mirror of
https://github.com/huggingface/kernels.git
synced 2025-10-20 21:10:02 +08:00
Compare commits
39 Commits
v0.8.1
...
release-0.
Author | SHA1 | Date | |
---|---|---|---|
95921417b4 | |||
b24ef9fa6b | |||
a7101b2cfd | |||
6241afa06e | |||
34a1932751 | |||
e39eac09c1 | |||
b0c431fee4 | |||
9a188eadbe | |||
457c7c1b8d | |||
fb8cd99a2c | |||
dfee307d54 | |||
93e5765611 | |||
bf488208be | |||
2a14472e4c | |||
055a953552 | |||
692d5ad458 | |||
2139df57f4 | |||
8f9a77bb6a | |||
6c00194680 | |||
d6b51eefb7 | |||
d383fdd4b4 | |||
07e5e8481a | |||
88f55d4728 | |||
e801ebf332 | |||
0ae07f05fc | |||
7611021100 | |||
767e7ccf13 | |||
1caa4c1393 | |||
da701bf58a | |||
703664ed31 | |||
a8a6564fa7 | |||
c89e0fa9b9 | |||
176a601178 | |||
cfa0c76ddc | |||
bcc29915f9 | |||
6fbff7a9cb | |||
f7490bd0a9 | |||
8069e3bf0c | |||
c540d1e1d6 |
17
.github/workflows/build_documentation.yaml
vendored
Normal file
17
.github/workflows/build_documentation.yaml
vendored
Normal file
@ -0,0 +1,17 @@
|
||||
name: Build documentation
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- doc-builder*
|
||||
- v*-release
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: kernels
|
||||
secrets:
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
15
.github/workflows/build_pr_documentation.yaml
vendored
Normal file
15
.github/workflows/build_pr_documentation.yaml
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
name: Build PR Documentation
|
||||
|
||||
on: pull_request
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: kernels
|
21
.github/workflows/lint.yml
vendored
21
.github/workflows/lint.yml
vendored
@ -8,3 +8,24 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Run ruff
|
||||
uses: astral-sh/ruff-action@v3
|
||||
|
||||
black:
|
||||
name: Run black check
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
UV_PYTHON_PREFERENCE: only-managed
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
python-version: 3.12
|
||||
|
||||
- name: Install black
|
||||
run: uv pip install black
|
||||
|
||||
- name: Check formatting
|
||||
run: |
|
||||
uv run black --check src
|
||||
uv run black --check tests
|
||||
|
17
.github/workflows/test.yml
vendored
17
.github/workflows/test.yml
vendored
@ -24,7 +24,7 @@ jobs:
|
||||
max-parallel: 4
|
||||
matrix:
|
||||
python-version: ["3.10", "3.12"]
|
||||
torch-version: ["2.6.0", "2.7.0"]
|
||||
torch-version: ["2.7.0", "2.8.0"]
|
||||
|
||||
env:
|
||||
UV_PYTHON_PREFERENCE: only-managed
|
||||
@ -51,7 +51,15 @@ jobs:
|
||||
run: uv run mypy src/kernels
|
||||
|
||||
- name: Run tests
|
||||
run: uv run pytest tests
|
||||
run: |
|
||||
uv run pytest tests
|
||||
|
||||
- name: Run staging tests
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_STAGING_TOKEN }}
|
||||
run: |
|
||||
HUGGINGFACE_CO_STAGING=true uv run pytest --token -m "is_staging_test" tests/
|
||||
if: matrix.python_version == '3.10' && matrix.torch-version == '2.7.0'
|
||||
|
||||
- name: Check kernel conversion
|
||||
run: |
|
||||
@ -65,6 +73,11 @@ jobs:
|
||||
run: |
|
||||
uv run kernels generate-readme kernels-community/triton-layer-norm
|
||||
|
||||
- name: Check kernel check
|
||||
run: |
|
||||
uv pip install kernel-abi-check
|
||||
kernels check kernels-community/activation
|
||||
|
||||
- name: Import check without torch
|
||||
run: |
|
||||
uv pip uninstall torch
|
||||
|
16
.github/workflows/upload_pr_documentation.yaml
vendored
Normal file
16
.github/workflows/upload_pr_documentation.yaml
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
name: Upload PR Documentation
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Build PR Documentation"]
|
||||
types:
|
||||
- completed
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
|
||||
with:
|
||||
package_name: kernels
|
||||
secrets:
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
|
8
Makefile
Normal file
8
Makefile
Normal file
@ -0,0 +1,8 @@
|
||||
.PHONY: style
|
||||
|
||||
export check_dirs := src examples tests
|
||||
|
||||
style:
|
||||
black ${check_dirs}
|
||||
isort ${check_dirs}
|
||||
ruff check ${check_dirs} --fix
|
14
README.md
14
README.md
@ -56,10 +56,12 @@ the Hub.
|
||||
|
||||
## 📚 Documentation
|
||||
|
||||
- [Using layers](docs/layers.md)
|
||||
- [Locking kernel/layer versions](docs/locking.md)
|
||||
- [Environment variables](docs/env.md)
|
||||
- [Using kernels in a Docker container](docs/docker.md)
|
||||
- [Kernel requirements](docs/kernel-requirements.md)
|
||||
- [Frequently Asked Questions](docs/faq.md)
|
||||
- [Introduction](docs/source/index.md)
|
||||
- [Installation](docs/source/installation.md)
|
||||
- [Basic usage](docs/source/basic-usage.md)
|
||||
- [Using layers](docs/source/layers.md)
|
||||
- [Locking kernel/layer versions](docs/source/locking.md)
|
||||
- [Environment variables](docs/source/env.md)
|
||||
- [Kernel requirements](docs/source/kernel-requirements.md)
|
||||
- [Frequently Asked Questions](docs/source/faq.md)
|
||||
- [Writing kernels](https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md) using [kernel-builder](https://github.com/huggingface/kernel-builder/)
|
||||
|
@ -1,8 +0,0 @@
|
||||
# Using kernels in a Docker container
|
||||
|
||||
build and run the reference [examples/basic.py](examples/basic.py) in a Docker container with the following commands:
|
||||
|
||||
```bash
|
||||
docker build --platform linux/amd64 -t kernels-reference -f docker/Dockerfile.reference .
|
||||
docker run --gpus all -it --rm -e HF_TOKEN=$HF_TOKEN kernels-reference
|
||||
```
|
13
docs/faq.md
13
docs/faq.md
@ -1,13 +0,0 @@
|
||||
# FAQ
|
||||
|
||||
## Why is the kernelization step needed?
|
||||
|
||||
In earlier versions of `kernels`, a layer's `forward` was replaced by
|
||||
`use_kernel_forward_from_hub` and `replace_kernel_forward_from_hub`. The
|
||||
new `forward` would dispatch to a kernel based on the device type,
|
||||
whether a model was training, etc. However, this approach was
|
||||
fundamentally incompatible with `torch.compile` since it relied
|
||||
on data-dependent branching.
|
||||
|
||||
To avoid branching, we have to make dispatch decisions ahead of time,
|
||||
which is what the `kernelize` function does.
|
30
docs/source/_toctree.yml
Normal file
30
docs/source/_toctree.yml
Normal file
@ -0,0 +1,30 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: Introduction
|
||||
- local: installation
|
||||
title: Installation
|
||||
title: Getting started
|
||||
- sections:
|
||||
- local: basic-usage
|
||||
title: Basic Usage
|
||||
- local: layers
|
||||
title: Using Layers
|
||||
- local: locking
|
||||
title: Locking Kernel Versions
|
||||
- local: env
|
||||
title: Environment Variables
|
||||
- local: faq
|
||||
title: FAQ
|
||||
title: Usage Guide
|
||||
- sections:
|
||||
- local: api/kernels
|
||||
title: Kernels
|
||||
- local: api/layers
|
||||
title: Layers
|
||||
- local: cli
|
||||
title: Kernels CLI
|
||||
title: API Reference
|
||||
- sections:
|
||||
- local: kernel-requirements
|
||||
title: Kernel Requirements
|
||||
title: Developer Guide
|
25
docs/source/api/kernels.md
Normal file
25
docs/source/api/kernels.md
Normal file
@ -0,0 +1,25 @@
|
||||
# Kernels API Reference
|
||||
|
||||
## Main Functions
|
||||
|
||||
### get_kernel
|
||||
|
||||
[[autodoc]] kernels.get_kernel
|
||||
|
||||
### get_local_kernel
|
||||
|
||||
[[autodoc]] kernels.get_local_kernel
|
||||
|
||||
### has_kernel
|
||||
|
||||
[[autodoc]] kernels.has_kernel
|
||||
|
||||
## Loading locked kernels
|
||||
|
||||
### load_kernel
|
||||
|
||||
[[autodoc]] kernels.load_kernel
|
||||
|
||||
### get_locked_kernel
|
||||
|
||||
[[autodoc]] kernels.get_locked_kernel
|
49
docs/source/api/layers.md
Normal file
49
docs/source/api/layers.md
Normal file
@ -0,0 +1,49 @@
|
||||
# Layers API Reference
|
||||
|
||||
## Making layers kernel-aware
|
||||
|
||||
### use_kernel_forward_from_hub
|
||||
|
||||
[[autodoc]] kernels.use_kernel_forward_from_hub
|
||||
|
||||
### replace_kernel_forward_from_hub
|
||||
|
||||
[[autodoc]] kernels.replace_kernel_forward_from_hub
|
||||
|
||||
## Registering kernel mappings
|
||||
|
||||
### use_kernel_mapping
|
||||
|
||||
[[autodoc]] kernels.use_kernel_mapping
|
||||
|
||||
### register_kernel_mapping
|
||||
|
||||
[[autodoc]] kernels.register_kernel_mapping
|
||||
|
||||
## Kernelizing a model
|
||||
|
||||
### kernelize
|
||||
|
||||
[[autodoc]] kernels.kernelize
|
||||
|
||||
## Classes
|
||||
|
||||
### Device
|
||||
|
||||
[[autodoc]] kernels.Device
|
||||
|
||||
### Mode
|
||||
|
||||
[[autodoc]] kernels.Mode
|
||||
|
||||
### LayerRepository
|
||||
|
||||
[[autodoc]] kernels.LayerRepository
|
||||
|
||||
### LocalLayerRepository
|
||||
|
||||
[[autodoc]] kernels.LocalLayerRepository
|
||||
|
||||
### LockedLayerRepository
|
||||
|
||||
[[autodoc]] kernels.LockedLayerRepository
|
50
docs/source/basic-usage.md
Normal file
50
docs/source/basic-usage.md
Normal file
@ -0,0 +1,50 @@
|
||||
# Basic Usage
|
||||
|
||||
## Loading Kernels
|
||||
|
||||
Here is how you would use the [activation](https://huggingface.co/kernels-community/activation) kernels from the Hugging Face Hub:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from kernels import get_kernel
|
||||
|
||||
# Download optimized kernels from the Hugging Face hub
|
||||
activation = get_kernel("kernels-community/activation")
|
||||
|
||||
# Create a random tensor
|
||||
x = torch.randn((10, 10), dtype=torch.float16, device="cuda")
|
||||
|
||||
# Run the kernel
|
||||
y = torch.empty_like(x)
|
||||
activation.gelu_fast(y, x)
|
||||
|
||||
print(y)
|
||||
```
|
||||
|
||||
### Using version bounds
|
||||
|
||||
Kernels are versioned using tags of the form `v<major>.<minor>.<patch>`.
|
||||
You can specify which version to download using Python version specifiers:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from kernels import get_kernel
|
||||
|
||||
activation = get_kernel("kernels-community/activation", version=">=0.0.4,<0.1.0")
|
||||
```
|
||||
|
||||
This will get the latest kernel tagged `v0.0.z` where `z` is at least 4. It
|
||||
is strongly recommended to specify a version bound, since a kernel author
|
||||
might push incompatible changes to the `main` branch.
|
||||
|
||||
## Checking Kernel Availability
|
||||
|
||||
You can check if a specific kernel is available for your environment:
|
||||
|
||||
```python
|
||||
from kernels import has_kernel
|
||||
|
||||
# Check if kernel is available for current environment
|
||||
is_available = has_kernel("kernels-community/activation")
|
||||
print(f"Kernel available: {is_available}")
|
||||
```
|
58
docs/source/cli.md
Normal file
58
docs/source/cli.md
Normal file
@ -0,0 +1,58 @@
|
||||
# Kernels CLI Reference
|
||||
|
||||
## Main Functions
|
||||
|
||||
### kernels check
|
||||
|
||||
You can use `kernels check` to test compliance of a kernel on the Hub.
|
||||
This currently checks that the kernel:
|
||||
|
||||
- Supports the currently-required Python ABI version.
|
||||
- Works on supported operating system versions.
|
||||
|
||||
For example:
|
||||
|
||||
```bash
|
||||
$ kernels check kernels-community/flash-attn3
|
||||
Checking variant: torch28-cxx11-cu128-aarch64-linux
|
||||
🐍 Python ABI 3.9 compatible
|
||||
🐧 manylinux_2_28 compatible
|
||||
[...]
|
||||
```
|
||||
|
||||
### kernels to-wheel
|
||||
|
||||
We strongly recommend downloading kernels from the Hub using the `kernels`
|
||||
package, since this comes with large [benefits](index.md) over using Python
|
||||
wheels. That said, some projects may require deployment of kernels as
|
||||
wheels. The `kernels` utility provides a simple solution to this. You can
|
||||
convert any Hub kernel into a set of wheels with the `to-wheel` command:
|
||||
|
||||
```bash
|
||||
$ kernels to-wheel drbh/img2grey 1.1.2
|
||||
☸ img2grey-1.1.2+torch27cu128cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu124cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch27cu126cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx98-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch27cu128cxx11-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx98-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch27cu126cxx11-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx11-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch26cu118cxx98-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu124cxx98-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu118cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch27cu118cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
```
|
||||
|
||||
### kernels upload
|
||||
|
||||
Use `kernels upload <dir_containing_build> --repo_id="hub-username/kernel"` to upload
|
||||
your kernel builds to the Hub. To know the supported arguments run: `kernels upload -h`.
|
||||
|
||||
**Notes**:
|
||||
|
||||
- This will take care of creating a repository on the Hub with the `repo_id` provided.
|
||||
- If a repo with the `repo_id` already exists and if it contains a `build` with the build variant
|
||||
being uploaded, it will attempt to delete the files existing under it.
|
||||
- Make sure to be authenticated (run `hf auth login` if not) to be able to perform uploads to the Hub.
|
41
docs/source/faq.md
Normal file
41
docs/source/faq.md
Normal file
@ -0,0 +1,41 @@
|
||||
# FAQ
|
||||
|
||||
## Kernel layers
|
||||
|
||||
### Why is the kernelization step needed as a separate step?
|
||||
|
||||
In earlier versions of `kernels`, a layer's `forward` method was replaced
|
||||
by `use_kernel_forward_from_hub` and `replace_kernel_forward_from_hub`.
