mirror of
https://github.com/huggingface/kernels.git
synced 2025-10-21 05:30:30 +08:00
Compare commits
51 Commits
bump-0.3.0
...
v0.7.0
Author | SHA1 | Date | |
---|---|---|---|
b7b5f40143 | |||
b87e6fadbe | |||
fc935d9874 | |||
3622e1f8dd | |||
a7f3b2e8ed | |||
a6ab5d83ba | |||
4f9f1abfb9 | |||
f94b7780a6 | |||
bd28883775 | |||
498429e322 | |||
09c991af4b | |||
bcf8df5875 | |||
239afff6f5 | |||
c5ec6b900a | |||
3a635eaeea | |||
32ec496c5a | |||
848c6db87b | |||
fabb8c52d1 | |||
d66260dd83 | |||
daac8078fc | |||
fcb9a80ce6 | |||
c25bb32e6e | |||
2036892762 | |||
0f0de049cf | |||
59597df03e | |||
5e938ede40 | |||
cf530c283a | |||
437f910336 | |||
6f1a6067c8 | |||
1d14abcef0 | |||
6fd2112e22 | |||
70f56ff856 | |||
7178b0b86c | |||
0bbf90a564 | |||
27d6ffcb80 | |||
f7bd21438b | |||
6174febb4b | |||
ff55bc201b | |||
3808108d62 | |||
c4a16ef462 | |||
9762794dd2 | |||
b7d6867c52 | |||
fbcd0f2ebd | |||
5af46eca94 | |||
747dd66876 | |||
920590a592 | |||
5208ac4be5 | |||
22eaba2826 | |||
9521ba79a0 | |||
9861a5bdef | |||
1c7c87c960 |
120
.github/workflows/publish.yml
vendored
Normal file
120
.github/workflows/publish.yml
vendored
Normal file
@ -0,0 +1,120 @@
|
||||
name: Publish Python 🐍 distribution 📦 to PyPI and TestPyPI
|
||||
|
||||
on: push
|
||||
|
||||
jobs:
|
||||
build:
|
||||
name: Build distribution 📦
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.9"
|
||||
- name: Install pypa/build
|
||||
run: >-
|
||||
python3 -m
|
||||
pip install
|
||||
build
|
||||
--user
|
||||
- name: Build a binary wheel and a source tarball
|
||||
run: python3 -m build
|
||||
- name: Store the distribution packages
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: python-package-distributions
|
||||
path: dist/
|
||||
|
||||
publish-to-pypi:
|
||||
name: >-
|
||||
Publish Python 🐍 distribution 📦 to PyPI
|
||||
if: startsWith(github.ref, 'refs/tags/') # only publish to PyPI on tag pushes
|
||||
needs:
|
||||
- build
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/kernels
|
||||
permissions:
|
||||
id-token: write # IMPORTANT: mandatory for trusted publishing
|
||||
|
||||
steps:
|
||||
- name: Download all the dists
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: python-package-distributions
|
||||
path: dist/
|
||||
- name: Publish distribution 📦 to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
|
||||
github-release:
|
||||
name: >-
|
||||
Sign the Python 🐍 distribution 📦 with Sigstore
|
||||
and upload them to GitHub Release
|
||||
needs:
|
||||
- publish-to-pypi
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
permissions:
|
||||
contents: write # IMPORTANT: mandatory for making GitHub Releases
|
||||
id-token: write # IMPORTANT: mandatory for sigstore
|
||||
|
||||
steps:
|
||||
- name: Download all the dists
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: python-package-distributions
|
||||
path: dist/
|
||||
- name: Sign the dists with Sigstore
|
||||
uses: sigstore/gh-action-sigstore-python@v3.0.0
|
||||
with:
|
||||
inputs: >-
|
||||
./dist/*.tar.gz
|
||||
./dist/*.whl
|
||||
- name: Create GitHub Release
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ github.token }}
|
||||
run: >-
|
||||
gh release create
|
||||
"$GITHUB_REF_NAME"
|
||||
--repo "$GITHUB_REPOSITORY"
|
||||
--notes ""
|
||||
- name: Upload artifact signatures to GitHub Release
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ github.token }}
|
||||
# Upload to GitHub Release using the `gh` CLI.
|
||||
# `dist/` contains the built packages, and the
|
||||
# sigstore-produced signatures and certificates.
|
||||
run: >-
|
||||
gh release upload
|
||||
"$GITHUB_REF_NAME" dist/**
|
||||
--repo "$GITHUB_REPOSITORY"
|
||||
|
||||
publish-to-testpypi:
|
||||
name: Publish Python 🐍 distribution 📦 to TestPyPI
|
||||
needs:
|
||||
- build
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
environment:
|
||||
name: testpypi
|
||||
url: https://test.pypi.org/p/kernels
|
||||
|
||||
permissions:
|
||||
id-token: write # IMPORTANT: mandatory for trusted publishing
|
||||
|
||||
steps:
|
||||
- name: Download all the dists
|
||||
uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: python-package-distributions
|
||||
path: dist/
|
||||
- name: Publish distribution 📦 to TestPyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: https://test.pypi.org/legacy/
|
||||
skip-existing: true # Only upload when the version is unique.
|
19
.github/workflows/test.yml
vendored
19
.github/workflows/test.yml
vendored
@ -24,7 +24,7 @@ jobs:
|
||||
max-parallel: 4
|
||||
matrix:
|
||||
python-version: ["3.10", "3.12"]
|
||||
torch-version: ["2.5.1", "2.6.0"]
|
||||
torch-version: ["2.6.0", "2.7.0"]
|
||||
|
||||
env:
|
||||
UV_PYTHON_PREFERENCE: only-managed
|
||||
@ -52,3 +52,20 @@ jobs:
|
||||
|
||||
- name: Run tests
|
||||
run: uv run pytest tests
|
||||
|
||||
- name: Check kernel conversion
|
||||
run: |
|
||||
uv pip install wheel
|
||||
uv run kernels to-wheel kernels-community/triton-layer-norm 0.0.1
|
||||
uv pip install triton_layer_norm-0.0.1*.whl
|
||||
uv run python -c "import triton_layer_norm"
|
||||
|
||||
- name: Check README generation
|
||||
# For now, just checks that generation doesn't fail.
|
||||
run: |
|
||||
uv run kernels generate-readme kernels-community/triton-layer-norm
|
||||
|
||||
- name: Import check without torch
|
||||
run: |
|
||||
uv pip uninstall torch
|
||||
python -c "import kernels"
|
||||
|
201
LICENSE
Normal file
201
LICENSE
Normal file
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
13
README.md
13
README.md
@ -1,5 +1,16 @@
|
||||
# kernels
|
||||
|
||||
<div align="center">
|
||||
<img src="https://github.com/user-attachments/assets/64a652f3-0cd3-4829-b3c1-df13f7933569" width="450" height="450" alt="kernel-builder logo">
|
||||
<p align="center">
|
||||
<a href="https://pypi.org/project/kernels"><img alt="PyPI - Version" src="https://img.shields.io/pypi/v/kernels"></a>
|
||||
<a href="https://github.com/huggingface/kernels/tags"><img alt="GitHub tag" src="https://img.shields.io/github/v/tag/huggingface/kernels"></a>
|
||||
<a href="https://github.com/huggingface/kernels/actions/workflows/docker-build-push.yaml"><img alt="Test kernels" src="https://img.shields.io/github/actions/workflow/status/huggingface/kernels/test.yml?label=test"></a>
|
||||
|
||||
</p>
|
||||
</div>
|
||||
<hr/>
|
||||
|
||||
The Kernel Hub allows Python libraries and applications to load compute
|
||||
kernels directly from the [Hub](https://hf.co/). To support this kind
|
||||
of dynamic loading, Hub kernels differ from traditional Python kernel
|
||||
@ -47,6 +58,8 @@ the Hub.
|
||||
|
||||
- [Using layers](docs/layers.md)
|
||||
- [Locking kernel versions](docs/locking.md)
|
||||
- [Environment variables](docs/env.md)
|
||||
- [Using kernels in a Docker container](docs/docker.md)
|
||||
- [Kernel requirements](docs/kernel-requirements.md)
|
||||
- [Frequently Asked Questions](docs/faq.md)
|
||||
- [Writing kernels](https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md) using [kernel-builder](https://github.com/huggingface/kernel-builder/)
|
||||
|
10
docs/env.md
Normal file
10
docs/env.md
Normal file
@ -0,0 +1,10 @@
|
||||
# Environment variables
|
||||
|
||||
## `KERNELS_CACHE`
|
||||
|
||||
The directory to use as the local kernel cache. If not set, the cache
|
||||
of the `huggingface_hub` package is used.
|
||||
|
||||
## `DISABLE_KERNEL_MAPPING`
|
||||
|
||||
Disables kernel mappings for [`layers`](layers.md).
|
13
docs/faq.md
Normal file
13
docs/faq.md
Normal file
@ -0,0 +1,13 @@
|
||||
# FAQ
|
||||
|
||||
## Why is the kernelization step needed?
|
||||
|
||||
In earlier versions of `kernels`, a layer's `forward` was replaced by
|
||||
`use_kernel_forward_from_hub` and `replace_kernel_forward_from_hub`. The
|
||||
new `forward` would dispatch to a kernel based on the device type,
|
||||
whether a model was training, etc. However, this approach was
|
||||
fundamentally incompatible with `torch.compile` since it relied
|
||||
on data-dependent branching.
|
||||
|
||||
To avoid branching, we have to make dispatch decisions ahead of time,
|
||||
which is what the `kernelize` function does.
