mirror of
https://github.com/huggingface/kernels.git
synced 2025-10-21 05:30:30 +08:00
Compare commits
23 Commits
layer-vers
...
v0.10.1
Author | SHA1 | Date | |
---|---|---|---|
f03cde8151 | |||
07e5e8481a | |||
88f55d4728 | |||
e801ebf332 | |||
0ae07f05fc | |||
7611021100 | |||
767e7ccf13 | |||
1caa4c1393 | |||
da701bf58a | |||
703664ed31 | |||
a8a6564fa7 | |||
c89e0fa9b9 | |||
176a601178 | |||
cfa0c76ddc | |||
bcc29915f9 | |||
6fbff7a9cb | |||
f7490bd0a9 | |||
8069e3bf0c | |||
c540d1e1d6 | |||
967ac581b8 | |||
81088d44e8 | |||
4a04c005e3 | |||
6d3c6daf20 |
17
.github/workflows/build_documentation.yaml
vendored
Normal file
17
.github/workflows/build_documentation.yaml
vendored
Normal file
@ -0,0 +1,17 @@
|
||||
name: Build documentation
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
- doc-builder*
|
||||
- v*-release
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: kernels
|
||||
secrets:
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
15
.github/workflows/build_pr_documentation.yaml
vendored
Normal file
15
.github/workflows/build_pr_documentation.yaml
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
name: Build PR Documentation
|
||||
|
||||
on: pull_request
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: kernels
|
21
.github/workflows/lint.yml
vendored
21
.github/workflows/lint.yml
vendored
@ -8,3 +8,24 @@ jobs:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Run ruff
|
||||
uses: astral-sh/ruff-action@v3
|
||||
|
||||
black:
|
||||
name: Run black check
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
UV_PYTHON_PREFERENCE: only-managed
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Install uv and set the python version
|
||||
uses: astral-sh/setup-uv@v5
|
||||
with:
|
||||
python-version: 3.12
|
||||
|
||||
- name: Install black
|
||||
run: uv pip install black
|
||||
|
||||
- name: Check formatting
|
||||
run: |
|
||||
uv run black --check src
|
||||
uv run black --check tests
|
||||
|
16
.github/workflows/upload_pr_documentation.yaml
vendored
Normal file
16
.github/workflows/upload_pr_documentation.yaml
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
name: Upload PR Documentation
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Build PR Documentation"]
|
||||
types:
|
||||
- completed
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
|
||||
with:
|
||||
package_name: kernels
|
||||
secrets:
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
|
15
README.md
15
README.md
@ -56,10 +56,13 @@ the Hub.
|
||||
|
||||
## 📚 Documentation
|
||||
|
||||
- [Using layers](docs/layers.md)
|
||||
- [Locking kernel versions](docs/locking.md)
|
||||
- [Environment variables](docs/env.md)
|
||||
- [Using kernels in a Docker container](docs/docker.md)
|
||||
- [Kernel requirements](docs/kernel-requirements.md)
|
||||
- [Frequently Asked Questions](docs/faq.md)
|
||||
- [Introduction](docs/source/index.md)
|
||||
- [Installation](docs/source/installation.md)
|
||||
- [Basic usage](docs/source/basic-usage.md)
|
||||
- [Using layers](docs/source/layers.md)
|
||||
- [Locking kernel/layer versions](docs/source/locking.md)
|
||||
- [Environment variables](docs/source/env.md)
|
||||
- [Using kernels in a Docker container](docs/source/docker.md)
|
||||
- [Kernel requirements](docs/source/kernel-requirements.md)
|
||||
- [Frequently Asked Questions](docs/source/faq.md)
|
||||
- [Writing kernels](https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md) using [kernel-builder](https://github.com/huggingface/kernel-builder/)
|
||||
|
@ -1,8 +0,0 @@
|
||||
# Using kernels in a Docker container
|
||||
|
||||
build and run the reference [examples/basic.py](examples/basic.py) in a Docker container with the following commands:
|
||||
|
||||
```bash
|
||||
docker build --platform linux/amd64 -t kernels-reference -f docker/Dockerfile.reference .
|
||||
docker run --gpus all -it --rm -e HF_TOKEN=$HF_TOKEN kernels-reference
|
||||
```
|
28
docs/source/_toctree.yml
Normal file
28
docs/source/_toctree.yml
Normal file
@ -0,0 +1,28 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: Introduction
|
||||
- local: installation
|
||||
title: Installation
|
||||
title: Getting started
|
||||
- sections:
|
||||
- local: basic-usage
|
||||
title: Basic Usage
|
||||
- local: layers
|
||||
title: Using Layers
|
||||
- local: locking
|
||||
title: Locking Kernel Versions
|
||||
- local: env
|
||||
title: Environment Variables
|
||||
- local: faq
|
||||
title: FAQ
|
||||
title: Usage Guide
|
||||
- sections:
|
||||
- local: api/kernels
|
||||
title: Kernels
|
||||
- local: api/layers
|
||||
title: Layers
|
||||
title: API Reference
|
||||
- sections:
|
||||
- local: kernel-requirements
|
||||
title: Kernel Requirements
|
||||
title: Developer Guide
|
21
docs/source/api/kernels.md
Normal file
21
docs/source/api/kernels.md
Normal file
@ -0,0 +1,21 @@
|
||||
# Kernels API Reference
|
||||
|
||||
## Main Functions
|
||||
|
||||
### get_kernel
|
||||
|
||||
[[autodoc]] kernels.get_kernel
|
||||
|
||||
### has_kernel
|
||||
|
||||
[[autodoc]] kernels.has_kernel
|
||||
|
||||
## Loading locked kernels
|
||||
|
||||
### load_kernel
|
||||
|
||||
[[autodoc]] kernels.load_kernel
|
||||
|
||||
### get_locked_kernel
|
||||
|
||||
[[autodoc]] kernels.get_locked_kernel
|
41
docs/source/api/layers.md
Normal file
41
docs/source/api/layers.md
Normal file
@ -0,0 +1,41 @@
|
||||
# Layers API Reference
|
||||
|
||||
## Making layers kernel-aware
|
||||
|
||||
### use_kernel_forward_from_hub
|
||||
|
||||
[[autodoc]] kernels.use_kernel_forward_from_hub
|
||||
|
||||
### replace_kernel_forward_from_hub
|
||||
|
||||
[[autodoc]] kernels.replace_kernel_forward_from_hub
|
||||
|
||||
## Registering kernel mappings
|
||||
|
||||
### use_kernel_mapping
|
||||
|
||||
[[autodoc]] kernels.use_kernel_mapping
|
||||
|
||||
### register_kernel_mapping
|
||||
|
||||
[[autodoc]] kernels.register_kernel_mapping
|
||||
|
||||
## Kernelizing a model
|
||||
|
||||
### kernelize
|
||||
|
||||
[[autodoc]] kernels.kernelize
|
||||
|
||||
## Classes
|
||||
|
||||
### Device
|
||||
|
||||
[[autodoc]] kernels.Device
|
||||
|
||||
### Mode
|
||||
|
||||
[[autodoc]] kernels.Mode
|
||||
|
||||
### LayerRepository
|
||||
|
||||
[[autodoc]] kernels.LayerRepository
|
34
docs/source/basic-usage.md
Normal file
34
docs/source/basic-usage.md
Normal file
@ -0,0 +1,34 @@
|
||||
# Basic Usage
|
||||
|
||||
## Loading Kernels
|
||||
|
||||
Here is how you would use the [activation](https://huggingface.co/kernels-community/activation) kernels from the Hugging Face Hub:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from kernels import get_kernel
|
||||
|
||||
# Download optimized kernels from the Hugging Face hub
|
||||
activation = get_kernel("kernels-community/activation")
|
||||
|
||||
# Create a random tensor
|
||||
x = torch.randn((10, 10), dtype=torch.float16, device="cuda")
|
||||
|
||||
# Run the kernel
|
||||
y = torch.empty_like(x)
|
||||
activation.gelu_fast(y, x)
|
||||
|
||||
print(y)
|
||||
```
|
||||
|
||||
## Checking Kernel Availability
|
||||
|
||||
You can check if a specific kernel is available for your environment:
|
||||
|
||||
```python
|
||||
from kernels import has_kernel
|
||||
|
||||
# Check if kernel is available for current environment
|
||||
is_available = has_kernel("kernels-community/activation")
|
||||
print(f"Kernel available: {is_available}")
|
||||
```
|
@ -2,9 +2,9 @@
|
||||
|
||||
## Why is the kernelization step needed?
|
||||
|
||||
In earlier versions of `kernels`, a layer's `forward` was replaced by
|
||||
`use_kernel_forward_from_hub` and `replace_kernel_forward_from_hub`. The
|
||||
new `forward` would dispatch to a kernel based on the device type,
|
||||
In earlier versions of `kernels`, a layer's `forward` method was replaced
|
||||
by `use_kernel_forward_from_hub` and `replace_kernel_forward_from_hub`.
|
||||
The new `forward` would dispatch to a kernel based on the device type,
|
||||
whether a model was training, etc. However, this approach was
|
||||
fundamentally incompatible with `torch.compile` since it relied
|
||||
on data-dependent branching.
|
20
docs/source/index.md
Normal file
20
docs/source/index.md
Normal file
@ -0,0 +1,20 @@
|
||||
# Kernels
|
||||
|
||||
<div align="center">
|
||||
<img src="https://github.com/user-attachments/assets/64a652f3-0cd3-4829-b3c1-df13f7933569" width="450" height="450" alt="kernel-builder logo">
|
||||
</div>
|
||||
|
||||
The Kernel Hub allows Python libraries and applications to load compute
|
||||
kernels directly from the [Hub](https://hf.co/). To support this kind
|
||||
of dynamic loading, Hub kernels differ from traditional Python kernel
|
||||
packages in that they are made to be:
|
||||
|
||||
- **Portable**: a kernel can be loaded from paths outside `PYTHONPATH`.
|
||||
- **Unique**: multiple versions of the same kernel can be loaded in the
|
||||
same Python process.
|
||||
- **Compatible**: kernels must support all recent versions of Python and
|
||||
the different PyTorch build configurations (various CUDA versions
|
||||
and C++ ABIs). Furthermore, older C library versions must be supported.
|
||||
|
||||
You can [search for kernels](https://huggingface.co/models?other=kernel) on
|
||||
the Hub.
