mirror of
				https://github.com/huggingface/kernels.git
				synced 2025-10-31 19:54:28 +08:00 
			
		
		
		
	Compare commits
	
		
			23 Commits
		
	
	
		
			fix-comman
			...
			release-0.
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
| a30e82182e | |||
| a7f3b2e8ed | |||
| a6ab5d83ba | |||
| 4f9f1abfb9 | |||
| f94b7780a6 | |||
| bd28883775 | |||
| 498429e322 | |||
| 09c991af4b | |||
| bcf8df5875 | |||
| 239afff6f5 | |||
| c5ec6b900a | |||
| 3a635eaeea | |||
| 32ec496c5a | |||
| 848c6db87b | |||
| fabb8c52d1 | |||
| d66260dd83 | |||
| daac8078fc | |||
| fcb9a80ce6 | |||
| c25bb32e6e | |||
| 2036892762 | |||
| 0f0de049cf | |||
| 59597df03e | |||
| 5e938ede40 | 
							
								
								
									
										120
									
								
								.github/workflows/publish.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								.github/workflows/publish.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @ -0,0 +1,120 @@ | ||||
| name: Publish Python 🐍 distribution 📦 to PyPI and TestPyPI | ||||
|  | ||||
| on: push | ||||
|  | ||||
| jobs: | ||||
|   build: | ||||
|     name: Build distribution 📦 | ||||
|     runs-on: ubuntu-latest | ||||
|  | ||||
|     steps: | ||||
|       - uses: actions/checkout@v4 | ||||
|         with: | ||||
|           persist-credentials: false | ||||
|       - name: Set up Python | ||||
|         uses: actions/setup-python@v5 | ||||
|         with: | ||||
|           python-version: "3.9" | ||||
|       - name: Install pypa/build | ||||
|         run: >- | ||||
|           python3 -m | ||||
|           pip install | ||||
|           build | ||||
|           --user | ||||
|       - name: Build a binary wheel and a source tarball | ||||
|         run: python3 -m build | ||||
|       - name: Store the distribution packages | ||||
|         uses: actions/upload-artifact@v4 | ||||
|         with: | ||||
|           name: python-package-distributions | ||||
|           path: dist/ | ||||
|  | ||||
|   publish-to-pypi: | ||||
|     name: >- | ||||
|       Publish Python 🐍 distribution 📦 to PyPI | ||||
|     if: startsWith(github.ref, 'refs/tags/') # only publish to PyPI on tag pushes | ||||
|     needs: | ||||
|       - build | ||||
|     runs-on: ubuntu-latest | ||||
|     environment: | ||||
|       name: pypi | ||||
|       url: https://pypi.org/p/kernels | ||||
|     permissions: | ||||
|       id-token: write # IMPORTANT: mandatory for trusted publishing | ||||
|  | ||||
|     steps: | ||||
|       - name: Download all the dists | ||||
|         uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: python-package-distributions | ||||
|           path: dist/ | ||||
|       - name: Publish distribution 📦 to PyPI | ||||
|         uses: pypa/gh-action-pypi-publish@release/v1 | ||||
|  | ||||
|   github-release: | ||||
|     name: >- | ||||
|       Sign the Python 🐍 distribution 📦 with Sigstore | ||||
|       and upload them to GitHub Release | ||||
|     needs: | ||||
|       - publish-to-pypi | ||||
|     runs-on: ubuntu-latest | ||||
|  | ||||
|     permissions: | ||||
|       contents: write # IMPORTANT: mandatory for making GitHub Releases | ||||
|       id-token: write # IMPORTANT: mandatory for sigstore | ||||
|  | ||||
|     steps: | ||||
|       - name: Download all the dists | ||||
|         uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: python-package-distributions | ||||
|           path: dist/ | ||||
|       - name: Sign the dists with Sigstore | ||||
|         uses: sigstore/gh-action-sigstore-python@v3.0.0 | ||||
|         with: | ||||
|           inputs: >- | ||||
|             ./dist/*.tar.gz | ||||
|             ./dist/*.whl | ||||
|       - name: Create GitHub Release | ||||
|         env: | ||||
|           GITHUB_TOKEN: ${{ github.token }} | ||||
|         run: >- | ||||
|           gh release create | ||||
|           "$GITHUB_REF_NAME" | ||||
|           --repo "$GITHUB_REPOSITORY" | ||||
|           --notes "" | ||||
|       - name: Upload artifact signatures to GitHub Release | ||||
|         env: | ||||
|           GITHUB_TOKEN: ${{ github.token }} | ||||
|         # Upload to GitHub Release using the `gh` CLI. | ||||
|         # `dist/` contains the built packages, and the | ||||
|         # sigstore-produced signatures and certificates. | ||||
|         run: >- | ||||
|           gh release upload | ||||
|           "$GITHUB_REF_NAME" dist/** | ||||
|           --repo "$GITHUB_REPOSITORY" | ||||
|  | ||||
|   publish-to-testpypi: | ||||
|     name: Publish Python 🐍 distribution 📦 to TestPyPI | ||||
|     needs: | ||||
|       - build | ||||
|     runs-on: ubuntu-latest | ||||
|  | ||||
|     environment: | ||||
|       name: testpypi | ||||
|       url: https://test.pypi.org/p/kernels | ||||
|  | ||||
|     permissions: | ||||
|       id-token: write # IMPORTANT: mandatory for trusted publishing | ||||
|  | ||||
|     steps: | ||||
|       - name: Download all the dists | ||||
|         uses: actions/download-artifact@v4 | ||||
|         with: | ||||
|           name: python-package-distributions | ||||
|           path: dist/ | ||||
|       - name: Publish distribution 📦 to TestPyPI | ||||
|         uses: pypa/gh-action-pypi-publish@release/v1 | ||||
|         with: | ||||
|           repository-url: https://test.pypi.org/legacy/ | ||||
|           skip-existing: true # Only upload when the version is unique. | ||||
							
								
								
									
										14
									
								
								.github/workflows/test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										14
									
								
								.github/workflows/test.yml
									
									
									
									
										vendored
									
									
								
							| @ -24,7 +24,7 @@ jobs: | ||||
|       max-parallel: 4 | ||||
|       matrix: | ||||
|         python-version: ["3.10", "3.12"] | ||||
|         torch-version: ["2.5.1", "2.6.0"] | ||||
|         torch-version: ["2.6.0", "2.7.0"] | ||||
|  | ||||
|     env: | ||||
|       UV_PYTHON_PREFERENCE: only-managed | ||||
| @ -53,6 +53,18 @@ jobs: | ||||
|       - name: Run tests | ||||
|         run: uv run pytest tests | ||||
|  | ||||
|       - name: Check kernel conversion | ||||
|         run: | | ||||
|           uv pip install wheel | ||||
|           uv run kernels to-wheel kernels-community/triton-layer-norm 0.0.1 | ||||
|           uv pip install triton_layer_norm-0.0.1*.whl | ||||
|           uv run python -c "import triton_layer_norm" | ||||
|  | ||||
|       - name: Check README generation | ||||
|         # For now, just checks that generation doesn't fail. | ||||
|         run: | | ||||
|           uv run kernels generate-readme kernels-community/triton-layer-norm | ||||
|  | ||||
|       - name: Import check without torch | ||||
|         run: | | ||||
|           uv pip uninstall torch | ||||
|  | ||||
| @ -61,4 +61,5 @@ the Hub. | ||||
| - [Environment variables](docs/env.md) | ||||
| - [Using kernels in a Docker container](docs/docker.md) | ||||
| - [Kernel requirements](docs/kernel-requirements.md) | ||||
| - [Frequently Asked Questions](docs/faq.md) | ||||
| - [Writing kernels](https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md) using [kernel-builder](https://github.com/huggingface/kernel-builder/) | ||||
|  | ||||
							
								
								
									
										13
									
								
								docs/faq.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								docs/faq.md
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,13 @@ | ||||
| # FAQ | ||||
|  | ||||
| ## Why is the kernelization step needed? | ||||
|  | ||||
| In earlier versions of `kernels`, a layer's `forward` was replaced by | ||||
| `use_kernel_forward_from_hub` and `replace_kernel_forward_from_hub`. The | ||||
| new `forward` would dispatch to a kernel based on the device type, | ||||
| whether a model was training, etc. However, this approach was | ||||
| fundamentally incompatible with `torch.compile` since it relied | ||||
| on data-dependent branching. | ||||
|  | ||||
| To avoid branching, we have to make dispatch decisions ahead of time, | ||||
| which is what the `kernelize` function does. | ||||
| @ -1,8 +1,11 @@ | ||||
| # Kernel requirements | ||||
|  | ||||
| Kernels on the Hub must fulfill the requirements outlined on this page. | ||||
| Kernels on the Hub must fulfill the requirements outlined on this page. By | ||||
| ensuring kernels are compliant, they can be used on a wide range of Linux | ||||
| systems and Torch builds. | ||||
|  | ||||
| You can use [kernel-builder](https://github.com/huggingface/kernel-builder/) | ||||
| to build conforming kernels. | ||||
| to build compliant kernels. | ||||
|  | ||||
| ## Directory layout | ||||
|  | ||||
| @ -10,34 +13,21 @@ A kernel repository on the Hub must contain a `build` directory. This | ||||
| directory contains build variants of a kernel in the form of directories | ||||
| following the template | ||||
| `<framework><version>-cxx<abiver>-<cu><cudaver>-<arch>-<os>`. | ||||
| For example `build/torch26-cxx98-cu118-x86_64-linux`. The currently | ||||
| recommended build variants are: | ||||
| For example `build/torch26-cxx98-cu118-x86_64-linux`. | ||||
|  | ||||
| - `torch25-cxx11-cu118-x86_64-linux` | ||||
| - `torch25-cxx11-cu121-x86_64-linux` | ||||
| - `torch25-cxx11-cu124-x86_64-linux` | ||||
| - `torch25-cxx98-cu118-x86_64-linux` | ||||
| - `torch25-cxx98-cu121-x86_64-linux` | ||||
| - `torch25-cxx98-cu124-x86_64-linux` | ||||
| - `torch26-cxx11-cu118-x86_64-linux` | ||||
| - `torch26-cxx11-cu124-x86_64-linux` | ||||
| - `torch26-cxx11-cu126-x86_64-linux` | ||||
| - `torch26-cxx98-cu118-x86_64-linux` | ||||
| - `torch26-cxx98-cu124-x86_64-linux` | ||||
| - `torch26-cxx98-cu126-x86_64-linux` | ||||
|  | ||||
| This list will be updated as new PyTorch versions are released. Kernels | ||||
| that are in pure Python (e.g. Triton kernels) only need to provide a | ||||
| single build variant: | ||||
|  | ||||
| - `torch-universal` | ||||
|  | ||||
| Each variant directory should contain a single directory with the same name | ||||
| Each variant directory must contain a single directory with the same name | ||||
| as the repository (replacing `-` by `_`). For instance, kernels in the | ||||
| `kernels-community/activation` repository have a directories like | ||||
| `build/<variant>/activation`. This directory | ||||
| must be a Python package with an `__init__.py` file. | ||||
|  | ||||
| ## Build variants | ||||
|  | ||||
| A kernel can be compliant for a specific compute framework (e.g. CUDA) or | ||||
| architecture (e.g. x86_64). For compliance with a compute framework and | ||||
| architecture combination, all the variants from the [build variant list](https://github.com/huggingface/kernel-builder/blob/main/docs/build-variants.md) | ||||
| must be available for that combination. | ||||
|  | ||||
| ## Versioning | ||||
|  | ||||
| Kernels are versioned on the Hub using Git tags. Version tags must be of | ||||
| @ -47,8 +37,14 @@ to resolve the version constraints. | ||||
| ## Native Python module | ||||
|  | ||||
| Kernels will typically contain a native Python module with precompiled | ||||
| compute kernels and bindings. This module must fulfill the following | ||||
| requirements: | ||||
| compute kernels and bindings. This module must fulfill the requirements | ||||
| outlined in this section. For all operating systems, a kernel must not | ||||
| have dynamic library dependencies outside: | ||||
|  | ||||
| - Torch; | ||||
| - CUDA/ROCm libraries installed as dependencies of Torch. | ||||
|  | ||||
| ### Linux | ||||
|  | ||||
| - Use [ABI3/Limited API](https://docs.python.org/3/c-api/stable.html#stable-application-binary-interface) | ||||
|   for compatibility with Python 3.9 and later. | ||||
| @ -62,10 +58,16 @@ requirements: | ||||
|  | ||||
| These requirement can be checked with the ABI checker (see below). | ||||
|  | ||||
| - No dynamic library dependencies outside: | ||||
| ### macOS | ||||
|  | ||||
|   - Torch; | ||||
|   - CUDA/ROCm libraries installed as dependencies of Torch. | ||||
| - Use [ABI3/Limited API](https://docs.python.org/3/c-api/stable.html#stable-application-binary-interface) | ||||
|   for compatibility with Python 3.9 and later. | ||||
| - macOS deployment target 15.0. | ||||
| - Metal 3.0 (`-std=metal3.0`). | ||||
|  | ||||
| The ABI3 requirement can be checked with the ABI checker (see below). | ||||
|  | ||||
| ### ABI checker | ||||
|  | ||||
| The manylinux_2_28 and Python ABI 3.9 version requirements can be checked with | ||||
| [`kernel-abi-check`](https://crates.io/crates/kernel-abi-check): | ||||
| @ -119,9 +121,12 @@ requirements: | ||||
| - The `forward` method has a signature that is compatible with the | ||||
|   `forward` method that it is extending. | ||||
|  | ||||
| The only exception to the _no class variables rule_ is addition of a | ||||
| `has_backward` class variable. This variable is used to indicate whether | ||||
| the layer has a backward pass implemented (`True` when absent). | ||||
| There are two exceptions to the _no class variables rule_: | ||||
|  | ||||
| 1. The `has_backward` variable can be used to indicate whether the layer has | ||||
|    a backward pass implemented (`True` when absent). | ||||
| 2. The `can_torch_compile` variable can be used to indicate whether the layer | ||||
|    supports `torch.compile` (`False` when absent). | ||||
|  | ||||
| This is an example of a pure layer: | ||||
|  | ||||
|  | ||||
| @ -23,33 +23,84 @@ class SiluAndMul(nn.Module): | ||||
|         return F.silu(input[..., :d]) * input[..., d:] | ||||
| ``` | ||||
|  | ||||
| The decorator changes the layer, so that other implementations of the `forward` | ||||
| method can be registered using the name `SiluAndMul`. | ||||
| The decorator does not change the behavior of the class -- it annotates | ||||
| the class with the given name (here `SiluAndMul`). The `kernelize` function | ||||
| described below uses this name to look up kernels for the layer. | ||||
|  | ||||
| ### External layers | ||||
|  | ||||
| An existing layer that does not (yet) have the `use_kernel_forward_from_hub` | ||||
| decorator can be made extensible by by monkeypatching it using the `replace_kernel_forward_from_hub` function. | ||||
| decorator can be made extensible using the `replace_kernel_forward_from_hub` | ||||
| function: | ||||
|  | ||||
| ```python | ||||
| from somelibrary import SiluAndMul | ||||
|  | ||||
| replace_kernel_forward_from_hub(SiluAndMul, "SiluAndMul") | ||||
| register_kernel_mapping(kernel_layer_mapping) | ||||
| ``` | ||||
|  | ||||
| The `register_kernel_mapping` call maps the name `SiluAndMul` to actual | ||||
| hub kernels. See the [Registering a hub kernel for a layer](#registering-a-hub-kernel-for-a-layer) | ||||
| section for more information. | ||||
|  | ||||
| **Warning:** we strongly recommend using layers with a decorator, since | ||||
| it signifies that the maintainer intends to keep the `forward` signature | ||||
| compatible with layers from the hub. | ||||
|  | ||||
| ## Kernelizing a model | ||||
|  | ||||
| A model will not use Hub kernels by default, even if it contains extensible | ||||
| layers. To enable the use of Hub kernels in the model, it needs to be | ||||
| 'kernelized' using the `kernelize` function. This function traverses the | ||||
| model graph and replaces the `forward` methods of extensible layers for which | ||||
| Hub kernels are registered. Kernelize can be used as follows: | ||||
|  | ||||
| ```python | ||||
| model = MyModel(...) | ||||
| model = kernelize(model) | ||||
| ``` | ||||
|  | ||||
| **Note:** the `kernelize` function modifies the model in-place, the model | ||||
| itself is returned as a convenience. | ||||
|  | ||||
| ### Kernel device | ||||
|  | ||||
| Kernels can be registered per device type. For instance, separate `cuda` and | ||||
| `metal` kernels could be registered for the name `SiluAndMul`. By default, | ||||
| `kernelize` will try to infer the device type from the model's parameters. | ||||
| You can pass the device type to `kernelize` if the device type cannot be | ||||
| inferred (e.g. because the model has no parameters): | ||||
|  | ||||
| ```python | ||||
| model = MyModel(...) | ||||
| model = kernelize(model, device="cuda") | ||||
| ``` | ||||
|  | ||||
| ### `torch.compile` | ||||
|  | ||||
| Not all Hub kernels support `torch.compile`. If you want to compile a model | ||||
| after kernelizing it, pass the `needs_torch_compile` argument to ensure that | ||||
| only kernels that support `torch.compile` will be loaded: | ||||
|  | ||||
| ```python | ||||
| model = MyModel(...) | ||||
| model = kernelize(model, needs_torch_compile=True) | ||||
| ``` | ||||
|  | ||||
| ### Fallback forward | ||||
|  | ||||
| The `needs_torch_compile` argument will fall back to the layer's original | ||||
| `forward` if the registered kernels does not support `torch.compile`. You | ||||
| can let `kernelize` raise an exception instead by using `use_fallback=False`: | ||||
|  | ||||
| ```python | ||||
| model = MyModel(...) | ||||
| model = kernelize(model, needs_torch_compile=True, use_fallback=False) | ||||
| ``` | ||||
|  | ||||
| This can be useful if you want to guarantee that Hub kernels are used. | ||||
|  | ||||
| ## Registering a hub kernel for a layer | ||||
|  | ||||
| Once a layer is made extensible, users can register hub kernels for it | ||||
| by name using the `register_kernel_mapping` function. For example: | ||||
| `kernelize`` relies on kernel mappings to find Hub kernels for layers. | ||||
| Kernel mappings map a kernel name such as `SiluAndMul` to a kernel on | ||||
| the Hub. For example: | ||||
|  | ||||
| ```python | ||||
| kernel_layer_mapping = { | ||||
| @ -61,7 +112,11 @@ kernel_layer_mapping = { | ||||
|         ) | ||||
|     } | ||||
| } | ||||
| ``` | ||||
|  | ||||
| You can register such a mapping using `register_kernel_mapping`: | ||||
|  | ||||
| ```python | ||||
| register_kernel_mapping(kernel_layer_mapping) | ||||
| ``` | ||||
|  | ||||
| @ -72,7 +127,7 @@ used with the `use_kernel_mapping` context manager: | ||||
| ```python | ||||
| with use_kernel_mapping(kernel_layer_mapping): | ||||
|     # Use the layer for which the mapping is applied. | ||||
|     ... | ||||
|     model = kernelize(model) | ||||
| ``` | ||||
|  | ||||
| This ensures that the mapping is not active anymore outside the | ||||
|  | ||||
							