|
@ -1,8 +1,11 @@
|
||||
# Kernel requirements
|
||||
|
||||
Kernels on the Hub must fulfill the requirements outlined on this page.
|
||||
Kernels on the Hub must fulfill the requirements outlined on this page. By
|
||||
ensuring kernels are compliant, they can be used on a wide range of Linux
|
||||
systems and Torch builds.
|
||||
|
||||
You can use [kernel-builder](https://github.com/huggingface/kernel-builder/)
|
||||
to build conforming kernels.
|
||||
to build compliant kernels.
|
||||
|
||||
## Directory layout
|
||||
|
||||
@ -10,52 +13,72 @@ A kernel repository on the Hub must contain a `build` directory. This
|
||||
directory contains build variants of a kernel in the form of directories
|
||||
following the template
|
||||
`<framework><version>-cxx<abiver>-<cu><cudaver>-<arch>-<os>`.
|
||||
For example `build/torch26-cxx98-cu118-x86_64-linux`. The currently
|
||||
recommended build variants are:
|
||||
For example `build/torch26-cxx98-cu118-x86_64-linux`.
|
||||
|
||||
- `torch25-cxx11-cu118-x86_64-linux`
|
||||
- `torch25-cxx11-cu121-x86_64-linux`
|
||||
- `torch25-cxx11-cu124-x86_64-linux`
|
||||
- `torch25-cxx98-cu118-x86_64-linux`
|
||||
- `torch25-cxx98-cu121-x86_64-linux`
|
||||
- `torch25-cxx98-cu124-x86_64-linux`
|
||||
- `torch26-cxx11-cu118-x86_64-linux`
|
||||
- `torch26-cxx11-cu124-x86_64-linux`
|
||||
- `torch26-cxx11-cu126-x86_64-linux`
|
||||
- `torch26-cxx98-cu118-x86_64-linux`
|
||||
- `torch26-cxx98-cu124-x86_64-linux`
|
||||
- `torch26-cxx98-cu126-x86_64-linux`
|
||||
|
||||
This list will be updated as new PyTorch versions are released. Kernels
|
||||
that are in pure Python (e.g. Triton kernels) only need to provide a
|
||||
single build variant:
|
||||
|
||||
- `torch-universal`
|
||||
|
||||
Each variant directory should contain a single directory with the same name
|
||||
Each variant directory must contain a single directory with the same name
|
||||
as the repository (replacing `-` by `_`). For instance, kernels in the
|
||||
`kernels-community/activation` repository have a directories like
|
||||
`build/<variant>/activation`. This directory
|
||||
must be a Python package with an `__init__.py` file.
|
||||
|
||||
## Build variants
|
||||
|
||||
A kernel can be compliant for a specific compute framework (e.g. CUDA) or
|
||||
architecture (e.g. x86_64). For compliance with a compute framework and
|
||||
architecture combination, all the variants from the [build variant list](https://github.com/huggingface/kernel-builder/blob/main/docs/build-variants.md)
|
||||
must be available for that combination.
|
||||
|
||||
## Versioning
|
||||
|
||||
Kernels are versioned on the Hub using Git tags. Version tags must be of
|
||||
the form `v<major>.<minor>.<patch>`. Versions are used by [locking](./locking.md)
|
||||
to resolve the version constraints.
|
||||
|
||||
## Native Python module
|
||||
|
||||
Kernels will typically contain a native Python module with precompiled
|
||||
compute kernels and bindings. This module must fulfill the following
|
||||
requirements:
|
||||
compute kernels and bindings. This module must fulfill the requirements
|
||||
outlined in this section. For all operating systems, a kernel must not
|
||||
have dynamic library dependencies outside:
|
||||
|
||||
- Torch;
|
||||
- CUDA/ROCm libraries installed as dependencies of Torch.
|
||||
|
||||
### Linux
|
||||
|
||||
- Use [ABI3/Limited API](https://docs.python.org/3/c-api/stable.html#stable-application-binary-interface)
|
||||
for compatibility with Python 3.9 and later.
|
||||
- Compatible with glibc 2.27 or later. This means that no symbols
|
||||
from later versions must be used. To archive this, the module should
|
||||
be built against this glibc version. **Warning:** libgcc must also be
|
||||
built against glibc 2.27 to avoid leaking symbols.
|
||||
- No dynamic linkage against libstdc++/libc++. Linkage for C++ symbols
|
||||
must be static.
|
||||
- No dynamic library dependencies outside Torch or CUDA libraries
|
||||
installed as dependencies of Torch.
|
||||
- Compatible with [`manylinux_2_28`](https://github.com/pypa/manylinux?tab=readme-ov-file#manylinux_2_28-almalinux-8-based).
|
||||
This means that the extension **must not** use symbols versions higher than:
|
||||
|
||||
(These requirements will be updated as new PyTorch versions are released.)
|
||||
- GLIBC 2.28
|
||||
- GLIBCXX 3.4.24
|
||||
- CXXABI 1.3.11
|
||||
- GCC 7.0.0
|
||||
|
||||
These requirement can be checked with the ABI checker (see below).
|
||||
|
||||
### macOS
|
||||
|
||||
- Use [ABI3/Limited API](https://docs.python.org/3/c-api/stable.html#stable-application-binary-interface)
|
||||
for compatibility with Python 3.9 and later.
|
||||
- macOS deployment target 15.0.
|
||||
- Metal 3.0 (`-std=metal3.0`).
|
||||
|
||||
The ABI3 requirement can be checked with the ABI checker (see below).
|
||||
|
||||
### ABI checker
|
||||
|
||||
The manylinux_2_28 and Python ABI 3.9 version requirements can be checked with
|
||||
[`kernel-abi-check`](https://crates.io/crates/kernel-abi-check):
|
||||
|
||||
```bash
|
||||
|
||||
$ cargo install kernel-abi-check
|
||||
$ kernel-abi-check result/relu/_relu_e87e0ca_dirty.abi3.so
|
||||
🐍 Checking for compatibility with manylinux_2_28 and Python ABI version 3.9
|
||||
✅ No compatibility issues found
|
||||
```
|
||||
|
||||
## Torch extension
|
||||
|
||||
@ -98,10 +121,20 @@ requirements:
|
||||
- The `forward` method has a signature that is compatible with the
|
||||
`forward` method that it is extending.
|
||||
|
||||
There are two exceptions to the _no class variables rule_:
|
||||
|
||||
1. The `has_backward` variable can be used to indicate whether the layer has
|
||||
a backward pass implemented (`True` when absent).
|
||||
2. The `can_torch_compile` variable can be used to indicate whether the layer
|
||||
supports `torch.compile` (`False` when absent).
|
||||
|
||||
This is an example of a pure layer:
|
||||
|
||||
```python
|
||||
class SiluAndMul(nn.Module):
|
||||
# This layer does not implement backward.
|
||||
has_backward: bool = False
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
d = x.shape[-1] // 2
|
||||
output_shape = x.shape[:-1] + (d,)
|
||||
|
142
docs/layers.md
142
docs/layers.md
@ -23,33 +23,93 @@ class SiluAndMul(nn.Module):
|
||||
return F.silu(input[..., :d]) * input[..., d:]
|
||||
```
|
||||
|
||||
The decorator changes the layer, so that other implementations of the `forward`
|
||||
method can be registered using the name `SiluAndMul`.
|
||||
The decorator does not change the behavior of the class -- it annotates
|
||||
the class with the given name (here `SiluAndMul`). The `kernelize` function
|
||||
described below uses this name to look up kernels for the layer.
|
||||
|
||||
### External layers
|
||||
|
||||
An existing layer that does not (yet) have the `use_kernel_forward_from_hub`
|
||||
decorator can be made extensible by by monkeypatching it using the `replace_kernel_forward_from_hub` function.
|
||||
decorator can be made extensible using the `replace_kernel_forward_from_hub`
|
||||
function:
|
||||
|
||||
```python
|
||||
from somelibrary import SiluAndMul
|
||||
|
||||
replace_kernel_forward_from_hub(SiluAndMul, "SiluAndMul")
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
```
|
||||
|
||||
The `register_kernel_mapping` call maps the name `SiluAndMul` to actual
|
||||
hub kernels. See the [Registering a hub kernel for a layer](#registering-a-hub-kernel-for-a-layer)
|
||||
section for more information.
|
||||
|
||||
**Warning:** we strongly recommend using layers with a decorator, since
|
||||
it signifies that the maintainer intends to keep the `forward` signature
|
||||
compatible with layers from the hub.
|
||||
|
||||
## Kernelizing a model
|
||||
|
||||
A model will not use Hub kernels by default, even if it contains extensible
|
||||
layers. To enable the use of Hub kernels in the model, it needs to be
|
||||
'kernelized' using the `kernelize` function. This function traverses the
|
||||
model graph and replaces the `forward` methods of extensible layers for which
|
||||
Hub kernels are registered. Kernelize can be used as follows:
|
||||
|
||||
```python
|
||||
model = MyModel(...)
|
||||
model = kernelize(model, mode=Mode.INFERENCE)
|
||||
```
|
||||
|
||||
The `mode` specifies that the model will be used in inference. Similarly,
|
||||
you can ask `kernelize` to prepare the model for training:
|
||||
|
||||
```python
|
||||
model = MyModel(...)
|
||||
model = kernelize(model, mode=Mode.TRAINING)
|
||||
```
|
||||
|
||||
**Note:** the `kernelize` function modifies the model in-place, the model
|
||||
itself is returned as a convenience.