|
16
docs/source/installation.md
Normal file
16
docs/source/installation.md
Normal file
@ -0,0 +1,16 @@
|
||||
# Installation
|
||||
|
||||
Install the `kernels` package with `pip` (requires `torch>=2.5` and CUDA):
|
||||
|
||||
```bash
|
||||
pip install kernels
|
||||
```
|
||||
|
||||
# Using kernels in a Docker container
|
||||
|
||||
Build and run the reference `examples/basic.py` in a Docker container with the following commands:
|
||||
|
||||
```bash
|
||||
docker build --platform linux/amd64 -t kernels-reference -f docker/Dockerfile.reference .
|
||||
docker run --gpus all -it --rm -e HF_TOKEN=$HF_TOKEN kernels-reference
|
||||
```
|
@ -84,12 +84,6 @@ model = kernelize(model, mode=Mode.INFERENCE | Mode.TORCH_COMPILE)
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
|
||||
When the `mode` argument is not specified,
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` is used as the default. This mode
|
||||
aligns most closely with pure PyTorch layers which also support training
|
||||
and `torch.compile`. However, to select the most performant kernels, it
|
||||
is often good to make the mode specific as possible.
|
||||
|
||||
### Kernel device
|
||||
|
||||
Kernels can be registered per device type. For instance, separate `cuda` and
|
||||
@ -107,7 +101,7 @@ model = kernelize(model, device="cuda", mode=Mode.INFERENCE)
|
||||
|
||||
If the `TRAINING` and/or `TORCH_COMPILE` modes are used, but a registered
|
||||
kernel does not support backward passes or `torch.compile` respectively,
|
||||
`kernenize` will fall back to the original, non-kernelized, layer. You
|
||||
`kernelize` will fall back to the original, non-kernelized, layer. You
|
||||
can let `kernelize` raise an exception instead by using `use_fallback=False`:
|
||||
|
||||
```python
|
||||
@ -135,6 +129,10 @@ kernel_layer_mapping = {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
@ -153,7 +151,7 @@ used with the `use_kernel_mapping` context manager:
|
||||
```python
|
||||
with use_kernel_mapping(kernel_layer_mapping):
|
||||
# Use the layer for which the mapping is applied.
|
||||
model = kernelize(model)
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
|
||||
This ensures that the mapping is not active anymore outside the
|
||||
@ -261,7 +259,6 @@ Capabilities behave as follows:
|
||||
an existing kernel, the new kernel will replace the old kernel.
|
||||
- When there are multiple kernels that support a capability, the kernel
|
||||
with the smaller capability interval will be used. E.g. given:
|
||||
|
||||
- `KernelA` with `min_capability=80` and `max_capability=89`;
|
||||
- `KernelB` with `min_capability=75` and `max_capability=89`;
|
||||
- `kernelize` runs on a system with capability 8.6.
|
||||
@ -270,3 +267,30 @@ Capabilities behave as follows:
|
||||
than 75..89. The motivation is that kernels with smaller ranges
|
||||
tend to be more optimized for a specific set of GPUs. **This behavior
|
||||
might still change in the future.**
|
||||
|
||||
### Registering kernels for specific ROCm capabilities
|
||||
|
||||
Registering kernels for the ROCm architecture follows the exact same
|
||||
pattern as CUDA kernels, using `min_capability` and `max_capability` to restrict
|
||||
a kernel to a range of ROCm capabilities.
|
||||
|
||||
### Loading from a local repository for testing
|
||||
|
||||
The `LocalLayerRepository` class is provided to load a repository from
|
||||
a local directory. For example:
|
||||
|
||||
```python
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"SiluAndMul": {
|
||||
"cuda": LocalLayerRepository(
|
||||
repo_path="/home/daniel/kernels/activation",
|
||||
package_name="activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
},
|
||||
inherit_mapping=False,
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
```
|
@ -1,4 +1,4 @@
|
||||
# Locking kernel versions
|
||||
# Locking kernel/layer versions
|
||||
|
||||
Projects that use `setuptools` can lock the kernel versions that should be
|
||||
used. First specify the accepted versions in `pyproject.toml` and make
|
||||
@ -26,6 +26,24 @@ activation = get_locked_kernel("kernels-community/activation")
|
||||
**Note:** the lock file is included in the package metadata, so it will only be visible
|
||||
to `kernels` after doing an (editable or regular) installation of your project.
|
||||
|
||||
## Locked kernel layers
|
||||
|
||||
Locking is also supported for kernel layers. To use locked layers, register them
|
||||
with the `LockedLayerRepository` class:
|
||||
|
||||
```python
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": LockedLayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
```
|
||||
|
||||
## Pre-downloading locked kernels
|
||||
|
||||
Locked kernels can be pre-downloaded by running `kernels download .` in your
|
18
flake.lock
generated
18
flake.lock
generated
@ -58,11 +58,11 @@
|
||||
"nixpkgs": "nixpkgs"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1750775451,
|
||||
"narHash": "sha256-HiGqtwzIgUH7Xkh+wgpvHRZGooqrW0z663E6nauczA4=",
|
||||
"lastModified": 1754038838,
|
||||
"narHash": "sha256-oHigCT4z0ayyLyEuxdZooSXRAZP8lfOkZHzY1lx1U50=",
|
||||
"owner": "huggingface",
|
||||
"repo": "hf-nix",
|
||||
"rev": "5943c3169e861618a6634bc8dbdb498e413ab9b7",
|
||||
"rev": "336f781fa284e193baa3d4c3ce3f95fb34e9ffad",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
@ -73,17 +73,17 @@
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1747820358,
|
||||
"narHash": "sha256-fTqsZsUX6M3yeEvgyQvXcbGmT2CaRVyVwsi8eK29Oj4=",
|
||||
"owner": "danieldk",
|
||||
"lastModified": 1752785354,
|
||||
"narHash": "sha256-Y33ryUz7MPqKrZwlbQcsYCUz2jAJCacRf8jbs0tYUlA=",
|
||||
"owner": "nixos",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "d3c1681180717528068082103bf323147de6ab0b",
|
||||
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "danieldk",
|
||||
"ref": "cudatoolkit-12.9-kernel-builder",
|
||||
"owner": "nixos",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "d38025438a6ee456758dc03188ca6873a415463b",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
|
@ -26,6 +26,10 @@
|
||||
formatter = pkgs.nixfmt-tree;
|
||||
devShells = with pkgs; rec {
|
||||
default = mkShell {
|
||||
nativeBuildInputs = [
|
||||
# For hf-doc-builder.
|
||||
nodejs
|
||||
];
|
||||
buildInputs =
|
||||
[
|
||||
black
|
||||
@ -36,6 +40,7 @@
|
||||
++ (with python3.pkgs; [
|
||||
docutils
|
||||
huggingface-hub
|
||||
mktestdocs
|
||||
pytest
|
||||
pytest-benchmark
|
||||
pyyaml
|
||||
|
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "kernels"
|
||||
version = "0.8.0.dev0"
|
||||
version = "0.10.1"
|
||||
description = "Download compute kernels"
|
||||
authors = [
|
||||
{ name = "OlivierDehaene", email = "olivier@huggingface.co" },
|
||||
@ -24,16 +24,20 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[dependency-groups]
|
||||
dev = [
|
||||
"mypy >= 1.15.0",
|
||||
"pytest >=8",
|
||||
"mktestdocs>=0.2.5",
|
||||
"mypy>=1.15.0",
|
||||
"pytest>=8",
|
||||
# Whatever version is compatible with pytest.
|
||||
"pytest-benchmark",
|
||||
"torch >=2.5",
|
||||
"torch>=2.5",
|
||||
"types-pyyaml"
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
torch = ["torch"]
|
||||
docs = [
|
||||
"hf-doc-builder",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
kernels = "kernels.cli:main"
|
||||
|
@ -1,4 +1,5 @@
|
||||
[pytest]
|
||||
markers =
|
||||
cuda_only: marks tests that should only hosts with CUDA GPUs
|
||||
rocm_only: marks tests that should only run on hosts with ROCm GPUs
|
||||
darwin_only: marks tests that should only run on macOS
|
||||
linux_only: marks tests that should only run on Linux
|
@ -1,7 +1,13 @@
|
||||
import importlib.metadata
|
||||
|
||||
__version__ = importlib.metadata.version("kernels")
|
||||
|
||||
from kernels.layer import (
|
||||
CUDAProperties,
|
||||
Device,
|
||||
LayerRepository,
|
||||
LocalLayerRepository,
|
||||
LockedLayerRepository,
|
||||
Mode,
|
||||
kernelize,
|
||||
register_kernel_mapping,
|
||||
@ -19,9 +25,12 @@ from kernels.utils import (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"__version__",
|
||||
"CUDAProperties",
|
||||
"Device",
|
||||
"LayerRepository",
|
||||
"LocalLayerRepository",
|
||||
"LockedLayerRepository",
|
||||
"Mode",
|
||||
"get_kernel",
|
||||
"get_local_kernel",
|
||||
|
@ -1,4 +1,4 @@
|
||||
from typing import Dict
|
||||
from typing import Dict, Optional
|
||||
|
||||
from huggingface_hub import HfApi
|
||||
from huggingface_hub.hf_api import GitRefInfo
|
||||
@ -37,3 +37,16 @@ def resolve_version_spec_as_ref(repo_id: str, version_spec: str) -> GitRefInfo:
|
||||
)
|
||||
|
||||
return versions[accepted_versions[-1]]
|
||||
|
||||
|
||||
def select_revision_or_version(
|
||||
repo_id: str, revision: Optional[str], version: Optional[str]
|
||||
) -> str:
|
||||
if revision is not None and version is not None:
|
||||
raise ValueError("Either a revision or a version must be specified, not both.")