|
||||
The new `forward` would dispatch to a kernel based on the device type,
|
||||
whether a model was training, etc. However, this approach was
|
||||
fundamentally incompatible with `torch.compile` since it relied
|
||||
on data-dependent branching.
|
||||
|
||||
To avoid branching, we have to make dispatch decisions ahead of time,
|
||||
which is what the `kernelize` function does.
|
||||
|
||||
### Why does kernelization only replace `forward` methods?
|
||||
|
||||
There are some other possible approaches. The first is to completely
|
||||
replace existing layers by kernel layers. However, since this would
|
||||
permit free-form layer classes, it would be much harder to validate
|
||||
that layers are fully compatible with the layers that they are
|
||||
replacing. For instance, they could have completely different member
|
||||
variables. Besides that, we would also need to hold on to the original
|
||||
layers, in case we need to revert to the base layers when the model
|
||||
is `kernelize`d again with different options.
|
||||
|
||||
A second approach would be to make an auxiliary layer that wraps the
|
||||
original layer and the kernel layer and dispatches to the kernel layer.
|
||||
This wouldn't have the issues of the first approach, because kernel layers
|
||||
could be similarly strict as they are now, and we would still have access
|
||||
to the original layers when `kernelize`-ing the model again. However,
|
||||
this would change the graph structure of the model and would break use
|
||||
cases where programs access the model internals (e.g.
|
||||
`model.layers[0].attention.query_weight`) or rely on the graph structure
|
||||
in other ways.
|
||||
|
||||
The approach of `forward`-replacement is the least invasive, because
|
||||
it preserves the original model graph. It is also reversible, since
|
||||
even though the `forward` of a layer _instance_ might be replaced,
|
||||
the corresponding class still has the original `forward`.
|
20
docs/source/index.md
Normal file
20
docs/source/index.md
Normal file
@ -0,0 +1,20 @@
|
||||
# Kernels
|
||||
|
||||
<div align="center">
|
||||
<img src="https://github.com/user-attachments/assets/64a652f3-0cd3-4829-b3c1-df13f7933569" width="450" height="450" alt="kernel-builder logo">
|
||||
</div>
|
||||
|
||||
The Kernel Hub allows Python libraries and applications to load compute
|
||||
kernels directly from the [Hub](https://hf.co/). To support this kind
|
||||
of dynamic loading, Hub kernels differ from traditional Python kernel
|
||||
packages in that they are made to be:
|
||||
|
||||
- **Portable**: a kernel can be loaded from paths outside `PYTHONPATH`.
|
||||
- **Unique**: multiple versions of the same kernel can be loaded in the
|
||||
same Python process.
|
||||
- **Compatible**: kernels must support all recent versions of Python and
|
||||
the different PyTorch build configurations (various CUDA versions
|
||||
and C++ ABIs). Furthermore, older C library versions must be supported.
|
||||
|
||||
You can [search for kernels](https://huggingface.co/models?other=kernel) on
|
||||
the Hub.
|
16
docs/source/installation.md
Normal file
16
docs/source/installation.md
Normal file
@ -0,0 +1,16 @@
|
||||
# Installation
|
||||
|
||||
Install the `kernels` package with `pip` (requires `torch>=2.5` and CUDA):
|
||||
|
||||
```bash
|
||||
pip install kernels
|
||||
```
|
||||
|
||||
# Using kernels in a Docker container
|
||||
|
||||
Build and run the reference `examples/basic.py` in a Docker container with the following commands:
|
||||
|
||||
```bash
|
||||
docker build --platform linux/amd64 -t kernels-reference -f docker/Dockerfile.reference .
|
||||
docker run --gpus all -it --rm -e HF_TOKEN=$HF_TOKEN kernels-reference
|
||||
```
|
@ -34,6 +34,8 @@ Kernels are versioned on the Hub using Git tags. Version tags must be of
|
||||
the form `v<major>.<minor>.<patch>`. Versions are used by [locking](./locking.md)
|
||||
to resolve the version constraints.
|
||||
|
||||
We recommend using [semver](https://semver.org/) to version kernels.
|
||||
|
||||
## Native Python module
|
||||
|
||||
Kernels will typically contain a native Python module with precompiled
|
||||
@ -44,19 +46,28 @@ have dynamic library dependencies outside:
|
||||
- Torch;
|
||||
- CUDA/ROCm libraries installed as dependencies of Torch.
|
||||
|
||||
## Compatibility with torch.compile
|
||||
|
||||
The Kernel Hub also encourages to write the kernels in a `torch.compile`
|
||||
compliant way. This helps to ensure that the kernels are compatible with
|
||||
`torch.compile` without introducing any graph breaks and triggering
|
||||
recompilation which can limit the benefits of compilation.
|
||||
|
||||
[Here](https://github.com/huggingface/kernel-builder/blob/d1ee9bf9301ac8c5199099d90ee1c9d5c789d5ba/examples/relu-backprop-compile/tests/test_relu.py#L162) is a simple test example which checks for graph breaks and
|
||||
recompilation triggers during `torch.compile`.
|
||||
|
||||
### Linux
|
||||
|
||||
- Use [ABI3/Limited API](https://docs.python.org/3/c-api/stable.html#stable-application-binary-interface)
|
||||
for compatibility with Python 3.9 and later.
|
||||
- Compatible with [`manylinux_2_28`](https://github.com/pypa/manylinux?tab=readme-ov-file#manylinux_2_28-almalinux-8-based).
|
||||
This means that the extension **must not** use symbols versions higher than:
|
||||
|
||||
- GLIBC 2.28
|
||||
- GLIBCXX 3.4.24
|
||||
- CXXABI 1.3.11
|
||||
- GCC 7.0.0
|
||||
|
||||
These requirement can be checked with the ABI checker (see below).
|
||||
These requirements can be checked with the ABI checker (see below).
|
||||
|
||||
### macOS
|
||||
|
@ -5,7 +5,7 @@ the Hub can replace the `forward` method of an existing layer for a certain
|
||||
device type. This makes it possible to provide more performant kernels for
|
||||
existing layers.
|
||||
|
||||
See [Kernel requirements](kernel-requirements.md) for more information the
|
||||
See [Kernel requirements](kernel-requirements.md) for more information on the
|
||||
requirements of Hub layers.
|
||||
|
||||
## Making a layer extensible with kernels from the hub
|
||||
@ -84,12 +84,6 @@ model = kernelize(model, mode=Mode.INFERENCE | Mode.TORCH_COMPILE)
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
|
||||
When the `mode` argument is not specified,
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` is used as the default. This mode
|
||||
aligns most closely with pure PyTorch layers which also support training
|
||||
and `torch.compile`. However, to select the most performant kernels, it
|
||||
is often good to make the mode specific as possible.
|
||||
|
||||
### Kernel device
|
||||
|
||||
Kernels can be registered per device type. For instance, separate `cuda` and
|
||||
@ -107,7 +101,7 @@ model = kernelize(model, device="cuda", mode=Mode.INFERENCE)
|
||||
|
||||
If the `TRAINING` and/or `TORCH_COMPILE` modes are used, but a registered
|
||||
kernel does not support backward passes or `torch.compile` respectively,
|
||||
`kernenize` will fall back to the original, non-kernelized, layer. You
|
||||
`kernelize` will fall back to the original, non-kernelized, layer. You
|
||||
can let `kernelize` raise an exception instead by using `use_fallback=False`:
|
||||
|
||||
```python
|
||||
@ -117,7 +111,7 @@ model = kernelize(model, mode=Mode.INFERENCE | Mode.TORCH_COMPILE, use_fallback=
|
||||
|
||||
This can be useful if you want to guarantee that Hub kernels are used.
|
||||
|
||||
### Inspecting kernels which kernels are used
|
||||
### Inspecting which kernels are used
|
||||
|
||||
The kernels that are used are logged at the `INFO` level by `kernelize`.
|
||||
See the [Python logging](https://docs.python.org/3/library/logging.html)
|
||||
@ -135,6 +129,10 @@ kernel_layer_mapping = {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
@ -153,12 +151,39 @@ used with the `use_kernel_mapping` context manager:
|
||||
```python
|
||||
with use_kernel_mapping(kernel_layer_mapping):
|
||||
# Use the layer for which the mapping is applied.
|
||||
model = kernelize(model)
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
|
||||
This ensures that the mapping is not active anymore outside the
|
||||
`with`-scope.
|
||||
|
||||
### Using version bounds
|
||||
|
||||
Kernels are versioned using tags of the form `v<major>.<minor>.<patch>`.
|
||||
You can specify which version of the kernel to download using Python version
|
||||
specifiers:
|
||||
|
||||
```python
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
version=">=0.0.4,<0.1.0",
|
||||
),
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
version=">=0.0.4,<0.1.0",
|
||||
)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This will get the layer from latest kernel tagged `v0.0.z` where `z` is at
|
||||
least 4. It is strongly recommended to specify a version bound, since a
|
||||
kernel author might push incompatible changes to the `main` branch.
|
||||
|
||||
### Registering kernels for specific modes
|
||||
|
||||
You might want to register two different kernels for a particular layer,
|
||||
@ -261,7 +286,6 @@ Capabilities behave as follows:
|
||||
an existing kernel, the new kernel will replace the old kernel.
|
||||
- When there are multiple kernels that support a capability, the kernel
|
||||
with the smaller capability interval will be used. E.g. given:
|
||||
|
||||
- `KernelA` with `min_capability=80` and `max_capability=89`;
|
||||
- `KernelB` with `min_capability=75` and `max_capability=89`;
|
||||
- `kernelize` runs on a system with capability 8.6.
|
||||
@ -270,3 +294,30 @@ Capabilities behave as follows:
|
||||
than 75..89. The motivation is that kernels with smaller ranges
|
||||
tend to be more optimized for a specific set of GPUs. **This behavior
|
||||
might still change in the future.**
|
||||
|
||||
### Registering kernels for specific ROCm capabilities
|
||||
|
||||
Registering kernels for the ROCm architecture follows the exact same
|
||||
pattern as CUDA kernels, using `min_capability` and `max_capability` to restrict
|
||||
a kernel to a range of ROCm capabilities.
|
||||
|
||||
### Loading from a local repository for testing
|
||||
|
||||
The `LocalLayerRepository` class is provided to load a repository from
|
||||
a local directory. For example:
|
||||
|
||||
```python
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"SiluAndMul": {
|
||||
"cuda": LocalLayerRepository(
|
||||
repo_path="/home/daniel/kernels/activation",
|
||||
package_name="activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
},
|
||||
inherit_mapping=False,
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
```
|
@ -20,11 +20,11 @@ activation.gelu_fast(y, x)
|
||||
print("Kernel successfully executed")
|
||||
|
||||
# Check results
|
||||
expected = torch.tensor([
|
||||
[0.8408, 1.9551, 2.9961],
|
||||
[4.0000, 5.0000, 6.0000],
|
||||
[7.0000, 8.0000, 9.0000]
|
||||
], device='cuda:0', dtype=torch.float16)
|
||||
expected = torch.tensor(
|
||||
[[0.8408, 1.9551, 2.9961], [4.0000, 5.0000, 6.0000], [7.0000, 8.0000, 9.0000]],
|
||||
device="cuda:0",
|
||||
dtype=torch.float16,
|
||||
)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
print("Calculated values are exact")
|
||||
|
18
flake.lock
generated
18
flake.lock
generated
@ -58,11 +58,11 @@
|
||||
"nixpkgs": "nixpkgs"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1750775451,
|
||||
"narHash": "sha256-HiGqtwzIgUH7Xkh+wgpvHRZGooqrW0z663E6nauczA4=",
|
||||
"lastModified": 1754038838,
|
||||
"narHash": "sha256-oHigCT4z0ayyLyEuxdZooSXRAZP8lfOkZHzY1lx1U50=",
|
||||
"owner": "huggingface",
|
||||
"repo": "hf-nix",
|
||||
"rev": "5943c3169e861618a6634bc8dbdb498e413ab9b7",
|
||||
"rev": "336f781fa284e193baa3d4c3ce3f95fb34e9ffad",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@ -73,17 +73,17 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1747820358,
|
||||
"narHash": "sha256-fTqsZsUX6M3yeEvgyQvXcbGmT2CaRVyVwsi8eK29Oj4=",
|
||||
"owner": "danieldk",
|
||||
"lastModified": 1752785354,
|
||||
"narHash": "sha256-Y33ryUz7MPqKrZwlbQcsYCUz2jAJCacRf8jbs0tYUlA=",
|
||||
"owner": "nixos",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "d3c1681180717528068082103bf323147de6ab0b",
|
||||
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "danieldk",
|
||||
"ref": "cudatoolkit-12.9-kernel-builder",
|
||||
"owner": "nixos",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
|
@ -24,8 +24,13 @@
|
||||
in
|
||||
{
|
||||
formatter = pkgs.nixfmt-tree;
|
||||
packages.kernel-abi-check = pkgs.python3.pkgs.callPackage ./nix/kernel-abi-check.nix {};
|
||||
devShells = with pkgs; rec {
|
||||
default = mkShell {
|
||||
nativeBuildInputs = [
|
||||
# For hf-doc-builder.
|
||||
nodejs
|
||||
];
|
||||
buildInputs =
|
||||
[
|
||||
black
|
||||
@ -36,6 +41,8 @@
|
||||
++ (with python3.pkgs; [
|
||||
docutils
|
||||
huggingface-hub
|
||||
(callPackage ./nix/kernel-abi-check.nix {})
|
||||
mktestdocs
|
||||
pytest
|
||||
pytest-benchmark
|
||||
pyyaml
|
||||
|
27
nix/kernel-abi-check.nix
Normal file
27
nix/kernel-abi-check.nix
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
buildPythonPackage,
|
||||
fetchPypi,
|
||||
rustPlatform,
|
||||
}:
|
||||
|
||||
buildPythonPackage rec {
|
||||
pname = "kernel-abi-check";
|
||||
version = "0.6.2";
|
||||
|
||||
src = fetchPypi {
|
||||
inherit version;
|
||||
pname = "kernel_abi_check";
|
||||
hash = "sha256-goWC7SK79FVNEvkp3bISBwbOqdSrmobANtrWIve9/Ys=";
|
||||
};
|
||||
|
||||
cargoDeps = rustPlatform.fetchCargoVendor {
|
||||
inherit pname version src sourceRoot;
|
||||
hash = "sha256-+1jdbKsDKmG+bf0NEVYMv8t7Meuge1z2cgYfbdB9q8A=";
|
||||
};
|
||||
|
||||
sourceRoot = "kernel_abi_check-${version}/bindings/python";
|
||||
|
||||
pyproject = true;
|
||||
|
||||
nativeBuildInputs = with rustPlatform; [ cargoSetupHook maturinBuildHook ];
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "kernels"
|
||||
version = "0.8.1.dev0"
|
||||
version = "0.10.3"
|
||||
description = "Download compute kernels"
|
||||
authors = [
|
||||
{ name = "OlivierDehaene", email = "olivier@huggingface.co" },
|
||||
@ -12,7 +12,7 @@ license = { text = "Apache-2.0" }
|
||||
readme = "README.md"
|
||||
requires-python = ">= 3.9"
|
||||
dependencies = [
|
||||
"huggingface_hub>=0.26.0,<1.0",
|
||||
"huggingface_hub>=0.26.0,<2.0",
|
||||
"packaging>=20.0",
|
||||
"pyyaml>=6",
|
||||
"tomli>=2.0; python_version<'3.11'",
|
||||
@ -24,16 +24,21 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[dependency-groups]
