mirror of
https://github.com/uxlfoundation/oneDNN.git
synced 2025-10-20 18:43:49 +08:00
488 lines
18 KiB
C
488 lines
18 KiB
C
/*******************************************************************************
|
|
* Copyright 2016-2025 Intel Corporation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*******************************************************************************/
|
|
|
|
/// @example cnn_inference_f32.c
|
|
/// > Annotated version: @ref cnn_inference_f32_c
|
|
|
|
/// @page cnn_inference_f32_c_brief
|
|
/// @brief This C API example demonstrates how to build an AlexNet neural
|
|
/// network topology for forward-pass inference.
|
|
|
|
/// @page cnn_inference_f32_c CNN f32 inference example
|
|
/// \copybrief cnn_inference_f32_c_brief
|
|
///
|
|
/// Some key take-aways include:
|
|
///
|
|
/// * How tensors are implemented and submitted to primitives.
|
|
/// * How primitives are created.
|
|
/// * How primitives are sequentially submitted to the network, where the
|
|
/// output from primitives is passed as input to the next primitive.
|
|
/// The latter specifies a dependency between the primitive input and output
|
|
/// data.
|
|
/// * Specific 'inference-only' configurations.
|
|
/// * Limiting the number of reorders performed that are detrimental
|
|
/// to performance.
|
|
///
|
|
/// The example implements the AlexNet layers
|
|
/// as numbered primitives (for example, conv1, pool1, conv2).
|
|
///
|
|
/// @include cnn_inference_f32.c
|
|
|
|
// Required for posix_memalign
|
|
#define _POSIX_C_SOURCE 200112L
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "oneapi/dnnl/dnnl.h"
|
|
|
|
#include "example_utils.h"
|
|
|
|
#define BATCH 8
|
|
#define IC 3
|
|
#define OC 96
|
|
#define CONV_IH 227
|
|
#define CONV_IW 227
|
|
#define CONV_OH 55
|
|
#define CONV_OW 55
|
|
#define CONV_STRIDE 4
|
|
#define CONV_PAD 0
|
|
#define POOL_OH 27
|
|
#define POOL_OW 27
|
|
#define POOL_STRIDE 2
|
|
#define POOL_PAD 0
|
|
|
|
static size_t product(dnnl_dim_t *arr, size_t size) {
|
|
size_t prod = 1;
|
|
for (size_t i = 0; i < size; ++i)
|
|
prod *= arr[i];
|
|
return prod;
|
|
}
|
|
|
|
static void init_net_data(float *data, uint32_t dim, const dnnl_dim_t *dims) {
|
|
if (dim == 1) {
|
|
for (dnnl_dim_t i = 0; i < dims[0]; ++i) {
|
|
data[i] = (float)(i % 1637);
|
|
}
|
|
} else if (dim == 4) {
|
|
for (dnnl_dim_t in = 0; in < dims[0]; ++in)
|
|
for (dnnl_dim_t ic = 0; ic < dims[1]; ++ic)
|
|
for (dnnl_dim_t ih = 0; ih < dims[2]; ++ih)
|
|
for (dnnl_dim_t iw = 0; iw < dims[3]; ++iw) {
|
|
dnnl_dim_t indx = in * dims[1] * dims[2] * dims[3]
|
|
+ ic * dims[2] * dims[3] + ih * dims[3] + iw;
|
|
data[indx] = (float)(indx % 1637);
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
int nargs;
|
|
dnnl_exec_arg_t *args;
|
|
} args_t;
|
|
|
|
static void prepare_arg_node(args_t *node, int nargs) {
|
|
node->args = (dnnl_exec_arg_t *)malloc(sizeof(dnnl_exec_arg_t) * nargs);
|
|
node->nargs = nargs;