								
								
									
										55
									
								
								flake.lock
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										55
									
								
								flake.lock
									
									
									
										generated
									
									
									
								
							| @ -51,18 +51,38 @@ | ||||
|         "type": "github" | ||||
|       } | ||||
|     }, | ||||
|     "hf-nix": { | ||||
|       "inputs": { | ||||
|         "flake-compat": "flake-compat", | ||||
|         "flake-utils": "flake-utils_2", | ||||
|         "nixpkgs": "nixpkgs" | ||||
|       }, | ||||
|       "locked": { | ||||
|         "lastModified": 1750775451, | ||||
|         "narHash": "sha256-HiGqtwzIgUH7Xkh+wgpvHRZGooqrW0z663E6nauczA4=", | ||||
|         "owner": "huggingface", | ||||
|         "repo": "hf-nix", | ||||
|         "rev": "5943c3169e861618a6634bc8dbdb498e413ab9b7", | ||||
|         "type": "github" | ||||
|       }, | ||||
|       "original": { | ||||
|         "owner": "huggingface", | ||||
|         "repo": "hf-nix", | ||||
|         "type": "github" | ||||
|       } | ||||
|     }, | ||||
|     "nixpkgs": { | ||||
|       "locked": { | ||||
|         "lastModified": 1737453259, | ||||
|         "narHash": "sha256-5LaFI9SQwCZmJDasMoYMdzNouWXNk3BvjKcO19tq1Rs=", | ||||
|         "lastModified": 1747820358, | ||||
|         "narHash": "sha256-fTqsZsUX6M3yeEvgyQvXcbGmT2CaRVyVwsi8eK29Oj4=", | ||||
|         "owner": "danieldk", | ||||
|         "repo": "nixpkgs", | ||||
|         "rev": "e0372dbcfd19ddd783b7c3b3868f19322f83318e", | ||||
|         "rev": "d3c1681180717528068082103bf323147de6ab0b", | ||||
|         "type": "github" | ||||
|       }, | ||||
|       "original": { | ||||
|         "owner": "danieldk", | ||||
|         "ref": "outlines-v0.1.4-tgi", | ||||
|         "ref": "cudatoolkit-12.9-kernel-builder", | ||||
|         "repo": "nixpkgs", | ||||
|         "type": "github" | ||||
|       } | ||||
| @ -70,11 +90,11 @@ | ||||
|     "root": { | ||||
|       "inputs": { | ||||
|         "flake-utils": "flake-utils", | ||||
|         "hf-nix": "hf-nix", | ||||
|         "nixpkgs": [ | ||||
|           "tgi-nix", | ||||
|           "hf-nix", | ||||
|           "nixpkgs" | ||||
|         ], | ||||
|         "tgi-nix": "tgi-nix" | ||||
|         ] | ||||
|       } | ||||
|     }, | ||||
|     "systems": { | ||||
| @ -106,27 +126,6 @@ | ||||
|         "repo": "default", | ||||
|         "type": "github" | ||||
|       } | ||||
|     }, | ||||
|     "tgi-nix": { | ||||
|       "inputs": { | ||||
|         "flake-compat": "flake-compat", | ||||
|         "flake-utils": "flake-utils_2", | ||||
|         "nixpkgs": "nixpkgs" | ||||
|       }, | ||||
|       "locked": { | ||||
|         "lastModified": 1741617161, | ||||
|         "narHash": "sha256-cwKYAsIVSLtoLbG48+oi3NkSrvuZRLYs8lkJmpDsTw0=", | ||||
|         "owner": "huggingface", | ||||
|         "repo": "text-generation-inference-nix", | ||||
|         "rev": "5946021ec6cb6aae18158a9dc27f893cfbab2925", | ||||
|         "type": "github" | ||||
|       }, | ||||
|       "original": { | ||||
|         "owner": "huggingface", | ||||
|         "ref": "kernels-0.2.0", | ||||
|         "repo": "text-generation-inference-nix", | ||||
|         "type": "github" | ||||
|       } | ||||
|     } | ||||
|   }, | ||||
|   "root": "root", | ||||
|  | ||||
							
								
								
									
										15
									
								
								flake.nix
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								flake.nix
									
									
									
									
									
								
							| @ -1,7 +1,7 @@ | ||||
| { | ||||
|   inputs = { | ||||
|     tgi-nix.url = "github:huggingface/text-generation-inference-nix/kernels-0.2.0"; | ||||
|     nixpkgs.follows = "tgi-nix/nixpkgs"; | ||||
|     hf-nix.url = "github:huggingface/hf-nix"; | ||||
|     nixpkgs.follows = "hf-nix/nixpkgs"; | ||||
|     flake-utils.url = "github:numtide/flake-utils"; | ||||
|   }; | ||||
|   outputs = | ||||
| @ -9,21 +9,21 @@ | ||||
|       self, | ||||
|       nixpkgs, | ||||
|       flake-utils, | ||||
|       tgi-nix, | ||||
|       hf-nix, | ||||
|     }: | ||||
|     flake-utils.lib.eachDefaultSystem ( | ||||
|       system: | ||||
|       let | ||||
|         pkgs = import nixpkgs { | ||||
|           inherit system; | ||||
|           inherit (tgi-nix.lib) config; | ||||
|           config = hf-nix.lib.config system; | ||||
|           overlays = [ | ||||
|             tgi-nix.overlays.default | ||||
|             hf-nix.overlays.default | ||||
|           ]; | ||||
|         }; | ||||
|       in | ||||
|       { | ||||
|         formatter = pkgs.nixfmt-rfc-style; | ||||
|         formatter = pkgs.nixfmt-tree; | ||||
|         devShells = with pkgs; rec { | ||||
|           default = mkShell { | ||||
|             buildInputs = | ||||
| @ -34,10 +34,13 @@ | ||||
|                 ruff | ||||
|               ] | ||||
|               ++ (with python3.pkgs; [ | ||||
|                 docutils | ||||
|                 huggingface-hub | ||||
|                 pytest | ||||
|                 pytest-benchmark | ||||
|                 pyyaml | ||||
|                 torch | ||||
|                 types-pyyaml | ||||
|                 venvShellHook | ||||
|               ]); | ||||
|  | ||||
|  | ||||
| @ -1,6 +1,6 @@ | ||||
| [project] | ||||
| name = "kernels" | ||||
| version = "0.4.4" | ||||
| version = "0.6.2" | ||||
| description = "Download compute kernels" | ||||
| authors = [ | ||||
|   { name = "OlivierDehaene", email = "olivier@huggingface.co" }, | ||||
| @ -14,6 +14,7 @@ requires-python = ">= 3.9" | ||||
| dependencies = [ | ||||
|   "huggingface_hub>=0.26.0,<1.0", | ||||
|   "packaging>=20.0", | ||||
|   "pyyaml>=6", | ||||
|   "tomli>=2.0; python_version<'3.11'", | ||||
| ] | ||||
|  | ||||
| @ -28,6 +29,7 @@ dev = [ | ||||
|   # Whatever version is compatible with pytest. | ||||
|   "pytest-benchmark", | ||||
|   "torch >=2.5", | ||||
|   "types-pyyaml" | ||||
| ] | ||||
|  | ||||
| [project.optional-dependencies] | ||||
|  | ||||
							
								
								
									
										4
									
								
								pytest.ini
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										4
									
								
								pytest.ini
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,4 @@ | ||||
| [pytest] | ||||
| markers = | ||||
|     darwin_only: marks tests that should only run on macOS | ||||
|     linux_only: marks tests that should only run on Linux | ||||
| @ -1,6 +1,7 @@ | ||||
| from kernels.layer import ( | ||||
|     Device, | ||||
|     LayerRepository, | ||||
|     kernelize, | ||||
|     register_kernel_mapping, | ||||
|     replace_kernel_forward_from_hub, | ||||
|     use_kernel_forward_from_hub, | ||||
| @ -26,4 +27,5 @@ __all__ = [ | ||||
|     "replace_kernel_forward_from_hub", | ||||
|     "LayerRepository", | ||||
|     "Device", | ||||
|     "kernelize", | ||||
| ] | ||||
|  | ||||
							
								
								
									
										751
									
								
								src/kernels/_vendored/convert_rst_to_mdx.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										751
									