|
||||
dev = [
|
||||
"mypy >= 1.15.0",
|
||||
"pytest >=8",
|
||||
"mktestdocs>=0.2.5",
|
||||
"mypy>=1.15.0",
|
||||
"pytest>=8",
|
||||
# Whatever version is compatible with pytest.
|
||||
"pytest-benchmark",
|
||||
"torch >=2.5",
|
||||
"torch>=2.5",
|
||||
"types-pyyaml"
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
abi-check = ["kernel-abi-check>=0.6.2,<0.7.0"]
|
||||
torch = ["torch"]
|
||||
docs = [
|
||||
"hf-doc-builder",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
kernels = "kernels.cli:main"
|
||||
@ -41,6 +46,9 @@ kernels = "kernels.cli:main"
|
||||
[project.entry-points."egg_info.writers"]
|
||||
"kernels.lock" = "kernels.lockfile:write_egg_lockfile"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
line_length = 119
|
||||
|
||||
[tool.ruff]
|
||||
exclude = [
|
||||
@ -67,4 +75,4 @@ line-length = 119
|
||||
# Ignored rules:
|
||||
# "E501" -> line length violation
|
||||
lint.ignore = ["E501"]
|
||||
lint.select = ["E", "F", "I", "W"]
|
||||
lint.select = ["E", "F", "W"]
|
||||
|
@ -1,4 +1,9 @@
|
||||
[pytest]
|
||||
markers =
|
||||
cuda_only: marks tests that should only hosts with CUDA GPUs
|
||||
rocm_only: marks tests that should only run on hosts with ROCm GPUs
|
||||
darwin_only: marks tests that should only run on macOS
|
||||
linux_only: marks tests that should only run on Linux
|
||||
xpu_only: marks tests that should only run on hosts with Intel XPUs
|
||||
npu_only: marks tests that should only run on Ascend NPUs
|
||||
token: enable tests that require a write token
|
||||
is_staging_test: Marks tests that should only run on a staging environment
|
||||
|
@ -1,7 +1,13 @@
|
||||
import importlib.metadata
|
||||
|
||||
__version__ = importlib.metadata.version("kernels")
|
||||
|
||||
from kernels.layer import (
|
||||
CUDAProperties,
|
||||
Device,
|
||||
LayerRepository,
|
||||
LocalLayerRepository,
|
||||
LockedLayerRepository,
|
||||
Mode,
|
||||
kernelize,
|
||||
register_kernel_mapping,
|
||||
@ -19,9 +25,12 @@ from kernels.utils import (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"__version__",
|
||||
"CUDAProperties",
|
||||
"Device",
|
||||
"LayerRepository",
|
||||
"LocalLayerRepository",
|
||||
"LockedLayerRepository",
|
||||
"Mode",
|
||||
"get_kernel",
|
||||
"get_local_kernel",
|
||||
|
142
src/kernels/check.py
Normal file
142
src/kernels/check.py
Normal file
@ -0,0 +1,142 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from kernel_abi_check import (
|
||||
BinaryFormat,
|
||||
IncompatibleAbi3Symbol,
|
||||
IncompatibleMacOSVersion,
|
||||
IncompatibleManylinuxSymbol,
|
||||
MissingMacOSVersion,
|
||||
NonAbi3Symbol,
|
||||
ObjectFile,
|
||||
)
|
||||
|
||||
from kernels.utils import CACHE_DIR
|
||||
|
||||
|
||||
def check_kernel(
|
||||
*, macos: str, manylinux: str, python_abi: str, repo_id: str, revision: str
|
||||
):
|
||||
variants_path = (
|
||||
Path(
|
||||
snapshot_download(
|
||||
repo_id,
|
||||
allow_patterns=["build/*"],
|
||||
cache_dir=CACHE_DIR,
|
||||
revision=revision,
|
||||
)
|
||||
)
|
||||
/ "build"
|
||||
)
|
||||
|
||||
has_issues = False
|
||||
for variant_path in variants_path.iterdir():
|
||||
if not variant_path.is_dir():
|
||||
print(
|
||||
f"⛔ `build/` must only contain directories, found: {variant_path.name}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
has_issues = True
|
||||
continue
|
||||
|
||||
print(f"Checking variant: {variant_path.name}", file=sys.stderr)
|
||||
|
||||
indent = 2
|
||||
|
||||
for dylib_path in variant_path.rglob("*.so"):
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"Dynamic library {dylib_path.relative_to(variant_path)}:",
|
||||
)
|
||||
|
||||
o = ObjectFile(dylib_path)
|
||||
has_issues |= check_abi3(o, python_abi, indent + 2)
|
||||
|
||||
# TODO: also check operating system
|
||||
if o.format() == BinaryFormat.ELF:
|
||||
has_issues |= check_manylinux(o, manylinux, indent + 2)
|
||||
elif o.format() == BinaryFormat.MACH_O:
|
||||
has_issues |= check_macos(o, macos, indent + 2)
|
||||
|
||||
if has_issues:
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def check_abi3(object_file: ObjectFile, python_abi: str, indent: int) -> bool:
|
||||
has_issues = False
|
||||
violations = object_file.check_python_abi(python_abi)
|
||||
if violations != []:
|
||||
has_issues = True
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"⛔ Found symbols that are incompatible with Python ABI {python_abi}:",
|
||||
)
|
||||
for violation in violations:
|
||||
if isinstance(violation, IncompatibleAbi3Symbol):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"{violation.name}: {violation.version_added}",
|
||||
)
|
||||
elif isinstance(violation, NonAbi3Symbol):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"{violation.name}",
|
||||
)
|
||||
else:
|
||||
print_with_indent(indent, f"🐍 Python ABI {python_abi} compatible")
|
||||
|
||||
return has_issues
|
||||
|
||||
|
||||
def check_macos(object_file: ObjectFile, macos: str, indent: int) -> bool:
|
||||
has_issues = False
|
||||
violations = object_file.check_macos(macos)
|
||||
if violations != []:
|
||||
has_issues = True
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"⛔ Found incompatibility with macOS {macos}:",
|
||||
)
|
||||
|
||||
for violation in violations:
|
||||
if isinstance(violation, MissingMacOSVersion):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
"shared library does not contain macOS version",
|
||||
)
|
||||
elif isinstance(violation, IncompatibleMacOSVersion):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"shared library requires macOS {violation.version}",
|
||||
)
|
||||
else:
|
||||
print_with_indent(indent, f"🍏 compatible with macOS {macos}")
|
||||
|
||||
return has_issues
|
||||
|
||||
|
||||
def check_manylinux(object_file: ObjectFile, manylinux: str, indent: int) -> bool:
|
||||
has_issues = False
|
||||
violations = object_file.check_manylinux(manylinux)
|
||||
if violations != []:
|
||||
has_issues = True
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"⛔ Found symbols that are incompatible with {manylinux}:",
|
||||
)
|
||||
|
||||
for violation in violations:
|
||||
if isinstance(violation, IncompatibleManylinuxSymbol):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"{violation.name}_{violation.dep}: {violation.version}",
|
||||
)
|
||||
else:
|
||||
print_with_indent(indent, f"🐧 {manylinux} compatible")
|
||||
|
||||
return has_issues
|
||||
|
||||
|
||||
def print_with_indent(indent: int, message: str):
|
||||
print(f"{' ' * indent}{message}", file=sys.stderr)
|
@ -4,6 +4,8 @@ import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import create_repo, upload_folder
|
||||
|
||||
from kernels.compat import tomllib
|
||||
from kernels.lockfile import KernelLock, get_kernel_locks
|
||||
from kernels.utils import install_kernel, install_kernel_all_variants
|
||||
@ -18,6 +20,31 @@ def main():
|
||||
)
|
||||
subparsers = parser.add_subparsers(required=True)
|
||||
|
||||
check_parser = subparsers.add_parser("check", help="Check a kernel for compliance")
|
||||
check_parser.add_argument("repo_id", type=str, help="The kernel repo ID")
|
||||
check_parser.add_argument(
|
||||
"--revision",
|
||||
type=str,
|
||||
default="main",
|
||||
help="The kernel revision (branch, tag, or commit SHA, defaults to 'main')",
|
||||
)
|
||||
check_parser.add_argument("--macos", type=str, help="macOS version", default="15.0")
|
||||
check_parser.add_argument(
|
||||
"--manylinux", type=str, help="Manylinux version", default="manylinux_2_28"
|
||||
)
|
||||
check_parser.add_argument(
|
||||
"--python-abi", type=str, help="Python ABI version", default="3.9"
|
||||
)
|
||||
check_parser.set_defaults(
|
||||
func=lambda args: check_kernel(
|
||||
macos=args.macos,
|
||||
manylinux=args.manylinux,
|
||||
python_abi=args.python_abi,
|
||||
repo_id=args.repo_id,
|
||||
revision=args.revision,
|
||||
)
|
||||
)
|
||||
|
||||
download_parser = subparsers.add_parser("download", help="Download locked kernels")
|
||||
download_parser.add_argument(
|
||||
"project_dir",
|
||||
@ -31,6 +58,29 @@ def main():
|
||||
)
|
||||
download_parser.set_defaults(func=download_kernels)
|
||||
|
||||
upload_parser = subparsers.add_parser("upload", help="Upload kernels to the Hub")
|
||||
upload_parser.add_argument(
|
||||
"kernel_dir",
|
||||
type=Path,
|
||||
help="Directory of the kernel build",
|
||||
)
|
||||
upload_parser.add_argument(
|
||||
"--repo_id",
|
||||
type=str,
|
||||
help="Repository ID to use to upload to the Hugging Face Hub",
|
||||
)
|
||||
upload_parser.add_argument(
|
||||
"--branch",
|
||||
type=None,
|
||||
help="If set, the upload will be made to a particular branch of the provided `repo_id`.",
|
||||
)
|
||||
upload_parser.add_argument(
|
||||
"--private",
|
||||
action="store_true",
|
||||
help="If the repository should be private.",
|
||||
)
|
||||
upload_parser.set_defaults(func=upload_kernels)
|
||||
|
||||
lock_parser = subparsers.add_parser("lock", help="Lock kernel revisions")
|
||||
lock_parser.add_argument(
|
||||
"project_dir",
|
||||
@ -153,8 +203,57 @@ def lock_kernels(args):
|
||||
json.dump(all_locks, f, cls=_JSONEncoder, indent=2)
|
||||
|
||||
|
||||
def upload_kernels(args):
|
||||
kernel_dir = Path(args.kernel_dir).resolve()
|
||||
build_dir = kernel_dir / "build"
|
||||
if not kernel_dir.is_dir():
|
||||
raise ValueError(f"{kernel_dir} is not a directory")
|
||||
if not build_dir.is_dir():
|
||||
raise ValueError("Couldn't find `build` directory inside `kernel_dir`")
|
||||
|
||||
repo_id = create_repo(
|
||||
repo_id=args.repo_id, private=args.private, exist_ok=True
|
||||
).repo_id
|
||||
|
||||
delete_patterns: set[str] = set()
|
||||
for build_variant in build_dir.iterdir():
|
||||
if build_variant.is_dir():
|
||||
delete_patterns.add(f"{build_variant.name}/**")
|
||||
|
||||
upload_folder(
|
||||
repo_id=repo_id,
|
||||
folder_path=build_dir,
|
||||
revision=args.branch,
|
||||
path_in_repo="build",
|
||||
delete_patterns=list(delete_patterns),
|
||||
commit_message="Build uploaded using `kernels`.",
|
||||
)
|
||||
print(f"✅ Kernel upload successful. Find the kernel in https://hf.co/{repo_id}.")
|
||||
|
||||
|
||||
class _JSONEncoder(json.JSONEncoder):
|
||||
def default(self, o):
|
||||
if dataclasses.is_dataclass(o):
|
||||
return dataclasses.asdict(o)
|
||||
return super().default(o)
|
||||
|
||||
|
||||
def check_kernel(
|
||||
*, macos: str, manylinux: str, python_abi: str, repo_id: str, revision: str
|
||||
):
|
||||
try:
|
||||
import kernels.check
|
||||
except ImportError:
|
||||
print(
|
||||
"`kernels check` requires the `kernel-abi-check` package: pip install kernel-abi-check",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
kernels.check.check_kernel(
|
||||
macos=macos,
|
||||
manylinux=manylinux,
|
||||
python_abi=python_abi,
|
||||
repo_id=repo_id,
|
||||
revision=revision,
|
||||
)
|
||||
|
@ -13,7 +13,7 @@ from dataclasses import dataclass
|
||||
from enum import Flag, auto
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
from types import MethodType
|
||||
from types import MethodType, ModuleType
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Dict,
|
||||
@ -26,13 +26,17 @@ from typing import (
|
||||
|
||||
from ._interval_tree import IntervalTree
|
||||
from ._versions import select_revision_or_version
|
||||
from .utils import _get_caller_locked_kernel, _get_locked_kernel, get_kernel
|
||||
from .utils import (
|
||||
_get_caller_locked_kernel,
|
||||
_get_locked_kernel,
|
||||
get_kernel,
|
||||
get_local_kernel,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
_DISABLE_KERNEL_MAPPING: bool = bool(int(os.environ.get("DISABLE_KERNEL_MAPPING", "0")))
|
||||
|
||||
|
||||
@ -40,17 +44,19 @@ class Mode(Flag):
|
||||
"""
|
||||
Kernelize mode
|
||||
|
||||
The `Mode` flag is used by `kernelize` to select kernels for the given
|
||||
mode. Mappings can be registered for specific modes.
|
||||
The `Mode` flag is used by [`kernelize`] to select kernels for the given mode. Mappings can be registered for
|
||||
specific modes.
|
||||
|
||||
* `INFERENCE`: The kernel is used for inference.
|
||||
* `TRAINING`: The kernel is used for training.
|
||||
* `TORCH_COMPILE`: The kernel is used with `torch.compile`.