|
|
}
|
|
static void free_arg_node(args_t *node) {
|
|
free(node->args);
|
|
}
|
|
|
|
static void set_arg(dnnl_exec_arg_t *arg, int arg_idx, dnnl_memory_t memory) {
|
|
arg->arg = arg_idx;
|
|
arg->memory = memory;
|
|
}
|
|
|
|
static void init_data_memory(uint32_t dim, const dnnl_dim_t *dims,
|
|
dnnl_format_tag_t user_tag, dnnl_engine_t engine, float *data,
|
|
dnnl_memory_t *memory) {
|
|
dnnl_memory_desc_t user_md;
|
|
CHECK(dnnl_memory_desc_create_with_tag(
|
|
&user_md, dim, dims, dnnl_f32, user_tag));
|
|
CHECK(dnnl_memory_create(memory, user_md, engine, DNNL_MEMORY_ALLOCATE));
|
|
CHECK(dnnl_memory_desc_destroy(user_md));
|
|
write_to_dnnl_memory(data, *memory);
|
|
}
|
|
|
|
dnnl_status_t prepare_reorder(dnnl_memory_t *user_memory, // in
|
|
const_dnnl_memory_desc_t prim_memory_md, // in
|
|
dnnl_engine_t prim_engine, // in: primitive's engine
|
|
int dir_is_user_to_prim, // in: user -> prim or prim -> user
|
|
dnnl_memory_t *prim_memory, // out: primitive's memory created
|
|
dnnl_primitive_t *reorder, // out: reorder primitive created
|
|
uint32_t *net_index, // primitive index in net (inc if reorder created)
|
|
dnnl_primitive_t *net, args_t *net_args) { // net params
|
|
const_dnnl_memory_desc_t user_memory_md;
|
|
dnnl_memory_get_memory_desc(*user_memory, &user_memory_md);
|
|
|
|
dnnl_engine_t user_mem_engine;
|
|
dnnl_memory_get_engine(*user_memory, &user_mem_engine);
|
|
|
|
if (!dnnl_memory_desc_equal(user_memory_md, prim_memory_md)) {
|
|
CHECK(dnnl_memory_create(prim_memory, prim_memory_md, prim_engine,
|
|
DNNL_MEMORY_ALLOCATE));
|
|
|
|
dnnl_primitive_desc_t reorder_pd;
|
|
if (dir_is_user_to_prim) {
|
|
CHECK(dnnl_reorder_primitive_desc_create(&reorder_pd,
|
|
user_memory_md, user_mem_engine, prim_memory_md,
|
|
prim_engine, NULL));
|
|
} else {
|
|
CHECK(dnnl_reorder_primitive_desc_create(&reorder_pd,
|
|
prim_memory_md, prim_engine, user_memory_md,
|
|
user_mem_engine, NULL));
|
|
}
|
|
CHECK(dnnl_primitive_create(reorder, reorder_pd));
|
|
CHECK(dnnl_primitive_desc_destroy(reorder_pd));
|
|
|
|
net[*net_index] = *reorder;
|
|
prepare_arg_node(&net_args[*net_index], 2);
|
|
set_arg(&net_args[*net_index].args[0], DNNL_ARG_FROM,
|
|
dir_is_user_to_prim ? *user_memory : *prim_memory);
|
|
set_arg(&net_args[*net_index].args[1], DNNL_ARG_TO,
|
|
dir_is_user_to_prim ? *prim_memory : *user_memory);
|
|
(*net_index)++;
|
|
} else {
|
|
*prim_memory = NULL;
|
|
*reorder = NULL;
|
|
}
|
|
|
|
return dnnl_success;
|
|
}
|
|
|
|
void simple_net(dnnl_engine_kind_t engine_kind) {
|
|
dnnl_engine_t engine;
|
|
CHECK(dnnl_engine_create(&engine, engine_kind, 0));
|
|
|
|
// build a simple net
|
|
uint32_t n = 0;
|
|
dnnl_primitive_t net[10];
|
|
args_t net_args[10];
|
|
|
|
const int ndims = 4;
|
|
dnnl_dims_t net_src_sizes = {BATCH, IC, CONV_IH, CONV_IW};
|
|
dnnl_dims_t net_dst_sizes = {BATCH, OC, POOL_OH, POOL_OW};
|
|
|
|
float *net_src
|
|
= (float *)malloc(product(net_src_sizes, ndims) * sizeof(float));