|
||||
|
||||
### Kernel device
|
||||
|
||||
Kernels can be registered per device type. For instance, separate `cuda` and
|
||||
`metal` kernels could be registered for the name `SiluAndMul`. By default,
|
||||
`kernelize` will try to infer the device type from the model's parameters.
|
||||
You can pass the device type to `kernelize` if the device type cannot be
|
||||
inferred (e.g. because the model has no parameters):
|
||||
|
||||
```python
|
||||
model = MyModel(...)
|
||||
model = kernelize(model, device="cuda", mode=Mode.INFERENCE)
|
||||
```
|
||||
|
||||
### `torch.compile`
|
||||
|
||||
Not all Hub kernels support `torch.compile`. If you want to compile a model
|
||||
after kernelizing it, you need to add this to the mode. You can use the
|
||||
set union (`|`) operator to add `TORCH_COMPILE` to the mode:
|
||||
|
||||
```python
|
||||
model = MyModel(...)
|
||||
model = kernelize(model, mode=Mode.INFERENCE | Mode.TORCH_COMPILE)
|
||||
```
|
||||
|
||||
### Fallback `forward`
|
||||
|
||||
If the `TRAINING` and/or `TORCH_COMPILE` modes are used, but a registered
|
||||
kernel does not support backward passes or `torch.compile` respectively,
|
||||
`kernenize` will fall back to the original, non-kernelized, layer. You
|
||||
can let `kernelize` raise an exception instead by using `use_fallback=False`:
|
||||
|
||||
```python
|
||||
model = MyModel(...)
|
||||
model = kernelize(model, mode=Mode.INFERENCE | Mode.TORCH_COMPILE, use_fallback=False)
|
||||
```
|
||||
|
||||
This can be useful if you want to guarantee that Hub kernels are used.
|
||||
|
||||
## Registering a hub kernel for a layer
|
||||
|
||||
Once a layer is made extensible, users can register hub kernels for it
|
||||
by name using the `register_kernel_mapping` function. For example:
|
||||
`kernelize` relies on kernel mappings to find Hub kernels for layers.
|
||||
Kernel mappings map a kernel name such as `SiluAndMul` to a kernel on
|
||||
the Hub. For example:
|
||||
|
||||
```python
|
||||
kernel_layer_mapping = {
|
||||
@ -57,11 +117,14 @@ kernel_layer_mapping = {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
revision="layers",
|
||||
)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
You can register such a mapping using `register_kernel_mapping`:
|
||||
|
||||
```python
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
```
|
||||
|
||||
@ -72,8 +135,63 @@ used with the `use_kernel_mapping` context manager:
|
||||
```python
|
||||
with use_kernel_mapping(kernel_layer_mapping):
|
||||
# Use the layer for which the mapping is applied.
|
||||
...
|
||||
model = kernelize(model)
|
||||
```
|
||||
|
||||
This ensures that the mapping is not active anymore outside the
|
||||
`with`-scope.
|
||||
|
||||
### Registering kernels for specific modes
|
||||
|
||||
You might want to register two different kernels for a particular layer,
|
||||
where one kernel is optimized for a specific mode. You can do so by
|
||||
registering layer repositories for specific modes. For example:
|
||||
|
||||
```python
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": {
|
||||
Mode.INFERENCE: LayerRepository(
|
||||
repo_id="kernels-community/activation-inference-optimized",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
Mode.TRAINING | Mode.TORCH_COMPILE: LayerRepository(
|
||||
repo_id="kernels-community/activation-training-optimized",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
The kernels will match exactly on the mode. So, for instance in the example above, no kernel
|
||||
layer is used when the `mode` passed to `kernelize` is
|
||||
`Mode.INFERENCE | Mode.TORCH_COMPILE` or `Mode.TRAINING`. However, if you want to
|
||||
register a kernel to be used when the mode does not match any of the
|
||||
modes in the mapping, you can use the special `Mode.DEFAULT` mode to do
|
||||
so. For example:
|
||||
|
||||
```python
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": {
|
||||
Mode.DEFAULT: LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
Mode.INFERENCE: LayerRepository(
|
||||
repo_id="kernels-community/activation-inference-optimized",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
Mode.TRAINING | Mode.TORCH_COMPILE: LayerRepository(
|
||||
repo_id="kernels-community/activation-training-optimized",
|
||||
layer_name="SiluAndMul",
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
In this case, modes other than `Mode.INFERENCE` and
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` will be kernelized using
|
||||
`kernels-community/activation`.
|
||||
|
@ -13,7 +13,7 @@ build-backend = "setuptools.build_meta"
|
||||
"kernels-community/activation" = ">=0.0.1"
|
||||
```
|
||||
|
||||
Then run `kernel lock .` in the project directory. This generates a `kernels.lock` file with
|
||||
Then run `kernels lock .` in the project directory. This generates a `kernels.lock` file with
|
||||
the locked revisions. The locked revision will be used when loading a kernel with
|
||||
`get_locked_kernel`:
|
||||
|
||||
@ -28,7 +28,7 @@ to `kernels` after doing an (editable or regular) installation of your project.
|
||||
|
||||
## Pre-downloading locked kernels
|
||||
|
||||
Locked kernels can be pre-downloaded by running `kernel download .` in your
|
||||
Locked kernels can be pre-downloaded by running `kernels download .` in your
|
||||
project directory. This will download the kernels to your local Hugging Face
|
||||
Hub cache.
|
||||
|
||||
|
55
flake.lock
generated
55
flake.lock
generated
@ -51,18 +51,38 @@
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"hf-nix": {
|
||||
"inputs": {
|
||||
"flake-compat": "flake-compat",
|
||||
"flake-utils": "flake-utils_2",
|
||||
"nixpkgs": "nixpkgs"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1750775451,
|
||||
"narHash": "sha256-HiGqtwzIgUH7Xkh+wgpvHRZGooqrW0z663E6nauczA4=",
|
||||
"owner": "huggingface",
|
||||
"repo": "hf-nix",
|
||||
"rev": "5943c3169e861618a6634bc8dbdb498e413ab9b7",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "huggingface",
|
||||
"repo": "hf-nix",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"nixpkgs": {
|
||||
"locked": {
|
||||
"lastModified": 1737453259,
|
||||
"narHash": "sha256-5LaFI9SQwCZmJDasMoYMdzNouWXNk3BvjKcO19tq1Rs=",
|
||||
"lastModified": 1747820358,
|
||||
"narHash": "sha256-fTqsZsUX6M3yeEvgyQvXcbGmT2CaRVyVwsi8eK29Oj4=",
|
||||
"owner": "danieldk",
|
||||
"repo": "nixpkgs",
|
||||
"rev": "e0372dbcfd19ddd783b7c3b3868f19322f83318e",
|
||||
"rev": "d3c1681180717528068082103bf323147de6ab0b",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "danieldk",
|
||||
"ref": "outlines-v0.1.4-tgi",
|
||||
"ref": "cudatoolkit-12.9-kernel-builder",
|
||||
"repo": "nixpkgs",
|
||||
"type": "github"
|
||||
}
|
||||
@ -70,11 +90,11 @@
|
||||
"root": {
|
||||
"inputs": {
|
||||
"flake-utils": "flake-utils",
|
||||
"hf-nix": "hf-nix",
|
||||
"nixpkgs": [
|
||||
"tgi-nix",
|
||||
"hf-nix",
|
||||
"nixpkgs"
|
||||
],
|
||||
"tgi-nix": "tgi-nix"
|
||||
]
|
||||
}
|
||||
},
|
||||
"systems": {
|
||||
@ -106,27 +126,6 @@
|
||||
"repo": "default",
|
||||
"type": "github"
|
||||
}
|
||||
},
|
||||
"tgi-nix": {
|
||||
"inputs": {
|
||||
"flake-compat": "flake-compat",
|
||||
"flake-utils": "flake-utils_2",
|
||||
"nixpkgs": "nixpkgs"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1741617161,
|
||||
"narHash": "sha256-cwKYAsIVSLtoLbG48+oi3NkSrvuZRLYs8lkJmpDsTw0=",
|
||||
"owner": "huggingface",
|
||||
"repo": "text-generation-inference-nix",
|
||||
"rev": "5946021ec6cb6aae18158a9dc27f893cfbab2925",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
"owner": "huggingface",
|
||||
"ref": "kernels-0.2.0",
|
||||
"repo": "text-generation-inference-nix",
|
||||
"type": "github"
|
||||
}
|
||||
}
|
||||
},
|
||||
"root": "root",
|
||||
|
15
flake.nix
15
flake.nix
@ -1,7 +1,7 @@
|
||||
{
|
||||
inputs = {
|
||||
tgi-nix.url = "github:huggingface/text-generation-inference-nix/kernels-0.2.0";
|
||||
nixpkgs.follows = "tgi-nix/nixpkgs";
|
||||
hf-nix.url = "github:huggingface/hf-nix";
|
||||
nixpkgs.follows = "hf-nix/nixpkgs";
|
||||
flake-utils.url = "github:numtide/flake-utils";
|
||||
};
|
||||
outputs =
|
||||
@ -9,21 +9,21 @@
|
||||
self,
|
||||
nixpkgs,
|
||||
flake-utils,
|
||||
tgi-nix,
|
||||
hf-nix,
|
||||
}:
|
||||
flake-utils.lib.eachDefaultSystem (
|
||||
system:
|
||||
let
|
||||
pkgs = import nixpkgs {
|
||||
inherit system;
|
||||
inherit (tgi-nix.lib) config;
|
||||
config = hf-nix.lib.config system;
|
||||
overlays = [
|
||||
tgi-nix.overlays.default
|
||||
hf-nix.overlays.default
|
||||
];
|
||||
};
|
||||
in
|
||||
{
|
||||
formatter = pkgs.nixfmt-rfc-style;
|
||||
formatter = pkgs.nixfmt-tree;
|
||||
devShells = with pkgs; rec {
|
||||
default = mkShell {
|
||||
buildInputs =
|
||||
@ -34,10 +34,13 @@
|
||||
ruff
|
||||
]
|
||||
++ (with python3.pkgs; [
|
||||
docutils
|
||||
huggingface-hub
|
||||
pytest
|
||||
pytest-benchmark
|
||||
pyyaml
|
||||
torch
|
||||
types-pyyaml
|
||||
venvShellHook
|
||||
]);
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "kernels"
|
||||
version = "0.2.1"
|
||||
version = "0.7.0"
|
||||
description = "Download compute kernels"
|
||||
authors = [
|
||||
{ name = "OlivierDehaene", email = "olivier@huggingface.co" },
|
||||
@ -8,13 +8,14 @@ authors = [
|
||||
{ name = "David Holtz", email = "david@huggingface.co" },
|
||||
{ name = "Nicolas Patry", email = "nicolas@huggingface.co" },
|
||||
]
|
||||
license = { text = "Apache-2.0" }
|
||||
readme = "README.md"
|
||||
requires-python = ">= 3.9"
|
||||
dependencies = [
|
||||
"huggingface-hub>=0.26.3",
|
||||
"packaging>=24.2",
|
||||
"tomli>=2.0.1; python_version<'3.11'",
|
||||
"torch>=2.5",
|
||||
"huggingface_hub>=0.26.0,<1.0",
|
||||
"packaging>=20.0",
|
||||
"pyyaml>=6",
|
||||
"tomli>=2.0; python_version<'3.11'",
|
||||
]
|
||||
|
||||
[build-system]
|
||||
@ -23,12 +24,17 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[dependency-groups]
