Compare commits

...

5 Commits

Author SHA1 Message Date
216dac0543 Add publishing workflow (#81) 2025-05-06 09:14:06 +00:00
2036892762 Allow layers to opt in to torch.compile (#79)
* Allow layers to opt in to `torch.compile`

This change allows a layer to set the `can_torch_compile` class
variable to indicate that the layer is compatible with `torch.compile`.
When enabled, the layer does not fall back to the original
implementation when `torch.compile` is used.

* Comment fixes

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
2025-05-06 09:36:33 +02:00
0f0de049cf docs: link to autogenerated build variant list (#77) 2025-04-16 17:25:51 +02:00
59597df03e Specify required aarch64 build variants (#76) 2025-04-15 16:09:44 +02:00
5e938ede40 locking docs: fix command name (kernel -> kernels) (#74) 2025-04-14 16:02:00 +02:00
6 changed files with 216 additions and 34 deletions

119
.github/workflows/publish.yml vendored Normal file
View File

@ -0,0 +1,119 @@
name: Publish Python 🐍 distribution 📦 to PyPI and TestPyPI
on: push
jobs:
build:
name: Build distribution 📦
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.9"
- name: Install pypa/build
run: >-
python3 -m
pip install
build
--user
- name: Build a binary wheel and a source tarball
run: python3 -m build
- name: Store the distribution packages
uses: actions/upload-artifact@v4
with:
name: python-package-distributions
path: dist/
publish-to-pypi:
name: >-
Publish Python 🐍 distribution 📦 to PyPI
if: startsWith(github.ref, 'refs/tags/') # only publish to PyPI on tag pushes
needs:
- build
runs-on: ubuntu-latest
environment:
name: pypi
url: https://pypi.org/p/<package-name> # Replace <package-name> with your PyPI project name
permissions:
id-token: write # IMPORTANT: mandatory for trusted publishing
steps:
- name: Download all the dists
uses: actions/download-artifact@v4
with:
name: python-package-distributions
path: dist/
- name: Publish distribution 📦 to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
github-release:
name: >-
Sign the Python 🐍 distribution 📦 with Sigstore
and upload them to GitHub Release
needs:
- publish-to-pypi
runs-on: ubuntu-latest
permissions:
contents: write # IMPORTANT: mandatory for making GitHub Releases
id-token: write # IMPORTANT: mandatory for sigstore
steps:
- name: Download all the dists
uses: actions/download-artifact@v4
with:
name: python-package-distributions
path: dist/
- name: Sign the dists with Sigstore
uses: sigstore/gh-action-sigstore-python@v3.0.0
with:
inputs: >-
./dist/*.tar.gz
./dist/*.whl
- name: Create GitHub Release
env:
GITHUB_TOKEN: ${{ github.token }}
run: >-
gh release create
"$GITHUB_REF_NAME"
--repo "$GITHUB_REPOSITORY"
--notes ""
- name: Upload artifact signatures to GitHub Release
env:
GITHUB_TOKEN: ${{ github.token }}
# Upload to GitHub Release using the `gh` CLI.
# `dist/` contains the built packages, and the
# sigstore-produced signatures and certificates.
run: >-
gh release upload
"$GITHUB_REF_NAME" dist/**
--repo "$GITHUB_REPOSITORY"
publish-to-testpypi:
name: Publish Python 🐍 distribution 📦 to TestPyPI
needs:
- build
runs-on: ubuntu-latest
environment:
name: testpypi
url: https://test.pypi.org/p/<package-name>
permissions:
id-token: write # IMPORTANT: mandatory for trusted publishing
steps:
- name: Download all the dists
uses: actions/download-artifact@v4
with:
name: python-package-distributions
path: dist/
- name: Publish distribution 📦 to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/