|
|
float *net_dst
|
|
= (float *)malloc(product(net_dst_sizes, ndims) * sizeof(float));
|
|
|
|
init_net_data(net_src, ndims, net_src_sizes);
|
|
memset(net_dst, 0, product(net_dst_sizes, ndims) * sizeof(float));
|
|
|
|
// AlexNet: conv
|
|
// {BATCH, IC, CONV_IH, CONV_IW} (x) {OC, IC, 11, 11} ->
|
|
// {BATCH, OC, CONV_OH, CONV_OW}
|
|
// strides: {CONV_STRIDE, CONV_STRIDE}
|
|
dnnl_dims_t conv_user_src_sizes;
|
|
for (int i = 0; i < ndims; i++)
|
|
conv_user_src_sizes[i] = net_src_sizes[i];
|
|
dnnl_dims_t conv_user_weights_sizes = {OC, IC, 11, 11};
|
|
dnnl_dims_t conv_bias_sizes = {OC};
|
|
dnnl_dims_t conv_user_dst_sizes = {BATCH, OC, CONV_OH, CONV_OW};
|
|
dnnl_dims_t conv_strides = {CONV_STRIDE, CONV_STRIDE};
|
|
dnnl_dims_t conv_dilation = {0, 0};
|
|
dnnl_dims_t conv_padding = {CONV_PAD, CONV_PAD};
|
|
|
|
float *conv_src = net_src;
|
|
float *conv_weights = (float *)malloc(
|
|
product(conv_user_weights_sizes, ndims) * sizeof(float));
|
|
float *conv_bias
|
|
= (float *)malloc(product(conv_bias_sizes, 1) * sizeof(float));
|
|
|
|
init_net_data(conv_weights, ndims, conv_user_weights_sizes);
|
|
init_net_data(conv_bias, 1, conv_bias_sizes);
|
|
|
|
// create memory for user data
|
|
dnnl_memory_t conv_user_src_memory, conv_user_weights_memory,
|
|
conv_user_bias_memory;
|
|
init_data_memory(ndims, conv_user_src_sizes, dnnl_nchw, engine, conv_src,
|
|
&conv_user_src_memory);
|
|
init_data_memory(ndims, conv_user_weights_sizes, dnnl_oihw, engine,
|
|
conv_weights, &conv_user_weights_memory);
|
|
init_data_memory(1, conv_bias_sizes, dnnl_x, engine, conv_bias,
|
|
&conv_user_bias_memory);
|
|
|
|
// create data descriptors for convolution w/ no specified format
|
|
|
|
dnnl_memory_desc_t conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md;
|
|
CHECK(dnnl_memory_desc_create_with_tag(&conv_src_md, ndims,
|
|
conv_user_src_sizes, dnnl_f32, dnnl_format_tag_any));
|
|
CHECK(dnnl_memory_desc_create_with_tag(&conv_weights_md, ndims,
|
|
conv_user_weights_sizes, dnnl_f32, dnnl_format_tag_any));
|
|
CHECK(dnnl_memory_desc_create_with_tag(
|
|
&conv_bias_md, 1, conv_bias_sizes, dnnl_f32, dnnl_x));
|
|
CHECK(dnnl_memory_desc_create_with_tag(&conv_dst_md, ndims,
|
|
conv_user_dst_sizes, dnnl_f32, dnnl_format_tag_any));
|
|
|
|
// create a convolution
|
|
dnnl_primitive_desc_t conv_pd;
|
|
CHECK(dnnl_convolution_forward_primitive_desc_create(&conv_pd, engine,
|
|
dnnl_forward, dnnl_convolution_direct, conv_src_md, conv_weights_md,
|
|
conv_bias_md, conv_dst_md, conv_strides, conv_dilation,
|
|
conv_padding, conv_padding, NULL));
|
|
|
|
dnnl_memory_t conv_internal_src_memory, conv_internal_weights_memory,
|
|
conv_internal_dst_memory;
|
|
|
|
// create memory for dst data, we don't need reorder it to user data
|
|
const_dnnl_memory_desc_t dst_md
|
|
= dnnl_primitive_desc_query_md(conv_pd, dnnl_query_dst_md, 0);
|
|
CHECK(dnnl_memory_create(
|
|
&conv_internal_dst_memory, dst_md, engine, DNNL_MEMORY_ALLOCATE));