|
||||
elif revision is None and version is None:
|
||||
revision = "main"
|
||||
elif version is not None:
|
||||
revision = resolve_version_spec_as_ref(repo_id, version).target_commit
|
||||
assert revision is not None
|
||||
return revision
|
||||
|
@ -1,5 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import functools
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
@ -8,27 +9,34 @@ import warnings
|
||||
from abc import ABC, abstractmethod
|
||||
from contextvars import ContextVar
|
||||
from copy import deepcopy
|
||||
from dataclasses import dataclass, field
|
||||
from dataclasses import dataclass
|
||||
from enum import Flag, auto
|
||||
from functools import lru_cache
|
||||
from types import MethodType
|
||||
from pathlib import Path
|
||||
from types import MethodType, ModuleType
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Dict,
|
||||
Optional,
|
||||
Protocol,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from ._interval_tree import IntervalTree
|
||||
from .utils import get_kernel
|
||||
from ._versions import select_revision_or_version
|
||||
from .utils import (
|
||||
_get_caller_locked_kernel,
|
||||
_get_locked_kernel,
|
||||
get_kernel,
|
||||
get_local_kernel,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
_DISABLE_KERNEL_MAPPING: bool = bool(int(os.environ.get("DISABLE_KERNEL_MAPPING", "0")))
|
||||
|
||||
|
||||
@ -36,17 +44,19 @@ class Mode(Flag):
|
||||
"""
|
||||
Kernelize mode
|
||||
|
||||
The `Mode` flag is used by `kernelize` to select kernels for the given
|
||||
mode. Mappings can be registered for specific modes.
|
||||
The `Mode` flag is used by [`kernelize`] to select kernels for the given mode. Mappings can be registered for
|
||||
specific modes.
|
||||
|
||||
* `INFERENCE`: The kernel is used for inference.
|
||||
* `TRAINING`: The kernel is used for training.
|
||||
* `TORCH_COMPILE`: The kernel is used with `torch.compile`.
|
||||
* `FALLBACK`: In a kernel mapping, this kernel is used when no other mode
|
||||
matches.
|
||||
Attributes:
|
||||
INFERENCE: The kernel is used for inference.
|
||||
TRAINING: The kernel is used for training.
|
||||
TORCH_COMPILE: The kernel is used with `torch.compile`.
|
||||
FALLBACK: In a kernel mapping, this kernel is used when no other mode matches.
|
||||
|
||||
Note:
|
||||
Different modes can be combined. For instance, `INFERENCE | TORCH_COMPILE` should be used for layers that
|
||||
are used for inference *with* `torch.compile`.
|
||||
|
||||
Different modes can be combined. For instance, `INFERENCE | TORCH_COMPILE`
|
||||
should be used for layers that are used for inference *with* `torch.compile`.
|
||||
"""
|
||||
|
||||
_NONE = 0
|
||||
@ -69,6 +79,36 @@ class Mode(Flag):
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Device:
|
||||
"""
|
||||
Represents a compute device with optional properties.
|
||||
|
||||
This class encapsulates device information including device type and optional device-specific properties
|
||||
like CUDA capabilities.
|
||||
|
||||
Args:
|
||||
type (`str`):
|
||||
The device type (e.g., "cuda", "mps", "rocm").
|
||||
properties ([`CUDAProperties`], *optional*):
|
||||
Device-specific properties. Currently only [`CUDAProperties`] is supported for CUDA devices.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import Device, CUDAProperties
|
||||
|
||||
# Basic CUDA device
|
||||
cuda_device = Device(type="cuda")
|
||||
|
||||
# CUDA device with specific capability requirements
|
||||
cuda_device_with_props = Device(
|
||||
type="cuda",
|
||||
properties=CUDAProperties(min_capability=75, max_capability=90)
|
||||
)
|
||||
|
||||
# MPS device for Apple Silicon
|
||||
mps_device = Device(type="mps")
|
||||
```
|
||||
"""
|
||||
|
||||
type: str
|
||||
properties: Optional[CUDAProperties] = None
|
||||
|
||||
@ -81,6 +121,8 @@ class Device:
|
||||
"""Create an appropriate repository set for this device type."""
|
||||
if self.type == "cuda":
|
||||
return _CUDARepos()
|
||||
elif self.type == "rocm":
|
||||
return _ROCMRepos()
|
||||
elif self.type == "mps":
|
||||
return _MPSRepos()
|
||||
else:
|
||||
@ -97,6 +139,34 @@ class Device:
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CUDAProperties:
|
||||
"""
|
||||
CUDA-specific device properties for capability-based kernel selection.
|
||||
|
||||
This class defines CUDA compute capability constraints for kernel selection, allowing kernels to specify
|
||||
minimum and maximum CUDA compute capabilities they support.
|
||||
|
||||
Args:
|
||||
min_capability (`int`):
|
||||
Minimum CUDA compute capability required (e.g., 75 for compute capability 7.5).
|
||||
max_capability (`int`):
|
||||
Maximum CUDA compute capability supported (e.g., 90 for compute capability 9.0).
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import CUDAProperties, Device
|
||||
|
||||
# Define CUDA properties for modern GPUs (compute capability 7.5 to 9.0)
|
||||
cuda_props = CUDAProperties(min_capability=75, max_capability=90)
|
||||
|
||||
# Create a device with these properties
|
||||
device = Device(type="cuda", properties=cuda_props)
|
||||
```
|
||||
|
||||
Note:
|
||||
CUDA compute capabilities are represented as integers where the major and minor versions are concatenated.
|
||||
For example, compute capability 7.5 is represented as 75, and 8.6 is represented as 86.
|
||||
"""
|
||||
|
||||
min_capability: int
|
||||
max_capability: int
|
||||
|
||||
@ -112,33 +182,250 @@ class CUDAProperties:
|
||||
return hash((self.min_capability, self.max_capability))
|
||||
|
||||
|
||||
@dataclass
|
||||
class LayerRepository:
|
||||
@dataclass(frozen=True)
|
||||
class ROCMProperties:
|
||||
"""
|
||||
Repository and name of a layer.
|
||||
ROCM-specific device properties for capability-based kernel selection.
|
||||
|
||||
This class defines ROCM compute capability constraints for kernel selection, allowing kernels to specify
|
||||
minimum and maximum ROCM compute capabilities they support.
|
||||
|
||||
Args:
|
||||
min_capability (`int`):
|
||||
Minimum ROCM compute capability required (e.g., 75 for compute capability 7.5).
|
||||
max_capability (`int`):
|
||||
Maximum ROCM compute capability supported (e.g., 90 for compute capability 9.0).
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import ROCMProperties, Device
|
||||
|
||||
# Define ROCM properties for modern GPUs (compute capability 7.5 to 9.0)
|
||||
rocm_props = ROCMProperties(min_capability=75, max_capability=90)
|
||||
|
||||
# Create a device with these properties
|
||||
device = Device(type="rocm", properties=rocm_props)
|
||||
```
|
||||
|
||||
Note:
|
||||
ROCM compute capabilities are represented as integers where the major and minor versions are concatenated.
|
||||
For example, compute capability 7.5 is represented as 75, and 8.6 is represented as 86.
|
||||
"""
|
||||
|
||||
layer_name: str = field(
|
||||
metadata={"help": "The name of the layer in the kernel repository."}
|
||||
)
|
||||
repo_id: str = field(metadata={"help": "The kernel hub repository with the layer."})
|
||||
revision: str = field(
|
||||
default="main", metadata={"help": "The revision of the layer."}
|
||||
)
|
||||
min_capability: int
|
||||
max_capability: int
|
||||
|
||||
def __eq__(self, other):
|
||||
if not isinstance(other, ROCMProperties):
|
||||
return NotImplemented
|
||||
return (
|
||||
self.min_capability == other.min_capability
|
||||
and self.max_capability == other.max_capability
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.min_capability, self.max_capability))
|
||||
|
||||
|
||||
class LayerRepositoryProtocol(Protocol):
|
||||
@property
|
||||
def layer_name(self) -> str: ...
|
||||
|
||||
def load(self) -> ModuleType: ...
|
||||
|
||||
|
||||
class LayerRepository:
|
||||
"""
|
||||
Repository and name of a layer for kernel mapping.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the layer.
|
||||
layer_name (`str`):
|
||||
The name of the layer within the kernel repository.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific revision (branch, tag, or commit) to download. Cannot be used together with `version`.
|
||||
version (`str`, *optional*):
|
||||
The kernel version to download. This can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from kernels import LayerRepository
|
||||
|
||||
# Reference a specific layer by revision
|
||||
layer_repo = LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
|
||||
# Reference a layer by version constraint
|
||||
layer_repo_versioned = LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
version=">=0.0.3,<0.1"
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
*,
|
||||
layer_name: str,
|
||||
revision: Optional[str] = None,
|
||||
version: Optional[str] = None,
|
||||
):
|
||||
if revision is not None and version is not None:
|
||||
raise ValueError(
|
||||
"Either a revision or a version must be specified, not both."
|
||||
)
|
||||
|
||||
self._repo_id = repo_id
|
||||
self.layer_name = layer_name
|
||||
|
||||
# We are going to resolve these lazily, since we do not want
|
||||
# to do a network request for every registered LayerRepository.
|
||||
self._revision = revision
|
||||
self._version = version
|
||||
|
||||
@functools.lru_cache()
|
||||
def _resolve_revision(self) -> str:
|
||||
return select_revision_or_version(
|
||||
repo_id=self._repo_id, revision=self._revision, version=self._version
|
||||
)
|
||||
|
||||
def load(self) -> ModuleType:
|
||||
return get_kernel(self._repo_id, revision=self._resolve_revision())
|
||||
|
||||
def __eq__(self, other):
|
||||
return (
|
||||
isinstance(other, LayerRepository)
|
||||
and self.layer_name == other.layer_name
|
||||
and self.repo_id == other.repo_id
|
||||
and self.revision == other.revision
|
||||
and self._repo_id == other._repo_id
|
||||
and self._revision == other._revision
|
||||
and self._version == other._version
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.layer_name, self.repo_id, self.revision))
|
||||
return hash((self.layer_name, self._repo_id, self._revision, self._version))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}) for layer `{self.layer_name}`"
|
||||
|
||||
|
||||
_CACHED_LAYER: Dict[LayerRepository, Type["nn.Module"]] = {}
|
||||
class LocalLayerRepository:
|
||||
"""
|
||||
Repository from a local directory for kernel mapping.
|
||||
|
||||
Args:
|
||||
repo_path (`Path`):
|
||||
The local repository containing the layer.
|
||||
package_name (`str`):
|
||||
Package name of the kernel.