|
||||
* `FALLBACK`: In a kernel mapping, this kernel is used when no other mode
|
||||
matches.
|
||||
Attributes:
|
||||
INFERENCE: The kernel is used for inference.
|
||||
TRAINING: The kernel is used for training.
|
||||
TORCH_COMPILE: The kernel is used with `torch.compile`.
|
||||
FALLBACK: In a kernel mapping, this kernel is used when no other mode matches.
|
||||
|
||||
Note:
|
||||
Different modes can be combined. For instance, `INFERENCE | TORCH_COMPILE` should be used for layers that
|
||||
are used for inference *with* `torch.compile`.
|
||||
|
||||
Different modes can be combined. For instance, `INFERENCE | TORCH_COMPILE`
|
||||
should be used for layers that are used for inference *with* `torch.compile`.
|
||||
"""
|
||||
|
||||
_NONE = 0
|
||||
@ -73,6 +79,42 @@ class Mode(Flag):
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Device:
|
||||
"""
|
||||
Represents a compute device with optional properties.
|
||||
|
||||
This class encapsulates device information including device type and optional device-specific properties
|
||||
like CUDA capabilities.
|
||||
|
||||
Args:
|
||||
type (`str`):
|
||||
The device type (e.g., "cuda", "mps", "npu", "rocm", "xpu").
|
||||
properties ([`CUDAProperties`], *optional*):
|
||||
Device-specific properties. Currently only [`CUDAProperties`] is supported for CUDA devices.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import Device, CUDAProperties
|
||||
|
||||
# Basic CUDA device
|
||||
cuda_device = Device(type="cuda")
|
||||
|
||||
# CUDA device with specific capability requirements
|
||||
cuda_device_with_props = Device(
|
||||
type="cuda",
|
||||
properties=CUDAProperties(min_capability=75, max_capability=90)
|
||||
)
|
||||
|
||||
# MPS device for Apple Silicon
|
||||
mps_device = Device(type="mps")
|
||||
|
||||
# XPU device (e.g., Intel(R) Data Center GPU Max 1550)
|
||||
xpu_device = Device(type="xpu")
|
||||
|
||||
# NPU device (Huawei Ascend)
|
||||
npu_device = Device(type="npu")
|
||||
```
|
||||
"""
|
||||
|
||||
type: str
|
||||
properties: Optional[CUDAProperties] = None
|
||||
|
||||
@ -85,8 +127,14 @@ class Device:
|
||||
"""Create an appropriate repository set for this device type."""
|
||||
if self.type == "cuda":
|
||||
return _CUDARepos()
|
||||
elif self.type == "rocm":
|
||||
return _ROCMRepos()
|
||||
elif self.type == "mps":
|
||||
return _MPSRepos()
|
||||
elif self.type == "xpu":
|
||||
return _XPURepos()
|
||||
elif self.type == "npu":
|
||||
return _NPURepos()
|
||||
else:
|
||||
raise ValueError(f"Unknown device type: {self.type}")
|
||||
|
||||
@ -101,6 +149,34 @@ class Device:
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CUDAProperties:
|
||||
"""
|
||||
CUDA-specific device properties for capability-based kernel selection.
|
||||
|
||||
This class defines CUDA compute capability constraints for kernel selection, allowing kernels to specify
|
||||
minimum and maximum CUDA compute capabilities they support.
|
||||
|
||||
Args:
|
||||
min_capability (`int`):
|
||||
Minimum CUDA compute capability required (e.g., 75 for compute capability 7.5).
|
||||
max_capability (`int`):
|
||||
Maximum CUDA compute capability supported (e.g., 90 for compute capability 9.0).
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import CUDAProperties, Device
|
||||
|
||||
# Define CUDA properties for modern GPUs (compute capability 7.5 to 9.0)
|
||||
cuda_props = CUDAProperties(min_capability=75, max_capability=90)
|
||||
|
||||
# Create a device with these properties
|
||||
device = Device(type="cuda", properties=cuda_props)
|
||||
```
|
||||
|
||||
Note:
|
||||
CUDA compute capabilities are represented as integers where the major and minor versions are concatenated.
|
||||
For example, compute capability 7.5 is represented as 75, and 8.6 is represented as 86.
|
||||
"""
|
||||
|
||||
min_capability: int
|
||||
max_capability: int
|
||||
|
||||
@ -116,20 +192,90 @@ class CUDAProperties:
|
||||
return hash((self.min_capability, self.max_capability))
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class ROCMProperties:
|
||||
"""
|
||||
ROCM-specific device properties for capability-based kernel selection.
|
||||
|
||||
This class defines ROCM compute capability constraints for kernel selection, allowing kernels to specify
|
||||
minimum and maximum ROCM compute capabilities they support.
|
||||
|
||||
Args:
|
||||
min_capability (`int`):
|
||||
Minimum ROCM compute capability required (e.g., 75 for compute capability 7.5).
|
||||
max_capability (`int`):
|
||||
Maximum ROCM compute capability supported (e.g., 90 for compute capability 9.0).
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import ROCMProperties, Device
|
||||
|
||||
# Define ROCM properties for modern GPUs (compute capability 7.5 to 9.0)
|
||||
rocm_props = ROCMProperties(min_capability=75, max_capability=90)
|
||||
|
||||
# Create a device with these properties
|
||||
device = Device(type="rocm", properties=rocm_props)
|
||||
```
|
||||
|
||||
Note:
|
||||
ROCM compute capabilities are represented as integers where the major and minor versions are concatenated.
|
||||
For example, compute capability 7.5 is represented as 75, and 8.6 is represented as 86.
|
||||
"""
|
||||
|
||||
min_capability: int
|
||||
max_capability: int
|
||||
|
||||
def __eq__(self, other):
|
||||
if not isinstance(other, ROCMProperties):
|
||||
return NotImplemented
|
||||
return (
|
||||
self.min_capability == other.min_capability
|
||||
and self.max_capability == other.max_capability
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.min_capability, self.max_capability))
|
||||
|
||||
|
||||
class LayerRepositoryProtocol(Protocol):
|
||||
@property
|
||||
def layer_name(self) -> str: ...
|
||||
|
||||
@property
|
||||
def repo_id(self) -> str: ...
|
||||
|
||||
@property
|
||||
def revision(self) -> str: ...
|
||||
def load(self) -> ModuleType: ...
|
||||
|
||||
|
||||
class LayerRepository:
|
||||
"""
|
||||
Repository and name of a layer.
|
||||
Repository and name of a layer for kernel mapping.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the layer.
|
||||
layer_name (`str`):
|
||||
The name of the layer within the kernel repository.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific revision (branch, tag, or commit) to download. Cannot be used together with `version`.
|
||||
version (`str`, *optional*):
|
||||
The kernel version to download. This can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import LayerRepository
|
||||
|
||||
# Reference a specific layer by revision
|
||||
layer_repo = LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
|
||||
# Reference a layer by version constraint
|
||||
layer_repo_versioned = LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
version=">=0.0.3,<0.1"
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@ -140,25 +286,12 @@ class LayerRepository:
|
||||
revision: Optional[str] = None,
|
||||
version: Optional[str] = None,
|
||||
):
|
||||
"""
|
||||
Construct a layer repository.
|
||||
|
||||
Args:
|
||||
repo_id (`str`): The Hub repository containing the layer.
|
||||
revision (`str`, *optional*, defaults to `"main"`): The specific
|
||||
revision (branch, tag, or commit) to download.
|
||||
Cannot be used together with `version`.
|
||||
version (`str`, *optional*): The kernel version to download. This
|
||||
can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
"""
|
||||
|
||||
if revision is not None and version is not None:
|
||||
raise ValueError(
|
||||
"Either a revision or a version must be specified, not both."
|
||||
)
|
||||
|
||||
self.repo_id = repo_id
|
||||
self._repo_id = repo_id
|
||||
self.layer_name = layer_name
|
||||
|
||||
# We are going to resolve these lazily, since we do not want
|
||||
@ -166,24 +299,85 @@ class LayerRepository:
|
||||
self._revision = revision
|
||||
self._version = version
|
||||
|
||||
@property
|
||||
@functools.lru_cache()
|
||||
def revision(self) -> str:
|
||||
def _resolve_revision(self) -> str:
|
||||
return select_revision_or_version(
|
||||
repo_id=self.repo_id, revision=self._revision, version=self._version
|
||||
repo_id=self._repo_id, revision=self._revision, version=self._version
|
||||
)
|
||||
|
||||
def load(self) -> ModuleType:
|
||||
return get_kernel(self._repo_id, revision=self._resolve_revision())
|
||||
|
||||
def __eq__(self, other):
|
||||
return (
|
||||
isinstance(other, LayerRepository)
|
||||
and self.layer_name == other.layer_name
|
||||
and self.repo_id == other.repo_id
|
||||
and self._repo_id == other._repo_id
|
||||
and self._revision == other._revision
|
||||
and self._version == other._version
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.layer_name, self.repo_id, self._revision, self._version))
|
||||
return hash((self.layer_name, self._repo_id, self._revision, self._version))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}), layer `{self.layer_name}`"
|
||||
|
||||
|
||||
class LocalLayerRepository:
|
||||
"""
|
||||
Repository from a local directory for kernel mapping.
|
||||
|
||||
Args:
|
||||
repo_path (`Path`):
|
||||
The local repository containing the layer.
|
||||
package_name (`str`):
|
||||
Package name of the kernel.
|
||||
layer_name (`str`):
|
||||
The name of the layer within the kernel repository.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from pathlib import Path
|
||||
|
||||
from kernels import LocalLayerRepository
|
||||
|
||||
# Reference a specific layer by revision
|
||||
layer_repo = LocalLayerRepository(
|
||||
repo_path=Path("/home/daniel/kernels/activation"),
|
||||
package_name="activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
repo_path: Path,
|
||||
*,
|
||||
package_name: str,
|
||||
layer_name: str,
|
||||
):
|
||||
self._repo_path = repo_path
|
||||
self._package_name = package_name
|
||||
self.layer_name = layer_name
|
||||
|
||||
def load(self) -> ModuleType:
|
||||
return get_local_kernel(self._repo_path, self._package_name)
|
||||
|
||||
def __eq__(self, other):
|
||||
return (
|
||||
isinstance(other, LocalLayerRepository)
|
||||
and self.layer_name == other.layer_name
|
||||
and self._repo_path == other._repo_path
|
||||
and self._package_name == other._package_name
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.layer_name, self._repo_path, self._package_name))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_path}` (package: {self._package_name}), layer `{self.layer_name}`"
|
||||
|
||||
|
||||
class LockedLayerRepository:
|
||||
@ -207,33 +401,38 @@ class LockedLayerRepository:
|
||||
Args:
|
||||
repo_id (`str`): The Hub repository containing the layer.
|
||||
"""
|
||||
self.repo_id = repo_id
|
||||
self.lockfile = lockfile
|
||||
self._repo_id = repo_id
|
||||
self._lockfile = lockfile
|
||||
self.layer_name = layer_name
|
||||
|
||||
@property
|
||||
@functools.lru_cache()
|
||||
def revision(self) -> str:
|
||||
if self.lockfile is None:
|
||||
locked_sha = _get_caller_locked_kernel(self.repo_id)
|
||||
def _resolve_revision(self) -> str:
|
||||
if self._lockfile is None:
|
||||
locked_sha = _get_caller_locked_kernel(self._repo_id)
|
||||
else:
|
||||
with open(self.lockfile, "r") as f:
|
||||
locked_sha = _get_locked_kernel(self.repo_id, f.read())
|
||||
with open(self._lockfile, "r") as f:
|
||||
locked_sha = _get_locked_kernel(self._repo_id, f.read())
|
||||
|
||||
if locked_sha is None:
|
||||
raise ValueError(f"Kernel `{self.repo_id}` is not locked")
|
||||
raise ValueError(f"Kernel `{self._repo_id}` is not locked")
|
||||
|
||||
return locked_sha
|
||||
|
||||
def load(self) -> ModuleType:
|
||||
return get_kernel(repo_id=self._repo_id, revision=self._resolve_revision())
|
||||
|
||||
def __eq__(self, other):
|
||||
return (
|
||||
isinstance(other, LockedLayerRepository)
|
||||
and self.layer_name == other.layer_name
|
||||
and self.repo_id == other.repo_id
|
||||
and self._repo_id == other._repo_id
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.layer_name, self.repo_id))
|
||||
return hash((self.layer_name, self._repo_id))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}), layer `{self.layer_name}`"
|
||||
|
||||
|
||||
_CACHED_LAYER: Dict[LayerRepositoryProtocol, Type["nn.Module"]] = {}
|
||||
@ -258,6 +457,46 @@ class _DeviceRepos(ABC):
|
||||
...
|
||||
|
||||
|
||||
class _XPURepos(_DeviceRepos):
|
||||
_repos: Dict[Mode, LayerRepositoryProtocol]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._repos = {}
|
||||
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
return self._repos
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
if device.type != "xpu":
|
||||
raise ValueError(f"Device type must be 'xpu', got {device.type}")
|
||||
|
||||
self._repos = repos
|
||||
|
||||
|
||||
class _NPURepos(_DeviceRepos):
|
||||
_repos: Dict[Mode, LayerRepositoryProtocol]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._repos = {}
|
||||
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
return self._repos
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
if device.type != "npu":
|
||||
raise ValueError(f"Device type must be 'npu', got {device.type}")
|
||||
|
||||
self._repos = repos
|
||||
|
||||
|
||||
class _MPSRepos(_DeviceRepos):
|
||||
_repos: Dict[Mode, LayerRepositoryProtocol]
|
||||
|
||||
@ -309,6 +548,46 @@ class _CUDARepos(_DeviceRepos):
|
||||
self.repos_by_capability.insert(min_capability, max_capability, repos)
|
||||
|
||||
|
||||
class _ROCMRepos(_DeviceRepos):
|
||||
_repos: IntervalTree[Dict[Mode, LayerRepositoryProtocol]]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.repos_by_capability = IntervalTree()
|
||||
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
capability = _find_capability()
|
||||
return self.repos_by_capability.find_smallest_interval(capability)
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
assert device.properties is None or isinstance(
|
||||
device.properties, ROCMProperties
|
||||
)
|
||||
|
||||
min_capability = (
|
||||
0 if device.properties is None else device.properties.min_capability
|
||||
)
|
||||
max_capability = (
|
||||
sys.maxsize
|
||||
if device.properties is None
|
||||
else device.properties.max_capability
|
||||
)
|
||||
|
||||
self.repos_by_capability.insert(min_capability, max_capability, repos)
|
||||
|
||||
|
||||
def _validate_device_type(device_type: str) -> None:
|
||||
"""Validate that the device type is supported."""