View File

@ -1,8 +1,11 @@
# Kernel requirements
Kernels on the Hub must fulfill the requirements outlined on this page.
Kernels on the Hub must fulfill the requirements outlined on this page. By
ensuring kernels are compliant, they can be used on a wide range of Linux
systems and Torch builds.
You can use [kernel-builder](https://github.com/huggingface/kernel-builder/)
to build conforming kernels.
to build compliant kernels.
## Directory layout
@ -10,34 +13,21 @@ A kernel repository on the Hub must contain a `build` directory. This
directory contains build variants of a kernel in the form of directories
following the template
`<framework><version>-cxx<abiver>-<cu><cudaver>-<arch>-<os>`.
For example `build/torch26-cxx98-cu118-x86_64-linux`. The currently
recommended build variants are:
For example `build/torch26-cxx98-cu118-x86_64-linux`.
- `torch25-cxx11-cu118-x86_64-linux`
- `torch25-cxx11-cu121-x86_64-linux`
- `torch25-cxx11-cu124-x86_64-linux`
- `torch25-cxx98-cu118-x86_64-linux`
- `torch25-cxx98-cu121-x86_64-linux`
- `torch25-cxx98-cu124-x86_64-linux`
- `torch26-cxx11-cu118-x86_64-linux`
- `torch26-cxx11-cu124-x86_64-linux`
- `torch26-cxx11-cu126-x86_64-linux`
- `torch26-cxx98-cu118-x86_64-linux`
- `torch26-cxx98-cu124-x86_64-linux`
- `torch26-cxx98-cu126-x86_64-linux`
This list will be updated as new PyTorch versions are released. Kernels
that are in pure Python (e.g. Triton kernels) only need to provide a
single build variant:
- `torch-universal`
Each variant directory should contain a single directory with the same name
Each variant directory must contain a single directory with the same name
as the repository (replacing `-` by `_`). For instance, kernels in the
`kernels-community/activation` repository have a directories like
`build/<variant>/activation`. This directory
must be a Python package with an `__init__.py` file.
## Build variants
A kernel can be compliant for a specific compute framework (e.g. CUDA) or
architecture (e.g. x86_64). For compliance with a compute framework and
architecture combination, all the variants from the [build variant list](https://github.com/huggingface/kernel-builder/blob/main/docs/build-variants.md)
must be available for that combination.
## Versioning
Kernels are versioned on the Hub using Git tags. Version tags must be of
@ -119,9 +109,12 @@ requirements:
- The `forward` method has a signature that is compatible with the
`forward` method that it is extending.
The only exception to the _no class variables rule_ is addition of a
`has_backward` class variable. This variable is used to indicate whether
the layer has a backward pass implemented (`True` when absent).
There are two exceptions to the _no class variables rule_:
1. The `has_backward` variable can be used to indicate whether the layer has
a backward pass implemented (`True` when absent).
2. The `can_torch_compile` variable can be used to indicate whether the layer
supports `torch.compile` (`False` when absent).
This is an example of a pure layer:

