1});
conv0.set_attr<int64_t>(op::attr::groups, 1);
conv0.set_attr<std::string>(op::attr::data_format, "NCX");
conv0.set_attr<std::string>(op::attr::weights_format, "OIX");
//[Create first conv]
/// Create input/output logical tensors for first `BiasAdd` op and create
/// the first `BiasAdd` op.
/// @snippet gpu_opencl_getting_started.cpp Create first bias_add
//[Create first bias_add]
logical_tensor conv0_bias_desc {3, data_type::f32};
logical_tensor conv0_bias_add_dst_desc {
4, data_type::f32, layout_type::undef};
op conv0_bias_add(1, op::kind::BiasAdd, {conv0_dst_desc, conv0_bias_desc},
{conv0_bias_add_dst_desc}, "conv0_bias_add");
conv0_bias_add.set_attr<std::string>(op::attr::data_format, "NCX");
//[Create first bias_add]
/// Create output logical tensors for first `Relu` op and create the op.
/// @snippet gpu_opencl_getting_started.cpp Create first relu
//[Create first relu]
logical_tensor relu0_dst_desc {5, data_type::f32};
op relu0(2, op::kind::ReLU, {conv0_bias_add_dst_desc}, {relu0_dst_desc},
"relu0");
//[Create first relu]
/// Create input/output logical tensors for second `Convolution` op and
/// create the second `Convolution` op.
/// @snippet gpu_opencl_getting_started.cpp Create second conv
//[Create second conv]
logical_tensor conv1_weight_desc {6, data_type::f32};
logical_tensor conv1_dst_desc {7, data_type::f32};
op conv1(3, op::kind::Convolution, {relu0_dst_desc, conv1_weight_desc},
{conv1_dst_desc}, "conv1");
conv1.set_attr<dims>(op::attr::strides, {1, 1});
conv1.set_attr<dims>(op::attr::pads_begin, {0, 0});
conv1.set_attr<dims>(op::attr::pads_end, {0, 0});
conv1.set_attr<dims>(op::attr::dilations, {1, 1});
conv1.set_attr<int64_t>(op::attr::groups, 1);
conv1.set_attr<std::string>(op::attr::data_format, "NCX");
conv1.set_attr<std::string>(op::attr::weights_format, "OIX");
//[Create second conv]
/// Create input/output logical tensors for second `BiasAdd` op and create
/// the op.
/// @snippet gpu_opencl_getting_started.cpp Create second bias_add
//[Create second bias_add]
logical_tensor conv1_bias_desc {8, data_type::f32};
logical_tensor conv1_bias_add_dst_desc {9, data_type::f32};
op conv1_bias_add(4, op::kind::BiasAdd, {conv1_dst_desc, conv1_bias_desc},
{conv1_bias_add_dst_desc}, "conv1_bias_add");
conv1_bias_add.set_attr<std::string>(op::attr::data_format, "NCX");
//[Create second bias_add]
/// Create output logical tensors for second `Relu` op and create the op.
/// @snippet gpu_opencl_getting_started.cpp Create second relu
//[Create second relu]
logical_tensor relu1_dst_desc {10, data_type::f32};
op relu1(5, op::kind::ReLU, {conv1_bias_add_dst_desc}, {relu1_dst_desc},
"relu1");
//[Create second relu]
/// Finally, those created ops will be added into the graph. The graph
/// internally will maintain a list to store all of these ops. To create a
/// graph, #dnnl::engine::kind is needed because the returned partitions
/// maybe vary on different devices.
///
/// @note The order of adding op doesn't matter. The connection will be
/// obtained through logical tensors.
///
/// @snippet gpu_opencl_getting_started.cpp Create graph and add ops
//[Create graph and add ops]
graph g(validate_engine_kind(engine::kind::gpu));
g.add_op(conv0);
g.add_op(conv0_bias_add);
g.add_op(relu0);
g.add_op(conv1);
g.add_op(conv1_bias_add);
g.add_op(relu1);
//[Create graph and add ops]
/// After adding all ops into the graph, call
/// #dnnl::graph::graph::get_partitions() to indicate that the graph
/// building is over and is ready for partitioning. Adding new ops into a
/// finalized graph or partitioning a unfinalized graph will both lead to a
/// failure.
///
/// @snippet gpu_opencl_getting_started.cpp Finalize graph
//[Finalize graph]
g.finalize();
//[Finalize graph]
/// After finished above operations, we can get partitions by calling
/// #dnnl::graph::graph::get_partitions(). Here we can also specify the
/// #dnnl::graph::partition::policy to get different partitions.
///
/// In this example, the graph will be partitioned into two partitions:
/// 1. conv0 + conv0_bias_add + relu0
/// 2. conv1 + conv1_bias_add + relu1
///
/// @snippet gpu_opencl_getting_started.cpp Get partition
//[Get partition]
auto partitions = g.get_partitions();
//[Get partition]
// Check partitioning results to ensure the examples works. Users do not
// need to follow this step.
assert(partitions.size() == 2);
/// Below codes are to create runtime objects like allocator, engine and
/// stream. Unlike CPU example, users need to provide ocl device, ocl
/// context, and ocl queue. oneDNN Graph provides different interoperability
/// APIs which are defined at `dnnl_graph_ocl.hpp`.