|
||||
supported_devices = {"cuda", "mps", "npu", "rocm", "xpu"}
|
||||
if device_type not in supported_devices:
|
||||
raise ValueError(
|
||||
f"Unsupported device type '{device_type}'. Supported device types are: {', '.join(sorted(supported_devices))}"
|
||||
)
|
||||
|
||||
|
||||
_KERNEL_MAPPING: ContextVar[Dict[str, Dict[str, _DeviceRepos]]] = ContextVar(
|
||||
"_KERNEL_MAPPING", default={}
|
||||
)
|
||||
@ -326,11 +605,56 @@ def use_kernel_mapping(
|
||||
inherit_mapping: bool = True,
|
||||
):
|
||||
"""
|
||||
Context manager that sets a mapping for a duration of the context.
|
||||
Context manager that sets a kernel mapping for the duration of the context.
|
||||
|
||||
When `inherit_mapping` is set to `True` the current mapping will be
|
||||
extended by `mapping` inside the context. If it is `False`, only
|
||||
`mapping` is used inside the context.
|
||||
This function allows temporary kernel mappings to be applied within a specific context, enabling different
|
||||
kernel configurations for different parts of your code.
|
||||
|
||||
Args:
|
||||
mapping (`Dict[str, Dict[Union[Device, str], Union[LayerRepositoryProtocol, Dict[Mode, LayerRepositoryProtocol]]]]`):
|
||||
The kernel mapping to apply. Maps layer names to device-specific kernel configurations.
|
||||
inherit_mapping (`bool`, *optional*, defaults to `True`):
|
||||
When `True`, the current mapping will be extended by `mapping` inside the context. When `False`,
|
||||
only `mapping` is used inside the context.
|
||||
|
||||
Returns:
|
||||
Context manager that handles the temporary kernel mapping.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
from kernels import use_kernel_mapping, LayerRepository, Device
|
||||
from kernels import Mode, kernelize
|
||||
|
||||
# Define a mapping
|
||||
mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@use_kernel_forward_from_hub("SiluAndMul")
|
||||
class SiluAndMul(nn.Module):
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
d = x.shape[-1] // 2
|
||||
return F.silu(x[..., :d]) * x[..., d:]
|
||||
|
||||
model = SiluAndMul()
|
||||
|
||||
# Use the mapping for the duration of the context.
|
||||
with use_kernel_mapping(mapping):
|
||||
# kernelize uses the temporary mapping
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE, device="cuda")
|
||||
|
||||
# Outside the context, original mappings are restored
|
||||
```
|
||||
"""
|
||||
|
||||
class ContextManager:
|
||||
@ -356,29 +680,59 @@ def register_kernel_mapping(
|
||||
Union[LayerRepositoryProtocol, Dict[Mode, LayerRepositoryProtocol]],
|
||||
],
|
||||
],
|
||||
inherit_mapping: bool = True,
|
||||
):
|
||||
"""
|
||||
Allows one to register a mapping between a layer name and the corresponding
|
||||
kernel(s) to use, depending on the device. This should be used in conjunction
|
||||
with `kernelize`.
|
||||
Register a global mapping between layer names and their corresponding kernel implementations.
|
||||
|
||||
Example usage:
|
||||
This function allows you to register a mapping between a layer name and the corresponding kernel(s) to use,
|
||||
depending on the device and mode. This should be used in conjunction with [`kernelize`].
|
||||
|
||||
```python
|
||||
from kernels import LayerRepository, register_kernel_mapping
|
||||
Args:
|
||||
mapping (`Dict[str, Dict[Union[Device, str], Union[LayerRepositoryProtocol, Dict[Mode, LayerRepositoryProtocol]]]]`):
|
||||
The kernel mapping to register globally. Maps layer names to device-specific kernels.
|
||||
The mapping can specify different kernels for different modes (training, inference, etc.).
|
||||
inherit_mapping (`bool`, *optional*, defaults to `True`):
|
||||
When `True`, the current mapping will be extended by `mapping`. When `False`, the existing mappings
|
||||
are erased before adding `mapping`.
|
||||
|
||||
kernel_layer_mapping = {
|
||||
"LlamaRMSNorm": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="RmsNorm",
|
||||
revision="layers",
|
||||
),
|
||||
},
|
||||
}
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
```
|
||||
Example:
|
||||
```python
|
||||
from kernels import LayerRepository, register_kernel_mapping, Mode
|
||||
|
||||
# Simple mapping for a single kernel per device
|
||||
kernel_layer_mapping = {
|
||||
"LlamaRMSNorm": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="RmsNorm",
|
||||
revision="layers",
|
||||
),
|
||||
},
|
||||
}
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
|
||||
# Advanced mapping with mode-specific kernels
|
||||
advanced_mapping = {
|
||||
"MultiHeadAttention": {
|
||||
"cuda": {
|
||||
Mode.TRAINING: LayerRepository(
|
||||
repo_id="username/training-kernels",
|
||||
layer_name="TrainingAttention"
|
||||
),
|
||||
Mode.INFERENCE: LayerRepository(
|
||||
repo_id="username/inference-kernels",
|
||||
layer_name="FastAttention"
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
register_kernel_mapping(advanced_mapping)
|
||||
```
|
||||
"""
|
||||
if not inherit_mapping:
|
||||
_KERNEL_MAPPING.set({})
|
||||
|
||||
# Merge with existing mappings.
|
||||
for new_kernel, new_device_repos in mapping.items():
|
||||
device_repo = _KERNEL_MAPPING.get().setdefault(new_kernel, {})
|
||||
@ -401,15 +755,20 @@ def replace_kernel_forward_from_hub(
|
||||
layer_name: str,
|
||||
):
|
||||
"""
|
||||
Decorator that prepares a layer class to use a kernel from the Hugging Face Hub.
|
||||
Function that prepares a layer class to use kernels from the Hugging Face Hub.
|
||||
|
||||
This decorator stores the layer name and original forward method, which will be used
|
||||
by the kernelize function to replace the forward implementation with the appropriate
|
||||
kernel from the hub.
|
||||
It is recommended to use [`use_kernel_forward_from_hub`] decorator instead.
|
||||
This function should only be used as a last resort to extend third-party layers,
|
||||
it is inherently fragile since the member variables and `forward` signature
|
||||
of usch a layer can change.
|
||||
|
||||
Args:
|
||||
cls: The layer class to decorate
|
||||
layer_name: The name of the layer to use for kernel lookup
|
||||
Example:
|
||||
```python
|
||||
from kernels import replace_kernel_forward_from_hub
|
||||
import torch.nn as nn
|
||||
|
||||
replace_kernel_forward_from_hub(nn.LayerNorm, "LayerNorm")
|
||||
```
|
||||
"""
|
||||
cls.kernel_layer_name = layer_name
|
||||
|
||||
@ -463,30 +822,66 @@ def _select_repository(
|
||||
def kernelize(
|
||||
model: "nn.Module",
|
||||
*,
|
||||
mode: Mode = Mode.TRAINING | Mode.TORCH_COMPILE,
|
||||
mode: Mode,
|
||||
device: Optional[Union[str, "torch.device"]] = None,
|
||||
use_fallback: bool = True,
|
||||
):
|
||||
"""
|
||||
Iterate over all modules in the model and replace the `forward` method of
|
||||
extensible layers for which kernels are registered using `register_kernel_mapping`
|
||||
or `use_kernel_mapping`.
|
||||
Replace layer forward methods with optimized kernel implementations.
|
||||
|
||||
This function iterates over all modules in the model and replaces the `forward` method of extensible layers
|
||||
for which kernels are registered using [`register_kernel_mapping`] or [`use_kernel_mapping`].
|
||||
|
||||
Args:
|
||||
model: The PyTorch model to kernelize
|
||||
mode: the mode that the kernel is going to be used in (e.g.
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` kernelizes the model for training
|
||||
and `torch.compile`).
|
||||
device: The device type to load kernels for. The device type will be inferred
|
||||
from the parameters of the model when not provided.
|
||||
use_fallback: Whether to use the original forward method of modules when no
|
||||
compatible kernel could be found. If set to `False`, an exception will
|
||||
be raised in such cases.
|
||||
model (`nn.Module`):
|
||||
The PyTorch model to kernelize.
|
||||
mode ([`Mode`]): The mode that the kernel is going to be used in. For example,
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` kernelizes the model for training with
|
||||
`torch.compile`.
|
||||
device (`Union[str, torch.device]`, *optional*):
|
||||
The device type to load kernels for. Supported device types are: "cuda", "mps", "npu", "rocm", "xpu".
|
||||
The device type will be inferred from the model parameters when not provided.
|
||||
use_fallback (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use the original forward method of modules when no compatible kernel could be found.
|
||||
If set to `False`, an exception will be raised in such cases.
|
||||
|
||||
Returns:
|
||||
The kernelized model
|
||||
`nn.Module`: The kernelized model with optimized kernel implementations.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from kernels import kernelize, Mode, register_kernel_mapping, LayerRepository
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
|
||||
@use_kernel_forward_from_hub("SiluAndMul")
|
||||
class SiluAndMul(nn.Module):
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
d = x.shape[-1] // 2
|
||||
return F.silu(x[..., :d]) * x[..., d:]
|
||||
|
||||
mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
register_kernel_mapping(mapping)
|
||||
|
||||
# Create and kernelize a model
|
||||
model = nn.Sequential(
|
||||
nn.Linear(1024, 2048, device="cuda"),
|
||||
SiluAndMul(),
|
||||
)
|
||||
|
||||
# Kernelize for inference
|
||||
kernelized_model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
"""
|
||||
import torch
|
||||
|
||||
if mode == Mode.FALLBACK:
|
||||
raise ValueError("Mode.FALLBACK can only be used to register kernel mappings.")
|
||||
@ -500,7 +895,8 @@ def kernelize(
|
||||
if device is None:
|
||||
device_type = _find_device(model)
|
||||
elif isinstance(device, str):
|
||||
device_type = Device(type=torch.device(device).type)
|
||||
_validate_device_type(device)
|
||||
device_type = Device(type=device)
|
||||
else:
|
||||
device_type = Device(device.type)
|
||||
|
||||
@ -566,9 +962,7 @@ def kernelize(
|
||||
|
||||
repo, repo_mode = repo_with_mode
|
||||
|
||||
logging.info(
|
||||
f"Using layer `{repo.layer_name}` from repo `{repo.repo_id}` (revision: {repo.revision}) for layer `{layer_name}`"
|
||||
)
|
||||
logging.info(f"Using layer `{repo.layer_name}` from repo {repo}")
|
||||
logging.debug(f"kernelize mode: {mode}, repo mode: {repo_mode}")
|
||||
|
||||
layer = _get_layer_memoize(repo, module_class)
|
||||
@ -593,7 +987,41 @@ def kernelize(
|
||||
|
||||
def use_kernel_forward_from_hub(layer_name: str):
|
||||
"""
|
||||
Make a layer extensible using the name `layer_name`.
|
||||
Decorator factory that makes a layer extensible using the specified layer name.
|
||||
|
||||
This is a decorator factory that returns a decorator which prepares a layer class to use kernels from the
|
||||
Hugging Face Hub.
|
||||
|
||||
Args:
|
||||
layer_name (`str`):
|
||||
The name of the layer to use for kernel lookup in registered mappings.
|
||||
|
||||
Returns:
|
||||
`Callable`: A decorator function that can be applied to layer classes.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
from kernels import Mode, kernelize
|
||||
|
||||
@use_kernel_forward_from_hub("MyCustomLayer")
|
||||
class MyCustomLayer(nn.Module):
|
||||
def __init__(self, hidden_size):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
# original implementation
|
||||
return x
|
||||
|
||||
model = MyCustomLayer(768)
|
||||
|
||||
# The layer can now be kernelized:
|
||||
# model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE, device="cuda")
|
||||
```
|
||||
"""
|
||||
|
||||
def decorator(cls):
|
||||
@ -603,25 +1031,21 @@ def use_kernel_forward_from_hub(layer_name: str):
|
||||
return decorator
|
||||
|
||||
|
||||
def _get_kernel_layer(
|
||||
*, repo_id: str, layer_name: str, revision: str
|
||||
) -> Type["nn.Module"]:
|
||||
def _get_kernel_layer(repo: LayerRepositoryProtocol) -> Type["nn.Module"]:
|
||||
"""Get a layer from a kernel."""
|
||||
|
||||
kernel = get_kernel(repo_id, revision=revision)
|
||||
kernel = repo.load()
|
||||
|
||||
if getattr(kernel, "layers", None) is None:
|
||||
raise ValueError(
|
||||
f"Kernel `{repo_id}` at revision `{revision}` does not define any layers."
|
||||
)
|
||||
raise ValueError(f"Kernel repo {repo} does not define any layers.")
|
||||
|
||||
layer = getattr(kernel.layers, layer_name, None)
|
||||
layer = getattr(kernel.layers, repo.layer_name, None)
|
||||
if layer is None:
|
||||
raise ValueError(f"Layer `{layer_name}` not found in kernel `{repo_id}`.")
|
||||
raise ValueError(f"Layer `{repo.layer_name}` not found in kernel repo {repo}.")
|
||||
return layer
|
||||
|
||||
|
||||
def _validate_layer(*, check_cls, cls):
|
||||
def _validate_layer(*, check_cls, cls, repo: LayerRepositoryProtocol):
|
||||
import torch.nn as nn
|
||||
|
||||
# The layer must have at least have the following properties: (1) it
|
||||
@ -630,12 +1054,12 @@ def _validate_layer(*, check_cls, cls):
|
||||
# methods.
|
||||
|
||||
if not issubclass(cls, nn.Module):
|
||||
raise TypeError(f"Layer `{cls}` is not a Torch layer.")
|
||||
raise TypeError(f"Layer `{cls.__name__}` is not a Torch layer.")
|
||||
|
||||
# We verify statelessness by checking that the does not have its own
|
||||
# constructor (since the constructor could add member variables)...
|
||||
if cls.__init__ is not nn.Module.__init__:
|
||||
raise TypeError("Layer must not override nn.Module constructor.")
|
||||
raise TypeError(f"{repo} must not override nn.Module constructor.")
|
||||
|
||||
# ... or predefined member variables.
|
||||
torch_module_members = {name for name, _ in inspect.getmembers(nn.Module)}
|
||||
@ -643,7 +1067,9 @@ def _validate_layer(*, check_cls, cls):
|
||||
difference = cls_members - torch_module_members
|
||||
# verify if : difference ⊄ {"can_torch_compile", "has_backward"}
|
||||
if not difference <= {"can_torch_compile", "has_backward"}:
|
||||
raise TypeError("Layer must not contain additional members.")
|
||||
raise TypeError(
|
||||
f"{repo} must not contain additional members compared to `{check_cls.__name__}`."