								
								src/kernels/_vendored/convert_rst_to_mdx.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,751 @@ | ||||
| # coding=utf-8 | ||||
| # Copyright 2021 The HuggingFace Team. All rights reserved. | ||||
| # | ||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| # you may not use this file except in compliance with the License. | ||||
| # You may obtain a copy of the License at | ||||
| # | ||||
| #     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| # | ||||
| # Unless required by applicable law or agreed to in writing, software | ||||
| # distributed under the License is distributed on an "AS IS" BASIS, | ||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| # See the License for the specific language governing permissions and | ||||
| # limitations under the License. | ||||
|  | ||||
| # Vendored from https://github.com/huggingface/doc-builder/blob/main/src/doc_builder/convert_rst_to_mdx.py | ||||
|  | ||||
| import re | ||||
|  | ||||
| # Re pattern to catch things inside ` ` in :obj:`thing`. | ||||
| _re_obj = re.compile(r":obj:`([^`]+)`") | ||||
| # Re pattern to catch things inside ` ` in :math:`thing`. | ||||
| _re_math = re.compile(r":math:`([^`]+)`") | ||||
| # Re pattern to catch things between single backquotes. | ||||
| _re_single_backquotes = re.compile(r"(^|[^`])`([^`]+)`([^`]|$)") | ||||
| # Re pattern to catch things between double backquotes. | ||||
| _re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)") | ||||
| # Re pattern to catch things inside ` ` in :func/class/meth:`thing`. | ||||
| _re_func_class = re.compile(r":(?:func|class|meth):`([^`]+)`") | ||||
|  | ||||
|  | ||||
| def convert_rst_formatting(text): | ||||
|     """ | ||||
|     Convert rst syntax for formatting to markdown in a given text. | ||||
|     """ | ||||
|     # Remove :class:, :func: and :meth: markers. To code-links and put double backquotes | ||||
|     # (to not be caught by the italic conversion). | ||||
|     text = _re_func_class.sub(r"[``\1``]", text) | ||||
|     # Remove :obj: markers. What's after is in a single backquotes so we put in double backquotes | ||||
|     # (to not be caught by the italic conversion). | ||||
|     text = _re_obj.sub(r"``\1``", text) | ||||
|     # Remove :math: markers. | ||||
|     text = _re_math.sub(r"\\\\(\1\\\\)", text) | ||||
|     # Convert content in single backquotes to italic. | ||||
|     text = _re_single_backquotes.sub(r"\1*\2*\3", text) | ||||
|     # Convert content in double backquotes to single backquotes. | ||||
|     text = _re_double_backquotes.sub(r"\1`\2`\3", text) | ||||
|     # Remove remaining :: | ||||
|     text = re.sub(r"::\n", "", text) | ||||
|  | ||||
|     # Remove new lines inside blocks in backsticks as they will be kept. | ||||
|     lines = text.split("\n") | ||||
|     in_code = False | ||||
|     text = None | ||||
|     for line in lines: | ||||
|         if in_code: | ||||
|             splits = line.split("`") | ||||
|             in_code = len(splits) > 1 and len(splits) % 2 == 1 | ||||
|             if len(splits) == 1: | ||||
|                 # Some forgotten lone backstick | ||||
|                 text += "\n" + line | ||||
|             else: | ||||
|                 text += " " + line.lstrip() | ||||
|         else: | ||||
|             if text is not None: | ||||
|                 text += "\n" + line | ||||
|             else: | ||||
|                 text = line | ||||
|             splits = line.split("`") | ||||
|             in_code = len(splits) % 2 == 0 | ||||
|     return text | ||||
|  | ||||
|  | ||||
| # Re pattern to catch description and url in links of the form `description <url>`_. | ||||
| _re_links = re.compile(r"`([^`]+\S)\s+</*([^/][^>`]*)>`_+") | ||||
| # Re pattern to catch description and url in links of the form :prefix_link:`description <url>`_. | ||||
| _re_prefix_links = re.compile(r":prefix_link:`([^`]+\S)\s+</*([^/][^>`]*)>`") | ||||
| # Re pattern to catch reference in links of the form :doc:`reference`. | ||||
| _re_simple_doc = re.compile(r":doc:`([^`<]*)`") | ||||
| # Re pattern to catch description and reference in links of the form :doc:`description <reference>`. | ||||
| _re_doc_with_description = re.compile(r":doc:`([^`<]+\S)\s+</*([^/][^>`]*)>`") | ||||
| # Re pattern to catch reference in links of the form :ref:`reference`. | ||||
| _re_simple_ref = re.compile(r":ref:`([^`<]*)`") | ||||
| # Re pattern to catch description and reference in links of the form :ref:`description <reference>`. | ||||
| _re_ref_with_description = re.compile(r":ref:`([^`<]+\S)\s+<([^>]*)>`") | ||||
|  | ||||
|  | ||||
| def convert_rst_links(text, page_info): | ||||
|     """ | ||||
|     Convert the rst links in text to markdown. | ||||
|     """ | ||||
|     if "package_name" not in page_info: | ||||
|         raise ValueError("`page_info` must contain at least the package_name.") | ||||
|     package_name = page_info["package_name"] | ||||
|     version = page_info.get("version", "main") | ||||
|     language = page_info.get("language", "en") | ||||
|     no_prefix = page_info.get("no_prefix", False) | ||||
|  | ||||
|     prefix = "" if no_prefix else f"/docs/{package_name}/{version}/{language}/" | ||||
|     # Links of the form :doc:`page` | ||||
|     text = _re_simple_doc.sub(rf"[\1]({prefix}\1)", text) | ||||
|     # Links of the form :doc:`text <page>` | ||||
|     text = _re_doc_with_description.sub(rf"[\1]({prefix}\2)", text) | ||||
|  | ||||
|     if "page" in page_info and not no_prefix: | ||||
|         page = str(page_info["page"]) | ||||
|         if page.endswith(".html"): | ||||
|             page = page[:-5] | ||||
|         prefix = f"{prefix}{page}" | ||||
|     else: | ||||
|         prefix = "" | ||||
|     # Refs of the form :ref:`page` | ||||
|     text = _re_simple_ref.sub(rf"[\1]({prefix}#\1)", text) | ||||
|     # Refs of the form :ref:`text <page>` | ||||
|     text = _re_ref_with_description.sub(rf"[\1]({prefix}#\2)", text) | ||||
|  | ||||
|     # Links with a prefix | ||||
|     # TODO: when it exists, use the API to deal with prefix links properly. | ||||
|     prefix = f"https://github.com/huggingface/{package_name}/tree/main/" | ||||
|     text = _re_prefix_links.sub(rf"[\1]({prefix}\2)", text) | ||||
|     # Other links | ||||
|     text = _re_links.sub(r"[\1](\2)", text) | ||||
|     # Relative links or Transformers links need to remove the .html | ||||
|     if ( | ||||
|         "(https://https://huggingface.co/" in text | ||||
|         or re.search(r"\(\.+/", text) is not None | ||||
|     ): | ||||
|         text = text.replace(".html", "") | ||||
|     return text | ||||
|  | ||||
|  | ||||
| # Re pattern that catches examples blocks of the form `Example::`. | ||||
| _re_example = re.compile(r"^\s*(\S.*)::\s*$") | ||||
| # Re pattern that catches rst blocks of the form `.. block_name::`. | ||||
| _re_block = re.compile(r"^\s*\.\.\s+(\S+)::") | ||||
| # Re pattern that catches what's after the :: in rst blocks of the form `.. block_name:: something`. | ||||
| _re_block_info = re.compile(r"^\s*\.\.\s+\S+::\s*(\S.*)$") | ||||
|  | ||||
|  | ||||
| def is_empty_line(line): | ||||
|     return len(line) == 0 or line.isspace() | ||||
|  | ||||
|  | ||||
| def find_indent(line): | ||||
|     """ | ||||
|     Returns the number of spaces that start a line indent. | ||||
|     """ | ||||
|     search = re.search(r"^(\s*)(?:\S|$)", line) | ||||
|     if search is None: | ||||
|         return 0 | ||||
|     return len(search.groups()[0]) | ||||
|  | ||||
|  | ||||
| _re_rst_option = re.compile(r"^\s*:(\S+):(.*)$") | ||||
|  | ||||
|  | ||||
| def convert_special_chars(text): | ||||
|     """ | ||||
|     Converts { and < that have special meanings in MDX. | ||||
|     """ | ||||
|     text = text.replace("{", "&lcub;") | ||||
|     # We don't want to replace those by the HTML code, so we temporarily set them at LTHTML | ||||
|     text = re.sub( | ||||
|         r"<(img|br|hr|Youtube)", r"LTHTML\1", text | ||||
|     )  # html void elements with no closing counterpart | ||||
|     _re_lt_html = re.compile(r"<(\S+)([^>]*>)(((?!</\1>).)*)<(/\1>)", re.DOTALL) | ||||
|     while _re_lt_html.search(text): | ||||
|         text = _re_lt_html.sub(r"LTHTML\1\2\3LTHTML\5", text) | ||||
|     text = re.sub(r"(^|[^<])<([^<]|$)", r"\1&lt;\2", text) | ||||
|     text = text.replace("LTHTML", "<") | ||||
|     return text | ||||
|  | ||||
|  | ||||
| def parse_options(block_content): | ||||
|     """ | ||||
|     Parses the option in some rst block content. | ||||
|     """ | ||||
|     block_lines = block_content.split("\n") | ||||
|     block_indent = find_indent(block_lines[0]) | ||||
|     current_option = None | ||||
|     result = {} | ||||
|     for line in block_lines: | ||||
|         if _re_rst_option.search(line) is not None: | ||||
|             current_option, value = _re_rst_option.search(line).groups() | ||||
|             result[current_option] = value.lstrip() | ||||
|         elif find_indent(line) > block_indent: | ||||
|             result[current_option] += " " + line.lstrip() | ||||
|  | ||||
|     return result | ||||
|  | ||||
|  | ||||
| def apply_min_indent(text, min_indent): | ||||
|     """ | ||||
|     Make sure all lines in a text are have a minimum indentation. | ||||
|  | ||||
|     Args: | ||||
|         text (`str`): The text to treat. | ||||
|         min_indent (`int`): The minimal indentation. | ||||
|  | ||||
|     Returns: | ||||
|         `str`: The processed text. | ||||
|     """ | ||||
|     lines = text.split("\n") | ||||
|     idx = 0 | ||||
|     while idx < len(lines): | ||||
|         if is_empty_line(lines[idx]): | ||||
|             idx += 1 | ||||
|             continue | ||||
|         indent = find_indent(lines[idx]) | ||||
|         if indent < min_indent: | ||||
|             while idx < len(lines) and ( | ||||
|                 find_indent(lines[idx]) >= indent or is_empty_line(lines[idx]) | ||||
|             ): | ||||
|                 if not is_empty_line(lines[idx]): | ||||
|                     lines[idx] = " " * (min_indent - indent) + lines[idx] | ||||
|                 idx += 1 | ||||
|         else: | ||||
|             idx += 1 | ||||
|  | ||||
|     return "\n".join(lines) | ||||
|  | ||||
|  | ||||
| def convert_rst_blocks(text, page_info): | ||||
|     """ | ||||
|     Converts rst special blocks (examples, notes) into MDX. | ||||
|     """ | ||||
|     if "package_name" not in page_info: | ||||
|         raise ValueError("`page_info` must contain at least the package_name.") | ||||
|     package_name = page_info["package_name"] | ||||
|     version = page_info.get("version", "main") | ||||
|     language = page_info.get("language", "en") | ||||
|  | ||||
|     lines = text.split("\n") | ||||
|     idx = 0 | ||||
|     new_lines = [] | ||||
|     while idx < len(lines): | ||||
|         block_type = None | ||||
|         block_info = None | ||||
|         if _re_block.search(lines[idx]) is not None: | ||||
|             block_type = _re_block.search(lines[idx]).groups()[0] | ||||
|             if _re_block_info.search(lines[idx]) is not None: | ||||
|                 block_info = _re_block_info.search(lines[idx]).groups()[0] | ||||
|         elif _re_example.search(lines[idx]) is not None: | ||||
|             block_type = "code-block-example" | ||||
|             block_info = "python" | ||||
|             example_name = _re_example.search(lines[idx]).groups()[0] | ||||
|             new_lines.append(f"<exampletitle>{example_name}:</exampletitle>\n") | ||||
|         elif lines[idx].strip() == "..": | ||||
|             block_type = "comment" | ||||
|         elif lines[idx].strip() == "::": | ||||
|             block_type = "code-block" | ||||
|  | ||||
|         if block_type is not None: | ||||
|             block_indent = find_indent(lines[idx]) | ||||
|             # Find the next nonempty line | ||||
|             idx += 1 | ||||
|             while idx < len(lines) and is_empty_line(lines[idx]): | ||||
|                 idx += 1 | ||||
|             # Grab the indent of the return line, this block will stop when we unindent under it (or has already) | ||||
|             example_indent = ( | ||||
|                 find_indent(lines[idx]) if idx < len(lines) else block_indent | ||||
|             ) | ||||
|  | ||||
|             if example_indent == block_indent: | ||||
|                 block_content = "" | ||||
|             else: | ||||
|                 block_lines = [] | ||||
|                 while idx < len(lines) and ( | ||||
|                     is_empty_line(lines[idx]) | ||||
|                     or find_indent(lines[idx]) >= example_indent | ||||
|                 ): | ||||
|                     block_lines.append(lines[idx][example_indent:]) | ||||
|                     idx += 1 | ||||
|                 block_content = "\n".join(block_lines) | ||||
|  | ||||
|             if block_type in ["code", "code-block"]: | ||||
|                 prefix = "```" if block_info is None else f"```{block_info}" | ||||
|                 new_lines.append(f"{prefix}\n{block_content.strip()}\n```\n") | ||||
|             elif block_type == "code-block-example": | ||||
|                 prefix = f"<example>```{block_info}" | ||||
|                 new_lines.append(f"{prefix}\n{block_content.strip()}\n```\n</example>") | ||||
|             elif block_type == "note": | ||||
|                 new_lines.append( | ||||
|                     apply_min_indent( | ||||
|                         f"<Tip>\n\n{block_content.strip()}\n\n</Tip>\n", block_indent | ||||
|                     ) | ||||
|                 ) | ||||
|             elif block_type == "warning": | ||||
|                 new_lines.append( | ||||
|                     apply_min_indent( | ||||
|                         "<Tip warning={true}>\n\n" | ||||
|                         + f"{block_content.strip()}\n\n</Tip>\n", | ||||
|                         block_indent, | ||||
|                     ) | ||||
|                 ) | ||||
|             elif block_type == "raw": | ||||
|                 new_lines.append(block_content.strip() + "\n") | ||||
|             elif block_type == "math": | ||||
|                 new_lines.append(f"$${block_content.strip()}$$\n") | ||||
|             elif block_type == "comment": | ||||
|                 new_lines.append(f"<!--{block_content.strip()}\n-->\n") | ||||
|             elif block_type == "autofunction": | ||||
|                 if block_info is not None: | ||||
|                     new_lines.append(f"[[autodoc]] {block_info}\n") | ||||
|             elif block_type == "autoclass": | ||||
|                 if block_info is not None: | ||||
|                     block = f"[[autodoc]] {block_info}\n" | ||||
|                     options = parse_options(block_content) | ||||
|                     if "special-members" in options: | ||||
|                         special_members = options["special-members"].split(", ") | ||||
|                         for special_member in special_members: | ||||
|                             block += f"    - {special_member}\n" | ||||
|                     if "members" in options: | ||||
|                         members = options["members"] | ||||
|                         if len(members) == 0: | ||||
|                             block += "    - all\n" | ||||
|                         else: | ||||
|                             for member in members.split(", "): | ||||
|                                 block += f"    - {member}\n" | ||||
|                     new_lines.append(block) | ||||
|             elif block_type == "image": | ||||
|                 options = parse_options(block_content) | ||||
|                 target = options.pop("target", None) | ||||
|                 if block_info is not None: | ||||
|                     options["src"] = block_info | ||||
|                 else: | ||||
|                     if target is None: | ||||
|                         raise ValueError("Image source not defined.") | ||||
|                     options["src"] = target | ||||
|                 # Adapt path | ||||
|                 options["src"] = options["src"].replace( | ||||
|                     "/imgs/", f"/docs/{package_name}/{version}/{language}/imgs/" | ||||
|                 ) | ||||
|                 html_code = " ".join( | ||||
|                     [f'{key}="{value}"' for key, value in options.items()] | ||||
|                 ) | ||||
|                 new_lines.append(f"<img {html_code}/>\n") | ||||
|  | ||||
|             else: | ||||
|                 new_lines.append( | ||||
|                     f"{block_type},{block_info}\n{block_content.rstrip()}\n" | ||||
|                 ) | ||||
|  | ||||
|         else: | ||||
|             new_lines.append(lines[idx]) | ||||
|             idx += 1 | ||||
|  | ||||
|     return "\n".join(new_lines) | ||||
|  | ||||
|  | ||||
| # Re pattern that catches rst args blocks of the form `Parameters:`. | ||||
| _re_args = re.compile(r"^\s*(Args?|Arguments?|Attributes?|Params?|Parameters?):\s*$") | ||||
| # Re pattern that catches return blocks of the form `Return:`. | ||||
| _re_returns = re.compile(r"^\s*(Return|Yield|Raise)s?:\s*$") | ||||
|  | ||||
|  | ||||
| def split_return_line(line): | ||||
|     """ | ||||
|     Split the return line with format `type: some doc`. Type may contain colons in the form of :obj: or :class:. | ||||
|     """ | ||||
|     splits_on_colon = line.split(":") | ||||
|     idx = 1 | ||||
|     while idx < len(splits_on_colon) and splits_on_colon[idx] in ["obj", "class"]: | ||||
|         idx += 2 | ||||
|     if idx >= len(splits_on_colon): | ||||
|         if len(splits_on_colon) % 2 == 1 and re.search(r"`\w+`$", line.rstrip()): | ||||
|             return line, "" | ||||
|         return None, line | ||||
|     return ":".join(splits_on_colon[:idx]), ":".join(splits_on_colon[idx:]) | ||||
|  | ||||
|  | ||||
| def split_raise_line(line): | ||||
|     """ | ||||
|     Split the raise line with format `SomeError some doc`. | ||||
|     """ | ||||
|     splits_on_colon = line.strip().split(" ") | ||||
|     error_type, doc = splits_on_colon[0], " ".join(splits_on_colon[1:]) | ||||
|     if error_type and error_type[-1] == ":": | ||||
|         error_type = error_type[:-1] | ||||
|     return error_type, doc | ||||
|  | ||||
|  | ||||
| def split_arg_line(line): | ||||
|     """ | ||||
|     Split the return line with format `type: some doc`. Type may contain colons in the form of :obj: or :class:. | ||||
|     """ | ||||
|     splits_on_colon = line.split(":") | ||||
|     idx = 1 | ||||
|     while idx < len(splits_on_colon) and splits_on_colon[idx] in ["obj", "class"]: | ||||
|         idx += 2 | ||||
|     if idx >= len(splits_on_colon): | ||||
|         return line, "" | ||||
|     return ":".join(splits_on_colon[:idx]), ":".join(splits_on_colon[idx:]) | ||||
|  | ||||
|  | ||||
| class InvalidRstDocstringError(ValueError): | ||||
|     pass | ||||
|  | ||||
|  | ||||
| _re_parameters = re.compile( | ||||
|     r"<parameters>(((?!<parameters>).)*)</parameters>", re.DOTALL | ||||
| ) | ||||
| _re_md_link = re.compile(r"\[(.+)\]\(.+\)", re.DOTALL) | ||||
|  | ||||
|  | ||||
| def parse_rst_docstring(docstring): | ||||
|     """ | ||||
|     Parses a docstring written in rst, in particular the list of arguments and the return type. | ||||
|     """ | ||||
|     lines = docstring.split("\n") | ||||
|     idx = 0 | ||||
|     while idx < len(lines): | ||||
|         # Parameters section | ||||
|         if _re_args.search(lines[idx]) is not None: | ||||
|             # Title of the section. | ||||
|             lines[idx] = "<parameters>\n" | ||||
|             # Find the next nonempty line | ||||
|             idx += 1 | ||||
|             while is_empty_line(lines[idx]): | ||||
|                 idx += 1 | ||||
|             # Grab the indent of the list of parameters, this block will stop when we unindent under it or we see the | ||||
|             # Returns or Raises block. | ||||