|
||||
layer_name (`str`):
|
||||
The name of the layer within the kernel repository.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from pathlib import Path
|
||||
|
||||
from kernels import LocalLayerRepository
|
||||
|
||||
# Reference a specific layer by revision
|
||||
layer_repo = LocalLayerRepository(
|
||||
repo_path=Path("/home/daniel/kernels/activation"),
|
||||
package_name="activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
repo_path: Path,
|
||||
*,
|
||||
package_name: str,
|
||||
layer_name: str,
|
||||
):
|
||||
self._repo_path = repo_path
|
||||
self._package_name = package_name
|
||||
self.layer_name = layer_name
|
||||
|
||||
def load(self) -> ModuleType:
|
||||
return get_local_kernel(self._repo_path, self._package_name)
|
||||
|
||||
def __eq__(self, other):
|
||||
return (
|
||||
isinstance(other, LocalLayerRepository)
|
||||
and self.layer_name == other.layer_name
|
||||
and self._repo_path == other._repo_path
|
||||
and self._package_name == other._package_name
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.layer_name, self._repo_path, self._package_name))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_path}` (package: {self._package_name}) for layer `{self.layer_name}`"
|
||||
|
||||
|
||||
class LockedLayerRepository:
|
||||
"""
|
||||
Repository and name of a layer.
|
||||
|
||||
In contrast to `LayerRepository`, this class uses repositories that
|
||||
are locked inside a project.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
repo_id: str,
|
||||
*,
|
||||
lockfile: Optional[Path] = None,
|
||||
layer_name: str,
|
||||
):
|
||||
"""
|
||||
Construct a layer repository.
|
||||
|
||||
Args:
|
||||
repo_id (`str`): The Hub repository containing the layer.
|
||||
"""
|
||||
self._repo_id = repo_id
|
||||
self._lockfile = lockfile
|
||||
self.layer_name = layer_name
|
||||
|
||||
@functools.lru_cache()
|
||||
def _resolve_revision(self) -> str:
|
||||
if self._lockfile is None:
|
||||
locked_sha = _get_caller_locked_kernel(self._repo_id)
|
||||
else:
|
||||
with open(self._lockfile, "r") as f:
|
||||
locked_sha = _get_locked_kernel(self._repo_id, f.read())
|
||||
|
||||
if locked_sha is None:
|
||||
raise ValueError(f"Kernel `{self._repo_id}` is not locked")
|
||||
|
||||
return locked_sha
|
||||
|
||||
def load(self) -> ModuleType:
|
||||
return get_kernel(repo_id=self._repo_id, revision=self._resolve_revision())
|
||||
|
||||
def __eq__(self, other):
|
||||
return (
|
||||
isinstance(other, LockedLayerRepository)
|
||||
and self.layer_name == other.layer_name
|
||||
and self._repo_id == other._repo_id
|
||||
)
|
||||
|
||||
def __hash__(self):
|
||||
return hash((self.layer_name, self._repo_id))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}) for layer `{self.layer_name}`"
|
||||
|
||||
|
||||
_CACHED_LAYER: Dict[LayerRepositoryProtocol, Type["nn.Module"]] = {}
|
||||
|
||||
|
||||
class _DeviceRepos(ABC):
|
||||
@ -150,10 +437,10 @@ class _DeviceRepos(ABC):
|
||||
@abstractmethod
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepository]]: ...
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]: ...
|
||||
|
||||
@abstractmethod
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepository]):
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
"""
|
||||
Insert a repository for a specific device and mode.
|
||||
"""
|
||||
@ -161,7 +448,7 @@ class _DeviceRepos(ABC):
|
||||
|
||||
|
||||
class _MPSRepos(_DeviceRepos):
|
||||
_repos: Dict[Mode, LayerRepository]
|
||||
_repos: Dict[Mode, LayerRepositoryProtocol]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@ -170,10 +457,10 @@ class _MPSRepos(_DeviceRepos):
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepository]]:
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
return self._repos
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepository]):
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
if device.type != "mps":
|
||||
raise ValueError(f"Device type must be 'mps', got {device.type}")
|
||||
|
||||
@ -181,7 +468,7 @@ class _MPSRepos(_DeviceRepos):
|
||||
|
||||
|
||||
class _CUDARepos(_DeviceRepos):
|
||||
_repos: IntervalTree[Dict[Mode, LayerRepository]]
|
||||
_repos: IntervalTree[Dict[Mode, LayerRepositoryProtocol]]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@ -190,11 +477,11 @@ class _CUDARepos(_DeviceRepos):
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepository]]:
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
capability = _find_capability()
|
||||
return self.repos_by_capability.find_smallest_interval(capability)
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepository]):
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
assert device.properties is None or isinstance(
|
||||
device.properties, CUDAProperties
|
||||
)
|
||||
@ -211,6 +498,46 @@ class _CUDARepos(_DeviceRepos):
|
||||
self.repos_by_capability.insert(min_capability, max_capability, repos)
|
||||
|
||||
|
||||
class _ROCMRepos(_DeviceRepos):
|
||||
_repos: IntervalTree[Dict[Mode, LayerRepositoryProtocol]]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.repos_by_capability = IntervalTree()
|
||||
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
capability = _find_capability()
|
||||
return self.repos_by_capability.find_smallest_interval(capability)
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
assert device.properties is None or isinstance(
|
||||
device.properties, ROCMProperties
|
||||
)
|
||||
|
||||
min_capability = (
|
||||
0 if device.properties is None else device.properties.min_capability
|
||||
)
|
||||
max_capability = (
|
||||
sys.maxsize
|
||||
if device.properties is None
|
||||
else device.properties.max_capability
|
||||
)
|
||||
|
||||
self.repos_by_capability.insert(min_capability, max_capability, repos)
|
||||
|
||||
|
||||
def _validate_device_type(device_type: str) -> None:
|
||||
"""Validate that the device type is supported."""
|
||||
supported_devices = {"cuda", "rocm", "mps"}
|
||||
if device_type not in supported_devices:
|
||||
raise ValueError(
|
||||
f"Unsupported device type '{device_type}'. Supported device types are: {', '.join(sorted(supported_devices))}"
|
||||
)
|
||||
|
||||
|
||||
_KERNEL_MAPPING: ContextVar[Dict[str, Dict[str, _DeviceRepos]]] = ContextVar(
|
||||
"_KERNEL_MAPPING", default={}
|
||||
)
|
||||
@ -219,17 +546,65 @@ _KERNEL_MAPPING: ContextVar[Dict[str, Dict[str, _DeviceRepos]]] = ContextVar(
|
||||
def use_kernel_mapping(
|
||||
mapping: Dict[
|
||||
str,
|
||||
Dict[Union[Device, str], Union[LayerRepository, Dict[Mode, LayerRepository]]],
|
||||
Dict[
|
||||
Union[Device, str],
|
||||
Union[LayerRepositoryProtocol, Dict[Mode, LayerRepositoryProtocol]],
|
||||
],
|
||||
],
|
||||
*,
|
||||
inherit_mapping: bool = True,
|
||||
):
|
||||
"""
|
||||
Context manager that sets a mapping for a duration of the context.
|
||||
Context manager that sets a kernel mapping for the duration of the context.
|
||||
|
||||
When `inherit_mapping` is set to `True` the current mapping will be
|
||||
extended by `mapping` inside the context. If it is `False`, only
|
||||
`mapping` is used inside the context.
|
||||
This function allows temporary kernel mappings to be applied within a specific context, enabling different
|
||||
kernel configurations for different parts of your code.
|
||||
|
||||
Args:
|
||||
mapping (`Dict[str, Dict[Union[Device, str], Union[LayerRepositoryProtocol, Dict[Mode, LayerRepositoryProtocol]]]]`):
|
||||
The kernel mapping to apply. Maps layer names to device-specific kernel configurations.
|
||||
inherit_mapping (`bool`, *optional*, defaults to `True`):
|
||||
When `True`, the current mapping will be extended by `mapping` inside the context. When `False`,
|
||||
only `mapping` is used inside the context.
|
||||
|
||||
Returns:
|
||||
Context manager that handles the temporary kernel mapping.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
from kernels import use_kernel_mapping, LayerRepository, Device
|
||||
from kernels import Mode, kernelize
|
||||
|
||||
# Define a mapping
|
||||
mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@use_kernel_forward_from_hub("SiluAndMul")
|
||||
class SiluAndMul(nn.Module):
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
d = x.shape[-1] // 2
|
||||
return F.silu(x[..., :d]) * x[..., d:]
|
||||
|
||||
model = SiluAndMul()
|
||||
|
||||
# Use the mapping for the duration of the context.
|
||||
with use_kernel_mapping(mapping):
|
||||
# kernelize uses the temporary mapping
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE, device="cuda")
|
||||
|
||||
# Outside the context, original mappings are restored
|
||||
```
|
||||
"""
|
||||
|
||||
class ContextManager:
|
||||
@ -250,31 +625,64 @@ def use_kernel_mapping(
|
||||
def register_kernel_mapping(
|
||||
mapping: Dict[
|
||||
str,
|
||||
Dict[Union[Device, str], Union[LayerRepository, Dict[Mode, LayerRepository]]],
|
||||
Dict[
|
||||
Union[Device, str],
|
||||
Union[LayerRepositoryProtocol, Dict[Mode, LayerRepositoryProtocol]],
|
||||
],
|
||||
],
|
||||
inherit_mapping: bool = True,
|
||||
):
|
||||
"""
|
||||
Allows one to register a mapping between a layer name and the corresponding
|
||||
kernel(s) to use, depending on the device. This should be used in conjunction
|
||||
with `kernelize`.
|
||||
Register a global mapping between layer names and their corresponding kernel implementations.
|
||||
|
||||
Example usage:
|
||||
This function allows you to register a mapping between a layer name and the corresponding kernel(s) to use,
|
||||
depending on the device and mode. This should be used in conjunction with [`kernelize`].
|
||||
|
||||
```python
|
||||
from kernels import LayerRepository, register_kernel_mapping
|
||||
Args:
|
||||
mapping (`Dict[str, Dict[Union[Device, str], Union[LayerRepositoryProtocol, Dict[Mode, LayerRepositoryProtocol]]]]`):
|
||||
The kernel mapping to register globally. Maps layer names to device-specific kernels.
|
||||
The mapping can specify different kernels for different modes (training, inference, etc.).
|
||||
inherit_mapping (`bool`, *optional*, defaults to `True`):
|
||||
When `True`, the current mapping will be extended by `mapping`. When `False`, the existing mappings
|
||||
are erased before adding `mapping`.