|
||||
dev = [
|
||||
"mypy == 1.14.1",
|
||||
"mypy >= 1.15.0",
|
||||
"pytest >=8",
|
||||
# Whatever version is compatible with pytest.
|
||||
"pytest-benchmark",
|
||||
"torch >=2.5",
|
||||
"types-pyyaml"
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
torch = ["torch"]
|
||||
|
||||
[project.scripts]
|
||||
kernels = "kernels.cli:main"
|
||||
|
||||
|
4
pytest.ini
Normal file
4
pytest.ini
Normal file
@ -0,0 +1,4 @@
|
||||
[pytest]
|
||||
markers =
|
||||
darwin_only: marks tests that should only run on macOS
|
||||
linux_only: marks tests that should only run on Linux
|
@ -1,23 +1,35 @@
|
||||
from kernels.layer import (
|
||||
Device,
|
||||
LayerRepository,
|
||||
Mode,
|
||||
kernelize,
|
||||
register_kernel_mapping,
|
||||
replace_kernel_forward_from_hub,
|
||||
use_kernel_forward_from_hub,
|
||||
use_kernel_mapping,
|
||||
)
|
||||
from kernels.utils import (
|
||||
get_kernel,
|
||||
get_local_kernel,
|
||||
get_locked_kernel,
|
||||
has_kernel,
|
||||
install_kernel,
|
||||
load_kernel,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"get_kernel",
|
||||
"get_locked_kernel",
|
||||
"load_kernel",
|
||||
"install_kernel",
|
||||
"use_kernel_forward_from_hub",
|
||||
"register_kernel_mapping",
|
||||
"LayerRepository",
|
||||
"Device",
|
||||
"LayerRepository",
|
||||
"Mode",
|
||||
"get_kernel",
|
||||
"get_local_kernel",
|
||||
"get_locked_kernel",
|
||||
"has_kernel",
|
||||
"install_kernel",
|
||||
"kernelize",
|
||||
"load_kernel",
|
||||
"register_kernel_mapping",
|
||||
"replace_kernel_forward_from_hub",
|
||||
"use_kernel_forward_from_hub",
|
||||
"use_kernel_mapping",
|
||||
]
|
||||
|
751
src/kernels/_vendored/convert_rst_to_mdx.py
Normal file
751
src/kernels/_vendored/convert_rst_to_mdx.py
Normal file
@ -0,0 +1,751 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Vendored from https://github.com/huggingface/doc-builder/blob/main/src/doc_builder/convert_rst_to_mdx.py
|
||||
|
||||
import re
|
||||
|
||||
# Re pattern to catch things inside ` ` in :obj:`thing`.
|
||||
_re_obj = re.compile(r":obj:`([^`]+)`")
|
||||
# Re pattern to catch things inside ` ` in :math:`thing`.
|
||||
_re_math = re.compile(r":math:`([^`]+)`")
|
||||
# Re pattern to catch things between single backquotes.
|
||||
_re_single_backquotes = re.compile(r"(^|[^`])`([^`]+)`([^`]|$)")
|
||||
# Re pattern to catch things between double backquotes.
|
||||
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
|
||||
# Re pattern to catch things inside ` ` in :func/class/meth:`thing`.
|
||||
_re_func_class = re.compile(r":(?:func|class|meth):`([^`]+)`")
|
||||
|
||||
|
||||
def convert_rst_formatting(text):
|
||||
"""
|
||||
Convert rst syntax for formatting to markdown in a given text.
|
||||
"""
|
||||
# Remove :class:, :func: and :meth: markers. To code-links and put double backquotes
|
||||
# (to not be caught by the italic conversion).
|
||||
text = _re_func_class.sub(r"[``\1``]", text)
|
||||
# Remove :obj: markers. What's after is in a single backquotes so we put in double backquotes
|
||||
# (to not be caught by the italic conversion).
|
||||
text = _re_obj.sub(r"``\1``", text)
|
||||
# Remove :math: markers.
|
||||
text = _re_math.sub(r"\\\\(\1\\\\)", text)
|
||||
# Convert content in single backquotes to italic.
|
||||
text = _re_single_backquotes.sub(r"\1*\2*\3", text)
|
||||
# Convert content in double backquotes to single backquotes.
|
||||
text = _re_double_backquotes.sub(r"\1`\2`\3", text)
|
||||
# Remove remaining ::
|
||||
text = re.sub(r"::\n", "", text)
|
||||
|
||||
# Remove new lines inside blocks in backsticks as they will be kept.
|
||||
lines = text.split("\n")
|
||||
in_code = False
|
||||
text = None
|
||||
for line in lines:
|
||||
if in_code:
|
||||
splits = line.split("`")
|
||||
in_code = len(splits) > 1 and len(splits) % 2 == 1
|
||||
if len(splits) == 1:
|
||||
# Some forgotten lone backstick
|
||||
text += "\n" + line
|
||||
else:
|
||||
text += " " + line.lstrip()
|
||||
else:
|
||||
if text is not None:
|
||||
text += "\n" + line
|
||||
else:
|
||||
text = line
|
||||
splits = line.split("`")
|
||||
in_code = len(splits) % 2 == 0
|
||||
return text
|
||||
|
||||
|
||||
# Re pattern to catch description and url in links of the form `description <url>`_.
|
||||
_re_links = re.compile(r"`([^`]+\S)\s+</*([^/][^>`]*)>`_+")
|
||||
# Re pattern to catch description and url in links of the form :prefix_link:`description <url>`_.
|
||||
_re_prefix_links = re.compile(r":prefix_link:`([^`]+\S)\s+</*([^/][^>`]*)>`")
|
||||
# Re pattern to catch reference in links of the form :doc:`reference`.
|
||||
_re_simple_doc = re.compile(r":doc:`([^`<]*)`")
|
||||
# Re pattern to catch description and reference in links of the form :doc:`description <reference>`.
|
||||
_re_doc_with_description = re.compile(r":doc:`([^`<]+\S)\s+</*([^/][^>`]*)>`")
|
||||
# Re pattern to catch reference in links of the form :ref:`reference`.
|
||||
_re_simple_ref = re.compile(r":ref:`([^`<]*)`")
|
||||
# Re pattern to catch description and reference in links of the form :ref:`description <reference>`.
|
||||
_re_ref_with_description = re.compile(r":ref:`([^`<]+\S)\s+<([^>]*)>`")
|
||||
|
||||
|
||||
def convert_rst_links(text, page_info):
|
||||
"""
|
||||
Convert the rst links in text to markdown.
|
||||
"""
|
||||
if "package_name" not in page_info:
|
||||
raise ValueError("`page_info` must contain at least the package_name.")