|             param_indent = find_indent(lines[idx]) | ||||
|             while ( | ||||
|                 idx < len(lines) | ||||
|                 and find_indent(lines[idx]) == param_indent | ||||
|                 and _re_returns.search(lines[idx]) is None | ||||
|             ): | ||||
|                 intro, doc = split_arg_line(lines[idx]) | ||||
|                 # Line starting with a > after indent indicate a "section title" in the parameters. | ||||
|                 if intro.lstrip().startswith(">"): | ||||
|                     lines[idx] = intro.lstrip() | ||||
|                 else: | ||||
|                     lines[idx] = ( | ||||
|                         re.sub(r"^\s*(\S+)(\s)?", r"- **\1**\2", intro) + " --" + doc | ||||
|                     ) | ||||
|                 idx += 1 | ||||
|                 while idx < len(lines) and ( | ||||
|                     is_empty_line(lines[idx]) or find_indent(lines[idx]) > param_indent | ||||
|                 ): | ||||
|                     idx += 1 | ||||
|             lines.insert(idx, "</parameters>\n") | ||||
|             idx += 1 | ||||
|  | ||||
|         # Returns section | ||||
|         elif _re_returns.search(lines[idx]) is not None: | ||||
|             # tag is either `return` or `yield` | ||||
|             tag = _re_returns.match(lines[idx]).group(1).lower() | ||||
|             # Title of the section. | ||||
|             lines[idx] = f"<{tag}s>\n" | ||||
|             # Find the next nonempty line | ||||
|             idx += 1 | ||||
|             while is_empty_line(lines[idx]): | ||||
|                 idx += 1 | ||||
|  | ||||
|             # Grab the indent of the return line, this block will stop when we unindent under it. | ||||
|             return_indent = find_indent(lines[idx]) | ||||
|             raised_errors = [] | ||||
|             # The line may contain the return type. | ||||
|             if tag in ["return", "yield"]: | ||||
|                 return_type, return_description = split_return_line(lines[idx]) | ||||
|                 lines[idx] = return_description | ||||
|                 idx += 1 | ||||
|                 while idx < len(lines) and ( | ||||
|                     is_empty_line(lines[idx]) | ||||
|                     or find_indent(lines[idx]) >= return_indent | ||||
|                 ): | ||||
|                     idx += 1 | ||||
|             else: | ||||
|                 while idx < len(lines) and find_indent(lines[idx]) == return_indent: | ||||
|                     return_type, return_description = split_raise_line(lines[idx]) | ||||
|                     raised_error = re.sub(r"^\s*`?([\w\.]*)`?$", r"``\1``", return_type) | ||||
|                     lines[idx] = "- " + raised_error + " -- " + return_description | ||||
|                     md_link = _re_md_link.match(raised_error) | ||||
|                     if md_link: | ||||
|                         raised_error = md_link[1] | ||||
|                         raised_error = re.sub( | ||||
|                             r"^\s*`?([\w\.]*)`?$", r"``\1``", raised_error | ||||
|                         ) | ||||
|                     if raised_error not in raised_errors: | ||||
|                         raised_errors.append(raised_error) | ||||
|                     idx += 1 | ||||
|                     while idx < len(lines) and ( | ||||
|                         is_empty_line(lines[idx]) | ||||
|                         or find_indent(lines[idx]) > return_indent | ||||
|                     ): | ||||
|                         idx += 1 | ||||
|  | ||||
|             lines.insert(idx, f"</{tag}s>\n") | ||||
|             idx += 1 | ||||
|  | ||||
|             # Return block finished, we insert the return type if one was specified | ||||
|             if tag in ["return", "yield"] and return_type is not None: | ||||
|                 lines[idx - 1] += f"\n<{tag}type>{return_type}</{tag}type>\n" | ||||
|             elif len(raised_errors) > 0: | ||||
|                 # raised errors | ||||
|                 lines[ | ||||
|                     idx - 1 | ||||
|                 ] += f"\n<raisederrors>{' or '.join(raised_errors)}</raisederrors>\n" | ||||
|  | ||||
|         else: | ||||
|             idx += 1 | ||||
|  | ||||
|     result = "\n".join(lines) | ||||
|  | ||||
|     # combine multiple <parameters> blocks into one block | ||||
|     if result.count("<parameters>") > 1: | ||||
|         parameters_blocks = _re_parameters.findall(result) | ||||
|         parameters_blocks = [pb[0].strip() for pb in parameters_blocks] | ||||
|         parameters_str = "\n".join(parameters_blocks) | ||||
|         result = _re_parameters.sub("", result) | ||||
|         result += f"\n<parameters>{parameters_str}</parameters>\n" | ||||
|  | ||||
|     return result | ||||
|  | ||||
|  | ||||
| _re_list = re.compile(r"^\s*(-|\*|\d+\.)\s") | ||||
| _re_autodoc = re.compile(r"^\s*\[\[autodoc\]\]\s+(\S+)\s*$") | ||||
|  | ||||
|  | ||||
| def remove_indent(text): | ||||
|     """ | ||||
|     Remove indents in text, except the one linked to lists (or sublists). | ||||
|     """ | ||||
|     lines = text.split("\n") | ||||
|     # List of indents to remember for nested lists | ||||
|     current_indents = [] | ||||
|     # List of new indents to remember for nested lists | ||||
|     new_indents = [] | ||||
|     is_inside_code = False | ||||
|     code_indent = 0 | ||||
|     for idx, line in enumerate(lines): | ||||
|         # Line is an item in a list. | ||||
|         if _re_list.search(line) is not None: | ||||
|             indent = find_indent(line) | ||||
|             # Is it a new list / new level of nestedness? | ||||
|             if len(current_indents) == 0 or indent > current_indents[-1]: | ||||
|                 current_indents.append(indent) | ||||
|                 new_indent = 0 if len(new_indents) == 0 else new_indents[-1] | ||||
|                 lines[idx] = " " * new_indent + line[indent:] | ||||
|                 new_indent += len(_re_list.search(line).groups()[0]) + 1 | ||||
|                 new_indents.append(new_indent) | ||||
|             # Otherwise it's an existing level of list (current one, or previous one) | ||||
|             else: | ||||
|                 # Let's find the proper level of indentation | ||||
|                 level = len(current_indents) - 1 | ||||
|                 while level >= 0 and current_indents[level] != indent: | ||||
|                     level -= 1 | ||||
|                 current_indents = current_indents[: level + 1] | ||||
|                 new_indents = new_indents[:level] | ||||
|                 new_indent = 0 if len(new_indents) == 0 else new_indents[-1] | ||||
|                 lines[idx] = " " * new_indent + line[indent:] | ||||
|                 new_indent += len(_re_list.search(line).groups()[0]) + 1 | ||||
|                 new_indents.append(new_indent) | ||||
|  | ||||
|         # Line is an autodoc, we keep the indent for the list just after if there is one. | ||||
|         elif _re_autodoc.search(line) is not None: | ||||
|             indent = find_indent(line) | ||||
|             current_indents = [indent] | ||||
|             new_indents = [4] | ||||
|             lines[idx] = line.strip() | ||||
|  | ||||
|         # Deal with empty lines separately | ||||
|         elif is_empty_line(line): | ||||
|             lines[idx] = "" | ||||
|  | ||||
|         # Code blocks | ||||
|         elif line.lstrip().startswith("```"): | ||||
|             is_inside_code = not is_inside_code | ||||
|             if is_inside_code: | ||||
|                 code_indent = find_indent(line) | ||||
|             lines[idx] = line[code_indent:] | ||||
|         elif is_inside_code: | ||||
|             lines[idx] = line[code_indent:] | ||||
|  | ||||
|         else: | ||||
|             indent = find_indent(line) | ||||
|             if len(current_indents) > 0 and indent > current_indents[-1]: | ||||
|                 lines[idx] = " " * new_indents[-1] + line[indent:] | ||||
|             elif len(current_indents) > 0: | ||||
|                 # Let's find the proper level of indentation | ||||
|                 level = len(current_indents) - 1 | ||||
|                 while level >= 0 and current_indents[level] > indent: | ||||
|                     level -= 1 | ||||
|                 current_indents = current_indents[: level + 1] | ||||
|                 if level >= 0: | ||||
|                     if current_indents[level] < indent: | ||||
|                         new_indents = new_indents[: level + 1] | ||||
|                     else: | ||||
|                         new_indents = new_indents[:level] | ||||
|                     new_indent = 0 if len(new_indents) == 0 else new_indents[-1] | ||||
|                     lines[idx] = " " * new_indent + line[indent:] | ||||
|                     new_indents.append(new_indent) | ||||
|                 else: | ||||
|                     new_indents = [] | ||||
|                     lines[idx] = line[indent:] | ||||
|             else: | ||||
|                 lines[idx] = line[indent:] | ||||
|  | ||||
|     return "\n".join(lines) | ||||
|  | ||||
|  | ||||
| def base_rst_to_mdx(text, page_info, unindent=True): | ||||
|     """ | ||||
|     Convert a text from rst to mdx, with the base operations necessary for both docstrings and rst docs. | ||||
|     """ | ||||
|     text = convert_rst_links(text, page_info) | ||||
|     text = convert_special_chars(text) | ||||
|     text = convert_rst_blocks(text, page_info) | ||||
|     # Convert * in lists to - to avoid the formatting conversion treat them as bold. | ||||
|     text = re.sub(r"^(\s*)\*(\s)", r"\1-\2", text, flags=re.MULTILINE) | ||||
|     text = convert_rst_formatting(text) | ||||
|     return remove_indent(text) if unindent else text | ||||
|  | ||||
|  | ||||
| def convert_rst_docstring_to_mdx(docstring, page_info): | ||||
|     """ | ||||
|     Convert a docstring written in rst to mdx. | ||||
|     """ | ||||
|     text = parse_rst_docstring(docstring) | ||||
|     return base_rst_to_mdx(text, page_info) | ||||
|  | ||||
|  | ||||
| def process_titles(lines): | ||||
|     """Converts rst titles to markdown titles.""" | ||||
|     title_chars = """= - ` : ' " ~ ^ _ * + # < >""".split(" ") | ||||
|     title_levels = {} | ||||
|     new_lines = [] | ||||
|     for line in lines: | ||||
|         if ( | ||||
|             len(new_lines) > 0 | ||||
|             and len(line) >= len(new_lines[-1]) | ||||
|             and len(set(line)) == 1 | ||||
|             and line[0] in title_chars | ||||
|             and line != "::" | ||||
|         ): | ||||
|             char = line[0] | ||||
|             level = title_levels.get(char, len(title_levels) + 1) | ||||
|             if level not in title_levels: | ||||
|                 title_levels[char] = level | ||||
|             new_lines[-1] = f"{'#' * level} {new_lines[-1]}" | ||||
|         else: | ||||
|             new_lines.append(line) | ||||
|     return new_lines | ||||
|  | ||||
|  | ||||
| # Matches lines with a pattern of a table new line in rst. | ||||
| _re_ignore_line_table = re.compile(r"^(\+[\-\s]+)+\+\s*$") | ||||
| # Matches lines with a pattern of a table new line in rst, with a first column empty. | ||||
| _re_ignore_line_table1 = re.compile(r"^\|\s+(\+[\-\s]+)+\+\s*$") | ||||
| # Matches lines with a pattern of a first table line in rst. | ||||
| _re_sep_line_table = re.compile(r"^(\+[=\s]+)+\+\s*$") | ||||
| # Re pattern that catches anchors of the type .. reference: | ||||
| _re_anchor_section = re.compile(r"^\.\.\s+_(\S+):") | ||||
|  | ||||
|  | ||||
| def split_pt_tf_code_blocks(text): | ||||
|     """ | ||||
|     Split PyTorch and TensorFlow specific block codes. | ||||
|     """ | ||||
|     lines = text.split("\n") | ||||
|     new_lines = [] | ||||
|     idx = 0 | ||||
|     while idx < len(lines): | ||||
|         if lines[idx].startswith("```"): | ||||
|             code_lines = {"common": [lines[idx]], "pytorch": [], "tensorflow": []} | ||||
|             is_pytorch = False | ||||
|             is_tensorflow = False | ||||
|             idx += 1 | ||||
|             while idx < len(lines) and lines[idx].strip() != "```": | ||||
|                 if "## PYTORCH CODE" in lines[idx]: | ||||
|                     is_pytorch = True | ||||
|                     is_tensorflow = False | ||||
|                 elif "## TENSORFLOW CODE" in lines[idx]: | ||||
|                     is_tensorflow = True | ||||
|                     is_pytorch = False | ||||
|                 elif is_pytorch: | ||||
|                     code_lines["pytorch"].append(lines[idx]) | ||||
|                 elif is_tensorflow: | ||||
|                     code_lines["tensorflow"].append(lines[idx]) | ||||
|                 else: | ||||
|                     code_lines["common"].append(lines[idx]) | ||||
|                 idx += 1 | ||||
|             if len(code_lines["pytorch"]) > 0 or len(code_lines["tensorflow"]) > 0: | ||||
|                 block_lines = ["<frameworkcontent>", "<pt>"] | ||||
|                 block_lines.extend(code_lines["common"].copy() + code_lines["pytorch"]) | ||||
|                 block_lines.extend(["```", "</pt>", "<tf>"]) | ||||
|                 block_lines.extend( | ||||
|                     code_lines["common"].copy() + code_lines["tensorflow"] | ||||
|                 ) | ||||
|                 block_lines.extend(["```", "</tf>", "</frameworkcontent>"]) | ||||
|                 new_lines.extend(block_lines) | ||||
|             else: | ||||
|                 block_lines = code_lines["common"] + ["```"] | ||||
|                 new_lines.extend(block_lines) | ||||
|             idx += 1 | ||||
|         else: | ||||
|             new_lines.append(lines[idx]) | ||||
|             idx += 1 | ||||
|     return "\n".join(new_lines) | ||||
|  | ||||
|  | ||||
| def convert_rst_to_mdx(rst_text, page_info, add_imports=True): | ||||
|     """ | ||||
|     Convert a document written in rst to mdx. | ||||
|     """ | ||||
|     lines = rst_text.split("\n") | ||||
|     lines = process_titles(lines) | ||||
|     if add_imports: | ||||
|         new_lines = [ | ||||
|             '<script lang="ts">', | ||||
|             '	import Tip from "$lib/Tip.svelte";', | ||||
|             '	import Youtube from "$lib/Youtube.svelte";', | ||||
|             '	import Docstring from "$lib/Docstring.svelte";', | ||||
|             '	import CodeBlock from "$lib/CodeBlock.svelte";', | ||||
|             '	import CodeBlockFw from "$lib/CodeBlockFw.svelte";', | ||||
|             '	import DocNotebookDropdown from "$lib/DocNotebookDropdown.svelte";', | ||||
|             '	import CourseFloatingBanner from "$lib/CourseFloatingBanner.svelte";', | ||||
|             '	import IconCopyLink from "$lib/IconCopyLink.svelte";', | ||||
|             '	import FrameworkContent from "$lib/FrameworkContent.svelte";', | ||||
|             '	import Markdown from "$lib/Markdown.svelte";', | ||||
|             '	import ExampleCodeBlock from "$lib/ExampleCodeBlock.svelte";', | ||||
|             '	import Added from "$lib/Added.svelte";', | ||||
|             '	import Changed from "$lib/Changed.svelte";', | ||||
|             '	import Deprecated from "$lib/Deprecated.svelte";', | ||||
|             '	import PipelineIcon from "$lib/PipelineIcon.svelte";', | ||||
|             '	import PipelineTag from "$lib/PipelineTag.svelte";', | ||||
|             "	", | ||||
|             '	export let fw: "pt" | "tf"', | ||||
|             "</script>", | ||||
|             "<svelte:head>", | ||||
|             '<meta name="hf:doc:metadata" content={JSON.stringify(metadata)} >', | ||||
|             "</svelte:head>", | ||||
|             "", | ||||
|         ] | ||||
|     else: | ||||
|         new_lines = [] | ||||
|     for line in lines: | ||||
|         if _re_ignore_line_table.search(line) is not None: | ||||
|             continue | ||||
|         elif _re_ignore_line_table1.search(line) is not None: | ||||
|             continue | ||||
|         elif _re_sep_line_table.search(line) is not None: | ||||
|             line = line.replace("=", "-").replace("+", "|") | ||||
|         elif _re_anchor_section.search(line) is not None: | ||||
|             anchor_name = _re_anchor_section.search(line).groups()[0] | ||||
|             line = f"<a id='{anchor_name}'></a>" | ||||
|         new_lines.append(line) | ||||
|     text = "\n".join(new_lines) | ||||
|  | ||||
|     return split_pt_tf_code_blocks(base_rst_to_mdx(text, page_info)) | ||||
| @ -8,6 +8,9 @@ from kernels.compat import tomllib | ||||
| from kernels.lockfile import KernelLock, get_kernel_locks | ||||
| from kernels.utils import install_kernel, install_kernel_all_variants | ||||
|  | ||||
| from .doc import generate_readme_for_kernel | ||||
| from .wheel import build_variant_to_wheel | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|     parser = argparse.ArgumentParser( | ||||
| @ -36,6 +39,47 @@ def main(): | ||||
|     ) | ||||
|     lock_parser.set_defaults(func=lock_kernels) | ||||
|  | ||||
|     to_wheel_parser = subparsers.add_parser( | ||||
|         "to-wheel", help="Convert a kernel to a wheel file" | ||||
|     ) | ||||
|     to_wheel_parser.add_argument("repo_id", type=str, help="The kernel repo ID") | ||||
|     to_wheel_parser.add_argument("version", type=str, help="The kernel version") | ||||
|     to_wheel_parser.add_argument( | ||||
|         "--python-version", | ||||
|         type=str, | ||||
|         default="3.9", | ||||
|         help="The minimum Python version. Must match the Python version that the kernel was compiled for.", | ||||
|     ) | ||||
|     to_wheel_parser.add_argument( | ||||
|         "--manylinux-version", | ||||
|         type=str, | ||||
|         default="2.28", | ||||
|         help="The manylinux version. Must match the manylinux version that the kernel was compiled for.", | ||||
|     ) | ||||
|     to_wheel_parser.set_defaults(func=kernels_to_wheel) | ||||
|  | ||||
|     # Add generate-readme subcommand parser | ||||
|     generate_readme_parser = subparsers.add_parser( | ||||
|         "generate-readme", | ||||
|         help="Generate README snippets for a kernel's public functions", | ||||
|     ) | ||||
|     generate_readme_parser.add_argument( | ||||
|         "repo_id", | ||||
|         type=str, | ||||
|         help="The kernel repo ID (e.g., kernels-community/activation)", | ||||
|     ) | ||||
|     generate_readme_parser.add_argument( | ||||
|         "--revision", | ||||
|         type=str, | ||||
|         default="main", | ||||
|         help="The kernel revision (branch, tag, or commit SHA, defaults to 'main')", | ||||
|     ) | ||||
|     generate_readme_parser.set_defaults( | ||||
|         func=lambda args: generate_readme_for_kernel( | ||||
|             repo_id=args.repo_id, revision=args.revision | ||||
|         ) | ||||
|     ) | ||||
|  | ||||
|     args = parser.parse_args() | ||||
|     args.func(args) | ||||
|  | ||||
| @ -77,6 +121,24 @@ def download_kernels(args): | ||||
|         sys.exit(1) | ||||
|  | ||||
|  | ||||
| def kernels_to_wheel(args): | ||||
|     variants_path = install_kernel_all_variants( | ||||
|         repo_id=args.repo_id, revision=f"v{args.version}" | ||||
|     ) | ||||
|     for variant_path in variants_path.iterdir(): | ||||
|         if not variant_path.is_dir(): | ||||
|             continue | ||||
|         wheel_path = build_variant_to_wheel( | ||||
|             manylinux_version=args.manylinux_version, | ||||
|             python_version=args.python_version, | ||||
|             repo_id=args.repo_id, | ||||
|             version=args.version, | ||||
|             variant_path=variant_path, | ||||
|             wheel_dir=Path("."), | ||||
|         ) | ||||
|         print(f"☸️ {wheel_path.name}", file=sys.stderr) | ||||
|  | ||||
|  | ||||
| def lock_kernels(args): | ||||
|     with open(args.project_dir / "pyproject.toml", "rb") as f: | ||||
|         data = tomllib.load(f) | ||||
|  | ||||
							