|
||||
|
||||
kernel_layer_mapping = {
|
||||
"LlamaRMSNorm": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="RmsNorm",
|
||||
revision="layers",
|
||||
),
|
||||
},
|
||||
}
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
```
|
||||
Example:
|
||||
```python
|
||||
from kernels import LayerRepository, register_kernel_mapping, Mode
|
||||
|
||||
# Simple mapping for a single kernel per device
|
||||
kernel_layer_mapping = {
|
||||
"LlamaRMSNorm": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="RmsNorm",
|
||||
revision="layers",
|
||||
),
|
||||
},
|
||||
}
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
|
||||
# Advanced mapping with mode-specific kernels
|
||||
advanced_mapping = {
|
||||
"MultiHeadAttention": {
|
||||
"cuda": {
|
||||
Mode.TRAINING: LayerRepository(
|
||||
repo_id="username/training-kernels",
|
||||
layer_name="TrainingAttention"
|
||||
),
|
||||
Mode.INFERENCE: LayerRepository(
|
||||
repo_id="username/inference-kernels",
|
||||
layer_name="FastAttention"
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
register_kernel_mapping(advanced_mapping)
|
||||
```
|
||||
"""
|
||||
if not inherit_mapping:
|
||||
_KERNEL_MAPPING.set({})
|
||||
|
||||
# Merge with existing mappings.
|
||||
for new_kernel, new_device_repos in mapping.items():
|
||||
device_repo = _KERNEL_MAPPING.get().setdefault(new_kernel, {})
|
||||
@ -283,10 +691,10 @@ def register_kernel_mapping(
|
||||
Device(type=new_device) if isinstance(new_device, str) else new_device
|
||||
)
|
||||
|
||||
if isinstance(new_repo, LayerRepository):
|
||||
kernel_options = {Mode.FALLBACK: new_repo}
|
||||
else:
|
||||
if isinstance(new_repo, dict):
|
||||
kernel_options = new_repo
|
||||
else:
|
||||
kernel_options = {Mode.FALLBACK: new_repo}
|
||||
|
||||
feature_repos = device_repo.setdefault(device.type, device.create_repo())
|
||||
feature_repos.insert(device, kernel_options)
|
||||
@ -297,15 +705,20 @@ def replace_kernel_forward_from_hub(
|
||||
layer_name: str,
|
||||
):
|
||||
"""
|
||||
Decorator that prepares a layer class to use a kernel from the Hugging Face Hub.
|
||||
Function that prepares a layer class to use kernels from the Hugging Face Hub.
|
||||
|
||||
This decorator stores the layer name and original forward method, which will be used
|
||||
by the kernelize function to replace the forward implementation with the appropriate
|
||||
kernel from the hub.
|
||||
It is recommended to use [`use_kernel_forward_from_hub`] decorator instead.
|
||||
This function should only be used as a last resort to extend third-party layers,
|
||||
it is inherently fragile since the member variables and `forward` signature
|
||||
of usch a layer can change.
|
||||
|
||||
Args:
|
||||
cls: The layer class to decorate
|
||||
layer_name: The name of the layer to use for kernel lookup
|
||||
Example:
|
||||
```python
|
||||
from kernels import replace_kernel_forward_from_hub
|
||||
import torch.nn as nn
|
||||
|
||||
replace_kernel_forward_from_hub(nn.LayerNorm, "LayerNorm")
|
||||
```
|
||||
"""
|
||||
cls.kernel_layer_name = layer_name
|
||||
|
||||
@ -338,10 +751,10 @@ _MODE_FALLBACK_PRIORITY = {
|
||||
|
||||
|
||||
def _select_repository(
|
||||
repositories: Dict[Mode, LayerRepository],
|
||||
repositories: Dict[Mode, LayerRepositoryProtocol],
|
||||
*,
|
||||
mode: Mode,
|
||||
) -> Optional[Tuple[LayerRepository, Mode]]:
|
||||
) -> Optional[Tuple[LayerRepositoryProtocol, Mode]]:
|
||||
# Get the fallback priority list for the requested mode
|
||||
if mode not in _MODE_FALLBACK_PRIORITY:
|
||||
raise ValueError(f"Unsupported mode: {mode}")
|
||||
@ -359,30 +772,66 @@ def _select_repository(
|
||||
def kernelize(
|
||||
model: "nn.Module",
|
||||
*,
|
||||
mode: Mode = Mode.TRAINING | Mode.TORCH_COMPILE,
|
||||
mode: Mode,
|
||||
device: Optional[Union[str, "torch.device"]] = None,
|
||||
use_fallback: bool = True,
|
||||
):
|
||||
"""
|
||||
Iterate over all modules in the model and replace the `forward` method of
|
||||
extensible layers for which kernels are registered using `register_kernel_mapping`
|
||||
or `use_kernel_mapping`.
|
||||
Replace layer forward methods with optimized kernel implementations.
|
||||
|
||||
This function iterates over all modules in the model and replaces the `forward` method of extensible layers
|
||||
for which kernels are registered using [`register_kernel_mapping`] or [`use_kernel_mapping`].
|
||||
|
||||
Args:
|
||||
model: The PyTorch model to kernelize
|
||||
mode: the mode that the kernel is going to be used in (e.g.
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` kernelizes the model for training
|
||||
and `torch.compile`).
|
||||
device: The device type to load kernels for. The device type will be inferred
|
||||
from the parameters of the model when not provided.
|
||||
use_fallback: Whether to use the original forward method of modules when no
|
||||
compatible kernel could be found. If set to `False`, an exception will
|
||||
be raised in such cases.
|
||||
model (`nn.Module`):
|
||||
The PyTorch model to kernelize.
|
||||
mode ([`Mode`]): The mode that the kernel is going to be used in. For example,
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` kernelizes the model for training with
|
||||
`torch.compile`.
|
||||
device (`Union[str, torch.device]`, *optional*):
|
||||
The device type to load kernels for. Supported device types are: "cuda", "mps", "rocm".
|
||||
The device type will be inferred from the model parameters when not provided.
|
||||
use_fallback (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use the original forward method of modules when no compatible kernel could be found.
|
||||
If set to `False`, an exception will be raised in such cases.
|
||||
|
||||
Returns:
|
||||
The kernelized model
|
||||
`nn.Module`: The kernelized model with optimized kernel implementations.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from kernels import kernelize, Mode, register_kernel_mapping, LayerRepository
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
|
||||
@use_kernel_forward_from_hub("SiluAndMul")
|
||||
class SiluAndMul(nn.Module):
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
d = x.shape[-1] // 2
|
||||
return F.silu(x[..., :d]) * x[..., d:]
|
||||
|
||||
mapping = {
|
||||
"LayerNorm": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
register_kernel_mapping(mapping)
|
||||
|
||||
# Create and kernelize a model
|
||||
model = nn.Sequential(
|
||||
nn.Linear(1024, 2048, device="cuda"),
|
||||
SiluAndMul(),
|
||||
)
|
||||
|
||||
# Kernelize for inference
|
||||
kernelized_model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
"""
|
||||
import torch
|
||||
|
||||
if mode == Mode.FALLBACK:
|
||||
raise ValueError("Mode.FALLBACK can only be used to register kernel mappings.")
|
||||
@ -396,7 +845,8 @@ def kernelize(
|
||||
if device is None:
|
||||
device_type = _find_device(model)
|
||||
elif isinstance(device, str):
|
||||
device_type = Device(type=torch.device(device).type)
|
||||
_validate_device_type(device)
|
||||
device_type = Device(type=device)
|
||||
else:
|
||||
device_type = Device(device.type)
|
||||
|
||||
@ -462,9 +912,7 @@ def kernelize(
|
||||
|
||||
repo, repo_mode = repo_with_mode
|
||||
|
||||
logging.info(
|
||||
f"Using layer `{repo.layer_name}` from repo `{repo.repo_id}` (revision: {repo.revision}) for layer `{layer_name}`"
|
||||
)
|
||||
logging.info(f"Using layer `{repo.layer_name}` from repo {repo}")
|
||||
logging.debug(f"kernelize mode: {mode}, repo mode: {repo_mode}")
|
||||
|
||||
layer = _get_layer_memoize(repo, module_class)
|
||||
@ -489,7 +937,41 @@ def kernelize(
|
||||
|
||||
def use_kernel_forward_from_hub(layer_name: str):
|
||||
"""
|
||||
Make a layer extensible using the name `layer_name`.
|
||||
Decorator factory that makes a layer extensible using the specified layer name.
|
||||
|
||||
This is a decorator factory that returns a decorator which prepares a layer class to use kernels from the
|
||||
Hugging Face Hub.
|
||||
|
||||
Args:
|
||||
layer_name (`str`):
|
||||
The name of the layer to use for kernel lookup in registered mappings.
|
||||
|
||||
Returns:
|
||||
`Callable`: A decorator function that can be applied to layer classes.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
from kernels import Mode, kernelize
|
||||
|
||||
@use_kernel_forward_from_hub("MyCustomLayer")
|
||||
class MyCustomLayer(nn.Module):
|
||||
def __init__(self, hidden_size):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
# original implementation
|
||||
return x
|
||||
|
||||
model = MyCustomLayer(768)
|
||||
|
||||
# The layer can now be kernelized:
|
||||
# model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE, device="cuda")
|
||||
```
|
||||
"""
|
||||
|
||||
def decorator(cls):
|
||||
@ -499,21 +981,17 @@ def use_kernel_forward_from_hub(layer_name: str):
|
||||
return decorator
|
||||
|
||||
|
||||
def _get_kernel_layer(
|
||||
*, repo_id: str, layer_name: str, revision: str
|
||||
) -> Type["nn.Module"]:
|
||||
def _get_kernel_layer(repo: LayerRepositoryProtocol) -> Type["nn.Module"]:
|
||||
"""Get a layer from a kernel."""
|
||||
|
||||
kernel = get_kernel(repo_id, revision=revision)
|
||||
kernel = repo.load()
|
||||
|
||||
if getattr(kernel, "layers", None) is None:
|
||||
raise ValueError(
|
||||
f"Kernel `{repo_id}` at revision `{revision}` does not define any layers."
|
||||
)
|
||||
raise ValueError(f"Kernel repo {repo} does not define any layers.")
|
||||
|
||||
layer = getattr(kernel.layers, layer_name, None)
|
||||
layer = getattr(kernel.layers, repo.layer_name, None)
|
||||
if layer is None:
|
||||
raise ValueError(f"Layer `{layer_name}` not found in kernel `{repo_id}`.")