|
||||
)
|
||||
|
||||
# Check whether the forward signatures are similar.
|
||||
params = inspect.signature(cls.forward).parameters
|
||||
@ -651,16 +1077,28 @@ def _validate_layer(*, check_cls, cls):
|
||||
|
||||
if len(params) != len(ref_params):
|
||||
raise TypeError(
|
||||
"Forward signature does not match: different number of arguments."
|
||||
f"Forward signature of {repo} does not match `{check_cls.__name__}`: different number of arguments."
|
||||
)
|
||||
|
||||
for param, ref_param in zip(params.values(), ref_params.values()):
|
||||
if param.kind != ref_param.kind:
|
||||
raise TypeError(
|
||||
f"Forward signature does not match: different kind of arguments ({param} ({param.kind}) and {ref_param} ({ref_param.kind})"
|
||||
f"Forward signature of {repo} does not match `{check_cls.__name__}`: different kind of arguments ({param} ({param.kind}) and {ref_param} ({ref_param.kind})"
|
||||
)
|
||||
|
||||
|
||||
def _is_cuda_platform():
|
||||
import torch
|
||||
|
||||
return torch.version.cuda is not None
|
||||
|
||||
|
||||
def _is_rocm_platform():
|
||||
import torch
|
||||
|
||||
return torch.version.hip is not None
|
||||
|
||||
|
||||
def _find_device(model: "nn.Module") -> Device:
|
||||
try:
|
||||
param = next(model.parameters())
|
||||
@ -669,7 +1107,15 @@ def _find_device(model: "nn.Module") -> Device:
|
||||
"Cannot determine model device, provide as `device` argument to `kernelize`."
|
||||
)
|
||||
|
||||
return Device(type=param.device.type)
|
||||
dev_type = param.device.type
|
||||
if dev_type == "cuda":
|
||||
# Refine based on actual platform
|
||||
if _is_rocm_platform():
|
||||
return Device(type="rocm")
|
||||
elif _is_cuda_platform():
|
||||
return Device(type="cuda")
|
||||
|
||||
return Device(type=dev_type)
|
||||
|
||||
|
||||
@lru_cache
|
||||
@ -694,13 +1140,19 @@ def _conditionally_replace_forward(
|
||||
# layers registered with the FALLBACK mode never get rejected by
|
||||
# _validate_layer_has_mode. For such layers, we want to fall back in
|
||||
# case the layer does not support the given mode.
|
||||
needs_fallback = Mode.TORCH_COMPILE in mode and not getattr(
|
||||
needs_fallback_for_compile = Mode.TORCH_COMPILE in mode and not getattr(
|
||||
layer, "can_torch_compile", False
|
||||
)
|
||||
needs_fallback |= Mode.TRAINING in mode and not getattr(layer, "has_backward", True)
|
||||
needs_fallback_for_backward = Mode.TRAINING in mode and not getattr(
|
||||
layer, "has_backward", True
|
||||
)
|
||||
|
||||
if needs_fallback:
|
||||
if needs_fallback_for_compile or needs_fallback_for_backward:
|
||||
if use_fallback:
|
||||
if needs_fallback_for_compile:
|
||||
logging.info("Layer does not support torch.compile, using fallback")
|
||||
if needs_fallback_for_backward:
|
||||
logging.info("Layer does not support backward, using fallback")
|
||||
_replace_forward(module, module_class)
|
||||
else:
|
||||
raise ValueError(f"Available kernel does not support mode: {mode}")
|
||||
@ -725,7 +1177,7 @@ def _validate_layer_has_mode(
|
||||
|
||||
if Mode.TRAINING in repo_mode and not getattr(module, "has_backward", True):
|
||||
raise ValueError(
|
||||
f"Layer `{repo.layer_name}` ({repo.repo_id}, revision: {repo.revision}) does not support backward.\n"
|
||||
f"Layer `{repo.layer_name}` from repo {repo} does not support backward.\n"
|
||||
f"Was registered for `{layer_name}` with mode `{repo_mode}`"
|
||||
)
|
||||
|
||||
@ -733,7 +1185,7 @@ def _validate_layer_has_mode(
|
||||
module, "can_torch_compile", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Layer `{repo.layer_name}` ({repo.repo_id}, revision: {repo.revision}) does not support torch.compile.\n"
|
||||
f"Layer `{repo.layer_name}` from repo {repo} does not support torch.compile.\n"
|
||||
f"Was registered for `{layer_name}` with mode `{repo_mode}`"
|
||||
)
|
||||
|
||||
@ -747,12 +1199,8 @@ def _get_layer_memoize(
|
||||
if layer is not None:
|
||||
return layer
|
||||
|
||||
layer = _get_kernel_layer(
|
||||
repo_id=repo.repo_id,
|
||||
layer_name=repo.layer_name,
|
||||
revision=repo.revision,
|
||||
)
|
||||
_validate_layer(check_cls=module_class, cls=layer)
|
||||
layer = _get_kernel_layer(repo)
|
||||
_validate_layer(check_cls=module_class, cls=layer, repo=repo)
|
||||
_CACHED_LAYER[repo] = layer
|
||||
|
||||
return layer
|
||||
|
@ -35,6 +35,14 @@ def _get_cache_dir() -> Optional[str]:
|
||||
CACHE_DIR: Optional[str] = _get_cache_dir()
|
||||
|
||||
|
||||
def _get_privateuse_backend_name() -> Optional[str]:
|
||||
import torch
|
||||
|
||||
if hasattr(torch._C, "_get_privateuse1_backend_name"):
|
||||
return torch._C._get_privateuse1_backend_name()
|
||||
return None
|
||||
|
||||
|
||||
def build_variant() -> str:
|
||||
import torch
|
||||
|
||||
@ -46,11 +54,17 @@ def build_variant() -> str:
|
||||
compute_framework = f"rocm{rocm_version.major}{rocm_version.minor}"
|
||||
elif torch.backends.mps.is_available():
|
||||
compute_framework = "metal"
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
compute_framework = "xpu"
|
||||
elif torch.version.xpu is not None:
|
||||
version = torch.version.xpu
|
||||
compute_framework = f"xpu{version[0:4]}{version[5:6]}"
|
||||
elif _get_privateuse_backend_name() == "npu":
|
||||
from torch_npu.utils.collect_env import get_cann_version # type: ignore[import-not-found]
|
||||
|
||||
cann_major, cann_minor = get_cann_version()[0], get_cann_version()[2]
|
||||
compute_framework = f"cann{cann_major}{cann_minor}"
|
||||
else:
|
||||
raise AssertionError(
|
||||
"Torch was not compiled with CUDA, Metal, XPU, or ROCm enabled."
|
||||
"Torch was not compiled with CUDA, Metal, XPU, NPU, or ROCm enabled."
|
||||
)
|
||||
|
||||
torch_version = parse(torch.__version__)
|
||||
@ -98,7 +112,20 @@ def install_kernel(
|
||||
"""
|
||||
Download a kernel for the current environment to the cache.
|
||||
|
||||
The output path is validated againt `hash` when set.
|
||||
The output path is validated against the hashes in `variant_locks` when provided.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
revision (`str`):
|
||||
The specific revision (branch, tag, or commit) to download.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only use local files and not download from the Hub.
|
||||
variant_locks (`Dict[str, VariantLock]`, *optional*):
|
||||
Optional dictionary of variant locks for validation.
|
||||
|
||||
Returns:
|
||||
`Tuple[str, Path]`: A tuple containing the package name and the path to the variant directory.
|
||||
"""
|
||||
package_name = package_name_from_repo_id(repo_id)
|
||||
variant = build_variant()
|
||||
@ -190,23 +217,31 @@ def get_kernel(
|
||||
) -> ModuleType:
|
||||
"""
|
||||
Load a kernel from the kernel hub.
|
||||
This function downloads a kernel to the local Hugging Face Hub cache
|
||||
directory (if it was not downloaded before) and then loads the kernel.
|
||||
|
||||
This function downloads a kernel to the local Hugging Face Hub cache directory (if it was not downloaded before)
|
||||
and then loads the kernel.
|
||||
|
||||
Args:
|
||||
repo_id (`str`): The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`): The specific
|
||||
revision (branch, tag, or commit) to download.
|
||||
Cannot be used together with `version`.
|
||||
version (`str`, *optional*): The kernel version to download. This
|
||||
can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific revision (branch, tag, or commit) to download. Cannot be used together with `version`.
|
||||
version (`str`, *optional*):
|
||||
The kernel version to download. This can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
from kernels import get_kernel
|
||||
kernel = get_kernel("username/my-kernel")
|
||||
result = kernel.kernel_function(input_data)
|
||||
|
||||
activation = get_kernel("kernels-community/activation")
|
||||
x = torch.randn(10, 20, device="cuda")
|
||||
out = torch.empty_like(x)
|
||||
result = activation.silu_and_mul(out, x)
|
||||
```
|
||||
"""
|
||||
revision = select_revision_or_version(repo_id, revision, version)
|
||||
@ -217,28 +252,53 @@ def get_kernel(
|
||||
def get_local_kernel(repo_path: Path, package_name: str) -> ModuleType:
|
||||
"""
|
||||
Import a kernel from a local kernel repository path.
|
||||
|
||||
Args:
|
||||
repo_path (`Path`):
|
||||
The local path to the kernel repository.
|
||||
package_name (`str`):
|
||||
The name of the package to import from the repository.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
"""
|
||||
package_name, package_path = _load_kernel_from_path(repo_path, package_name)
|
||||
return import_from_path(package_name, package_path / package_name / "__init__.py")
|
||||
variant = build_variant()
|
||||
universal_variant = universal_build_variant()
|
||||
|
||||
# Presume we were given the top level path of the kernel repository.
|
||||
for base_path in [repo_path, repo_path / "build"]:
|
||||
# Prefer the universal variant if it exists.
|
||||
for v in [universal_variant, variant]:
|
||||
package_path = base_path / v / package_name / "__init__.py"
|
||||
if package_path.exists():
|
||||
return import_from_path(package_name, package_path)
|
||||
|
||||
# If we didn't find the package in the repo we may have a explicit
|
||||
# package path.
|
||||
package_path = repo_path / package_name / "__init__.py"
|
||||
if package_path.exists():
|
||||
return import_from_path(package_name, package_path)
|
||||
|
||||
raise FileNotFoundError(f"Could not find package '{package_name}' in {repo_path}")
|
||||
|
||||
|
||||
def has_kernel(
|
||||
repo_id: str, revision: Optional[str] = None, version: Optional[str] = None
|
||||
) -> bool:
|
||||
"""
|
||||
Check whether a kernel build exists for the current environment
|
||||
(Torch version and compute framework).
|
||||
Check whether a kernel build exists for the current environment (Torch version and compute framework).
|
||||
|
||||
Args:
|
||||
repo_id (`str`): The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`): The specific
|
||||
revision (branch, tag, or commit) to download.
|
||||
Cannot be used together with `version`.
|
||||
version (`str`, *optional*): The kernel version to download. This
|
||||
can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific revision (branch, tag, or commit) to download. Cannot be used together with `version`.
|
||||
version (`str`, *optional*):
|
||||
The kernel version to download. This can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
|
||||
Returns:
|
||||
`bool`: `true` if a kernel is avaialble for the current environment.
|
||||
`bool`: `True` if a kernel is available for the current environment.
|
||||
"""
|
||||
revision = select_revision_or_version(repo_id, revision, version)
|
||||
|
||||
@ -264,8 +324,16 @@ def load_kernel(repo_id: str, *, lockfile: Optional[Path] = None) -> ModuleType:
|
||||
"""
|
||||
Get a pre-downloaded, locked kernel.
|
||||
|
||||
If `lockfile` is not specified, the lockfile will be loaded from the
|
||||
caller's package metadata.
|
||||
If `lockfile` is not specified, the lockfile will be loaded from the caller's package metadata.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
lockfile (`Path`, *optional*):
|
||||
Path to the lockfile. If not provided, the lockfile will be loaded from the caller's package metadata.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
"""
|
||||
if lockfile is None:
|
||||
locked_sha = _get_caller_locked_kernel(repo_id)
|
||||
@ -310,7 +378,18 @@ def load_kernel(repo_id: str, *, lockfile: Optional[Path] = None) -> ModuleType:
|
||||
|
||||
|
||||
def get_locked_kernel(repo_id: str, local_files_only: bool = False) -> ModuleType:
|
||||
"""Get a kernel using a lock file."""