|
||||
package_name = page_info["package_name"]
|
||||
version = page_info.get("version", "main")
|
||||
language = page_info.get("language", "en")
|
||||
no_prefix = page_info.get("no_prefix", False)
|
||||
|
||||
prefix = "" if no_prefix else f"/docs/{package_name}/{version}/{language}/"
|
||||
# Links of the form :doc:`page`
|
||||
text = _re_simple_doc.sub(rf"[\1]({prefix}\1)", text)
|
||||
# Links of the form :doc:`text <page>`
|
||||
text = _re_doc_with_description.sub(rf"[\1]({prefix}\2)", text)
|
||||
|
||||
if "page" in page_info and not no_prefix:
|
||||
page = str(page_info["page"])
|
||||
if page.endswith(".html"):
|
||||
page = page[:-5]
|
||||
prefix = f"{prefix}{page}"
|
||||
else:
|
||||
prefix = ""
|
||||
# Refs of the form :ref:`page`
|
||||
text = _re_simple_ref.sub(rf"[\1]({prefix}#\1)", text)
|
||||
# Refs of the form :ref:`text <page>`
|
||||
text = _re_ref_with_description.sub(rf"[\1]({prefix}#\2)", text)
|
||||
|
||||
# Links with a prefix
|
||||
# TODO: when it exists, use the API to deal with prefix links properly.
|
||||
prefix = f"https://github.com/huggingface/{package_name}/tree/main/"
|
||||
text = _re_prefix_links.sub(rf"[\1]({prefix}\2)", text)
|
||||
# Other links
|
||||
text = _re_links.sub(r"[\1](\2)", text)
|
||||
# Relative links or Transformers links need to remove the .html
|
||||
if (
|
||||
"(https://https://huggingface.co/" in text
|
||||
or re.search(r"\(\.+/", text) is not None
|
||||
):
|
||||
text = text.replace(".html", "")
|
||||
return text
|
||||
|
||||
|
||||
# Re pattern that catches examples blocks of the form `Example::`.
|
||||
_re_example = re.compile(r"^\s*(\S.*)::\s*$")
|
||||
# Re pattern that catches rst blocks of the form `.. block_name::`.
|
||||
_re_block = re.compile(r"^\s*\.\.\s+(\S+)::")
|
||||
# Re pattern that catches what's after the :: in rst blocks of the form `.. block_name:: something`.
|
||||
_re_block_info = re.compile(r"^\s*\.\.\s+\S+::\s*(\S.*)$")
|
||||
|
||||
|
||||
def is_empty_line(line):
|
||||
return len(line) == 0 or line.isspace()
|
||||
|
||||
|
||||
def find_indent(line):
|
||||
"""
|
||||
Returns the number of spaces that start a line indent.
|
||||
"""
|
||||
search = re.search(r"^(\s*)(?:\S|$)", line)
|
||||
if search is None:
|
||||
return 0
|
||||
return len(search.groups()[0])
|
||||
|
||||
|
||||
_re_rst_option = re.compile(r"^\s*:(\S+):(.*)$")
|
||||
|
||||
|
||||
def convert_special_chars(text):
|
||||
"""
|
||||
Converts { and < that have special meanings in MDX.
|
||||
"""
|
||||
text = text.replace("{", "&lcub;")
|
||||
# We don't want to replace those by the HTML code, so we temporarily set them at LTHTML
|
||||
text = re.sub(
|
||||
r"<(img|br|hr|Youtube)", r"LTHTML\1", text
|
||||
) # html void elements with no closing counterpart
|
||||
_re_lt_html = re.compile(r"<(\S+)([^>]*>)(((?!</\1>).)*)<(/\1>)", re.DOTALL)
|
||||
while _re_lt_html.search(text):
|
||||
text = _re_lt_html.sub(r"LTHTML\1\2\3LTHTML\5", text)
|
||||
text = re.sub(r"(^|[^<])<([^<]|$)", r"\1&lt;\2", text)
|
||||
text = text.replace("LTHTML", "<")
|
||||
return text
|
||||
|
||||
|
||||
def parse_options(block_content):
|
||||
"""
|
||||
Parses the option in some rst block content.
|
||||
"""
|
||||
block_lines = block_content.split("\n")
|
||||
block_indent = find_indent(block_lines[0])
|
||||
current_option = None
|
||||
result = {}
|
||||
for line in block_lines:
|
||||
if _re_rst_option.search(line) is not None:
|
||||
current_option, value = _re_rst_option.search(line).groups()
|
||||
result[current_option] = value.lstrip()
|
||||
elif find_indent(line) > block_indent:
|
||||
result[current_option] += " " + line.lstrip()
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def apply_min_indent(text, min_indent):
|
||||
"""
|
||||
Make sure all lines in a text are have a minimum indentation.
|
||||
|
||||
Args:
|
||||
text (`str`): The text to treat.
|
||||
min_indent (`int`): The minimal indentation.
|
||||
|
||||
Returns:
|
||||
`str`: The processed text.
|
||||
"""
|
||||
lines = text.split("\n")
|
||||
idx = 0
|
||||
while idx < len(lines):
|
||||
if is_empty_line(lines[idx]):
|
||||
idx += 1
|
||||
continue
|
||||
indent = find_indent(lines[idx])
|
||||
if indent < min_indent:
|
||||
while idx < len(lines) and (
|
||||
find_indent(lines[idx]) >= indent or is_empty_line(lines[idx])
|
||||
):
|
||||
if not is_empty_line(lines[idx]):
|
||||
lines[idx] = " " * (min_indent - indent) + lines[idx]
|
||||
idx += 1
|
||||
else:
|
||||
idx += 1
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def convert_rst_blocks(text, page_info):
|
||||
"""
|
||||
Converts rst special blocks (examples, notes) into MDX.
|
||||
"""
|
||||
if "package_name" not in page_info:
|
||||
raise ValueError("`page_info` must contain at least the package_name.")
|
||||
package_name = page_info["package_name"]
|
||||
version = page_info.get("version", "main")
|
||||
language = page_info.get("language", "en")
|
||||
|
||||
lines = text.split("\n")
|
||||
idx = 0
|
||||
new_lines = []
|
||||
while idx < len(lines):
|
||||
block_type = None
|
||||
block_info = None
|
||||
if _re_block.search(lines[idx]) is not None:
|
||||
block_type = _re_block.search(lines[idx]).groups()[0]
|
||||
if _re_block_info.search(lines[idx]) is not None:
|
||||
block_info = _re_block_info.search(lines[idx]).groups()[0]
|
||||
elif _re_example.search(lines[idx]) is not None:
|
||||
block_type = "code-block-example"
|
||||
block_info = "python"
|
||||
example_name = _re_example.search(lines[idx]).groups()[0]
|
||||
new_lines.append(f"<exampletitle>{example_name}:</exampletitle>\n")
|
||||
elif lines[idx].strip() == "..":
|
||||
block_type = "comment"
|
||||
elif lines[idx].strip() == "::":
|
||||
block_type = "code-block"
|
||||
|
||||
if block_type is not None:
|
||||
block_indent = find_indent(lines[idx])
|
||||
# Find the next nonempty line
|
||||
idx += 1
|
||||
while idx < len(lines) and is_empty_line(lines[idx]):
|
||||
idx += 1
|
||||
# Grab the indent of the return line, this block will stop when we unindent under it (or has already)
|
||||
example_indent = (
|
||||
find_indent(lines[idx]) if idx < len(lines) else block_indent
|
||||
)
|
||||
|
||||
if example_indent == block_indent:
|
||||
block_content = ""
|
||||
else:
|
||||
block_lines = []
|
||||
while idx < len(lines) and (
|
||||
is_empty_line(lines[idx])
|
||||
or find_indent(lines[idx]) >= example_indent
|
||||
):
|
||||
block_lines.append(lines[idx][example_indent:])
|
||||
idx += 1
|
||||
block_content = "\n".join(block_lines)
|
||||
|
||||
if block_type in ["code", "code-block"]:
|
||||
prefix = "```" if block_info is None else f"```{block_info}"
|
||||
new_lines.append(f"{prefix}\n{block_content.strip()}\n```\n")
|
||||
elif block_type == "code-block-example":
|
||||
prefix = f"<example>```{block_info}"
|
||||
new_lines.append(f"{prefix}\n{block_content.strip()}\n```\n</example>")
|
||||
elif block_type == "note":
|
||||
new_lines.append(
|
||||
apply_min_indent(
|
||||
f"<Tip>\n\n{block_content.strip()}\n\n</Tip>\n", block_indent
|
||||
)
|
||||
)
|
||||
elif block_type == "warning":
|
||||
new_lines.append(
|
||||
apply_min_indent(
|
||||
"<Tip warning={true}>\n\n"
|
||||
+ f"{block_content.strip()}\n\n</Tip>\n",
|
||||
block_indent,
|
||||
)
|
||||
)
|
||||
elif block_type == "raw":
|
||||
new_lines.append(block_content.strip() + "\n")
|
||||
elif block_type == "math":
|
||||
new_lines.append(f"$${block_content.strip()}$$\n")
|
||||
elif block_type == "comment":
|
||||
new_lines.append(f"<!--{block_content.strip()}\n-->\n")
|
||||
elif block_type == "autofunction":
|
||||
if block_info is not None:
|
||||
new_lines.append(f"[[autodoc]] {block_info}\n")
|
||||
elif block_type == "autoclass":
|
||||
if block_info is not None:
|
||||
block = f"[[autodoc]] {block_info}\n"
|
||||
options = parse_options(block_content)
|
||||
if "special-members" in options:
|
||||
special_members = options["special-members"].split(", ")
|
||||
for special_member in special_members:
|
||||
block += f" - {special_member}\n"
|
||||
if "members" in options:
|
||||
members = options["members"]
|
||||
if len(members) == 0:
|
||||
block += " - all\n"
|
||||
else:
|
||||
for member in members.split(", "):
|
||||
block += f" - {member}\n"
|
||||
new_lines.append(block)
|
||||
elif block_type == "image":
|
||||
options = parse_options(block_content)
|
||||
target = options.pop("target", None)
|
||||
if block_info is not None:
|
||||
options["src"] = block_info
|
||||
else:
|
||||
if target is None:
|
||||
raise ValueError("Image source not defined.")