|
||||
raise ValueError(f"Layer `{repo.layer_name}` not found in kernel repo {repo}.")
|
||||
return layer
|
||||
|
||||
|
||||
@ -557,6 +1035,18 @@ def _validate_layer(*, check_cls, cls):
|
||||
)
|
||||
|
||||
|
||||
def _is_cuda_platform():
|
||||
import torch
|
||||
|
||||
return torch.version.cuda is not None
|
||||
|
||||
|
||||
def _is_rocm_platform():
|
||||
import torch
|
||||
|
||||
return torch.version.hip is not None
|
||||
|
||||
|
||||
def _find_device(model: "nn.Module") -> Device:
|
||||
try:
|
||||
param = next(model.parameters())
|
||||
@ -565,7 +1055,15 @@ def _find_device(model: "nn.Module") -> Device:
|
||||
"Cannot determine model device, provide as `device` argument to `kernelize`."
|
||||
)
|
||||
|
||||
return Device(type=param.device.type)
|
||||
dev_type = param.device.type
|
||||
if dev_type == "cuda":
|
||||
# Refine based on actual platform
|
||||
if _is_rocm_platform():
|
||||
return Device(type="rocm")
|
||||
elif _is_cuda_platform():
|
||||
return Device(type="cuda")
|
||||
|
||||
return Device(type=dev_type)
|
||||
|
||||
|
||||
@lru_cache
|
||||
@ -590,13 +1088,19 @@ def _conditionally_replace_forward(
|
||||
# layers registered with the FALLBACK mode never get rejected by
|
||||
# _validate_layer_has_mode. For such layers, we want to fall back in
|
||||
# case the layer does not support the given mode.
|
||||
needs_fallback = Mode.TORCH_COMPILE in mode and not getattr(
|
||||
needs_fallback_for_compile = Mode.TORCH_COMPILE in mode and not getattr(
|
||||
layer, "can_torch_compile", False
|
||||
)
|
||||
needs_fallback |= Mode.TRAINING in mode and not getattr(layer, "has_backward", True)
|
||||
needs_fallback_for_backward = Mode.TRAINING in mode and not getattr(
|
||||
layer, "has_backward", True
|
||||
)
|
||||
|
||||
if needs_fallback:
|
||||
if needs_fallback_for_compile or needs_fallback_for_backward:
|
||||
if use_fallback:
|
||||
if needs_fallback_for_compile:
|
||||
logging.info("Layer does not support torch.compile, using fallback")
|
||||
if needs_fallback_for_backward:
|
||||
logging.info("Layer does not support backward, using fallback")
|
||||
_replace_forward(module, module_class)
|
||||
else:
|
||||
raise ValueError(f"Available kernel does not support mode: {mode}")
|
||||
@ -612,7 +1116,7 @@ def _validate_layer_has_mode(
|
||||
*,
|
||||
layer_name: str,
|
||||
module: Type["nn.Module"],
|
||||
repo: LayerRepository,
|
||||
repo: LayerRepositoryProtocol,
|
||||
repo_mode: Mode,
|
||||
):
|
||||
"""
|
||||
@ -621,7 +1125,7 @@ def _validate_layer_has_mode(
|
||||
|
||||
if Mode.TRAINING in repo_mode and not getattr(module, "has_backward", True):
|
||||
raise ValueError(
|
||||
f"Layer `{repo.layer_name}` ({repo.repo_id}, revision: {repo.revision}) does not support backward.\n"
|
||||
f"Layer `{repo.layer_name}` from repo {repo} does not support backward.\n"
|
||||
f"Was registered for `{layer_name}` with mode `{repo_mode}`"
|
||||
)
|
||||
|
||||
@ -629,7 +1133,7 @@ def _validate_layer_has_mode(
|
||||
module, "can_torch_compile", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Layer `{repo.layer_name}` ({repo.repo_id}, revision: {repo.revision}) does not support torch.compile.\n"
|
||||
f"Layer `{repo.layer_name}` from repo {repo} does not support torch.compile.\n"
|
||||
f"Was registered for `{layer_name}` with mode `{repo_mode}`"
|
||||
)
|
||||
|
||||
@ -637,17 +1141,13 @@ def _validate_layer_has_mode(
|
||||
|
||||
|
||||
def _get_layer_memoize(
|
||||
repo: LayerRepository, module_class: Type["nn.Module"]
|
||||
repo: LayerRepositoryProtocol, module_class: Type["nn.Module"]
|
||||
) -> Type["nn.Module"]:
|
||||
layer = _CACHED_LAYER.get(repo, None)
|
||||
if layer is not None:
|
||||
return layer
|
||||
|
||||
layer = _get_kernel_layer(
|
||||
repo_id=repo.repo_id,
|
||||
layer_name=repo.layer_name,
|
||||
revision=repo.revision,
|
||||
)
|
||||
layer = _get_kernel_layer(repo)
|
||||
_validate_layer(check_cls=module_class, cls=layer)
|
||||
_CACHED_LAYER[repo] = layer
|
||||
|
||||
|
@ -16,7 +16,7 @@ from typing import Dict, List, Optional, Tuple
|
||||
from huggingface_hub import file_exists, snapshot_download
|
||||
from packaging.version import parse
|
||||
|
||||
from kernels._versions import resolve_version_spec_as_ref
|
||||
from kernels._versions import select_revision_or_version
|
||||
from kernels.lockfile import KernelLock, VariantLock
|
||||
|
||||
|
||||
@ -46,9 +46,12 @@ def build_variant() -> str:
|
||||
compute_framework = f"rocm{rocm_version.major}{rocm_version.minor}"
|
||||
elif torch.backends.mps.is_available():
|
||||
compute_framework = "metal"
|
||||
elif torch.version.xpu is not None:
|
||||
version = torch.version.xpu
|
||||
compute_framework = f"xpu{version[0:4]}{version[5:6]}"
|
||||
else:
|
||||
raise AssertionError(
|
||||
"Torch was not compiled with CUDA, Metal, or ROCm enabled."
|
||||
"Torch was not compiled with CUDA, Metal, XPU, or ROCm enabled."
|
||||
)
|
||||
|
||||
torch_version = parse(torch.__version__)
|
||||
@ -96,7 +99,20 @@ def install_kernel(
|
||||
"""
|
||||
Download a kernel for the current environment to the cache.
|
||||
|
||||
The output path is validated againt `hash` when set.
|
||||
The output path is validated against the hashes in `variant_locks` when provided.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
revision (`str`):
|
||||
The specific revision (branch, tag, or commit) to download.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only use local files and not download from the Hub.
|
||||
variant_locks (`Dict[str, VariantLock]`, *optional*):
|
||||
Optional dictionary of variant locks for validation.
|
||||
|
||||
Returns:
|
||||
`Tuple[str, Path]`: A tuple containing the package name and the path to the variant directory.
|
||||
"""
|
||||
package_name = package_name_from_repo_id(repo_id)
|
||||
variant = build_variant()
|
||||
@ -188,26 +204,34 @@ def get_kernel(
|
||||
) -> ModuleType:
|
||||
"""
|
||||
Load a kernel from the kernel hub.
|
||||
This function downloads a kernel to the local Hugging Face Hub cache
|
||||
directory (if it was not downloaded before) and then loads the kernel.
|
||||
|
||||
This function downloads a kernel to the local Hugging Face Hub cache directory (if it was not downloaded before)
|
||||
and then loads the kernel.
|
||||
|
||||
Args:
|
||||
repo_id (`str`): The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`): The specific
|
||||
revision (branch, tag, or commit) to download.
|
||||
Cannot be used together with `version`.
|
||||
version (`str`, *optional*): The kernel version to download. This
|
||||
can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific revision (branch, tag, or commit) to download. Cannot be used together with `version`.
|
||||
version (`str`, *optional*):
|
||||
The kernel version to download. This can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch
|
||||
from kernels import get_kernel
|
||||
kernel = get_kernel("username/my-kernel")
|
||||
result = kernel.kernel_function(input_data)
|
||||
|
||||
activation = get_kernel("kernels-community/activation")
|
||||
x = torch.randn(10, 20, device="cuda")
|
||||
out = torch.empty_like(x)
|
||||
result = activation.silu_and_mul(out, x)
|
||||
```
|
||||
"""
|
||||
revision = _revision_or_version(repo_id, revision, version)
|
||||
revision = select_revision_or_version(repo_id, revision, version)
|
||||
package_name, package_path = install_kernel(repo_id, revision=revision)
|
||||
return import_from_path(package_name, package_path / package_name / "__init__.py")
|
||||
|
||||
@ -215,30 +239,55 @@ def get_kernel(
|
||||
def get_local_kernel(repo_path: Path, package_name: str) -> ModuleType:
|
||||
"""
|
||||
Import a kernel from a local kernel repository path.
|
||||
|
||||
Args:
|
||||
repo_path (`Path`):
|
||||
The local path to the kernel repository.
|
||||
package_name (`str`):
|
||||
The name of the package to import from the repository.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
"""
|
||||
package_name, package_path = _load_kernel_from_path(repo_path, package_name)
|
||||
return import_from_path(package_name, package_path / package_name / "__init__.py")
|
||||
variant = build_variant()
|
||||
universal_variant = universal_build_variant()
|
||||
|
||||
# Presume we were given the top level path of the kernel repository.
|
||||
for base_path in [repo_path, repo_path / "build"]:
|
||||
# Prefer the universal variant if it exists.
|
||||
for v in [universal_variant, variant]:
|
||||
package_path = base_path / v / package_name / "__init__.py"
|
||||
if package_path.exists():
|
||||
return import_from_path(package_name, package_path)
|
||||
|
||||
# If we didn't find the package in the repo we may have a explicit
|
||||
# package path.
|
||||
package_path = repo_path / package_name / "__init__.py"
|
||||
if package_path.exists():
|
||||
return import_from_path(package_name, package_path)
|
||||
|
||||
raise FileNotFoundError(f"Could not find package '{package_name}' in {repo_path}")
|
||||
|
||||
|
||||
def has_kernel(
|
||||
repo_id: str, revision: Optional[str] = None, version: Optional[str] = None
|
||||
) -> bool:
|
||||
"""
|
||||
Check whether a kernel build exists for the current environment
|
||||
(Torch version and compute framework).