								
								
									
										242
									
								
								src/kernels/doc.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										242
									
								
								src/kernels/doc.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,242 @@ | ||||
| import inspect | ||||
| import re | ||||
| import sys | ||||
| from types import ModuleType | ||||
|  | ||||
| import yaml | ||||
|  | ||||
| from ._vendored.convert_rst_to_mdx import convert_rst_docstring_to_mdx | ||||
| from .utils import get_kernel | ||||
|  | ||||
| _RE_PARAMETERS = re.compile( | ||||
|     r"<parameters>(((?!<parameters>).)*)</parameters>", re.DOTALL | ||||
| ) | ||||
| _RE_RETURNS = re.compile(r"<returns>(((?!<returns>).)*)</returns>", re.DOTALL) | ||||
| _RE_RETURNTYPE = re.compile( | ||||
|     r"<returntype>(((?!<returntype>).)*)</returntype>", re.DOTALL | ||||
| ) | ||||
|  | ||||
|  | ||||
| def _extract_description_before_tags(docstring_mdx: str) -> str: | ||||
|     """Extract the description part of a docstring before any tags.""" | ||||
|     params_pos = docstring_mdx.find("<parameters>") | ||||
|     returns_pos = docstring_mdx.find("<returns>") | ||||
|     returntype_pos = docstring_mdx.find("<returntype>") | ||||
|     positions = [pos for pos in [params_pos, returns_pos, returntype_pos] if pos != -1] | ||||
|  | ||||
|     if positions: | ||||
|         first_tag_pos = min(positions) | ||||
|         return docstring_mdx[:first_tag_pos].strip() | ||||
|     else: | ||||
|         return docstring_mdx.strip() | ||||
|  | ||||
|  | ||||
| def _print_parameters_section(docstring_mdx: str, *, header_level: int) -> None: | ||||
|     """Print the parameters section from a docstring.""" | ||||
|     matches = _RE_PARAMETERS.findall(docstring_mdx) | ||||
|     if matches: | ||||
|         header = "#" * header_level | ||||
|         print(f"\n{header} Parameters") | ||||
|         for match in matches: | ||||
|             print(f"\n{match[0].strip()}") | ||||
|  | ||||
|  | ||||
| def _print_returns_section( | ||||
|     docstring_mdx: str, *, context_name: str, header_level: int | ||||
| ) -> None: | ||||
|     """Print the returns section from a docstring.""" | ||||
|     return_matches = _RE_RETURNS.findall(docstring_mdx) | ||||
|     returntype_matches = _RE_RETURNTYPE.findall(docstring_mdx) | ||||
|  | ||||
|     if return_matches or returntype_matches: | ||||
|         header = "#" * header_level | ||||
|         print(f"\n{header} Returns") | ||||
|  | ||||
|         if returntype_matches: | ||||
|             if len(returntype_matches) > 1: | ||||
|                 raise ValueError( | ||||
|                     f"More than one <returntype> tag found in docstring for {context_name}" | ||||
|                 ) | ||||
|             print(f"\n**Type**: {returntype_matches[0][0].strip()}") | ||||
|  | ||||
|         if return_matches: | ||||
|             for match in return_matches: | ||||
|                 print(f"\n{match[0].strip()}") | ||||
|  | ||||
|  | ||||
| def _get_docstring(obj, use_dict_check: bool = False) -> str: | ||||
|     """Get docstring from an object, with fallback to default message.""" | ||||
|     # Check whether the class/method itself has docs and not just | ||||
|     # the superclass. | ||||
|     if use_dict_check: | ||||
|         has_doc = obj.__dict__.get("__doc__", None) is not None | ||||
|     else: | ||||
|         has_doc = getattr(obj, "__doc__", None) is not None | ||||
|  | ||||
|     # We use inspect.getdoc because it does normalization. | ||||
|     doc = inspect.getdoc(obj) | ||||
|  | ||||
|     return doc if has_doc and doc is not None else "No documentation available." | ||||
|  | ||||
|  | ||||
| def _process_and_print_docstring( | ||||
|     docstring: str, *, kernel_name: str, context_name: str, header_level: int | ||||
| ) -> None: | ||||
|     """Convert docstring to MDX and print description, parameters, and returns sections.""" | ||||
|     docstring_mdx = convert_rst_docstring_to_mdx( | ||||
|         docstring, page_info={"package_name": kernel_name} | ||||
|     ) | ||||
|  | ||||
|     # Print the description | ||||
|     description = _extract_description_before_tags(docstring_mdx) | ||||
|     print(f"\n{description}") | ||||
|  | ||||
|     # Print parameters and returns sections | ||||
|     _print_parameters_section(docstring_mdx, header_level=header_level) | ||||
|     _print_returns_section( | ||||
|         docstring_mdx, context_name=context_name, header_level=header_level | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def generate_readme_for_kernel(repo_id: str, *, revision: str = "main") -> None: | ||||
|     kernel_module = get_kernel(repo_id=repo_id, revision=revision) | ||||
|     kernel_name = repo_id.split("/")[-1].replace("-", "_") | ||||
|  | ||||
|     generate_metadata(kernel_module) | ||||
|     generate_kernel_doc(kernel_module, kernel_name) | ||||
|     generate_function_doc(kernel_module, kernel_name) | ||||
|     generate_layers_doc(kernel_module, kernel_name) | ||||
|  | ||||
|  | ||||
| def generate_metadata(module: ModuleType) -> None: | ||||
|     metadata = getattr(module, "__kernel_metadata__", {}) | ||||
|     if "tags" not in metadata: | ||||
|         metadata["tags"] = ["kernel"] | ||||
|     else: | ||||
|         if "kernel" not in metadata["tags"]: | ||||
|             metadata["tags"].append("kernel") | ||||
|  | ||||
|     print("---") | ||||
|     print(yaml.dump(metadata), end="") | ||||
|     print("---") | ||||
|  | ||||
|  | ||||
| def generate_kernel_doc(module: ModuleType, kernel_name: str) -> None: | ||||
|     docstring = module.__doc__.strip() if module.__doc__ is not None else None | ||||
|     if docstring: | ||||
|         title, rest = docstring.split("\n", 1) | ||||
|         print(f"# {title.strip()}") | ||||
|         print( | ||||
|             f"\n{convert_rst_docstring_to_mdx(rest.strip(), page_info={'package_name': kernel_name})}" | ||||
|         ) | ||||
|  | ||||
|  | ||||
| def generate_function_doc(kernel_module: ModuleType, kernel_name: str) -> None: | ||||
|     print("\n## Functions") | ||||
|  | ||||
|     # Track if we found any functions | ||||
|     found_functions = False | ||||
|  | ||||
|     for name, func in inspect.getmembers(kernel_module, inspect.isfunction): | ||||
|         # Do not include imported functions. | ||||
|         if func.__module__ != kernel_module.__name__: | ||||
|             continue | ||||
|  | ||||
|         # Exclude private functions. | ||||
|         if name.startswith("_"): | ||||
|             continue | ||||
|  | ||||
|         found_functions = True | ||||
|  | ||||
|         try: | ||||
|             sig = inspect.signature(func) | ||||
|             docstring = _get_docstring(func) | ||||
|         except ValueError: | ||||
|             print( | ||||
|                 f"Warning: Could not retrieve signature for {name} in {kernel_module.__name__}", | ||||
|                 file=sys.stderr, | ||||
|             ) | ||||
|             continue | ||||
|  | ||||
|         print(f"\n### Function `{name}`") | ||||
|         print(f"\n`{sig}`") | ||||
|  | ||||
|         _process_and_print_docstring( | ||||
|             docstring, kernel_name=kernel_name, context_name=name, header_level=3 | ||||
|         ) | ||||
|  | ||||
|     if not found_functions: | ||||
|         print("\nNo public top-level functions.") | ||||
|  | ||||
|  | ||||
| def generate_layers_doc(kernel_module: ModuleType, kernel_name: str) -> None: | ||||
|     # Check if layers module is available | ||||
|     layers_module = getattr(kernel_module, "layers", None) | ||||
|     if layers_module is None: | ||||
|         return | ||||
|  | ||||
|     print("\n## Layers") | ||||
|  | ||||
|     # Track if we found any classes | ||||
|     found_classes = False | ||||
|  | ||||
|     for class_name, cls in inspect.getmembers(layers_module, inspect.isclass): | ||||
|         # Exclude classes that were imported. | ||||
|         if cls.__module__ != layers_module.__name__: | ||||
|             continue | ||||
|  | ||||
|         found_classes = True | ||||
|  | ||||
|         try: | ||||
|             # Get docstring, but not from superclasses. | ||||
|             class_docstring = _get_docstring(cls, use_dict_check=True) | ||||
|         except Exception: | ||||
|             print( | ||||
|                 f"Warning: Could not retrieve documentation for class {class_name} in {layers_module.__name__}", | ||||
|                 file=sys.stderr, | ||||
|             ) | ||||
|             continue | ||||
|  | ||||
|         print(f"\n### Class `{class_name}`") | ||||
|  | ||||
|         # Always print class description (helper handles conversion and formatting) | ||||
|         class_docstring_mdx = convert_rst_docstring_to_mdx( | ||||
|             class_docstring, page_info={"package_name": kernel_name} | ||||
|         ) | ||||
|         description = _extract_description_before_tags(class_docstring_mdx) | ||||
|         print(f"\n{description}") | ||||
|  | ||||
|         # Document methods | ||||
|         print("\n#### Methods") | ||||
|  | ||||
|         for method_name, method in inspect.getmembers(cls, inspect.isfunction): | ||||
|             # Note: also skip __init__, since extension layers cannot have a constructor. | ||||
|             if method_name.startswith("_"): | ||||
|                 continue | ||||
|  | ||||
|             # Skip methods from superclasses. | ||||
|             if method_name not in cls.__dict__: | ||||
|                 continue | ||||
|  | ||||
|             try: | ||||
|                 sig = inspect.signature(method) | ||||
|                 method_docstring = _get_docstring(method) | ||||
|             except ValueError: | ||||
|                 print( | ||||
|                     f"Warning: Could not retrieve signature for {method_name} in {class_name}", | ||||
|                     file=sys.stderr, | ||||
|                 ) | ||||
|                 continue | ||||
|  | ||||
|             print(f"\n##### Method `{method_name}`") | ||||
|             print(f"\n`{sig}`") | ||||
|  | ||||
|             _process_and_print_docstring( | ||||
|                 method_docstring, | ||||
|                 kernel_name=kernel_name, | ||||
|                 context_name=method_name, | ||||
|                 header_level=6, | ||||
|             ) | ||||
|  | ||||
|     if not found_classes: | ||||
|         print("\nNo layers defined.") | ||||
| @ -4,13 +4,16 @@ import warnings | ||||
| from contextvars import ContextVar | ||||
| from copy import deepcopy | ||||
| from dataclasses import dataclass, field | ||||
| from typing import TYPE_CHECKING, Dict, Union | ||||
| from types import MethodType | ||||
| from typing import TYPE_CHECKING, Dict, Optional, Type, Union | ||||
|  | ||||
| from .utils import get_kernel | ||||
|  | ||||
| if TYPE_CHECKING: | ||||
|     import torch | ||||
|     from torch import nn | ||||
|  | ||||
|  | ||||
| _DISABLE_KERNEL_MAPPING: bool = bool(int(os.environ.get("DISABLE_KERNEL_MAPPING", "0"))) | ||||
|  | ||||
|  | ||||
| @ -53,6 +56,9 @@ class LayerRepository: | ||||
|         return hash((self.layer_name, self.repo_id, self.revision)) | ||||
|  | ||||
|  | ||||
| _CACHED_LAYER: Dict[LayerRepository, Type["nn.Module"]] = {} | ||||
|  | ||||
|  | ||||
| _KERNEL_MAPPING: ContextVar[Dict[str, Dict[Device, LayerRepository]]] = ContextVar( | ||||
|     "_KERNEL_MAPPING", default={} | ||||
| ) | ||||
| @ -87,11 +93,13 @@ def use_kernel_mapping( | ||||
|  | ||||
|  | ||||
| def register_kernel_mapping( | ||||
|     mapping: Dict[str, Dict[Union[Device, str], LayerRepository]] | ||||
|     mapping: Dict[str, Dict[Union[Device, str], LayerRepository]], | ||||
| ): | ||||
|     """ | ||||
|     Allows one to register a mapping between a layer name the corresponding kernel to use, depending on the device. | ||||
|     This should be use in conjunction with `use_kernel_hub_forward` decorator on the classname. | ||||
|     Allows one to register a mapping between a layer name the corresponding | ||||
|     kernel to use, depending on the device. This should be use in conjunction | ||||
|     with `kernelize`. | ||||
|  | ||||
|     Exemple usage: | ||||
|  | ||||
|     ```python | ||||
| @ -119,26 +127,70 @@ def register_kernel_mapping( | ||||
|                 device_repo[new_device] = new_repo | ||||
|  | ||||
|  | ||||
| def replace_kernel_forward_from_hub(cls, layer_name: str, *, use_fallback: bool = True): | ||||
| def replace_kernel_forward_from_hub( | ||||
|     cls, | ||||
|     layer_name: str, | ||||
| ): | ||||
|     """ | ||||
|     Replace the forward function of a layer using a layer from the kernel hub. | ||||
|     This function monkeypatches a layer, replacing the `forward` method | ||||
|     of the layer with that of a layer from the hub. The replacement is done | ||||
|     when a layer matching `layer_name` and device type is registered through | ||||
|     `register_layer_mapping`. The device type is inferred from the first | ||||