|
|
|
|
// create reorder primitives between user data and convolution srcs
|
|
// if required
|
|
dnnl_primitive_t conv_reorder_src, conv_reorder_weights;
|
|
|
|
const_dnnl_memory_desc_t src_md
|
|
= dnnl_primitive_desc_query_md(conv_pd, dnnl_query_src_md, 0);
|
|
CHECK(prepare_reorder(&conv_user_src_memory, src_md, engine, 1,
|
|
&conv_internal_src_memory, &conv_reorder_src, &n, net, net_args));
|
|
|
|
const_dnnl_memory_desc_t weights_md
|
|
= dnnl_primitive_desc_query_md(conv_pd, dnnl_query_weights_md, 0);
|
|
CHECK(prepare_reorder(&conv_user_weights_memory, weights_md, engine, 1,
|
|
&conv_internal_weights_memory, &conv_reorder_weights, &n, net,
|
|
net_args));
|
|
|
|
dnnl_memory_t conv_src_memory = conv_internal_src_memory
|
|
? conv_internal_src_memory
|
|
: conv_user_src_memory;
|
|
dnnl_memory_t conv_weights_memory = conv_internal_weights_memory
|
|
? conv_internal_weights_memory
|
|
: conv_user_weights_memory;
|
|
|
|
// finally create a convolution primitive
|
|
dnnl_primitive_t conv;
|
|
CHECK(dnnl_primitive_create(&conv, conv_pd));
|
|
net[n] = conv;
|
|
prepare_arg_node(&net_args[n], 4);
|
|
set_arg(&net_args[n].args[0], DNNL_ARG_SRC, conv_src_memory);
|
|
set_arg(&net_args[n].args[1], DNNL_ARG_WEIGHTS, conv_weights_memory);
|
|
set_arg(&net_args[n].args[2], DNNL_ARG_BIAS, conv_user_bias_memory);
|
|
set_arg(&net_args[n].args[3], DNNL_ARG_DST, conv_internal_dst_memory);
|
|
n++;
|
|
|
|
// AlexNet: relu
|
|
// {BATCH, OC, CONV_OH, CONV_OW} -> {BATCH, OC, CONV_OH, CONV_OW}
|
|
float negative_slope = 0.0f;
|
|
|
|
// create relu memory descriptor on dst memory descriptor
|
|
// from previous primitive
|
|
const_dnnl_memory_desc_t relu_src_md
|
|
= dnnl_primitive_desc_query_md(conv_pd, dnnl_query_dst_md, 0);
|
|
const_dnnl_memory_desc_t relu_dst_md = relu_src_md;
|
|
|
|
// create a relu
|
|
dnnl_primitive_desc_t relu_pd;
|
|
CHECK(dnnl_eltwise_forward_primitive_desc_create(&relu_pd, engine,
|
|
dnnl_forward, dnnl_eltwise_relu, relu_src_md, relu_dst_md,
|
|
negative_slope, 0, NULL));
|
|
|
|
dnnl_memory_t relu_dst_memory;
|
|
CHECK(dnnl_memory_create(
|
|
&relu_dst_memory, relu_dst_md, engine, DNNL_MEMORY_ALLOCATE));
|
|
|
|
// finally create a relu primitive
|
|
dnnl_primitive_t relu;
|
|
CHECK(dnnl_primitive_create(&relu, relu_pd));
|
|
net[n] = relu;
|
|
prepare_arg_node(&net_args[n], 2);
|
|
set_arg(&net_args[n].args[0], DNNL_ARG_SRC, conv_internal_dst_memory);
|
|
set_arg(&net_args[n].args[1], DNNL_ARG_DST, relu_dst_memory);
|
|
n++;
|
|
|
|
// AlexNet: lrn
|
|
// {BATCH, OC, CONV_OH, CONV_OW} -> {BATCH, OC, CONV_OH, CONV_OW}
|
|
// local size: 5
|
|
// alpha: 0.0001
|
|
// beta: 0.75
|
|
// k: 1.0
|
|
uint32_t local_size = 5;
|
|
float alpha = 0.0001f;
|
|
float beta = 0.75f;
|
|
float k = 1.0f;
|
|
|
|
// create lrn src memory descriptor using dst memory descriptor
|
|
// from previous primitive
|
|
const_dnnl_memory_desc_t lrn_src_md = relu_dst_md;
|
|