|
||||
"""
|
||||
Get a kernel using a lock file.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only use local files and not download from the Hub.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
"""
|
||||
locked_sha = _get_caller_locked_kernel(repo_id)
|
||||
|
||||
if locked_sha is None:
|
||||
|
@ -1,10 +1,46 @@
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from kernels.utils import _get_privateuse_backend_name
|
||||
|
||||
has_cuda = (
|
||||
hasattr(torch.version, "cuda")
|
||||
and torch.version.cuda is not None
|
||||
and torch.cuda.device_count() > 0
|
||||
)
|
||||
has_rocm = (
|
||||
hasattr(torch.version, "hip")
|
||||
and torch.version.hip is not None
|
||||
and torch.cuda.device_count() > 0
|
||||
)
|
||||
has_xpu = (
|
||||
hasattr(torch.version, "xpu")
|
||||
and torch.version.xpu is not None
|
||||
and torch.xpu.device_count() > 0
|
||||
)
|
||||
has_npu = _get_privateuse_backend_name() == "npu"
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--token",
|
||||
action="store_true",
|
||||
help="run tests that require a token with write permissions",
|
||||
)
|
||||
|
||||
|
||||
def pytest_runtest_setup(item):
|
||||
if "linux_only" in item.keywords and not sys.platform.startswith("linux"):
|
||||
pytest.skip("skipping Linux-only test on non-Linux platform")
|
||||
if "cuda_only" in item.keywords and not has_cuda:
|
||||
pytest.skip("skipping CUDA-only test on host without CUDA")
|
||||
if "rocm_only" in item.keywords and not has_rocm:
|
||||
pytest.skip("skipping ROCm-only test on host without ROCm")
|
||||
if "darwin_only" in item.keywords and not sys.platform.startswith("darwin"):
|
||||
pytest.skip("skipping macOS-only test on non-macOS platform")
|
||||
if "xpu_only" in item.keywords and not has_xpu:
|
||||
pytest.skip("skipping XPU-only test on host without XPU")
|
||||
if "npu_only" in item.keywords and not has_npu:
|
||||
pytest.skip("skipping NPU-only test on host without NPU")
|
||||
if "token" in item.keywords and not item.config.getoption("--token"):
|
||||
pytest.skip("need --token option to run this test")
|
||||
|
@ -1,82 +1,70 @@
|
||||
[
|
||||
{
|
||||
"repo_id": "kernels-community/activation",
|
||||
"sha": "fd6842e88f1f23f198551d78a4541b8eb07e0538",
|
||||
"sha": "83046852be158d525114f68513cd79fd88911b37",
|
||||
"variants": {
|
||||
"torch25-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-61e3e51b5b59b30d4a6ba943a5e6e4ef5a9c8260cc4bca40b9fb462c0777842b",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx11-cu121-x86_64-linux": {
|
||||
"hash": "sha256-baa6b872040730bd1d676c011381f6f626fb96189837b828f587c806af8994fa",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx11-cu124-x86_64-linux": {
|
||||
"hash": "sha256-c1ec7457847fa1f0e4ab43234dfc3cd0959977e03dc2ffe89b4f6b90970c7965",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu118-x86_64-linux": {
|
||||
"hash": "sha256-412f9c841f20741e42f2c6cdb8c7da0e33ab436b219975acffe18b62b97ecd7c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu121-x86_64-linux": {
|
||||
"hash": "sha256-2fde7f97859506e000c1072b3916c0a75bc8cee750a9853ea8b68199e7b57bcd",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu124-x86_64-linux": {
|
||||
"hash": "sha256-93309986f39a64a5630378108154866f0545178fa8dfef9b8f8ccfef9a78608e",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-3284d3c64b76d92c1ee930bce8013aff307f16eefb16c2d5dea9f2ca70e71e1f",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu124-x86_64-linux": {
|
||||
"hash": "sha256-36a8c93773c08ddf8ef624a8a6b2866be26d1861450dfe1ecac0bed59f9ffa47",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-f5afb734520f587717665659798ff738a69e5ae1e34d4bd95624edd18fb165cd",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-940841a7cb44f76c9a896d8b39f5bc0e0420f1c4c05ae9423da96778de4d1f2c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu118-x86_64-linux": {
|
||||
"hash": "sha256-8e0f907830c3acc8c6bebfc162c744012ff6973e8110d7bf8ecd74b492418204",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu124-x86_64-linux": {
|
||||
"hash": "sha256-0833414cbe658baec55b7ff63537cddccc973fe99e3c03008cced5e66e38b6c1",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu126-aarch64-linux": {
|
||||
"hash": "sha256-d94fa59a13a5b623b2071aadcd1e6c8477c4d557fd06ad144f15b46b1fc71aab",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu126-x86_64-linux": {
|
||||
"hash": "sha256-64784f5f2f9e232d0f2fd824fbc47eadde505e3c232f351bead5b04c429c65c2",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-bcba3765f061649bac0e5a9159bea8349ced4780e24a2330aa62ce0f8d3a9d78",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-e4625df5706af025c70bd824d952b928d9a2965eeaefda72fc47be0fae680c5e",
|
||||
"hash": "sha256-e34965c814c4c092fcb634ebadefe82ea9a05b98343f8ebdefa7305dcc05359e",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-7d7d3e655f34a7b03d5603d7c1ab723ef3efc823291762421a8b3a4aa51bd405",
|
||||
"hash": "sha256-5f92b35922b37224a416398a39a29b7e5f1aca1df17d5c69f1b9e9cdb7033561",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu128-aarch64-linux": {
|
||||
"hash": "sha256-60e076194dcd55b32c5aca72f09816cba0fff52f340c8a063b17ff0577154d99",
|
||||
"hash": "sha256-125967cb23bacd2cec443799f184ac08247dfff33f5027e54ee16d3779ca5986",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu128-x86_64-linux": {
|
||||
"hash": "sha256-f0a3802382efdcd78b40601187a9c416579a24ef2ed5a60d2296ef0951a89597",
|
||||
"hash": "sha256-496a84c99d7035a1b6f0ea1c026b751c3a2677956f4c1be546d3cc1505a5fdbb",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-f0775a30ffa290c90aba3a41037e3ca91edb15b4a9367561fafd5f25455e117a",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-081995e6230f306bdf6111186618794f2411cf0ffd9b4800330df60b4ebe1927",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu128-aarch64-linux": {
|
||||
"hash": "sha256-b937fef62a0c1cd71ab98490b651c473577af209b9a3e2a6b452350283d8812c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu128-x86_64-linux": {
|
||||
"hash": "sha256-a3915686cc58641a3361ece63ab77b33e9d30315dea12547e4bda008d8810a01",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu129-aarch64-linux": {
|
||||
"hash": "sha256-a24dca8e998f88be42491921c9df89d88a6112ca630acd2efc2dd34a64b91fcb",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu129-x86_64-linux": {
|
||||
"hash": "sha256-df6c70a70f425db2f68b86561c6f93c5675c1d5e5d058766d88ab17472229907",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-c120011c201072b4cfd70c2ba2d45c2f05337feaf604ddec3c6c4987def33ab3",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-765a7f3279009979be4001a23c5c70e5e6ab9553098d67886731a5275a6d4b32",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu128-aarch64-linux": {
|
||||
"hash": "sha256-266d057a9cd82b872a0e02f09ac5e2660fcffcf9a7b7fa1fa8ff33dc19c0f5c2",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu128-x86_64-linux": {
|
||||
"hash": "sha256-6850e594ba4588f289b5904eb88eda5a41870ee20a3bf1586f3268307caf4b53",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu130-aarch64-linux": {
|
||||
"hash": "sha256-23741b935462b53bdf868f8d1c9c8cff5f02f71ea3b0550df41dc8b030b0b474",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu130-x86_64-linux": {
|
||||
"hash": "sha256-b884ae792dc1eada071f31645add0c2c76d479864f25aebcdd8318b675aaaf29",
|
||||
"hash_type": "git_lfs_concat"
|
||||
}
|
||||
}
|
||||
|
@ -10,10 +10,16 @@ def kernel():
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def local_kernel():
|
||||
def local_kernel_path():
|
||||
package_name, path = install_kernel("kernels-community/activation", "main")
|
||||
# Path is the build variant path (build/torch-<...>), so the grandparent
|
||||
# is the kernel repository path.
|
||||
return package_name, path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def local_kernel(local_kernel_path):
|
||||
package_name, path = local_kernel_path
|
||||
return get_local_kernel(path.parent.parent, package_name)
|
||||
|
||||
|
||||
@ -34,7 +40,7 @@ def device():
|
||||
return "cuda"
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_fast(kernel, device):
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
@ -50,7 +56,7 @@ def test_gelu_fast(kernel, device):
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_local_kernel(local_kernel, device):
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
@ -66,6 +72,39 @@ def test_local_kernel(local_kernel, device):
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
def test_local_kernel_path_types(local_kernel_path, device):
|
||||
package_name, path = local_kernel_path
|
||||
|
||||
# Top-level repo path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071
|
||||
kernel = get_local_kernel(path.parent.parent, package_name)
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
|
||||
kernel.gelu_fast(y, x)
|
||||
expected = torch.tensor(
|
||||
[[0.8408, 1.9551, 2.9961], [4.0000, 5.0000, 6.0000], [7.0000, 8.0000, 9.0000]],
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
# Build directory path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071/build
|
||||
kernel = get_local_kernel(path.parent.parent / "build", package_name)
|
||||
y = torch.empty_like(x)
|
||||
kernel.gelu_fast(y, x)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
# Explicit package path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071/build/torch28-cxx11-cu128-x86_64-linux
|
||||
kernel = get_local_kernel(path, package_name)
|
||||
y = torch.empty_like(x)
|
||||
kernel.gelu_fast(y, x)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.darwin_only
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
def test_relu_metal(metal_kernel, dtype):
|
||||
@ -74,7 +113,7 @@ def test_relu_metal(metal_kernel, dtype):
|
||||
assert torch.allclose(y, torch.relu(x))
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"kernel_exists",
|
||||
[
|
||||
@ -110,7 +149,7 @@ def test_version():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_universal_kernel(universal_kernel):
|
||||
torch.manual_seed(0)
|
||||
A = torch.randint(-10, 10, (64, 128), dtype=torch.int8, device="cuda")
|
||||
|
@ -16,21 +16,21 @@ def device():
|
||||
return "cuda"
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_small(kernel, device, benchmark):
|
||||
x = torch.randn(32, 32, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
benchmark(kernel.gelu_fast, y, x)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_medium(kernel, device, benchmark):
|
||||
x = torch.randn(128, 128, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
benchmark(kernel.gelu_fast, y, x)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_large(kernel, device, benchmark):
|
||||
x = torch.randn(512, 512, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
|
49
tests/test_doctest.py
Normal file
49
tests/test_doctest.py
Normal file
@ -0,0 +1,49 @@
|
||||
import inspect
|
||||
|
||||
import pytest
|
||||
from mktestdocs import check_docstring, get_codeblock_members
|
||||
|
||||
import kernels
|
||||
|
||||
|
||||
def all_public_functions():
|
||||
function_list = inspect.getmembers(kernels, inspect.isfunction)
|
||||
return [func for _, func in function_list]
|
||||
|
||||
|
||||
def all_public_classes():
|
||||
class_list = inspect.getmembers(kernels, inspect.isclass)
|
||||
return [cls for _, cls in class_list]
|
||||
|
||||
|
||||
def all_public_class_members():
|
||||
members = get_codeblock_members(*all_public_classes())
|
||||
return members
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"func",
|
||||
all_public_functions(),
|
||||
ids=lambda d: d.__name__,
|
||||
)
|
||||
def test_func_docstring(func):
|
||||
check_docstring(obj=func)
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"cls",
|
||||
all_public_classes(),
|
||||
ids=lambda d: d.__name__,
|
||||
)
|
||||
def test_class_docstring(cls):
|
||||
check_docstring(obj=cls)
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"member", all_public_class_members(), ids=lambda d: d.__qualname__
|
||||
)
|
||||
def test_member_docstring(member):
|
||||
check_docstring(member)
|
@ -27,7 +27,7 @@ def test_download_all_hash_validation():
|
||||
download_kernels(DownloadArgs(all_variants=True, project_dir=project_dir))
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_load_locked():
|
||||
project_dir = Path(__file__).parent / "kernel_locking"
|
||||
# Also validates that hashing works correctly.
|
||||
@ -35,6 +35,7 @@ def test_load_locked():
|
||||
load_kernel("kernels-community/activation", lockfile=project_dir / "kernels.lock")
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
def test_layer_locked():
|
||||
project_dir = Path(__file__).parent / "layer_locking"
|
||||
|
||||
|
117
tests/test_kernel_upload.py
Normal file
117
tests/test_kernel_upload.py
Normal file
@ -0,0 +1,117 @@
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import pytest
|
||||
from huggingface_hub import delete_repo, model_info
|
||||
|
||||
from kernels.cli import upload_kernels
|
||||
|
||||
REPO_ID = "valid_org/kernels-upload-test"
|
||||
|
||||
|
||||
PY_CONTENT = """\
|
||||
#!/usr/bin/env python3
|
||||
|
||||
def main():
|
||||
print("Hello from torch-universal!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class UploadArgs:
|
||||
kernel_dir: None
|
||||
repo_id: None
|
||||
private: False
|
||||
branch: None
|
||||
|
||||
|
||||
def next_filename(path: Path) -> Path:
|
||||
"""
|
||||
Given a path like foo_2050.py, return foo_2051.py.
|
||||
"""
|
||||
m = re.match(r"^(.*?)(\d+)(\.py)$", path.name)
|
||||
if not m:
|
||||
raise ValueError(
|
||||
f"Filename {path.name!r} does not match pattern <prefix>_<number>.py"
|
||||
)
|
||||
|
||||
prefix, number, suffix = m.groups()
|
||||
new_number = str(int(number) + 1).zfill(len(number))
|
||||
return path.with_name(f"{prefix}{new_number}{suffix}")
|
||||
|
||||
|
||||
def get_filename_to_change(repo_filenames):
|
||||
for f in repo_filenames:
|
||||
if "foo" in f and f.endswith(".py"):
|
||||
filename_to_change = os.path.basename(f)
|
||||
break
|
||||
assert filename_to_change
|
||||
return filename_to_change
|
||||
|
||||
|
||||
def get_filenames_from_a_repo(repo_id: str) -> List[str]:
|
||||
try:
|
||||
repo_info = model_info(repo_id=repo_id, files_metadata=True)
|
||||
repo_siblings = repo_info.siblings
|
||||
if repo_siblings is not None:
|
||||
return [f.rfilename for f in repo_siblings]
|
||||
else:
|
||||
raise ValueError("No repo siblings found.")
|
||||
except Exception as e:
|
||||
logging.error(f"Error connecting to the Hub: {e}.")
|
||||
|
||||
|
||||
@pytest.mark.token
|
||||
@pytest.mark.is_staging_test
|
||||
@pytest.mark.parametrize("branch", (None, "foo"))
|
||||
def test_kernel_upload_works_as_expected(branch):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = f"{tmpdir}/build/torch-universal/upload_test"
|
||||
build_dir = Path(path)
|
||||
build_dir.mkdir(parents=True, exist_ok=True)
|
||||
script_path = build_dir / "foo.py"
|
||||
script_path.write_text(PY_CONTENT)
|
||||
upload_kernels(UploadArgs(tmpdir, REPO_ID, False, branch))
|
||||
|
||||
repo_filenames = get_filenames_from_a_repo(REPO_ID)
|
||||
assert any(str(script_path.name) for f in repo_filenames)
|
||||
delete_repo(repo_id=REPO_ID)
|
||||
|
||||
|
||||
@pytest.mark.token
|
||||
@pytest.mark.is_staging_test
|
||||
def test_kernel_upload_deletes_as_expected():
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = f"{tmpdir}/build/torch-universal/upload_test"
|
||||
build_dir = Path(path)
|
||||
build_dir.mkdir(parents=True, exist_ok=True)
|
||||
script_path = build_dir / "foo_2025.py"
|
||||
script_path.write_text(PY_CONTENT)
|
||||
upload_kernels(UploadArgs(tmpdir, REPO_ID, False))
|
||||
|
||||
repo_filenames = get_filenames_from_a_repo(REPO_ID)
|
||||
filename_to_change = get_filename_to_change(repo_filenames)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = f"{tmpdir}/build/torch-universal/upload_test"
|
||||
build_dir = Path(path)
|
||||
build_dir.mkdir(parents=True, exist_ok=True)
|
||||
changed_filename = next_filename(Path(filename_to_change))
|
||||
script_path = build_dir / changed_filename
|
||||
script_path.write_text(PY_CONTENT)
|
||||
upload_kernels(UploadArgs(tmpdir, REPO_ID, False))
|
||||
|
||||
repo_filenames = get_filenames_from_a_repo(REPO_ID)
|
||||
assert any(str(changed_filename) in k for k in repo_filenames), f"{repo_filenames=}"
|
||||
assert not any(
|
||||
str(filename_to_change) in k for k in repo_filenames
|
||||
), f"{repo_filenames=}"
|
||||
delete_repo(repo_id=REPO_ID)
|
@ -7,18 +7,23 @@ import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from kernels import (
|
||||
CUDAProperties,
|
||||
Device,
|
||||
LayerRepository,
|
||||
LocalLayerRepository,
|
||||
Mode,
|
||||
kernelize,
|
||||
register_kernel_mapping,
|
||||
use_kernel_forward_from_hub,
|
||||
use_kernel_mapping,
|
||||
)
|
||||
from kernels.layer import (
|
||||
_KERNEL_MAPPING,
|
||||
CUDAProperties,
|
||||
_validate_layer,
|
||||
use_kernel_mapping,
|
||||
)
|
||||
from kernels.utils import (
|
||||
_get_privateuse_backend_name,
|
||||
install_kernel,
|
||||
)
|
||||
|
||||
kernel_layer_mapping = {
|
||||
@ -26,13 +31,21 @@ kernel_layer_mapping = {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
),
|
||||
"npu": LayerRepository(
|
||||
repo_id="kernels-ext-npu/SwiGlu",
|
||||
layer_name="SwiGlu",
|
||||
),
|
||||
},
|
||||
"SiluAndMulNoCompile": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-test/op-without-fake-test",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
),
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-test/op-without-fake-test",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
},
|
||||
"SiluAndMulStringDevice": {
|
||||
"cuda": LayerRepository(
|
||||
@ -40,11 +53,37 @@ kernel_layer_mapping = {
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
},
|
||||
"LigerRMSNorm": {
|
||||
"xpu": LayerRepository(
|
||||
repo_id="kernels-community/liger_kernels",
|
||||
layer_name="LigerRMSNorm", # Triton
|
||||
)
|
||||
},
|
||||
}
|
||||
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, weight: torch.Tensor, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