|     argument to `forward`. | ||||
|     Decorator that prepares a layer class to use a kernel from the Hugging Face Hub. | ||||
|  | ||||
|     This decorator stores the layer name and original forward method, which will be used | ||||
|     by the kernelize function to replace the forward implementation with the appropriate | ||||
|     kernel from the hub. | ||||
|  | ||||
|     Args: | ||||
|         cls: The layer class to decorate | ||||
|         layer_name: The name of the layer to use for kernel lookup | ||||
|     """ | ||||
|     cls.kernel_layer_name = layer_name | ||||
|  | ||||
|     fallback_forward = cls.forward | ||||
|  | ||||
|     cached_layer: Dict[LayerRepository, nn.Module] = {} | ||||
| def kernelize( | ||||
|     model: "nn.Module", | ||||
|     device: Optional[Union[str, "torch.device"]] = None, | ||||
|     needs_torch_compile: bool = False, | ||||
|     use_fallback: bool = True, | ||||
| ): | ||||
|     """ | ||||
|     Iterate over all modules in the model and replace the `forward` method of | ||||
|     extensible layers for which kernels are registered using `register_kernel_mapping` | ||||
|     or `use_kernel_mapping`. | ||||
|  | ||||
|     Args: | ||||
|         model: The PyTorch model to kernelize | ||||
|         device: The device type to load kernels for. The device type will be inferred | ||||
|             from the parameters of the model when not provided. | ||||
|         needs_torch_compile: When set to `true`, only kernels that support | ||||
|             `torch.compile` will be loaded. | ||||
|         use_fallback: Whether to use the original forward method of modules when no | ||||
|             compatible kernel could be found. If set to `False`, an exception will | ||||
|             be raised in such cases. | ||||
|  | ||||
|     Returns: | ||||
|         The kernelized model | ||||
|     """ | ||||
|     import torch | ||||
|  | ||||
|     if device is None: | ||||
|         device_type = _find_device(model) | ||||
|     elif isinstance(device, str): | ||||
|         device_type = Device(type=torch.device(device).type) | ||||
|     else: | ||||
|         device_type = Device(device.type) | ||||
|     assert isinstance(device_type, Device) | ||||
|  | ||||
|     for _, module in model.named_modules(): | ||||
|         module_class = type(module) | ||||
|         if not hasattr(module_class, "kernel_layer_name"): | ||||
|             continue | ||||
|         layer_name = module_class.kernel_layer_name | ||||
|  | ||||
|     def forward(self, x, *args, **kwargs): | ||||
|         if _DISABLE_KERNEL_MAPPING: | ||||
|             return fallback_forward(self, x, *args, **kwargs) | ||||
|             _replace_forward(module, module_class) | ||||
|             continue | ||||
|  | ||||
|         kernel = _KERNEL_MAPPING.get().get(str(layer_name)) | ||||
|  | ||||
|         needs_backward = self.training | ||||
|         kernel = _KERNEL_MAPPING.get().get(layer_name) | ||||
|         if kernel is None: | ||||
|             warnings.warn( | ||||
|                 "\n" | ||||
| @ -148,26 +200,30 @@ def replace_kernel_forward_from_hub(cls, layer_name: str, *, use_fallback: bool | ||||
|             ) | ||||
|             if not use_fallback: | ||||
|                 raise ValueError(f"No layer mapping for `{layer_name}`") | ||||
|             return fallback_forward(self, x, *args, **kwargs) | ||||
|             _replace_forward(module, module_class) | ||||
|             continue | ||||
|  | ||||
|         device = getattr(x, "device", None) | ||||
|         if device is None: | ||||
|             return fallback_forward(self, x, *args, **kwargs) | ||||
|         # Use device type string directly instead of Device object | ||||
|         repo = kernel.get(device_type) | ||||
|  | ||||
|         repo = kernel.get(Device(type=device.type)) | ||||
|         if repo is None: | ||||
|             if not use_fallback: | ||||
|                 raise ValueError( | ||||
|                     f"No layer mapping for `{layer_name}` with device type `{device.type}`" | ||||
|                     f"No layer mapping for `{layer_name}` with device type `{device_type}`" | ||||
|                 ) | ||||
|             return fallback_forward(self, x, *args, **kwargs) | ||||
|             _replace_forward(module, module_class) | ||||
|             continue | ||||
|  | ||||
|         # Short-circuit if we already loaded the layer. | ||||
|         layer = cached_layer.get(repo, None) | ||||
|         layer = _CACHED_LAYER.get(repo, None) | ||||
|         if layer is not None: | ||||
|             if needs_backward and not getattr(layer, "has_backward", True): | ||||
|                 return fallback_forward(self, x, *args, **kwargs) | ||||
|             return layer.forward(self, x, *args, **kwargs) | ||||
|             _conditionally_replace_forward( | ||||
|                 module=module, | ||||
|                 layer=layer, | ||||
|                 needs_torch_compile=needs_torch_compile, | ||||
|                 use_fallback=use_fallback, | ||||
|             ) | ||||
|             continue | ||||
|  | ||||
|         layer = _get_kernel_layer( | ||||
|             repo_id=repo.repo_id, | ||||
| @ -175,41 +231,36 @@ def replace_kernel_forward_from_hub(cls, layer_name: str, *, use_fallback: bool | ||||
|             revision=repo.revision, | ||||
|         ) | ||||
|  | ||||
|         # We have to validate against the original signature. | ||||
|         orig_forward = cls.forward | ||||
|         try: | ||||
|             cls.forward = fallback_forward | ||||
|             _validate_layer(check_cls=cls, cls=layer) | ||||
|         finally: | ||||
|             cls.forward = orig_forward | ||||
|         # Validate the replacement layer against the class layer. | ||||
|         _validate_layer(check_cls=module_class, cls=layer) | ||||
|  | ||||
|         cached_layer[repo] = layer | ||||
|         _CACHED_LAYER[repo] = layer | ||||
|  | ||||
|         if needs_backward and not getattr(layer, "has_backward", True): | ||||
|             return fallback_forward(self, x, *args, **kwargs) | ||||
|         return layer.forward(self, x, *args, **kwargs) | ||||
|         _conditionally_replace_forward( | ||||
|             module=module, | ||||
|             layer=layer, | ||||
|             needs_torch_compile=needs_torch_compile, | ||||
|             use_fallback=use_fallback, | ||||
|         ) | ||||
|  | ||||
|     cls.forward = forward | ||||
|     return model | ||||
|  | ||||
|  | ||||
| def use_kernel_forward_from_hub(layer_name: str, *, use_fallback: bool = True): | ||||
| def use_kernel_forward_from_hub(layer_name: str): | ||||
|     """ | ||||
|     Replace the forward function of a layer using a layer from the kernel hub. | ||||
|     This decorator can be applied to a layer and replaces the forward method | ||||
|     of the layer with that of a layer from the hub. The replacement is done | ||||
|     when a layer matching `layer_name` and device type is registered through | ||||
|     `register_layer_mapping`. The device type is inferred from the first | ||||
|     argument to `forward`. | ||||
|     Make a layer extensible using the name `layer_name`. | ||||
|     """ | ||||
|  | ||||
|     def decorator(cls): | ||||
|         replace_kernel_forward_from_hub(cls, layer_name, use_fallback=use_fallback) | ||||
|         replace_kernel_forward_from_hub(cls, layer_name) | ||||
|         return cls | ||||
|  | ||||
|     return decorator | ||||
|  | ||||
|  | ||||
| def _get_kernel_layer(*, repo_id: str, layer_name: str, revision: str) -> "nn.Module": | ||||
| def _get_kernel_layer( | ||||
|     *, repo_id: str, layer_name: str, revision: str | ||||
| ) -> Type["nn.Module"]: | ||||
|     """Get a layer from a kernel.""" | ||||
|  | ||||
|     kernel = get_kernel(repo_id, revision=revision) | ||||
| @ -226,13 +277,13 @@ def _get_kernel_layer(*, repo_id: str, layer_name: str, revision: str) -> "nn.Mo | ||||
|  | ||||
|  | ||||
| def _validate_layer(*, check_cls, cls): | ||||
|     import torch.nn as nn | ||||
|  | ||||
|     # The layer must have at least have the following properties: (1) it | ||||
|     # must be stateless; (2) the forward signature should correspond to | ||||
|     # the signature it is replacing; (3) forward should not call other | ||||
|     # methods. | ||||
|  | ||||
|     from torch import nn | ||||
|  | ||||
|     if not issubclass(cls, nn.Module): | ||||
|         raise TypeError(f"Layer `{cls}` is not a Torch layer.") | ||||
|  | ||||
| @ -245,7 +296,8 @@ def _validate_layer(*, check_cls, cls): | ||||
|     torch_module_members = {name for name, _ in inspect.getmembers(nn.Module)} | ||||
|     cls_members = {name for name, _ in inspect.getmembers(cls)} | ||||
|     difference = cls_members - torch_module_members | ||||
|     if difference != set() and difference != {"has_backward"}: | ||||
|     # verify if : difference ⊄ {"can_torch_compile", "has_backward"} | ||||
|     if not difference <= {"can_torch_compile", "has_backward"}: | ||||
|         raise TypeError("Layer must not contain additional members.") | ||||
|  | ||||
|     # Check whether the forward signatures are similar. | ||||
| @ -262,3 +314,62 @@ def _validate_layer(*, check_cls, cls): | ||||
|             raise TypeError( | ||||
|                 f"Forward signature does not match: different kind of arguments ({param} ({param.kind}) and {ref_param} ({ref_param.kind})" | ||||
|             ) | ||||
|  | ||||
|  | ||||
| def _find_device(model: "nn.Module") -> Device: | ||||
|     try: | ||||
|         param = next(model.parameters()) | ||||
|     except StopIteration: | ||||
|         raise ValueError( | ||||
|             "Cannot determine model device, provide as `device` argument to `kernelize`." | ||||
|         ) | ||||
|  | ||||
|     return Device(type=param.device.type) | ||||
|  | ||||
|  | ||||
| def _conditionally_replace_forward( | ||||
|     *, | ||||
|     module: "nn.Module", | ||||
|     layer: Type["nn.Module"], | ||||
|     needs_torch_compile: bool, | ||||
|     use_fallback: bool, | ||||
| ): | ||||
|     module_class = type(module) | ||||
|  | ||||
|     # Switch to fallback when the layer does not support: | ||||
|     # compilation/compile when needed. | ||||
|     # backward when needed | ||||
|     needs_fallback = needs_torch_compile and not getattr( | ||||
|         layer, "can_torch_compile", False | ||||
|     ) | ||||
|     if needs_fallback: | ||||
|         if use_fallback: | ||||
|             _replace_forward(module, module_class) | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 f"Available kernel does not fulfill requirements: needs_torch_compile={needs_torch_compile}" | ||||
|             ) | ||||
|     else: | ||||
|         _replace_forward(module, layer) | ||||
|  | ||||
|  | ||||
| def _replace_forward(module: "nn.Module", layer: Type["nn.Module"]): | ||||
|     import torch.nn as nn | ||||
|  | ||||
|     module_class = type(module) | ||||
|     layer_with_backward = ( | ||||
|         layer if getattr(layer, "has_backward", True) else module_class | ||||
|     ) | ||||
|  | ||||
|     def train(self, mode: bool = True) -> nn.Module: | ||||
|         super(type(self), self).train(mode) | ||||
|         if mode: | ||||
|             self.forward = MethodType(layer_with_backward.forward, self) | ||||
|         else: | ||||
|             self.forward = MethodType(layer.forward, self) | ||||
|         return self | ||||
|  | ||||
|     module.train = MethodType(train, module)  # type: ignore[method-assign] | ||||
|  | ||||
|     # Trigger setting correct forward for the current state. | ||||
|     module.train(module.training) | ||||
|  | ||||
| @ -43,14 +43,23 @@ def build_variant() -> str: | ||||
|     elif torch.version.hip is not None: | ||||
|         rocm_version = parse(torch.version.hip.split("-")[0]) | ||||
|         compute_framework = f"rocm{rocm_version.major}{rocm_version.minor}" | ||||
|     elif torch.backends.mps.is_available(): | ||||
|         compute_framework = "metal" | ||||
|     else: | ||||
|         raise AssertionError("Torch was not compiled with CUDA or ROCm enabled.") | ||||
|         raise AssertionError( | ||||
|             "Torch was not compiled with CUDA, Metal, or ROCm enabled." | ||||
|         ) | ||||
|  | ||||
|     torch_version = parse(torch.__version__) | ||||
|     cxxabi = "cxx11" if torch.compiled_with_cxx11_abi() else "cxx98" | ||||
|     cpu = platform.machine() | ||||
|     os = platform.system().lower() | ||||
|  | ||||
|     if os == "darwin": | ||||
|         cpu = "aarch64" if cpu == "arm64" else cpu | ||||
|         return f"torch{torch_version.major}{torch_version.minor}-{compute_framework}-{cpu}-{os}" | ||||
|  | ||||
|     cxxabi = "cxx11" if torch.compiled_with_cxx11_abi() else "cxx98" | ||||
|  | ||||
|     return f"torch{torch_version.major}{torch_version.minor}-{cxxabi}-{compute_framework}-{cpu}-{os}" | ||||
|  | ||||
|  | ||||
|  | ||||
							