const_dnnl_memory_desc_t lrn_dst_md = lrn_src_md;
|
|
|
|
// create a lrn primitive descriptor
|
|
dnnl_primitive_desc_t lrn_pd;
|
|
CHECK(dnnl_lrn_forward_primitive_desc_create(&lrn_pd, engine, dnnl_forward,
|
|
dnnl_lrn_across_channels, lrn_src_md, lrn_dst_md, local_size, alpha,
|
|
beta, k, NULL));
|
|
|
|
// create primitives for lrn dst and workspace memory
|
|
dnnl_memory_t lrn_dst_memory;
|
|
CHECK(dnnl_memory_create(
|
|
&lrn_dst_memory, lrn_dst_md, engine, DNNL_MEMORY_ALLOCATE));
|
|
dnnl_memory_t lrn_ws_memory;
|
|
const_dnnl_memory_desc_t lrn_ws_md
|
|
= dnnl_primitive_desc_query_md(lrn_pd, dnnl_query_workspace_md, 0);
|
|
CHECK(dnnl_memory_create(
|
|
&lrn_ws_memory, lrn_ws_md, engine, DNNL_MEMORY_ALLOCATE));
|
|
|
|
// finally create a lrn primitive
|
|
dnnl_primitive_t lrn;
|
|
CHECK(dnnl_primitive_create(&lrn, lrn_pd));
|
|
net[n] = lrn;
|
|
prepare_arg_node(&net_args[n], 3);
|
|
set_arg(&net_args[n].args[0], DNNL_ARG_SRC, relu_dst_memory);
|
|
set_arg(&net_args[n].args[1], DNNL_ARG_DST, lrn_dst_memory);
|
|
set_arg(&net_args[n].args[2], DNNL_ARG_WORKSPACE, lrn_ws_memory);
|
|
n++;
|
|
|
|
// AlexNet: pool
|
|
// {BATCH, OC, CONV_OH, CONV_OW} -> {BATCH, OC, POOL_OH, POOL_OW}
|
|
// kernel: {3, 3}
|
|
// strides: {POOL_STRIDE, POOL_STRIDE}
|
|
// dilation: {0, 0}
|
|
dnnl_dims_t pool_dst_sizes;
|
|
for (int i = 0; i < ndims; i++)
|
|
pool_dst_sizes[i] = net_dst_sizes[i];
|
|
dnnl_dims_t pool_kernel = {3, 3};
|
|
dnnl_dims_t pool_strides = {POOL_STRIDE, POOL_STRIDE};
|
|
dnnl_dims_t pool_padding = {POOL_PAD, POOL_PAD};
|
|
dnnl_dims_t pool_dilation = {0, 0};
|
|
|
|
// create pooling memory descriptor on dst descriptor
|
|
// from previous primitive
|
|
const_dnnl_memory_desc_t pool_src_md = lrn_dst_md;
|
|
|
|
// create descriptors for dst pooling data
|
|
dnnl_memory_desc_t pool_dst_any_md;
|
|
CHECK(dnnl_memory_desc_create_with_tag(&pool_dst_any_md, ndims,
|
|
pool_dst_sizes, dnnl_f32, dnnl_format_tag_any));
|
|
|
|
// create memory for user data
|
|
dnnl_memory_t pool_user_dst_memory;
|
|
init_data_memory(ndims, pool_dst_sizes, dnnl_nchw, engine, net_dst,
|
|
&pool_user_dst_memory);
|
|
|
|
// create a pooling
|
|
dnnl_primitive_desc_t pool_pd;
|
|
CHECK(dnnl_pooling_forward_primitive_desc_create(&pool_pd, engine,
|
|
dnnl_forward, dnnl_pooling_max, pool_src_md, pool_dst_any_md,
|
|
pool_strides, pool_kernel, pool_dilation, pool_padding,
|
|
pool_padding, NULL));
|
|
|
|
// create memory for workspace
|
|
dnnl_memory_t pool_ws_memory;
|
|
const_dnnl_memory_desc_t pool_ws_md
|
|
= dnnl_primitive_desc_query_md(pool_pd, dnnl_query_workspace_md, 0);
|
|
CHECK(dnnl_memory_create(
|
|
&pool_ws_memory, pool_ws_md, engine, DNNL_MEMORY_ALLOCATE));
|
|
|
|
dnnl_memory_t pool_dst_memory;
|
|
|
|
// create reorder primitives between user data and pooling dsts
|
|
// if required
|
|
dnnl_primitive_t pool_reorder_dst;
|
|
dnnl_memory_t pool_internal_dst_memory;
|
|
const_dnnl_memory_desc_t pool_dst_md