|
||||
options["src"] = target
|
||||
# Adapt path
|
||||
options["src"] = options["src"].replace(
|
||||
"/imgs/", f"/docs/{package_name}/{version}/{language}/imgs/"
|
||||
)
|
||||
html_code = " ".join(
|
||||
[f'{key}="{value}"' for key, value in options.items()]
|
||||
)
|
||||
new_lines.append(f"<img {html_code}/>\n")
|
||||
|
||||
else:
|
||||
new_lines.append(
|
||||
f"{block_type},{block_info}\n{block_content.rstrip()}\n"
|
||||
)
|
||||
|
||||
else:
|
||||
new_lines.append(lines[idx])
|
||||
idx += 1
|
||||
|
||||
return "\n".join(new_lines)
|
||||
|
||||
|
||||
# Re pattern that catches rst args blocks of the form `Parameters:`.
|
||||
_re_args = re.compile(r"^\s*(Args?|Arguments?|Attributes?|Params?|Parameters?):\s*$")
|
||||
# Re pattern that catches return blocks of the form `Return:`.
|
||||
_re_returns = re.compile(r"^\s*(Return|Yield|Raise)s?:\s*$")
|
||||
|
||||
|
||||
def split_return_line(line):
|
||||
"""
|
||||
Split the return line with format `type: some doc`. Type may contain colons in the form of :obj: or :class:.
|
||||
"""
|
||||
splits_on_colon = line.split(":")
|
||||
idx = 1
|
||||
while idx < len(splits_on_colon) and splits_on_colon[idx] in ["obj", "class"]:
|
||||
idx += 2
|
||||
if idx >= len(splits_on_colon):
|
||||
if len(splits_on_colon) % 2 == 1 and re.search(r"`\w+`$", line.rstrip()):
|
||||
return line, ""
|
||||
return None, line
|
||||
return ":".join(splits_on_colon[:idx]), ":".join(splits_on_colon[idx:])
|
||||
|
||||
|
||||
def split_raise_line(line):
|
||||
"""
|
||||
Split the raise line with format `SomeError some doc`.
|
||||
"""
|
||||
splits_on_colon = line.strip().split(" ")
|
||||
error_type, doc = splits_on_colon[0], " ".join(splits_on_colon[1:])
|
||||
if error_type and error_type[-1] == ":":
|
||||
error_type = error_type[:-1]
|
||||
return error_type, doc
|
||||
|
||||
|
||||
def split_arg_line(line):
|
||||
"""
|
||||
Split the return line with format `type: some doc`. Type may contain colons in the form of :obj: or :class:.
|
||||
"""
|
||||
splits_on_colon = line.split(":")
|
||||
idx = 1
|
||||
while idx < len(splits_on_colon) and splits_on_colon[idx] in ["obj", "class"]:
|
||||
idx += 2
|
||||
if idx >= len(splits_on_colon):
|
||||
return line, ""
|
||||
return ":".join(splits_on_colon[:idx]), ":".join(splits_on_colon[idx:])
|
||||
|
||||
|
||||
class InvalidRstDocstringError(ValueError):
|
||||
pass
|
||||
|
||||
|
||||
_re_parameters = re.compile(
|
||||
r"<parameters>(((?!<parameters>).)*)</parameters>", re.DOTALL
|
||||
)
|
||||
_re_md_link = re.compile(r"\[(.+)\]\(.+\)", re.DOTALL)
|
||||
|
||||
|
||||
def parse_rst_docstring(docstring):
|
||||
"""
|
||||
Parses a docstring written in rst, in particular the list of arguments and the return type.
|
||||
"""
|
||||
lines = docstring.split("\n")
|
||||
idx = 0
|
||||
while idx < len(lines):
|
||||
# Parameters section
|
||||
if _re_args.search(lines[idx]) is not None:
|
||||
# Title of the section.
|
||||
lines[idx] = "<parameters>\n"
|
||||
# Find the next nonempty line
|
||||
idx += 1
|
||||
while is_empty_line(lines[idx]):
|
||||
idx += 1
|
||||
# Grab the indent of the list of parameters, this block will stop when we unindent under it or we see the
|
||||
# Returns or Raises block.
|
||||
param_indent = find_indent(lines[idx])
|
||||
while (
|
||||
idx < len(lines)
|
||||
and find_indent(lines[idx]) == param_indent
|
||||
and _re_returns.search(lines[idx]) is None
|
||||
):
|
||||
intro, doc = split_arg_line(lines[idx])
|
||||
# Line starting with a > after indent indicate a "section title" in the parameters.
|
||||
if intro.lstrip().startswith(">"):
|
||||
lines[idx] = intro.lstrip()
|
||||
else:
|
||||
lines[idx] = (
|
||||
re.sub(r"^\s*(\S+)(\s)?", r"- **\1**\2", intro) + " --" + doc
|
||||
)
|
||||
idx += 1
|
||||
while idx < len(lines) and (
|
||||
is_empty_line(lines[idx]) or find_indent(lines[idx]) > param_indent
|
||||
):
|
||||
idx += 1
|
||||
lines.insert(idx, "</parameters>\n")
|
||||
idx += 1
|
||||
|
||||
# Returns section
|
||||
elif _re_returns.search(lines[idx]) is not None:
|
||||
# tag is either `return` or `yield`
|
||||
tag = _re_returns.match(lines[idx]).group(1).lower()
|
||||
# Title of the section.
|
||||
lines[idx] = f"<{tag}s>\n"
|
||||
# Find the next nonempty line
|
||||
idx += 1
|
||||
while is_empty_line(lines[idx]):
|
||||
idx += 1
|
||||
|
||||
# Grab the indent of the return line, this block will stop when we unindent under it.
|
||||
return_indent = find_indent(lines[idx])
|
||||
raised_errors = []
|
||||
# The line may contain the return type.
|
||||
if tag in ["return", "yield"]:
|
||||
return_type, return_description = split_return_line(lines[idx])
|
||||
lines[idx] = return_description
|
||||
idx += 1
|
||||
while idx < len(lines) and (
|
||||
is_empty_line(lines[idx])
|
||||
or find_indent(lines[idx]) >= return_indent
|
||||
):
|
||||
idx += 1
|
||||
else:
|
||||
while idx < len(lines) and find_indent(lines[idx]) == return_indent:
|
||||
return_type, return_description = split_raise_line(lines[idx])
|
||||
raised_error = re.sub(r"^\s*`?([\w\.]*)`?$", r"``\1``", return_type)
|
||||
lines[idx] = "- " + raised_error + " -- " + return_description
|
||||
md_link = _re_md_link.match(raised_error)
|
||||
if md_link:
|
||||
raised_error = md_link[1]
|
||||
raised_error = re.sub(
|
||||
r"^\s*`?([\w\.]*)`?$", r"``\1``", raised_error
|
||||
)
|
||||
if raised_error not in raised_errors:
|
||||
raised_errors.append(raised_error)
|
||||
idx += 1
|
||||
while idx < len(lines) and (
|
||||
is_empty_line(lines[idx])
|
||||
or find_indent(lines[idx]) > return_indent
|
||||
):
|
||||
idx += 1
|
||||
|
||||
lines.insert(idx, f"</{tag}s>\n")
|
||||
idx += 1
|
||||
|
||||
# Return block finished, we insert the return type if one was specified
|
||||
if tag in ["return", "yield"] and return_type is not None:
|
||||
lines[idx - 1] += f"\n<{tag}type>{return_type}</{tag}type>\n"
|
||||
elif len(raised_errors) > 0:
|
||||
# raised errors
|
||||
lines[
|
||||
idx - 1
|
||||
] += f"\n<raisederrors>{' or '.join(raised_errors)}</raisederrors>\n"
|
||||
|
||||
else:
|
||||
idx += 1
|
||||
|
||||
result = "\n".join(lines)
|
||||
|
||||
# combine multiple <parameters> blocks into one block
|
||||
if result.count("<parameters>") > 1:
|
||||
parameters_blocks = _re_parameters.findall(result)
|
||||
parameters_blocks = [pb[0].strip() for pb in parameters_blocks]
|
||||
parameters_str = "\n".join(parameters_blocks)
|
||||
result = _re_parameters.sub("", result)
|
||||
result += f"\n<parameters>{parameters_str}</parameters>\n"
|
||||
|
||||
return result
|
||||
|
||||
|
||||
_re_list = re.compile(r"^\s*(-|\*|\d+\.)\s")
|
||||
_re_autodoc = re.compile(r"^\s*\[\[autodoc\]\]\s+(\S+)\s*$")
|
||||
|
||||
|
||||
def remove_indent(text):
|
||||
"""
|
||||
Remove indents in text, except the one linked to lists (or sublists).