								
								
									
										186
									
								
								src/kernels/wheel.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										186
									
								
								src/kernels/wheel.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,186 @@ | ||||
| import email.policy | ||||
| import os | ||||
| from dataclasses import dataclass | ||||
| from email.message import Message | ||||
| from importlib.metadata import PackageNotFoundError, version | ||||
| from pathlib import Path | ||||
| from typing import Optional | ||||
|  | ||||
| try: | ||||
|     KERNELS_VERSION = version("kernels") | ||||
| except PackageNotFoundError: | ||||
|     KERNELS_VERSION = "unknown" | ||||
|  | ||||
|  | ||||
| @dataclass | ||||
| class Metadata: | ||||
|     name: str | ||||
|     version: str | ||||
|     cuda_version: Optional[str] | ||||
|     cxx_abi_version: Optional[str] | ||||
|     torch_version: Optional[str] | ||||
|     os: Optional[str] | ||||
|     platform: Optional[str] | ||||
|  | ||||
|     @property | ||||
|     def is_universal(self) -> bool: | ||||
|         return self.platform is None | ||||
|  | ||||
|  | ||||
| def build_variant_to_wheel( | ||||
|     repo_id: str, | ||||
|     *, | ||||
|     version: str, | ||||
|     variant_path: Path, | ||||
|     wheel_dir: Path, | ||||
|     manylinux_version: str = "2.28", | ||||
|     python_version: str = "3.9", | ||||
| ) -> Path: | ||||
|     """ | ||||
|     Create a wheel file from the variant path. | ||||
|     """ | ||||
|     name = repo_id.split("/")[-1].replace("_", "-") | ||||
|     metadata = extract_metadata(name, version, variant_path) | ||||
|     return build_wheel( | ||||
|         metadata, | ||||
|         variant_path=variant_path, | ||||
|         wheel_dir=wheel_dir, | ||||
|         manylinux_version=manylinux_version, | ||||
|         python_version=python_version, | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def extract_metadata(name: str, version: str, variant_path: Path) -> Metadata: | ||||
|     """ | ||||
|     Extract metadata from the variant path. | ||||
|     """ | ||||
|     if variant_path.name == "torch-universal": | ||||
|         return Metadata( | ||||
|             name=name, | ||||
|             version=version, | ||||
|             cuda_version=None, | ||||
|             cxx_abi_version=None, | ||||
|             torch_version=None, | ||||
|             os=None, | ||||
|             platform=None, | ||||
|         ) | ||||
|  | ||||
|     if not variant_path.name.startswith("torch"): | ||||
|         raise ValueError("Currently only conversion of Torch kernels is supported.") | ||||
|  | ||||
|     variant_parts = variant_path.name.removeprefix("torch").split("-") | ||||
|     if len(variant_parts) != 5: | ||||
|         raise ValueError(f"Invalid variant name: {variant_path.name}") | ||||
|  | ||||
|     torch_version = f"{variant_parts[0][:-1]}.{variant_parts[0][-1:]}" | ||||
|     cpp_abi_version = variant_parts[1].removeprefix("cxx") | ||||
|     cuda_version = variant_parts[2].removeprefix("cu") | ||||
|     platform = variant_parts[3].replace("-", "_") | ||||
|     os = variant_parts[4] | ||||
|  | ||||
|     return Metadata( | ||||
|         name=name, | ||||
|         version=version, | ||||
|         cuda_version=cuda_version, | ||||
|         cxx_abi_version=cpp_abi_version, | ||||
|         torch_version=torch_version, | ||||
|         os=os, | ||||
|         platform=platform, | ||||
|     ) | ||||
|  | ||||
|  | ||||
| def build_wheel( | ||||
|     metadata: Metadata, | ||||
|     *, | ||||
|     variant_path: Path, | ||||
|     wheel_dir: Path, | ||||
|     manylinux_version: str = "2.28", | ||||
|     python_version: str = "3.9", | ||||
| ) -> Path: | ||||
|     """ | ||||
|     Build the wheel file. | ||||
|     """ | ||||
|     try: | ||||
|         from wheel.wheelfile import WheelFile  # type: ignore | ||||
|     except ImportError: | ||||
|         raise ImportError( | ||||
|             "The 'wheel' package is required to build wheels. Please install it with: `pip install wheel`" | ||||
|         ) | ||||
|  | ||||
|     name = metadata.name.replace("-", "_") | ||||
|     python_version_flat = python_version.replace(".", "") | ||||
|  | ||||
|     if metadata.is_universal: | ||||
|         python_tag = f"py{python_version_flat}" | ||||
|         abi_tag = "none" | ||||
|         platform_tag = "any" | ||||
|         wheel_filename = ( | ||||
|             f"{name}-{metadata.version}-{python_tag}-{abi_tag}-{platform_tag}.whl" | ||||
|         ) | ||||
|         dist_info_dir_name = f"{name}-{metadata.version}.dist-info" | ||||
|         root_is_purelib = "true" | ||||
|         requires_dist_torch = "torch" | ||||
|     else: | ||||
|         python_tag = f"cp{python_version_flat}" | ||||
|         abi_tag = "abi3" | ||||
|  | ||||
|         if ( | ||||
|             metadata.torch_version is None | ||||
|             or metadata.cuda_version is None | ||||
|             or metadata.cxx_abi_version is None | ||||
|             or metadata.os is None | ||||
|             or metadata.platform is None | ||||
|         ): | ||||
|             raise ValueError( | ||||
|                 "Torch version, CUDA version, C++ ABI version, OS, and platform must be specified for non-universal wheels." | ||||
|             ) | ||||
|  | ||||
|         local_version = f"torch{metadata.torch_version.replace('.', '')}cu{metadata.cuda_version}cxx{metadata.cxx_abi_version}" | ||||
|  | ||||
|         if metadata.os == "linux": | ||||
|             platform_tag = ( | ||||
|                 f"manylinux_{manylinux_version.replace('.', '_')}_{metadata.platform}" | ||||
|             ) | ||||
|         else: | ||||
|             platform_tag = f"{metadata.os}_{metadata.platform.replace('-', '_')}" | ||||
|  | ||||
|         wheel_filename = f"{name}-{metadata.version}+{local_version}-{python_tag}-{abi_tag}-{platform_tag}.whl" | ||||
|         dist_info_dir_name = f"{name}-{metadata.version}+{local_version}.dist-info" | ||||
|         root_is_purelib = "false" | ||||
|         requires_dist_torch = f"torch=={metadata.torch_version}.*" | ||||
|  | ||||
|     wheel_path = wheel_dir / wheel_filename | ||||
|  | ||||
|     wheel_msg = Message(email.policy.compat32) | ||||
|     wheel_msg.add_header("Wheel-Version", "1.0") | ||||
|     wheel_msg.add_header("Generator", f"kernels ({KERNELS_VERSION})") | ||||
|     wheel_msg.add_header("Root-Is-Purelib", root_is_purelib) | ||||
|     wheel_msg.add_header("Tag", f"{python_tag}-{abi_tag}-{platform_tag}") | ||||
|  | ||||
|     metadata_msg = Message(email.policy.compat32) | ||||
|     metadata_msg.add_header("Metadata-Version", "2.1") | ||||
|     metadata_msg.add_header("Name", name) | ||||
|     metadata_msg.add_header("Version", metadata.version) | ||||
|     metadata_msg.add_header("Summary", f"{name} kernel") | ||||
|     metadata_msg.add_header("Requires-Python", ">=3.9") | ||||
|     metadata_msg.add_header("Requires-Dist", requires_dist_torch) | ||||
|  | ||||
|     source_pkg_dir = variant_path / name | ||||
|  | ||||
|     with WheelFile(wheel_path, "w") as wheel_file: | ||||
|         for root, dirnames, filenames in os.walk(source_pkg_dir): | ||||
|             for filename in filenames: | ||||
|                 if filename.endswith(".pyc"): | ||||
|                     continue | ||||
|  | ||||
|                 abs_filepath = os.path.join(root, filename) | ||||
|                 entry_name = os.path.relpath(abs_filepath, variant_path) | ||||
|                 wheel_file.write(abs_filepath, entry_name) | ||||
|  | ||||
|         wheel_metadata_path = os.path.join(dist_info_dir_name, "WHEEL") | ||||
|         wheel_file.writestr(wheel_metadata_path, str(wheel_msg).encode("utf-8")) | ||||
|  | ||||
|         metadata_path = os.path.join(dist_info_dir_name, "METADATA") | ||||
|         wheel_file.writestr(metadata_path, str(metadata_msg).encode("utf-8")) | ||||
|  | ||||
|     return wheel_path | ||||
							
								
								