|
||||
Check whether a kernel build exists for the current environment (Torch version and compute framework).
|
||||
|
||||
Args:
|
||||
repo_id (`str`): The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`): The specific
|
||||
revision (branch, tag, or commit) to download.
|
||||
Cannot be used together with `version`.
|
||||
version (`str`, *optional*): The kernel version to download. This
|
||||
can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
revision (`str`, *optional*, defaults to `"main"`):
|
||||
The specific revision (branch, tag, or commit) to download. Cannot be used together with `version`.
|
||||
version (`str`, *optional*):
|
||||
The kernel version to download. This can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
|
||||
Returns:
|
||||
`bool`: `true` if a kernel is avaialble for the current environment.
|
||||
`bool`: `True` if a kernel is available for the current environment.
|
||||
"""
|
||||
revision = _revision_or_version(repo_id, revision, version)
|
||||
revision = select_revision_or_version(repo_id, revision, version)
|
||||
|
||||
package_name = package_name_from_repo_id(repo_id)
|
||||
variant = build_variant()
|
||||
@ -262,8 +311,16 @@ def load_kernel(repo_id: str, *, lockfile: Optional[Path] = None) -> ModuleType:
|
||||
"""
|
||||
Get a pre-downloaded, locked kernel.
|
||||
|
||||
If `lockfile` is not specified, the lockfile will be loaded from the
|
||||
caller's package metadata.
|
||||
If `lockfile` is not specified, the lockfile will be loaded from the caller's package metadata.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
lockfile (`Path`, *optional*):
|
||||
Path to the lockfile. If not provided, the lockfile will be loaded from the caller's package metadata.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
"""
|
||||
if lockfile is None:
|
||||
locked_sha = _get_caller_locked_kernel(repo_id)
|
||||
@ -308,7 +365,18 @@ def load_kernel(repo_id: str, *, lockfile: Optional[Path] = None) -> ModuleType:
|
||||
|
||||
|
||||
def get_locked_kernel(repo_id: str, local_files_only: bool = False) -> ModuleType:
|
||||
"""Get a kernel using a lock file."""
|
||||
"""
|
||||
Get a kernel using a lock file.
|
||||
|
||||
Args:
|
||||
repo_id (`str`):
|
||||
The Hub repository containing the kernel.
|
||||
local_files_only (`bool`, *optional*, defaults to `False`):
|
||||
Whether to only use local files and not download from the Hub.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
"""
|
||||
locked_sha = _get_caller_locked_kernel(repo_id)
|
||||
|
||||
if locked_sha is None:
|
||||
@ -420,16 +488,3 @@ def git_hash_object(data: bytes, object_type: str = "blob"):
|
||||
|
||||
def package_name_from_repo_id(repo_id: str) -> str:
|
||||
return repo_id.split("/")[-1].replace("-", "_")
|
||||
|
||||
|
||||
def _revision_or_version(
|
||||
repo_id: str, revision: Optional[str] = None, version: Optional[str] = None
|
||||
) -> str:
|
||||
if revision is not None and version is not None:
|
||||
raise ValueError("Either a revision or a version must be specified, not both.")
|
||||
elif revision is None and version is None:
|
||||
revision = "main"
|
||||
elif version is not None:
|
||||
revision = resolve_version_spec_as_ref(repo_id, version).target_commit
|
||||
assert revision is not None
|
||||
return revision
|
||||
|
@ -1,10 +1,24 @@
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
has_cuda = (
|
||||
hasattr(torch.version, "cuda")
|
||||
and torch.version.cuda is not None
|
||||
and torch.cuda.device_count() > 0
|
||||
)
|
||||
has_rocm = (
|
||||
hasattr(torch.version, "hip")
|
||||
and torch.version.hip is not None
|
||||
and torch.cuda.device_count() > 0
|
||||
)
|
||||
|
||||
|
||||
def pytest_runtest_setup(item):
|
||||
if "linux_only" in item.keywords and not sys.platform.startswith("linux"):
|
||||
pytest.skip("skipping Linux-only test on non-Linux platform")
|
||||
if "cuda_only" in item.keywords and not has_cuda:
|
||||
pytest.skip("skipping CUDA-only test on host without CUDA")
|
||||
if "rocm_only" in item.keywords and not has_rocm:
|
||||
pytest.skip("skipping ROCm-only test on host without ROCm")
|
||||
if "darwin_only" in item.keywords and not sys.platform.startswith("darwin"):
|
||||
pytest.skip("skipping macOS-only test on non-macOS platform")
|
||||
|
12
tests/layer_locking/kernels.lock
Normal file
12
tests/layer_locking/kernels.lock
Normal file
@ -0,0 +1,12 @@
|
||||
[
|
||||
{
|
||||
"repo_id": "kernels-test/versions",
|
||||
"sha": "dc142fd6c9920c993d32be6358b78957c58681c3",
|
||||
"variants": {
|
||||
"torch-universal": {
|
||||
"hash": "sha256-35ce0ccfe68e392cbc06feef72268f4c41a74b9920496a2c6ee8978db7f7c17c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
}
|
||||
}
|
||||
}
|
||||
]
|
2
tests/layer_locking/pyproject.toml
Normal file
2
tests/layer_locking/pyproject.toml
Normal file
@ -0,0 +1,2 @@
|
||||
[tool.kernels.dependencies]
|
||||
"kernels-test/versions" = ">=0.1.0,<0.2.0"
|
@ -10,10 +10,16 @@ def kernel():
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def local_kernel():
|
||||
def local_kernel_path():
|
||||
package_name, path = install_kernel("kernels-community/activation", "main")
|
||||
# Path is the build variant path (build/torch-<...>), so the grandparent
|
||||
# is the kernel repository path.
|
||||
return package_name, path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def local_kernel(local_kernel_path):
|
||||
package_name, path = local_kernel_path
|
||||
return get_local_kernel(path.parent.parent, package_name)
|
||||
|
||||
|
||||
@ -34,7 +40,7 @@ def device():
|
||||
return "cuda"
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_fast(kernel, device):
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
@ -50,7 +56,7 @@ def test_gelu_fast(kernel, device):
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_local_kernel(local_kernel, device):
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
@ -66,6 +72,39 @@ def test_local_kernel(local_kernel, device):
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
def test_local_kernel_path_types(local_kernel_path, device):
|
||||
package_name, path = local_kernel_path
|
||||
|
||||
# Top-level repo path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071
|
||||
kernel = get_local_kernel(path.parent.parent, package_name)
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
|
||||
kernel.gelu_fast(y, x)
|
||||
expected = torch.tensor(
|
||||
[[0.8408, 1.9551, 2.9961], [4.0000, 5.0000, 6.0000], [7.0000, 8.0000, 9.0000]],
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
# Build directory path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071/build
|
||||
kernel = get_local_kernel(path.parent.parent / "build", package_name)
|
||||
y = torch.empty_like(x)
|
||||
kernel.gelu_fast(y, x)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
# Explicit package path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071/build/torch28-cxx11-cu128-x86_64-linux
|
||||
kernel = get_local_kernel(path, package_name)
|
||||
y = torch.empty_like(x)
|
||||
kernel.gelu_fast(y, x)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.darwin_only
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
def test_relu_metal(metal_kernel, dtype):
|
||||
@ -74,7 +113,7 @@ def test_relu_metal(metal_kernel, dtype):
|
||||
assert torch.allclose(y, torch.relu(x))
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"kernel_exists",
|
||||
[
|
||||
@ -110,7 +149,7 @@ def test_version():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_universal_kernel(universal_kernel):
|
||||
torch.manual_seed(0)
|
||||
A = torch.randint(-10, 10, (64, 128), dtype=torch.int8, device="cuda")
|
||||
|
@ -16,21 +16,21 @@ def device():
|
||||
return "cuda"
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_small(kernel, device, benchmark):
|
||||
x = torch.randn(32, 32, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
benchmark(kernel.gelu_fast, y, x)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_medium(kernel, device, benchmark):
|
||||
x = torch.randn(128, 128, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
benchmark(kernel.gelu_fast, y, x)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_gelu_large(kernel, device, benchmark):
|
||||
x = torch.randn(512, 512, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
|
49
tests/test_doctest.py
Normal file
49
tests/test_doctest.py
Normal file
@ -0,0 +1,49 @@
|
||||
import inspect
|
||||
|
||||
import pytest
|
||||
from mktestdocs import check_docstring, get_codeblock_members
|
||||
|
||||
import kernels
|
||||
|
||||
|
||||
def all_public_functions():
|
||||
function_list = inspect.getmembers(kernels, inspect.isfunction)
|
||||
return [func for _, func in function_list]
|
||||
|
||||
|
||||
def all_public_classes():
|
||||
class_list = inspect.getmembers(kernels, inspect.isclass)
|
||||
return [cls for _, cls in class_list]
|
||||
|
||||
|
||||
def all_public_class_members():
|
||||
members = get_codeblock_members(*all_public_classes())
|
||||
return members
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"func",
|
||||
all_public_functions(),
|
||||
ids=lambda d: d.__name__,
|
||||
)
|
||||
def test_func_docstring(func):
|
||||
check_docstring(obj=func)
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"cls",
|
||||
all_public_classes(),
|
||||
ids=lambda d: d.__name__,
|
||||
)
|
||||
def test_class_docstring(cls):
|
||||
check_docstring(obj=cls)
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize(
|
||||
"member", all_public_class_members(), ids=lambda d: d.__qualname__
|
||||
)
|
||||
def test_member_docstring(member):
|
||||
check_docstring(member)
|
@ -2,9 +2,17 @@ from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import torch.nn as nn
|
||||
|
||||
from kernels import load_kernel
|
||||
from kernels.cli import download_kernels
|
||||
from kernels.layer import (
|
||||
LockedLayerRepository,
|
||||
Mode,
|
||||
kernelize,
|
||||
use_kernel_forward_from_hub,
|
||||
use_kernel_mapping,
|
||||
)
|
||||
|
||||
|
||||
# Mock download arguments class.
|
||||
@ -19,9 +27,34 @@ def test_download_all_hash_validation():
|
||||
download_kernels(DownloadArgs(all_variants=True, project_dir=project_dir))
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_load_locked():
|
||||
project_dir = Path(__file__).parent / "kernel_locking"