/// @page graph_gpu_opencl_getting_started_cpp
/// @subsection graph_gpu_opencl_getting_started_cpp_compile Compile and Execute Partition
///
/// In the real case, users like framework should provide device information
/// at this stage. But in this example, we just use a self-defined device to
/// simulate the real behavior.
//
/// Create an engine managed by the library. Users can also create engine
/// with ocl device and context managed on their side. The API is provided in
/// `dnnl_graph_ocl.hpp`.
//[Create engine]
dnnl::engine eng(engine::kind::gpu, 0);
//[Create engine]
/// Create a #dnnl::stream on the given engine
///
/// @snippet gpu_opencl_getting_started.cpp Create stream
//[Create stream]
dnnl::stream strm(eng);
//[Create stream]
// Mapping from logical tensor id to output tensor. It's used to represent
// the connection between partitions (e.g partition 0's output
// tensor is fed into partition 1).
std::unordered_map<size_t, tensor> global_outputs_ts_map;
// Memory buffers bound to the partition input/output tensors that help to
// manage the lifetime of these tensors.
std::vector<std::shared_ptr<void>> data_buffer;
// Mapping from id to queried logical tensor from compiled partition used to
// record the logical tensors that are previously enabled with ANY layout.
std::unordered_map<size_t, logical_tensor> id_to_queried_logical_tensors;
// This is a helper function which helps to decide which logical tensor is
// needed to be set with `dnnl::graph::logical_tensor::layout_type::any`
// layout. This function is not a part of Graph API, but similar logic is
// essential for Graph API integration to achieve the best performance.
// Typically, users need to implement the similar logic in their code.
std::unordered_set<size_t> ids_with_any_layout;
set_any_layout(partitions, ids_with_any_layout);
// Mapping from logical tensor id to the concrete shape. In practical usage,
// concrete shapes and layouts are not given until compilation stage, hence
// need this mapping to mock the step.
std::unordered_map<size_t, dims> concrete_shapes {{0, conv0_input_dims},
{1, conv0_weight_dims}, {3, conv0_bias_dims},
{6, conv1_weight_dims}, {8, conv1_bias_dims}};
// Compile and execute the partitions, including the following steps:
//
// 1. Update the input/output logical tensors with concrete shape and layout
// 2. Compile the partition
// 3. Update the output logical tensors with queried ones after compilation
// 4. Allocate memory and bind the data buffer for the partition
// 5. Execute the partition
//
// Although they are not part of the APIs, these steps are essential for the
// integration of Graph API., hence users need to implement similar logic.
for (const auto &partition : partitions) {
if (!partition.is_supported()) {
std::cout
<< "gpu_opencl_getting_started: Got unsupported partition, "
"users "
"need handle the operators by themselves."
<< std::endl;
continue;
}
std::vector<logical_tensor> inputs = partition.get_input_ports();
std::vector<logical_tensor> outputs = partition.get_output_ports();
// Update input logical tensors with concrete shape and layout
for (auto &input : inputs) {
const auto id = input.get_id();
// If the tensor is an output of another partition, use the cached
// logical tensor
if (id_to_queried_logical_tensors.find(id)
!= id_to_queried_logical_tensors.end())
input = id_to_queried_logical_tensors[id];
else
// Create logical tensor with strided layout
input = logical_tensor {id, input.get_data_type(),
concrete_shapes[id], layout_type::strided};
}
// Update output logical tensors with concrete shape and layout
for (auto &output : outputs) {
const auto id = output.get_id();
output = logical_tensor {id, output.get_data_type(),
DNNL_GRAPH_UNKNOWN_NDIMS, // set output dims to unknown
ids_with_any_layout.count(id) ? layout_type::any
: layout_type::strided};
}
/// Compile the partition to generate compiled partition with the input
/// and output logical tensors.
///
/// @snippet gpu_opencl_getting_started.cpp Compile partition
//[Compile partition]
compiled_partition cp = partition.compile(inputs, outputs, eng);
//[Compile partition]
// Update output logical tensors with queried one
for (auto &output : outputs) {
const auto id = output.get_id();
output = cp.query_logical_tensor(id);
id_to_queried_logical_tensors[id] = output;
}
// Allocate memory for the partition, and bind the data buffers with
// input and output logical tensors
std::vector<tensor> inputs_ts, outputs_ts;
allocate_ocl_graph_mem(inputs_ts, inputs, data_buffer,
global_outputs_ts_map, eng, /*is partition input=*/true);
allocate_ocl_graph_mem(outputs_ts, outputs, data_buffer,
global_outputs_ts_map, eng,
/*is partition input=*/false);
/// Execute the compiled partition on the specified stream.
///
/// @snippet gpu_opencl_getting_started.cpp Execute compiled partition
//[Execute compiled partition]
cp.execute(strm, inputs_ts, outputs_ts);
//[Execute compiled partition]
}
// wait for all compiled partition's execution to finish
strm.wait();
}
int main(int argc, char **argv) {
return handle_example_errors(
{engine::kind::gpu}, ocl_getting_started_tutorial);
}