View File

@ -13,7 +13,7 @@ build-backend = "setuptools.build_meta"
"kernels-community/activation" = ">=0.0.1"
```
Then run `kernel lock .` in the project directory. This generates a `kernels.lock` file with
Then run `kernels lock .` in the project directory. This generates a `kernels.lock` file with
the locked revisions. The locked revision will be used when loading a kernel with
`get_locked_kernel`:
@ -28,7 +28,7 @@ to `kernels` after doing an (editable or regular) installation of your project.
## Pre-downloading locked kernels
Locked kernels can be pre-downloaded by running `kernel download .` in your
Locked kernels can be pre-downloaded by running `kernels download .` in your
project directory. This will download the kernels to your local Hugging Face
Hub cache.

View File

@ -1,6 +1,6 @@
[project]
name = "kernels"
version = "0.4.4"
version = "0.5.0.dev0"
description = "Download compute kernels"
authors = [
{ name = "OlivierDehaene", email = "olivier@huggingface.co" },

View File

@ -138,6 +138,8 @@ def replace_kernel_forward_from_hub(cls, layer_name: str, *, use_fallback: bool
return fallback_forward(self, x, *args, **kwargs)
needs_backward = self.training
is_compiling = _is_torchdynamo_compiling()
kernel = _KERNEL_MAPPING.get().get(layer_name)
if kernel is None:
warnings.warn(
@ -165,7 +167,14 @@ def replace_kernel_forward_from_hub(cls, layer_name: str, *, use_fallback: bool
# Short-circuit if we already loaded the layer.
layer = cached_layer.get(repo, None)
if layer is not None:
if needs_backward and not getattr(layer, "has_backward", True):
# Switch to fallback when the layer does not support:
# compilation/compile when needed.
# backward when needed
needs_fallback = needs_backward and not getattr(layer, "has_backward", True)
needs_fallback |= is_compiling and not getattr(
layer, "can_torch_compile", False
)
if needs_fallback:
return fallback_forward(self, x, *args, **kwargs)
return layer.forward(self, x, *args, **kwargs)
@ -185,8 +194,15 @@ def replace_kernel_forward_from_hub(cls, layer_name: str, *, use_fallback: bool
cached_layer[repo] = layer
if needs_backward and not getattr(layer, "has_backward", True):
# Switch to fallback when the layer does not support
# compilation/compile when needed.
needs_fallback = needs_backward and not getattr(layer, "has_backward", True)
needs_fallback |= is_compiling and not getattr(
layer, "can_torch_compile", False
)
if needs_fallback:
return fallback_forward(self, x, *args, **kwargs)
return layer.forward(self, x, *args, **kwargs)
cls.forward = forward
@ -245,7 +261,8 @@ def _validate_layer(*, check_cls, cls):
torch_module_members = {name for name, _ in inspect.getmembers(nn.Module)}
cls_members = {name for name, _ in inspect.getmembers(cls)}
difference = cls_members - torch_module_members
if difference != set() and difference != {"has_backward"}:
# verify if : difference ⊄ {"can_torch_compile", "has_backward"}
if not difference <= {"can_torch_compile", "has_backward"}:
raise TypeError("Layer must not contain additional members.")
# Check whether the forward signatures are similar.
@ -262,3 +279,19 @@ def _validate_layer(*, check_cls, cls):
raise TypeError(
f"Forward signature does not match: different kind of arguments ({param} ({param.kind}) and {ref_param} ({ref_param.kind})"
)
def _is_torchdynamo_compiling():
# Importing torch._dynamo causes issues with PyTorch profiler (https://github.com/pytorch/pytorch/issues/130622)
# hence rather relying on `torch.compiler.is_compiling()` when possible (torch>=2.3)
try:
import torch
return torch.compiler.is_compiling()
except Exception:
try:
import torch._dynamo as dynamo # noqa: F401
return dynamo.is_compiling()
except Exception:
return False

View File

@ -19,6 +19,12 @@ kernel_layer_mapping = {
revision="layers",
)
},
"SiluAndMulNoCompile": {
"cuda": LayerRepository(
repo_id="kernels-test/op-without-fake-test",
layer_name="SiluAndMul",
)
},
"SiluAndMulStringDevice": {
"cuda": LayerRepository(
repo_id="kernels-community/activation",
@ -43,6 +49,11 @@ class SiluAndMul(nn.Module):
return F.silu(input[..., :d]) * input[..., d:]
@use_kernel_forward_from_hub("SiluAndMulNoCompile")
class SiluAndMulNoCompileKernel(SiluAndMul):
pass
@use_kernel_forward_from_hub("SiluAndMul")
class SiluAndMulWithKernel(SiluAndMul):
pass
@ -101,8 +112,29 @@ def test_layer_fallback_works():
SiluAndMulWithKernelFallback()
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel])
@pytest.mark.parametrize("device", ["cuda", "cpu"])
def test_torch_compile_layer(cls, device):
silu_and_mul = SiluAndMul()
X = torch.randn((32, 64), dtype=torch.float32, device=device)
Y = silu_and_mul(X)
silu_and_mul_with_kernel = cls()
silu_and_mul_with_kernel.eval()
silu_and_mul_compiled = torch.compile(silu_and_mul_with_kernel)
Y_compiled = silu_and_mul_compiled(X)
torch.testing.assert_close(Y_compiled, Y)
def test_mapping_contexts():
assert set(_KERNEL_MAPPING.get().keys()) == {"SiluAndMul", "SiluAndMulStringDevice"}
assert set(_KERNEL_MAPPING.get().keys()) == {
"SiluAndMul",
"SiluAndMulStringDevice",
"SiluAndMulNoCompile",
}
extra_mapping1 = {
"TestKernel": {
@ -118,6 +150,7 @@ def test_mapping_contexts():
assert set(_KERNEL_MAPPING.get().keys()) == {
"SiluAndMul",
"SiluAndMulStringDevice",
"SiluAndMulNoCompile",
"TestKernel",
}
@ -135,6 +168,7 @@ def test_mapping_contexts():
assert set(_KERNEL_MAPPING.get().keys()) == {
"SiluAndMul",
"SiluAndMulStringDevice",
"SiluAndMulNoCompile",
"TestKernel",
}
assert (
@ -145,6 +179,7 @@ def test_mapping_contexts():
assert set(_KERNEL_MAPPING.get().keys()) == {
"SiluAndMul",
"SiluAndMulStringDevice",
"SiluAndMulNoCompile",
"TestKernel",
}
assert (
@ -164,6 +199,7 @@ def test_mapping_contexts():
assert set(_KERNEL_MAPPING.get().keys()) == {
"SiluAndMul",
"SiluAndMulStringDevice",
"SiluAndMulNoCompile",
"TestKernel",
}
assert (
@ -174,6 +210,7 @@ def test_mapping_contexts():
assert set(_KERNEL_MAPPING.get().keys()) == {
"SiluAndMul",
"SiluAndMulStringDevice",
"SiluAndMulNoCompile",
}