|
||||
# Also validates that hashing works correctly.
|
||||
download_kernels(DownloadArgs(all_variants=False, project_dir=project_dir))
|
||||
load_kernel("kernels-community/activation", lockfile=project_dir / "kernels.lock")
|
||||
|
||||
|
||||
def test_layer_locked():
|
||||
project_dir = Path(__file__).parent / "layer_locking"
|
||||
|
||||
@use_kernel_forward_from_hub("Version")
|
||||
class Version(nn.Module):
|
||||
def forward(self) -> str:
|
||||
return "0.0.0"
|
||||
|
||||
version = Version()
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
"cuda": LockedLayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
lockfile=project_dir / "kernels.lock",
|
||||
)
|
||||
},
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
assert version() == "0.1.1"
|
||||
|
@ -7,19 +7,21 @@ import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from kernels import (
|
||||
CUDAProperties,
|
||||
Device,
|
||||
LayerRepository,
|
||||
LocalLayerRepository,
|
||||
Mode,
|
||||
kernelize,
|
||||
register_kernel_mapping,
|
||||
use_kernel_forward_from_hub,
|
||||
use_kernel_mapping,
|
||||
)
|
||||
from kernels.layer import (
|
||||
_KERNEL_MAPPING,
|
||||
CUDAProperties,
|
||||
_validate_layer,
|
||||
use_kernel_mapping,
|
||||
)
|
||||
from kernels.utils import install_kernel
|
||||
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
@ -32,7 +34,11 @@ kernel_layer_mapping = {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-test/op-without-fake-test",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
),
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-test/op-without-fake-test",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
},
|
||||
"SiluAndMulStringDevice": {
|
||||
"cuda": LayerRepository(
|
||||
@ -102,29 +108,74 @@ def test_arg_kinds():
|
||||
assert arg_kind("foo", "bar", kwarg1="baz", kwarg2=5) == ("foo", "bar", "baz", 5)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulStringDevice])
|
||||
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
||||
def test_hub_forward(cls, device):
|
||||
def test_hub_forward(cls):
|
||||
torch.random.manual_seed(0)
|
||||
|
||||
silu_and_mul = SiluAndMul()
|
||||
X = torch.randn((32, 64), device=device)
|
||||
X = torch.randn((32, 64), device="cuda")
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = kernelize(cls(), device=device, mode=Mode.INFERENCE)
|
||||
silu_and_mul_with_kernel = kernelize(cls(), device="cuda", mode=Mode.INFERENCE)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert silu_and_mul.n_calls == 1
|
||||
if device == "cuda":
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
else:
|
||||
assert silu_and_mul_with_kernel.n_calls == 1
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.rocm_only
|
||||
def test_hub_forward_rocm():
|
||||
torch.manual_seed(0)
|
||||
|
||||
silu_and_mul = SiluAndMul()
|
||||
X = torch.randn((32, 64))
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = kernelize(
|
||||
SiluAndMulNoCompileKernel(), device="rocm", mode=Mode.INFERENCE
|
||||
)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert silu_and_mul.n_calls == 1
|
||||
# Should use kernel (n_calls == 0) if ROCm kernel is available, otherwise fallback (n_calls == 1)
|
||||
# The exact behavior depends on whether the test kernel exists for ROCm
|
||||
assert silu_and_mul_with_kernel.n_calls in [0, 1]
|
||||
|
||||
|
||||
def test_rocm_kernel_mapping():
|
||||
"""Test that ROCm shorthand device mapping works correctly."""
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
# Test that the mapping is processed correctly
|
||||
with use_kernel_mapping(kernel_layer_mapping, inherit_mapping=False):
|
||||
mapping = _KERNEL_MAPPING.get()
|
||||
|
||||
# Verify the mapping exists
|
||||
assert "SiluAndMul" in mapping
|
||||
assert "rocm" in mapping["SiluAndMul"]
|
||||
|
||||
# Verify the repository is correctly stored
|
||||
rocm_repos = mapping["SiluAndMul"]["rocm"]
|
||||
assert rocm_repos is not None
|
||||
assert (
|
||||
rocm_repos.repos[Mode.FALLBACK]._repo_id == "kernels-community/activation"
|
||||
)
|
||||
assert rocm_repos.repos[Mode.FALLBACK].layer_name == "SiluAndMul"
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
def test_capability():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
with use_kernel_mapping(
|
||||
@ -183,7 +234,33 @@ def test_layer_fallback_works():
|
||||
kernelize(silu_and_mul, device="cuda", mode=Mode.INFERENCE)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_local_layer_repo():
|
||||
# Fetch a kernel to the local cache.
|
||||
package_name, path = install_kernel("kernels-test/backward-marker-test", "main")
|
||||
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": LocalLayerRepository(
|
||||
# install_kernel will give the fully-resolved path.
|
||||
repo_path=path.parent.parent,
|
||||
package_name=package_name,
|
||||
layer_name="LinearBackward",
|
||||
)
|
||||
}
|
||||
},
|
||||
inherit_mapping=False,
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel])
|
||||
@pytest.mark.parametrize("device", ["cuda"])
|
||||
def test_torch_compile_layer_without_fallback(cls, device):
|
||||
@ -214,7 +291,7 @@ def test_torch_compile_layer_without_fallback(cls, device):
|
||||
torch.testing.assert_close(Y_compiled, Y)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel])
|
||||
@pytest.mark.parametrize("device", ["cuda"])
|
||||
def test_torch_compile_layer_with_fallback(cls, device):
|
||||
@ -237,8 +314,11 @@ def test_torch_compile_layer_with_fallback(cls, device):
|
||||
torch.testing.assert_close(Y_compiled, Y)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_mapping_contexts():
|
||||
# Make sure we start from scratch.
|
||||
register_kernel_mapping(kernel_layer_mapping, inherit_mapping=False)
|
||||
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
@ -281,7 +361,9 @@ def test_mapping_contexts():
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"]
|
||||
.repos[Mode.FALLBACK]
|
||||
._repo_id
|
||||
== "kernels-community/non-existing"
|
||||
)
|
||||
|
||||
@ -292,7 +374,7 @@ def test_mapping_contexts():
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK]._repo_id
|
||||
== "kernels-community/activation"
|
||||
)
|
||||
|
||||
@ -301,7 +383,9 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"]
|
||||
.repos[Mode.FALLBACK]
|
||||
._repo_id
|
||||
== "kernels-community/non-existing"
|
||||
)
|
||||
|
||||
@ -312,7 +396,7 @@ def test_mapping_contexts():
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"]["cuda"].repos[Mode.FALLBACK]._repo_id
|
||||
== "kernels-community/activation"
|
||||
)
|
||||
|
||||
@ -351,7 +435,7 @@ def test_validate_kernel_layer():
|
||||
_validate_layer(cls=BadLayer4, check_cls=SiluAndMul)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_invalid_mode_for_mapping_rejected():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
@ -371,7 +455,7 @@ def test_invalid_mode_for_mapping_rejected():
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
@ -400,11 +484,6 @@ def test_kernel_modes():
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Case 2: register a kernel just for training. If no base kernel
|
||||
# layer is registered, we fall back to the original layer.
|
||||
with use_kernel_mapping(
|
||||
@ -434,12 +513,6 @@ def test_kernel_modes():
|
||||
# TRAINING | TORCH_COMPILE cannot fall back to TRAINING kernel, so uses original.
|
||||
assert linear.n_calls == 1
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE cannot fall back to TRAINING kernel, so uses original.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Case 3: register a kernel just for training and one for fallback.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
@ -461,23 +534,17 @@ def test_kernel_modes():
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# Falls back to TRAINING.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# Falls back to the TRAINING kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE falls back to FALLBACK kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE falls back to FALLBACK kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
# Case 4: register a kernel with two preferences.
|
||||
with use_kernel_mapping(
|
||||
@ -497,25 +564,20 @@ def test_kernel_modes():
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# Falls back to the TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# TRAINING can fall back to TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# Uses TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_fallback_used_when_training():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
@ -580,7 +642,7 @@ def test_invalid_mode_rejected():
|
||||
kernelize(torch.nn.Linear(32, 32), mode=Mode.TORCH_COMPILE)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes_inference():
|
||||
"""Test inference-specific fallback scenarios."""
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
@ -677,7 +739,7 @@ def test_kernel_modes_inference():
|
||||
assert linear.n_calls == 4
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes_mixed():
|
||||
"""Test mixed training and inference kernel scenarios."""
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
@ -767,7 +829,7 @@ def test_kernel_modes_mixed():
|
||||
assert linear.n_calls == 2
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.cuda_only
|
||||
def test_kernel_modes_cross_fallback():
|
||||
"""Test cross-mode fallback scenarios from inference to training modes."""
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
@ -801,7 +863,8 @@ def test_kernel_modes_cross_fallback():
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": {
|
||||
Mode.TRAINING | Mode.TORCH_COMPILE: LayerRepository(
|
||||
Mode.TRAINING
|
||||
| Mode.TORCH_COMPILE: LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
)
|
||||
@ -839,7 +902,8 @@ def test_kernel_modes_cross_fallback():
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
),
|
||||
Mode.INFERENCE | Mode.TORCH_COMPILE: LayerRepository(
|
||||
Mode.INFERENCE
|
||||
| Mode.TORCH_COMPILE: LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
),
|
||||
@ -857,3 +921,95 @@ def test_kernel_modes_cross_fallback():
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE should NOT fall back to inference kernels, use original
|
||||
assert linear.n_calls == 2
|
||||
|
||||
|
||||
def test_layer_versions():
|
||||
@use_kernel_forward_from_hub("Version")
|
||||
class Version(nn.Module):
|
||||
def forward(self) -> str:
|
||||
return "0.0.0"
|
||||
|
||||
version = Version()
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
assert version() == "0.2.0"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version="<1.0.0",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
assert version() == "0.2.0"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version="<0.2.0",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
assert version() == "0.1.1"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version=">0.1.0,<0.2.0",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
assert version() == "0.1.1"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version=">0.2.0",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
with pytest.raises(ValueError, match=r"No version.*satisfies requirement"):
|
||||
kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
|
||||
with pytest.raises(ValueError, match=r"Either a revision or a version.*not both"):
|
||||
use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
revision="v0.1.0",
|
||||
version="<1.0.0",
|
||||
)
|
||||
}
|
||||
}
|
||||
)
|
||||
|
Reference in New Issue
Block a user