|
||||
"""
|
||||
lines = text.split("\n")
|
||||
# List of indents to remember for nested lists
|
||||
current_indents = []
|
||||
# List of new indents to remember for nested lists
|
||||
new_indents = []
|
||||
is_inside_code = False
|
||||
code_indent = 0
|
||||
for idx, line in enumerate(lines):
|
||||
# Line is an item in a list.
|
||||
if _re_list.search(line) is not None:
|
||||
indent = find_indent(line)
|
||||
# Is it a new list / new level of nestedness?
|
||||
if len(current_indents) == 0 or indent > current_indents[-1]:
|
||||
current_indents.append(indent)
|
||||
new_indent = 0 if len(new_indents) == 0 else new_indents[-1]
|
||||
lines[idx] = " " * new_indent + line[indent:]
|
||||
new_indent += len(_re_list.search(line).groups()[0]) + 1
|
||||
new_indents.append(new_indent)
|
||||
# Otherwise it's an existing level of list (current one, or previous one)
|
||||
else:
|
||||
# Let's find the proper level of indentation
|
||||
level = len(current_indents) - 1
|
||||
while level >= 0 and current_indents[level] != indent:
|
||||
level -= 1
|
||||
current_indents = current_indents[: level + 1]
|
||||
new_indents = new_indents[:level]
|
||||
new_indent = 0 if len(new_indents) == 0 else new_indents[-1]
|
||||
lines[idx] = " " * new_indent + line[indent:]
|
||||
new_indent += len(_re_list.search(line).groups()[0]) + 1
|
||||
new_indents.append(new_indent)
|
||||
|
||||
# Line is an autodoc, we keep the indent for the list just after if there is one.
|
||||
elif _re_autodoc.search(line) is not None:
|
||||
indent = find_indent(line)
|
||||
current_indents = [indent]
|
||||
new_indents = [4]
|
||||
lines[idx] = line.strip()
|
||||
|
||||
# Deal with empty lines separately
|
||||
elif is_empty_line(line):
|
||||
lines[idx] = ""
|
||||
|
||||
# Code blocks
|
||||
elif line.lstrip().startswith("```"):
|
||||
is_inside_code = not is_inside_code
|
||||
if is_inside_code:
|
||||
code_indent = find_indent(line)
|
||||
lines[idx] = line[code_indent:]
|
||||
elif is_inside_code:
|
||||
lines[idx] = line[code_indent:]
|
||||
|
||||
else:
|
||||
indent = find_indent(line)
|
||||
if len(current_indents) > 0 and indent > current_indents[-1]:
|
||||
lines[idx] = " " * new_indents[-1] + line[indent:]
|
||||
elif len(current_indents) > 0:
|
||||
# Let's find the proper level of indentation
|
||||
level = len(current_indents) - 1
|
||||
while level >= 0 and current_indents[level] > indent:
|
||||
level -= 1
|
||||
current_indents = current_indents[: level + 1]
|
||||
if level >= 0:
|
||||
if current_indents[level] < indent:
|
||||
new_indents = new_indents[: level + 1]
|
||||
else:
|
||||
new_indents = new_indents[:level]
|
||||
new_indent = 0 if len(new_indents) == 0 else new_indents[-1]
|
||||
lines[idx] = " " * new_indent + line[indent:]
|
||||
new_indents.append(new_indent)
|
||||
else:
|
||||
new_indents = []
|
||||
lines[idx] = line[indent:]
|
||||
else:
|
||||
lines[idx] = line[indent:]
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
def base_rst_to_mdx(text, page_info, unindent=True):
|
||||
"""
|
||||
Convert a text from rst to mdx, with the base operations necessary for both docstrings and rst docs.
|
||||
"""
|
||||
text = convert_rst_links(text, page_info)
|
||||
text = convert_special_chars(text)
|
||||
text = convert_rst_blocks(text, page_info)
|
||||
# Convert * in lists to - to avoid the formatting conversion treat them as bold.
|
||||
text = re.sub(r"^(\s*)\*(\s)", r"\1-\2", text, flags=re.MULTILINE)
|
||||
text = convert_rst_formatting(text)
|
||||
return remove_indent(text) if unindent else text
|
||||
|
||||
|
||||
def convert_rst_docstring_to_mdx(docstring, page_info):
|
||||
"""
|
||||
Convert a docstring written in rst to mdx.
|
||||
"""
|
||||
text = parse_rst_docstring(docstring)
|
||||
return base_rst_to_mdx(text, page_info)
|
||||
|
||||
|
||||
def process_titles(lines):
|
||||
"""Converts rst titles to markdown titles."""
|
||||
title_chars = """= - ` : ' " ~ ^ _ * + # < >""".split(" ")
|
||||
title_levels = {}
|
||||
new_lines = []
|
||||
for line in lines:
|
||||
if (
|
||||
len(new_lines) > 0
|
||||
and len(line) >= len(new_lines[-1])
|
||||
and len(set(line)) == 1
|
||||
and line[0] in title_chars
|
||||
and line != "::"
|
||||
):
|
||||
char = line[0]
|
||||
level = title_levels.get(char, len(title_levels) + 1)
|
||||
if level not in title_levels:
|
||||
title_levels[char] = level
|
||||
new_lines[-1] = f"{'#' * level} {new_lines[-1]}"
|
||||
else:
|
||||
new_lines.append(line)
|
||||
return new_lines
|
||||
|
||||
|
||||
# Matches lines with a pattern of a table new line in rst.
|
||||
_re_ignore_line_table = re.compile(r"^(\+[\-\s]+)+\+\s*$")
|
||||
# Matches lines with a pattern of a table new line in rst, with a first column empty.
|
||||
_re_ignore_line_table1 = re.compile(r"^\|\s+(\+[\-\s]+)+\+\s*$")
|
||||
# Matches lines with a pattern of a first table line in rst.
|
||||
_re_sep_line_table = re.compile(r"^(\+[=\s]+)+\+\s*$")
|
||||
# Re pattern that catches anchors of the type .. reference:
|
||||
_re_anchor_section = re.compile(r"^\.\.\s+_(\S+):")
|
||||
|
||||
|
||||
def split_pt_tf_code_blocks(text):
|
||||
"""
|
||||
Split PyTorch and TensorFlow specific block codes.
|
||||
"""
|
||||
lines = text.split("\n")
|
||||
new_lines = []
|
||||
idx = 0
|
||||
while idx < len(lines):
|
||||
if lines[idx].startswith("```"):
|
||||
code_lines = {"common": [lines[idx]], "pytorch": [], "tensorflow": []}
|
||||
is_pytorch = False
|
||||
is_tensorflow = False
|
||||
idx += 1
|
||||
while idx < len(lines) and lines[idx].strip() != "```":
|
||||
if "## PYTORCH CODE" in lines[idx]:
|
||||
is_pytorch = True
|
||||
is_tensorflow = False
|
||||
elif "## TENSORFLOW CODE" in lines[idx]:
|
||||
is_tensorflow = True
|
||||
is_pytorch = False
|
||||
elif is_pytorch:
|
||||
code_lines["pytorch"].append(lines[idx])
|
||||
elif is_tensorflow:
|
||||
code_lines["tensorflow"].append(lines[idx])
|
||||
else:
|
||||
code_lines["common"].append(lines[idx])
|
||||
idx += 1
|
||||
if len(code_lines["pytorch"]) > 0 or len(code_lines["tensorflow"]) > 0:
|
||||
block_lines = ["<frameworkcontent>", "<pt>"]
|
||||
block_lines.extend(code_lines["common"].copy() + code_lines["pytorch"])
|
||||
block_lines.extend(["```", "</pt>", "<tf>"])
|
||||
block_lines.extend(
|
||||
code_lines["common"].copy() + code_lines["tensorflow"]
|
||||
)
|
||||
block_lines.extend(["```", "</tf>", "</frameworkcontent>"])
|
||||
new_lines.extend(block_lines)
|
||||
else:
|
||||
block_lines = code_lines["common"] + ["```"]
|
||||
new_lines.extend(block_lines)
|
||||
idx += 1
|
||||
else:
|
||||
new_lines.append(lines[idx])
|
||||
idx += 1
|
||||
return "\n".join(new_lines)
|
||||
|
||||
|
||||
def convert_rst_to_mdx(rst_text, page_info, add_imports=True):
|
||||
"""
|
||||
Convert a document written in rst to mdx.
