mirror of
https://github.com/uxlfoundation/oneDNN.git
synced 2025-10-20 10:03:50 +08:00
doc: update supported attributes section for matmul
This commit is contained in:
@ -146,9 +146,10 @@ The following attributes and post-ops are supported:
|
||||
|
||||
| Type | Operation | Description | Restrictions |
|
||||
|:----------|:---------------------------------------------------------------|:------------------------------------------------------------------------------|:------------------------------------|
|
||||
| Attribute | [Scales](@ref dnnl::primitive_attr::set_scales_mask) | Scales the result by given scale factor(s) | |
|
||||
| Attribute | [Zero-points](@ref dnnl::primitive_attr::set_zero_points_mask) | Sets zero point(s) for the corresponding tensors | Int8 computations only |
|
||||
| Attribute | [Scales](@ref dnnl::primitive_attr::set_scales_mask) | Scales the result by given scaling factor(s) | |
|
||||
| Attribute | [Zero-points](@ref dnnl::primitive_attr::set_zero_points_mask) | Sets zero-point(s) for the corresponding tensors | `int8` computations only |
|
||||
| Attribute | [Dropout](@ref dnnl::primitive_attr::set_dropout) | Applies pseudo-random dropout to destination buffer, also fills mask buffer | |
|
||||
| Attribute | [Precomputed reductions](@ref dnnl::primitive_attr::set_precomputed_reductions) | Sets precomputed reductions for the corresponding tensors | Requires weight zero-points and full matrix mask |
|
||||
| Post-op | [Eltwise](@ref dnnl::post_ops::append_eltwise) | Applies an @ref dnnl_api_eltwise operation to the result | |
|
||||
| Post-op | [Sum](@ref dnnl::post_ops::append_sum) | Adds the operation result to the destination tensor instead of overwriting it | |
|
||||
| Post-op | [Binary](@ref dnnl::post_ops::append_binary) | Applies a @ref dnnl_api_binary operation to the result | General binary post-op restrictions |
|
||||
@ -266,7 +267,7 @@ information on sparse encding.
|
||||
- Sum post-op doesn't support data type other than destination data type.
|
||||
- Bias of bf16 data type is supported for configuration with bf16 source data
|
||||
type and weights bf16 data type, and up to three dimensional matrices.
|
||||
- Optimized implementations for fp8 data type are available only on Intel(R)
|
||||
- Optimized implementations for fp8 data type are available only on Intel(R)
|
||||
Data Center GPU Max Series and Intel(R) Xe2 Graphics.
|
||||
- Configuration with int8 source data type, s8 weight data type and bf16
|
||||
destination data type don't support:
|
||||
@ -282,7 +283,7 @@ information on sparse encding.
|
||||
- Configuration with floating point source data type, integer weights data
|
||||
type and floating point destination data type is not optimized.
|
||||
- The layout of dropout mask has to be exactly the same as that of dst.
|
||||
|
||||
|
||||
## Performance Tips
|
||||
|
||||
- Use #dnnl::memory::format_tag::any for either of the input tensors if and
|
||||
|
Reference in New Issue
Block a user