|
|
= dnnl_primitive_desc_query_md(pool_pd, dnnl_query_dst_md, 0);
|
|
n += 1; // tentative workaround: preserve space for pooling that should
|
|
// happen before the reorder
|
|
CHECK(prepare_reorder(&pool_user_dst_memory, pool_dst_md, engine, 0,
|
|
&pool_internal_dst_memory, &pool_reorder_dst, &n, net, net_args));
|
|
n -= pool_reorder_dst ? 2 : 1;
|
|
|
|
pool_dst_memory = pool_internal_dst_memory ? pool_internal_dst_memory
|
|
: pool_user_dst_memory;
|
|
|
|
// finally create a pooling primitive
|
|
dnnl_primitive_t pool;
|
|
CHECK(dnnl_primitive_create(&pool, pool_pd));
|
|
net[n] = pool;
|
|
prepare_arg_node(&net_args[n], 3);
|
|
set_arg(&net_args[n].args[0], DNNL_ARG_SRC, lrn_dst_memory);
|
|
set_arg(&net_args[n].args[1], DNNL_ARG_DST, pool_dst_memory);
|
|
set_arg(&net_args[n].args[2], DNNL_ARG_WORKSPACE, pool_ws_memory);
|
|
n++;
|
|
|
|
if (pool_reorder_dst) n += 1;
|
|
|
|
dnnl_stream_t stream;
|
|
CHECK(dnnl_stream_create(&stream, engine, dnnl_stream_default_flags));
|
|
for (uint32_t i = 0; i < n; ++i) {
|
|
CHECK(dnnl_primitive_execute(
|
|
net[i], stream, net_args[i].nargs, net_args[i].args));
|
|
}
|
|
|
|
CHECK(dnnl_stream_wait(stream));
|
|
|
|
// clean-up
|
|
for (uint32_t i = 0; i < n; ++i)
|
|
free_arg_node(&net_args[i]);
|
|
|
|
CHECK(dnnl_primitive_desc_destroy(conv_pd));
|
|
CHECK(dnnl_primitive_desc_destroy(relu_pd));
|
|
CHECK(dnnl_primitive_desc_destroy(lrn_pd));
|
|
CHECK(dnnl_primitive_desc_destroy(pool_pd));
|
|
|
|
dnnl_stream_destroy(stream);
|
|
|
|
free(net_src);
|
|
free(net_dst);
|
|
|
|
dnnl_memory_desc_destroy(conv_src_md);
|
|
dnnl_memory_desc_destroy(conv_weights_md);
|
|
dnnl_memory_desc_destroy(conv_bias_md);
|
|
dnnl_memory_desc_destroy(conv_dst_md);
|
|
dnnl_memory_desc_destroy(pool_dst_any_md);
|
|
|
|
dnnl_memory_destroy(conv_user_src_memory);
|
|
dnnl_memory_destroy(conv_user_weights_memory);
|
|
dnnl_memory_destroy(conv_user_bias_memory);
|
|
dnnl_memory_destroy(conv_internal_src_memory);
|
|
dnnl_memory_destroy(conv_internal_weights_memory);
|
|
dnnl_memory_destroy(conv_internal_dst_memory);
|
|
dnnl_primitive_destroy(conv_reorder_src);
|
|
dnnl_primitive_destroy(conv_reorder_weights);
|
|
dnnl_primitive_destroy(conv);
|
|
|
|
free(conv_weights);
|
|
free(conv_bias);
|
|
|
|
dnnl_memory_destroy(relu_dst_memory);
|
|
dnnl_primitive_destroy(relu);
|
|
|
|
dnnl_memory_destroy(lrn_ws_memory);
|
|
dnnl_memory_destroy(lrn_dst_memory);
|
|
dnnl_primitive_destroy(lrn);
|
|
|
|
dnnl_memory_destroy(pool_user_dst_memory);
|
|
dnnl_memory_destroy(pool_internal_dst_memory);
|
|
dnnl_memory_destroy(pool_ws_memory);
|
|
dnnl_primitive_destroy(pool_reorder_dst);
|
|
dnnl_primitive_destroy(pool);
|
|
|
|
dnnl_engine_destroy(engine);
|
|
}
|
|
|
|
int main(int argc, char **argv) {
|
|
dnnl_engine_kind_t engine_kind = parse_engine_kind(argc, argv);
|
|
simple_net(engine_kind);
|
|
printf("Example passed on %s.\n", engine_kind2str_upper(engine_kind));
|
|
return 0;
|
|
}
|