									
										10
									
								
								tests/conftest.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10
									
								
								tests/conftest.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,10 @@ | ||||
| import sys | ||||
|  | ||||
| import pytest | ||||
|  | ||||
|  | ||||
| def pytest_runtest_setup(item): | ||||
|     if "linux_only" in item.keywords and not sys.platform.startswith("linux"): | ||||
|         pytest.skip("skipping Linux-only test on non-Linux platform") | ||||
|     if "darwin_only" in item.keywords and not sys.platform.startswith("darwin"): | ||||
|         pytest.skip("skipping macOS-only test on non-macOS platform") | ||||
| @ -1,54 +1,82 @@ | ||||
| [ | ||||
|   { | ||||
|     "repo_id": "kernels-community/activation", | ||||
|     "sha": "6a030420d0dd33ffdc1281afc8ae8e94b4f4f9d0", | ||||
|     "sha": "fd6842e88f1f23f198551d78a4541b8eb07e0538", | ||||
|     "variants": { | ||||
|       "torch25-cxx11-cu118-x86_64-linux": { | ||||
|         "hash": "sha256-3e39de10721a6b21806834fc95c96526b9cfe2c2052829184f2d3fa48ef5849d", | ||||
|         "hash": "sha256-61e3e51b5b59b30d4a6ba943a5e6e4ef5a9c8260cc4bca40b9fb462c0777842b", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch25-cxx11-cu121-x86_64-linux": { | ||||
|         "hash": "sha256-b0dee22c65bb277fa8150f9ea3fc90e2b1c11f84b5d760bbf4ab9c7a4b102e58", | ||||
|         "hash": "sha256-baa6b872040730bd1d676c011381f6f626fb96189837b828f587c806af8994fa", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch25-cxx11-cu124-x86_64-linux": { | ||||
|         "hash": "sha256-8960cf857d641d591a7c2d4264925cc2bf7b4a6f9d738b74082b2fb0806db19a", | ||||
|         "hash": "sha256-c1ec7457847fa1f0e4ab43234dfc3cd0959977e03dc2ffe89b4f6b90970c7965", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch25-cxx98-cu118-x86_64-linux": { | ||||
|         "hash": "sha256-0496e04c2900a2dc7ab0f3b95fe8ce9da69faab6b5ca3f55ddd62c26c81268d0", | ||||
|         "hash": "sha256-412f9c841f20741e42f2c6cdb8c7da0e33ab436b219975acffe18b62b97ecd7c", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch25-cxx98-cu121-x86_64-linux": { | ||||
|         "hash": "sha256-172b793b24dfed3dcb9adc7d3487f260c05b310c598fc6ee8abb3e230c59a0a8", | ||||
|         "hash": "sha256-2fde7f97859506e000c1072b3916c0a75bc8cee750a9853ea8b68199e7b57bcd", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch25-cxx98-cu124-x86_64-linux": { | ||||
|         "hash": "sha256-12f5e66f32dc4cf4b21f43f76efad198556024da67a1ce28e88ea2d49ad8bdcc", | ||||
|         "hash": "sha256-93309986f39a64a5630378108154866f0545178fa8dfef9b8f8ccfef9a78608e", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx11-cu118-x86_64-linux": { | ||||
|         "hash": "sha256-bb70e2f36f0b4d12868956c2ad713c756570ff0e0eb4cf7fc3a78ebde617975b", | ||||
|         "hash": "sha256-3284d3c64b76d92c1ee930bce8013aff307f16eefb16c2d5dea9f2ca70e71e1f", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx11-cu124-x86_64-linux": { | ||||
|         "hash": "sha256-a745732eb9ec5d6a54565dbeec5b3c983cc6aa072a4a2576ab2fef9b2a600005", | ||||
|         "hash": "sha256-36a8c93773c08ddf8ef624a8a6b2866be26d1861450dfe1ecac0bed59f9ffa47", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx11-cu126-aarch64-linux": { | ||||
|         "hash": "sha256-f5afb734520f587717665659798ff738a69e5ae1e34d4bd95624edd18fb165cd", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx11-cu126-x86_64-linux": { | ||||
|         "hash": "sha256-1160684ca09c065864f27c5c110281807a1ec31d603bf05fcb974e9e7cfe35cc", | ||||
|         "hash": "sha256-940841a7cb44f76c9a896d8b39f5bc0e0420f1c4c05ae9423da96778de4d1f2c", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx98-cu118-x86_64-linux": { | ||||
|         "hash": "sha256-24459d068943b93e4d55e94811469bf7e850d7958785132b108f1240724b846f", | ||||
|         "hash": "sha256-8e0f907830c3acc8c6bebfc162c744012ff6973e8110d7bf8ecd74b492418204", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx98-cu124-x86_64-linux": { | ||||
|         "hash": "sha256-5b009ba63ab6d52ac1aaf70057a2d0fa6ea5d1788a2416111be02103c6bcaaaf", | ||||
|         "hash": "sha256-0833414cbe658baec55b7ff63537cddccc973fe99e3c03008cced5e66e38b6c1", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx98-cu126-aarch64-linux": { | ||||
|         "hash": "sha256-d94fa59a13a5b623b2071aadcd1e6c8477c4d557fd06ad144f15b46b1fc71aab", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch26-cxx98-cu126-x86_64-linux": { | ||||
|         "hash": "sha256-05128889b4bdaf9ef58f3c07d93218deaa08e06f9121931b47efef8826482e4a", | ||||
|         "hash": "sha256-64784f5f2f9e232d0f2fd824fbc47eadde505e3c232f351bead5b04c429c65c2", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch27-cxx11-cu118-x86_64-linux": { | ||||
|         "hash": "sha256-bcba3765f061649bac0e5a9159bea8349ced4780e24a2330aa62ce0f8d3a9d78", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch27-cxx11-cu126-aarch64-linux": { | ||||
|         "hash": "sha256-e4625df5706af025c70bd824d952b928d9a2965eeaefda72fc47be0fae680c5e", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch27-cxx11-cu126-x86_64-linux": { | ||||
|         "hash": "sha256-7d7d3e655f34a7b03d5603d7c1ab723ef3efc823291762421a8b3a4aa51bd405", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch27-cxx11-cu128-aarch64-linux": { | ||||
|         "hash": "sha256-60e076194dcd55b32c5aca72f09816cba0fff52f340c8a063b17ff0577154d99", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       }, | ||||
|       "torch27-cxx11-cu128-x86_64-linux": { | ||||
|         "hash": "sha256-f0a3802382efdcd78b40601187a9c416579a24ef2ed5a60d2296ef0951a89597", | ||||
|         "hash_type": "git_lfs_concat" | ||||
|       } | ||||
|     } | ||||
|  | ||||
| @ -9,6 +9,11 @@ def kernel(): | ||||
|     return get_kernel("kernels-community/activation") | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def metal_kernel(): | ||||
|     return get_kernel("kernels-test/relu-metal") | ||||
|  | ||||
|  | ||||
| @pytest.fixture | ||||
| def universal_kernel(): | ||||
|     return get_kernel("kernels-community/triton-scaled-mm") | ||||
| @ -21,6 +26,7 @@ def device(): | ||||
|     return "cuda" | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| def test_gelu_fast(kernel, device): | ||||
|     x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3) | ||||
|     y = torch.empty_like(x) | ||||
| @ -36,6 +42,15 @@ def test_gelu_fast(kernel, device): | ||||
|     assert torch.allclose(y, expected) | ||||
|  | ||||
|  | ||||
| @pytest.mark.darwin_only | ||||
| @pytest.mark.parametrize("dtype", [torch.float16, torch.float32]) | ||||
| def test_relu_metal(metal_kernel, dtype): | ||||
|     x = torch.arange(-10, 10, dtype=dtype, device="mps") | ||||
|     y = metal_kernel.relu(x) | ||||
|     assert torch.allclose(y, torch.relu(x)) | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| @pytest.mark.parametrize( | ||||
|     "kernel_exists", | ||||
|     [ | ||||
| @ -52,6 +67,7 @@ def test_has_kernel(kernel_exists): | ||||
|     assert has_kernel(repo_id, revision=revision) == kernel | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| def test_universal_kernel(universal_kernel): | ||||
|     torch.manual_seed(0) | ||||
|     A = torch.randint(-10, 10, (64, 128), dtype=torch.int8, device="cuda") | ||||
|  | ||||
| @ -16,18 +16,21 @@ def device(): | ||||
|     return "cuda" | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| def test_gelu_small(kernel, device, benchmark): | ||||
|     x = torch.randn(32, 32, dtype=torch.float16, device=device) | ||||
|     y = torch.empty_like(x) | ||||
|     benchmark(kernel.gelu_fast, y, x) | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| def test_gelu_medium(kernel, device, benchmark): | ||||
|     x = torch.randn(128, 128, dtype=torch.float16, device=device) | ||||
|     y = torch.empty_like(x) | ||||
|     benchmark(kernel.gelu_fast, y, x) | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| def test_gelu_large(kernel, device, benchmark): | ||||
|     x = torch.randn(512, 512, dtype=torch.float16, device=device) | ||||
|     y = torch.empty_like(x) | ||||
|  | ||||
| @ -1,6 +1,8 @@ | ||||
| from dataclasses import dataclass | ||||
| from pathlib import Path | ||||
|  | ||||
| import pytest | ||||
|  | ||||
| from kernels import load_kernel | ||||
| from kernels.cli import download_kernels | ||||
|  | ||||
| @ -17,6 +19,7 @@ def test_download_all_hash_validation(): | ||||
|     download_kernels(DownloadArgs(all_variants=True, project_dir=project_dir)) | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| def test_load_locked(): | ||||
|     project_dir = Path(__file__).parent / "kernel_locking" | ||||
|     # Also validates that hashing works correctly. | ||||
|  | ||||
| @ -1,3 +1,5 @@ | ||||
| from contextlib import nullcontext | ||||
|  | ||||
| import pytest | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| @ -6,6 +8,7 @@ from torch.nn import functional as F | ||||
| from kernels import ( | ||||
|     Device, | ||||
|     LayerRepository, | ||||
|     kernelize, | ||||
|     register_kernel_mapping, | ||||
|     use_kernel_forward_from_hub, | ||||
| ) | ||||
| @ -16,14 +19,18 @@ kernel_layer_mapping = { | ||||
|         Device(type="cuda"): LayerRepository( | ||||
|             repo_id="kernels-community/activation", | ||||
|             layer_name="SiluAndMul", | ||||
|             revision="layers", | ||||
|         ) | ||||
|     }, | ||||
|     "SiluAndMulNoCompile": { | ||||
|         "cuda": LayerRepository( | ||||
|             repo_id="kernels-test/op-without-fake-test", | ||||
|             layer_name="SiluAndMul", | ||||
|         ) | ||||
|     }, | ||||
|     "SiluAndMulStringDevice": { | ||||
|         "cuda": LayerRepository( | ||||
|             repo_id="kernels-community/activation", | ||||
|             layer_name="SiluAndMul", | ||||
|             revision="layers", | ||||
|         ) | ||||
|     }, | ||||
| } | ||||
| @ -43,6 +50,11 @@ class SiluAndMul(nn.Module): | ||||
|         return F.silu(input[..., :d]) * input[..., d:] | ||||
|  | ||||
|  | ||||
| @use_kernel_forward_from_hub("SiluAndMulNoCompile") | ||||
| class SiluAndMulNoCompileKernel(SiluAndMul): | ||||
|     pass | ||||
|  | ||||
|  | ||||
| @use_kernel_forward_from_hub("SiluAndMul") | ||||
| class SiluAndMulWithKernel(SiluAndMul): | ||||
|     pass | ||||
| @ -71,6 +83,7 @@ def test_arg_kinds(): | ||||
|     assert arg_kind("foo", "bar", kwarg1="baz", kwarg2=5) == ("foo", "bar", "baz", 5) | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| @pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulStringDevice]) | ||||
| @pytest.mark.parametrize("device", ["cuda", "cpu"]) | ||||
| def test_hub_forward(cls, device): | ||||
| @ -80,7 +93,7 @@ def test_hub_forward(cls, device): | ||||
|     X = torch.randn((32, 64), device=device) | ||||
|     Y = silu_and_mul(X) | ||||
|  | ||||
|     silu_and_mul_with_kernel = cls() | ||||
|     silu_and_mul_with_kernel = kernelize(cls(), device=device) | ||||
|     Y_kernel = silu_and_mul_with_kernel(X) | ||||
|  | ||||
|     torch.testing.assert_close(Y_kernel, Y) | ||||
| @ -98,11 +111,70 @@ def test_layer_fallback_works(): | ||||
|         pass | ||||
|  | ||||
|     # Check that we don't raise an exception for a non-existing kernel. | ||||
|     SiluAndMulWithKernelFallback() | ||||
|     silu_and_mul = SiluAndMulWithKernelFallback() | ||||
|     kernelize(silu_and_mul, device="cuda") | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| @pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel]) | ||||
| @pytest.mark.parametrize("device", ["cuda"]) | ||||
| def test_torch_compile_layer_without_fallback(cls, device): | ||||
|     silu_and_mul = SiluAndMul() | ||||
|  | ||||
|     X = torch.randn((32, 64), dtype=torch.float32, device=device) | ||||
|     Y = silu_and_mul(X) | ||||
|  | ||||
|     silu_and_mul_with_kernel = cls() | ||||
|     silu_and_mul_with_kernel.eval() | ||||
|  | ||||
|     ctx = ( | ||||
|         pytest.raises(ValueError, match="does not fulfill requirements") | ||||
|         if cls is SiluAndMulNoCompileKernel | ||||
|         else nullcontext() | ||||
|     ) | ||||
|     with ctx: | ||||
|         silu_and_mul_with_kernel = kernelize( | ||||
|             silu_and_mul_with_kernel, | ||||
|             device=device, | ||||
|             needs_torch_compile=True, | ||||
|             use_fallback=False, | ||||
|         ) | ||||
|     silu_and_mul_compiled = torch.compile(silu_and_mul_with_kernel, fullgraph=True) | ||||
|  | ||||
|     Y_compiled = silu_and_mul_compiled(X) | ||||
|  | ||||
|     torch.testing.assert_close(Y_compiled, Y) | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| @pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel]) | ||||
| @pytest.mark.parametrize("device", ["cuda"]) | ||||
| def test_torch_compile_layer_with_fallback(cls, device): | ||||
|     silu_and_mul = SiluAndMul() | ||||
|  | ||||
|     X = torch.randn((32, 64), dtype=torch.float32, device=device) | ||||
|     Y = silu_and_mul(X) | ||||
|  | ||||
|     silu_and_mul_with_kernel = cls() | ||||
|     silu_and_mul_with_kernel.eval() | ||||
|     silu_and_mul_with_kernel = kernelize( | ||||
|         silu_and_mul_with_kernel, | ||||
|         device=device, | ||||
|         needs_torch_compile=True, | ||||
|     ) | ||||
|     silu_and_mul_compiled = torch.compile(silu_and_mul_with_kernel, fullgraph=True) | ||||
|  | ||||
|     Y_compiled = silu_and_mul_compiled(X) | ||||
|  | ||||
|     torch.testing.assert_close(Y_compiled, Y) | ||||
|  | ||||
|  | ||||
| def test_mapping_contexts(): | ||||
|     assert set(_KERNEL_MAPPING.get().keys()) == {"SiluAndMul", "SiluAndMulStringDevice"} | ||||
|     assert set(_KERNEL_MAPPING.get().keys()) == { | ||||
|         "SiluAndMul", | ||||
|         "SiluAndMulStringDevice", | ||||
|         "SiluAndMulNoCompile", | ||||
|     } | ||||
|  | ||||
|     extra_mapping1 = { | ||||
|         "TestKernel": { | ||||
| @ -118,6 +190,7 @@ def test_mapping_contexts(): | ||||
|         assert set(_KERNEL_MAPPING.get().keys()) == { | ||||
|             "SiluAndMul", | ||||
|             "SiluAndMulStringDevice", | ||||
|             "SiluAndMulNoCompile", | ||||
|             "TestKernel", | ||||
|         } | ||||
|  | ||||
| @ -135,6 +208,7 @@ def test_mapping_contexts(): | ||||
|             assert set(_KERNEL_MAPPING.get().keys()) == { | ||||
|                 "SiluAndMul", | ||||
|                 "SiluAndMulStringDevice", | ||||
|                 "SiluAndMulNoCompile", | ||||
|                 "TestKernel", | ||||
|             } | ||||
|             assert ( | ||||
| @ -145,6 +219,7 @@ def test_mapping_contexts(): | ||||
|         assert set(_KERNEL_MAPPING.get().keys()) == { | ||||
|             "SiluAndMul", | ||||
|             "SiluAndMulStringDevice", | ||||
|             "SiluAndMulNoCompile", | ||||
|             "TestKernel", | ||||
|         } | ||||
|         assert ( | ||||
| @ -164,6 +239,7 @@ def test_mapping_contexts(): | ||||
|         assert set(_KERNEL_MAPPING.get().keys()) == { | ||||
|             "SiluAndMul", | ||||
|             "SiluAndMulStringDevice", | ||||
|             "SiluAndMulNoCompile", | ||||
|             "TestKernel", | ||||
|         } | ||||
|         assert ( | ||||
| @ -174,6 +250,7 @@ def test_mapping_contexts(): | ||||
|     assert set(_KERNEL_MAPPING.get().keys()) == { | ||||
|         "SiluAndMul", | ||||
|         "SiluAndMulStringDevice", | ||||
|         "SiluAndMulNoCompile", | ||||
|     } | ||||
|  | ||||
|  | ||||
| @ -205,6 +282,7 @@ def test_validate_kernel_layer(): | ||||
|         _validate_layer(cls=BadLayer4, check_cls=SiluAndMul) | ||||
|  | ||||
|  | ||||
| @pytest.mark.linux_only | ||||
| def test_fallback_used_when_training(): | ||||
|     @use_kernel_forward_from_hub("Linear") | ||||
|     class TorchLinear(nn.Linear): | ||||
| @ -219,25 +297,8 @@ def test_fallback_used_when_training(): | ||||
|  | ||||
|     linear = TorchLinear(32, 32).to("cuda") | ||||
|  | ||||
|     with use_kernel_mapping( | ||||
|         { | ||||
|             "Linear": { | ||||
|                 Device(type="cuda"): LayerRepository( | ||||
|                     repo_id="kernels-test/backward-marker-test", | ||||
|                     layer_name="LinearImplicitBackward", | ||||
|                 ) | ||||
|             } | ||||
|         } | ||||
|     ): | ||||
|         linear.train() | ||||
|         X = torch.randn(10, 32, device="cuda") | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 0 | ||||
|  | ||||
|         linear.eval() | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 0 | ||||
|  | ||||
|     # Case 1: kernel with explicit backward support should always | ||||
|     #         use the kernel. | ||||
|     with use_kernel_mapping( | ||||
|         { | ||||
|             "Linear": { | ||||
| @ -249,6 +310,7 @@ def test_fallback_used_when_training(): | ||||
|         } | ||||
|     ): | ||||
|         linear.train() | ||||
|         kernelize(linear) | ||||
|         X = torch.randn(10, 32, device="cuda") | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 0 | ||||
| @ -257,6 +319,31 @@ def test_fallback_used_when_training(): | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 0 | ||||
|  | ||||
|     # Case 2: kernel with implicit backward support should always | ||||
|     #         use the kernel. | ||||
|     with use_kernel_mapping( | ||||
|         { | ||||
|             "Linear": { | ||||
|                 Device(type="cuda"): LayerRepository( | ||||
|                     repo_id="kernels-test/backward-marker-test", | ||||
|                     layer_name="LinearImplicitBackward", | ||||
|                 ) | ||||
|             } | ||||
|         } | ||||
|     ): | ||||
|         linear.train() | ||||
|         kernelize(linear) | ||||
|         X = torch.randn(10, 32, device="cuda") | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 0 | ||||
|  | ||||
|         linear.eval() | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 0 | ||||
|  | ||||
|     # Case 3: kernel out backward support should use the kernel in | ||||
|     #         eval mode and the fallback in training. Test train -> | ||||
|     #         eval -> train. | ||||
|     with use_kernel_mapping( | ||||
|         { | ||||
|             "Linear": { | ||||
| @ -268,10 +355,43 @@ def test_fallback_used_when_training(): | ||||
|         } | ||||
|     ): | ||||
|         linear.train() | ||||
|         kernelize(linear) | ||||
|         X = torch.randn(10, 32, device="cuda") | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 1 | ||||
|  | ||||
|         # When switching the kernel to eval, forward gets replaced by | ||||
|         # the kernel. | ||||
|         linear.eval() | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 1 | ||||
|  | ||||
|         ## Let's do it in the other direction to make sure it works as well. | ||||
|         linear.train() | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 2 | ||||
|  | ||||
|     # Case 4: same as case 3, but test eval -> train -> eval. | ||||
|     with use_kernel_mapping( | ||||
|         { | ||||
|             "Linear": { | ||||
|                 Device(type="cuda"): LayerRepository( | ||||
|                     repo_id="kernels-test/backward-marker-test", | ||||
|                     layer_name="LinearNoBackward", | ||||
|                 ) | ||||
|             } | ||||
|         } | ||||
|     ): | ||||
|         linear.eval() | ||||
|         kernelize(linear) | ||||
|         X = torch.randn(10, 32, device="cuda") | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 2 | ||||
|  | ||||
|         linear.train() | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 3 | ||||
|  | ||||
|         linear.eval() | ||||
|         linear(X) | ||||
|         assert linear.n_calls == 3 | ||||
|  | ||||
		Reference in New Issue
	
	Block a user
	