# Used to check that we called hub kernel.
|
||||
self.n_calls = 0
|
||||
self.weight = nn.Parameter(weight)
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
self.n_calls += 1
|
||||
var = x.pow(2).mean(-1, keepdim=True)
|
||||
x_norm = x * torch.rsqrt(var + self.variance_epsilon)
|
||||
return x_norm * self.weight
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("LigerRMSNorm")
|
||||
class RMSNormWithKernel(RMSNorm):
|
||||
pass
|
||||
|
||||
|
||||
class SiluAndMul(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@ -84,6 +123,18 @@ class TorchLinearWithCounter(nn.Linear):
|
||||
return super().forward(input)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def device():
|
||||
if torch.cuda.is_available():
|
||||
return "cuda"
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
return "xpu"
|
||||
elif _get_privateuse_backend_name() == "npu":
|
||||
return "npu"
|
||||
|
||||
pytest.skip("No CUDA, NPU or XPU")
|
||||
|
||||
|
||||
def test_arg_kinds():
|
||||
@use_kernel_forward_from_hub("ArgKind")
|
||||
class ArgKind(nn.Module):
|
||||
@ -102,29 +153,122 @@ def test_arg_kinds():
|
||||
assert arg_kind("foo", "bar", kwarg1="baz", kwarg2=5) == ("foo", "bar", "baz", 5)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulStringDevice])
|
||||
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
||||
def test_hub_forward(cls, device):
|
||||
def test_hub_forward(cls):
|
||||
torch.random.manual_seed(0)
|
||||
|
||||
silu_and_mul = SiluAndMul()
|
||||
X = torch.randn((32, 64), device=device)
|
||||
X = torch.randn((32, 64), device="cuda")
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = kernelize(cls(), device=device, mode=Mode.INFERENCE)
|
||||
silu_and_mul_with_kernel = kernelize(cls(), device="cuda", mode=Mode.INFERENCE)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert silu_and_mul.n_calls == 1
|
||||
if device == "cuda":
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
else:
|
||||
assert silu_and_mul_with_kernel.n_calls == 1
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.rocm_only
|
||||
def test_hub_forward_rocm():
|
||||
torch.manual_seed(0)
|
||||
|
||||
silu_and_mul = SiluAndMul()
|
||||
X = torch.randn((32, 64))
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = kernelize(
|
||||
SiluAndMulNoCompileKernel(), device="rocm", mode=Mode.INFERENCE
|
||||
)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert silu_and_mul.n_calls == 1
|
||||
# Should use kernel (n_calls == 0) if ROCm kernel is available, otherwise fallback (n_calls == 1)
|
||||
# The exact behavior depends on whether the test kernel exists for ROCm
|
||||
assert silu_and_mul_with_kernel.n_calls in [0, 1]
|
||||
|
||||
|
||||
@pytest.mark.xpu_only
|
||||
def test_hub_forward_xpu():
|
||||
torch.manual_seed(0)
|
||||
|
||||
hidden_size = 1024
|
||||
weight = torch.ones(hidden_size, device="xpu")
|
||||
rms_norm = RMSNorm(weight).to("xpu")
|
||||
X = torch.randn(4, 16, hidden_size, device="xpu", dtype=torch.float32)
|
||||
Y = rms_norm(X)
|
||||
|
||||
rms_norm_with_kernel = kernelize(
|
||||
RMSNormWithKernel(weight), mode=Mode.INFERENCE, device="xpu"
|
||||
)
|
||||
Y_kernel = rms_norm_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert rms_norm.n_calls == 1
|
||||
assert rms_norm_with_kernel.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.npu_only
|
||||
def test_hub_forward_npu():
|
||||
torch.manual_seed(0)
|
||||
|
||||
silu_and_mul = SiluAndMul()
|
||||
X = torch.randn((32, 64), device="npu")
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = kernelize(
|
||||
SiluAndMulWithKernel(), device="npu", mode=Mode.INFERENCE
|
||||
)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert silu_and_mul.n_calls == 1
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
hasattr(torch, "xpu") and getattr(torch.xpu, "is_available", lambda: False)(),
|
||||
reason="Skip on xpu devices",
|
||||
)
|
||||
@pytest.mark.skipif(
|
||||
_get_privateuse_backend_name() == "npu",
|
||||
reason="Skip on npu devices",
|
||||
)
|
||||
def test_rocm_kernel_mapping():
|
||||
"""Test that ROCm shorthand device mapping works correctly."""
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
# Test that the mapping is processed correctly
|
||||
with use_kernel_mapping(kernel_layer_mapping, inherit_mapping=False):
|
||||
mapping = _KERNEL_MAPPING.get()
|
||||
|
||||
# Verify the mapping exists
|
||||
assert "SiluAndMul" in mapping
|
||||
assert "rocm" in mapping["SiluAndMul"]
|
||||
|
||||
# Verify the repository is correctly stored
|
||||
rocm_repos = mapping["SiluAndMul"]["rocm"]
|
||||
assert rocm_repos is not None
|
||||
assert (
|
||||
rocm_repos.repos[Mode.FALLBACK]._repo_id == "kernels-community/activation"
|
||||
)
|
||||
assert rocm_repos.repos[Mode.FALLBACK].layer_name == "SiluAndMul"
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
def test_capability():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
with use_kernel_mapping(
|
||||
@ -183,7 +327,33 @@ def test_layer_fallback_works():
|
||||
kernelize(silu_and_mul, device="cuda", mode=Mode.INFERENCE)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_local_layer_repo(device):
|
||||
# Fetch a kernel to the local cache.
|
||||
package_name, path = install_kernel("kernels-test/backward-marker-test", "main")
|
||||
|
||||
linear = TorchLinearWithCounter(32, 32).to(device)
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
device: LocalLayerRepository(
|
||||
# install_kernel will give the fully-resolved path.
|
||||
repo_path=path.parent.parent,
|
||||
package_name=package_name,
|
||||
layer_name="LinearBackward",
|
||||
)
|
||||
}
|
||||
},
|
||||
inherit_mapping=False,
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
|
||||
X = torch.randn(10, 32, device=device)
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel])
|
||||
@pytest.mark.parametrize("device", ["cuda"])
|
||||
def test_torch_compile_layer_without_fallback(cls, device):
|
||||
@ -214,7 +384,7 @@ def test_torch_compile_layer_without_fallback(cls, device):
|
||||
torch.testing.assert_close(Y_compiled, Y)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel])
|
||||
@pytest.mark.parametrize("device", ["cuda"])
|
||||
def test_torch_compile_layer_with_fallback(cls, device):
|
||||
@ -237,12 +407,16 @@ def test_torch_compile_layer_with_fallback(cls, device):
|
||||
torch.testing.assert_close(Y_compiled, Y)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_mapping_contexts():
|
||||
# Make sure we start from scratch.
|
||||
register_kernel_mapping(kernel_layer_mapping, inherit_mapping=False)
|
||||
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
}
|
||||
|
||||
extra_mapping1 = {
|
||||
@ -260,6 +434,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
|
||||
@ -278,10 +453,13 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"]
|
||||
.repos[Mode.FALLBACK]
|
||||
._repo_id
|
||||
== "kernels-community/non-existing"
|
||||
)
|
||||
|
||||
@ -289,10 +467,11 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK]._repo_id
|
||||
== "kernels-community/activation"
|
||||
)
|
||||
|
||||
@ -301,7 +480,9 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"]
|
||||
.repos[Mode.FALLBACK]
|
||||
._repo_id
|
||||
== "kernels-community/non-existing"
|
||||
)
|
||||
|
||||
@ -309,10 +490,11 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK]._repo_id
|
||||
== "kernels-community/activation"
|
||||
)
|
||||
|
||||
@ -320,6 +502,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
}
|
||||
|
||||
|
||||
@ -329,29 +512,46 @@ def test_validate_kernel_layer():
|
||||
super().__init__(*args, **kwargs)
|
||||
self.foo = 42
|
||||
|
||||
with pytest.raises(TypeError, match="not override"):
|
||||
_validate_layer(cls=BadLayer, check_cls=SiluAndMul)
|
||||
def stub_repo(layer):
|
||||
return LayerRepository(
|
||||
repo_id="kernels-test/nonexisting", layer_name=layer.__name__
|
||||
)
|
||||
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="`kernels-test/nonexisting`.*layer `BadLayer` must not override",
|
||||
):
|
||||
_validate_layer(cls=BadLayer, check_cls=SiluAndMul, repo=stub_repo(BadLayer))
|
||||
|
||||
class BadLayer2(nn.Module):
|
||||
foo: int = 42
|
||||
|
||||
with pytest.raises(TypeError, match="not contain additional members"):
|
||||
_validate_layer(cls=BadLayer2, check_cls=SiluAndMul)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="`kernels-test/nonexisting`.*layer `BadLayer2` must not contain.*SiluAndMul",
|
||||
):
|
||||
_validate_layer(cls=BadLayer2, check_cls=SiluAndMul, repo=stub_repo(BadLayer2))
|
||||
|
||||
class BadLayer3(nn.Module):
|
||||
def forward(self, x: torch.Tensor, foo: int) -> torch.Tensor: ...
|
||||
|
||||
with pytest.raises(TypeError, match="different number of arguments"):
|
||||
_validate_layer(cls=BadLayer3, check_cls=SiluAndMul)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="Forward.*`kernels-test/nonexisting`.*layer `BadLayer3` does not match `SiluAndMul`: different number of arguments",
|
||||
):
|
||||
_validate_layer(cls=BadLayer3, check_cls=SiluAndMul, repo=stub_repo(BadLayer3))
|
||||
|
||||
class BadLayer4(nn.Module):
|
||||
def forward(self, *, x: torch.Tensor) -> torch.Tensor: ...
|
||||
|
||||
with pytest.raises(TypeError, match="different kind of arguments"):
|
||||
_validate_layer(cls=BadLayer4, check_cls=SiluAndMul)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="Forward.*`kernels-test/nonexisting`.*layer `BadLayer4` does not match `SiluAndMul`: different kind of arguments",
|
||||
):
|
||||
_validate_layer(cls=BadLayer4, check_cls=SiluAndMul, repo=stub_repo(BadLayer4))
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_invalid_mode_for_mapping_rejected():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
@ -371,7 +571,7 @@ def test_invalid_mode_for_mapping_rejected():
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
@ -400,11 +600,6 @@ def test_kernel_modes():
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Case 2: register a kernel just for training. If no base kernel
|
||||
# layer is registered, we fall back to the original layer.
|
||||
with use_kernel_mapping(
|
||||
@ -434,12 +629,6 @@ def test_kernel_modes():
|
||||
# TRAINING | TORCH_COMPILE cannot fall back to TRAINING kernel, so uses original.
|
||||
assert linear.n_calls == 1
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE cannot fall back to TRAINING kernel, so uses original.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Case 3: register a kernel just for training and one for fallback.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
@ -461,23 +650,17 @@ def test_kernel_modes():
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# Falls back to TRAINING.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# Falls back to the TRAINING kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE falls back to FALLBACK kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE falls back to FALLBACK kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
# Case 4: register a kernel with two preferences.
|
||||
with use_kernel_mapping(
|
||||
@ -497,25 +680,20 @@ def test_kernel_modes():
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# Falls back to the TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# TRAINING can fall back to TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# Uses TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_fallback_used_when_training():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
@ -580,7 +758,7 @@ def test_invalid_mode_rejected():
|
||||
kernelize(torch.nn.Linear(32, 32), mode=Mode.TORCH_COMPILE)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes_inference():
|
||||
"""Test inference-specific fallback scenarios."""
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
@ -677,7 +855,7 @@ def test_kernel_modes_inference():
|
||||
assert linear.n_calls == 4
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes_mixed():
|
||||
"""Test mixed training and inference kernel scenarios."""
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
@ -767,7 +945,7 @@ def test_kernel_modes_mixed():
|
||||
assert linear.n_calls == 2
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes_cross_fallback():
|
||||
"""Test cross-mode fallback scenarios from inference to training modes."""
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
@ -861,7 +1039,7 @@ def test_kernel_modes_cross_fallback():
|
||||
assert linear.n_calls == 2
|
||||
|
||||
|
||||
def test_layer_versions():
|
||||
def test_layer_versions(device):
|
||||
@use_kernel_forward_from_hub("Version")
|
||||
class Version(nn.Module):
|
||||
def forward(self) -> str:
|
||||
@ -872,20 +1050,20 @@ def test_layer_versions():
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.2.0"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version="<1.0.0",
|
||||
@ -893,13 +1071,13 @@ def test_layer_versions():
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.2.0"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version="<0.2.0",
|
||||
@ -907,13 +1085,13 @@ def test_layer_versions():
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.1.1"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version=">0.1.0,<0.2.0",
|
||||
@ -921,13 +1099,13 @@ def test_layer_versions():
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.1.1"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version=">0.2.0",
|
||||
@ -936,13 +1114,13 @@ def test_layer_versions():
|
||||
}
|
||||
):
|
||||
with pytest.raises(ValueError, match=r"No version.*satisfies requirement"):
|
||||
kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
|
||||
with pytest.raises(ValueError, match=r"Either a revision or a version.*not both"):
|
||||
use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
revision="v0.1.0",
|
||||
|
Reference in New Issue
Block a user