|
||||
"""
|
||||
lines = rst_text.split("\n")
|
||||
lines = process_titles(lines)
|
||||
if add_imports:
|
||||
new_lines = [
|
||||
'<script lang="ts">',
|
||||
' import Tip from "$lib/Tip.svelte";',
|
||||
' import Youtube from "$lib/Youtube.svelte";',
|
||||
' import Docstring from "$lib/Docstring.svelte";',
|
||||
' import CodeBlock from "$lib/CodeBlock.svelte";',
|
||||
' import CodeBlockFw from "$lib/CodeBlockFw.svelte";',
|
||||
' import DocNotebookDropdown from "$lib/DocNotebookDropdown.svelte";',
|
||||
' import CourseFloatingBanner from "$lib/CourseFloatingBanner.svelte";',
|
||||
' import IconCopyLink from "$lib/IconCopyLink.svelte";',
|
||||
' import FrameworkContent from "$lib/FrameworkContent.svelte";',
|
||||
' import Markdown from "$lib/Markdown.svelte";',
|
||||
' import ExampleCodeBlock from "$lib/ExampleCodeBlock.svelte";',
|
||||
' import Added from "$lib/Added.svelte";',
|
||||
' import Changed from "$lib/Changed.svelte";',
|
||||
' import Deprecated from "$lib/Deprecated.svelte";',
|
||||
' import PipelineIcon from "$lib/PipelineIcon.svelte";',
|
||||
' import PipelineTag from "$lib/PipelineTag.svelte";',
|
||||
" ",
|
||||
' export let fw: "pt" | "tf"',
|
||||
"</script>",
|
||||
"<svelte:head>",
|
||||
'<meta name="hf:doc:metadata" content={JSON.stringify(metadata)} >',
|
||||
"</svelte:head>",
|
||||
"",
|
||||
]
|
||||
else:
|
||||
new_lines = []
|
||||
for line in lines:
|
||||
if _re_ignore_line_table.search(line) is not None:
|
||||
continue
|
||||
elif _re_ignore_line_table1.search(line) is not None:
|
||||
continue
|
||||
elif _re_sep_line_table.search(line) is not None:
|
||||
line = line.replace("=", "-").replace("+", "|")
|
||||
elif _re_anchor_section.search(line) is not None:
|
||||
anchor_name = _re_anchor_section.search(line).groups()[0]
|
||||
line = f"<a id='{anchor_name}'></a>"
|
||||
new_lines.append(line)
|
||||
text = "\n".join(new_lines)
|
||||
|
||||
return split_pt_tf_code_blocks(base_rst_to_mdx(text, page_info))
|
@ -8,6 +8,9 @@ from kernels.compat import tomllib
|
||||
from kernels.lockfile import KernelLock, get_kernel_locks
|
||||
from kernels.utils import install_kernel, install_kernel_all_variants
|
||||
|
||||
from .doc import generate_readme_for_kernel
|
||||
from .wheel import build_variant_to_wheel
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
@ -36,6 +39,47 @@ def main():
|
||||
)
|
||||
lock_parser.set_defaults(func=lock_kernels)
|
||||
|
||||
to_wheel_parser = subparsers.add_parser(
|
||||
"to-wheel", help="Convert a kernel to a wheel file"
|
||||
)
|
||||
to_wheel_parser.add_argument("repo_id", type=str, help="The kernel repo ID")
|
||||
to_wheel_parser.add_argument("version", type=str, help="The kernel version")
|
||||
to_wheel_parser.add_argument(
|
||||
"--python-version",
|
||||
type=str,
|
||||
default="3.9",
|
||||
help="The minimum Python version. Must match the Python version that the kernel was compiled for.",
|
||||
)
|
||||
to_wheel_parser.add_argument(
|
||||
"--manylinux-version",
|
||||
type=str,
|
||||
default="2.28",
|
||||
help="The manylinux version. Must match the manylinux version that the kernel was compiled for.",
|
||||
)
|
||||
to_wheel_parser.set_defaults(func=kernels_to_wheel)
|
||||
|
||||
# Add generate-readme subcommand parser
|
||||
generate_readme_parser = subparsers.add_parser(
|
||||
"generate-readme",
|
||||
help="Generate README snippets for a kernel's public functions",
|
||||
)
|
||||
generate_readme_parser.add_argument(
|
||||
"repo_id",
|
||||
type=str,
|
||||
help="The kernel repo ID (e.g., kernels-community/activation)",
|
||||
)
|
||||
generate_readme_parser.add_argument(
|
||||
"--revision",
|
||||
type=str,
|
||||
default="main",
|
||||
help="The kernel revision (branch, tag, or commit SHA, defaults to 'main')",
|
||||
)
|
||||
generate_readme_parser.set_defaults(
|
||||
func=lambda args: generate_readme_for_kernel(
|
||||
repo_id=args.repo_id, revision=args.revision
|
||||
)
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
args.func(args)
|
||||
|
||||
@ -77,6 +121,24 @@ def download_kernels(args):
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def kernels_to_wheel(args):
|
||||
variants_path = install_kernel_all_variants(
|
||||
repo_id=args.repo_id, revision=f"v{args.version}"
|
||||
)
|
||||
for variant_path in variants_path.iterdir():
|
||||
if not variant_path.is_dir():
|
||||
continue
|
||||
wheel_path = build_variant_to_wheel(
|
||||
manylinux_version=args.manylinux_version,
|
||||
python_version=args.python_version,
|
||||
repo_id=args.repo_id,
|
||||
version=args.version,
|
||||
variant_path=variant_path,
|
||||
wheel_dir=Path("."),
|
||||
)
|
||||
print(f"☸️ {wheel_path.name}", file=sys.stderr)
|
||||
|
||||
|
||||
def lock_kernels(args):
|
||||
with open(args.project_dir / "pyproject.toml", "rb") as f:
|
||||
data = tomllib.load(f)
|
||||
|
242
src/kernels/doc.py
Normal file
242
src/kernels/doc.py
Normal file
@ -0,0 +1,242 @@
|
||||
import inspect
|
||||
import re
|
||||
import sys
|
||||
from types import ModuleType
|
||||
|
||||
import yaml
|
||||
|
||||
from ._vendored.convert_rst_to_mdx import convert_rst_docstring_to_mdx
|
||||
from .utils import get_kernel
|
||||
|
||||
_RE_PARAMETERS = re.compile(
|
||||
r"<parameters>(((?!<parameters>).)*)</parameters>", re.DOTALL
|
||||
)
|
||||
_RE_RETURNS = re.compile(r"<returns>(((?!<returns>).)*)</returns>", re.DOTALL)
|
||||
_RE_RETURNTYPE = re.compile(
|
||||
r"<returntype>(((?!<returntype>).)*)</returntype>", re.DOTALL
|
||||
)
|
||||
|
||||
|
||||
def _extract_description_before_tags(docstring_mdx: str) -> str:
|
||||
"""Extract the description part of a docstring before any tags."""
|
||||
params_pos = docstring_mdx.find("<parameters>")
|
||||
returns_pos = docstring_mdx.find("<returns>")
|
||||
returntype_pos = docstring_mdx.find("<returntype>")
|
||||
positions = [pos for pos in [params_pos, returns_pos, returntype_pos] if pos != -1]
|
||||
|
||||
if positions:
|
||||
first_tag_pos = min(positions)
|
||||
return docstring_mdx[:first_tag_pos].strip()
|
||||
else:
|
||||
return docstring_mdx.strip()
|
||||
|
||||
|
||||
def _print_parameters_section(docstring_mdx: str, *, header_level: int) -> None:
|
||||
"""Print the parameters section from a docstring."""
|
||||
matches = _RE_PARAMETERS.findall(docstring_mdx)
|
||||
if matches:
|
||||
header = "#" * header_level
|
||||
print(f"\n{header} Parameters")
|
||||
for match in matches:
|
||||
print(f"\n{match[0].strip()}")
|
||||
|
||||
|
||||
def _print_returns_section(
|
||||
docstring_mdx: str, *, context_name: str, header_level: int
|
||||
) -> None:
|
||||
"""Print the returns section from a docstring."""
|
||||
return_matches = _RE_RETURNS.findall(docstring_mdx)
|
||||
returntype_matches = _RE_RETURNTYPE.findall(docstring_mdx)
|
||||
|
||||
if return_matches or returntype_matches:
|
||||
header = "#" * header_level
|
||||
print(f"\n{header} Returns")
|
||||
|
||||
if returntype_matches:
|
||||
if len(returntype_matches) > 1:
|
||||
raise ValueError(
|
||||
f"More than one <returntype> tag found in docstring for {context_name}"
|
||||
)
|
||||
print(f"\n**Type**: {returntype_matches[0][0].strip()}")
|
||||
|
||||
if return_matches:
|
||||
for match in return_matches:
|
||||
print(f"\n{match[0].strip()}")
|
||||
|
||||
|
||||
def _get_docstring(obj, use_dict_check: bool = False) -> str:
|
||||
"""Get docstring from an object, with fallback to default message."""
|
||||
# Check whether the class/method itself has docs and not just
|
||||
# the superclass.
|
||||
if use_dict_check:
|
||||
has_doc = obj.__dict__.get("__doc__", None) is not None
|
||||
else:
|
||||
has_doc = getattr(obj, "__doc__", None) is not None
|
||||
|
||||
# We use inspect.getdoc because it does normalization.
|
||||
doc = inspect.getdoc(obj)
|
||||
|
||||
return doc if has_doc and doc is not None else "No documentation available."
|
||||
|
||||
|
||||
def _process_and_print_docstring(
|
||||
docstring: str, *, kernel_name: str, context_name: str, header_level: int
|
||||
) -> None:
|
||||
"""Convert docstring to MDX and print description, parameters, and returns sections."""
|
||||
docstring_mdx = convert_rst_docstring_to_mdx(
|
||||
docstring, page_info={"package_name": kernel_name}
|
||||
)
|
||||
|
||||
# Print the description
|
||||
description = _extract_description_before_tags(docstring_mdx)
|
||||
print(f"\n{description}")
|
||||
|
||||
# Print parameters and returns sections
|
||||
_print_parameters_section(docstring_mdx, header_level=header_level)
|
||||
_print_returns_section(
|
||||
docstring_mdx, context_name=context_name, header_level=header_level
|
||||
)
|
||||
|
||||
|
||||
def generate_readme_for_kernel(repo_id: str, *, revision: str = "main") -> None:
|
||||
kernel_module = get_kernel(repo_id=repo_id, revision=revision)
|
||||
kernel_name = repo_id.split("/")[-1].replace("-", "_")
|
||||
|
||||
generate_metadata(kernel_module)
|
||||
generate_kernel_doc(kernel_module, kernel_name)
|
||||
generate_function_doc(kernel_module, kernel_name)
|
||||
generate_layers_doc(kernel_module, kernel_name)
|
||||
|
||||
|
||||
def generate_metadata(module: ModuleType) -> None:
|
||||
metadata = getattr(module, "__kernel_metadata__", {})
|
||||
if "tags" not in metadata:
|
||||
metadata["tags"] = ["kernel"]
|
||||
else:
|
||||
if "kernel" not in metadata["tags"]:
|
||||
metadata["tags"].append("kernel")
|
||||
|
||||
print("---")
|
||||
print(yaml.dump(metadata), end="")
|
||||
print("---")
|
||||
|
||||
|
||||
def generate_kernel_doc(module: ModuleType, kernel_name: str) -> None:
|
||||
docstring = module.__doc__.strip() if module.__doc__ is not None else None
|
||||
if docstring:
|
||||
title, rest = docstring.split("\n", 1)
|
||||
print(f"# {title.strip()}")
|
||||
print(
|
||||
f"\n{convert_rst_docstring_to_mdx(rest.strip(), page_info={'package_name': kernel_name})}"
|
||||
)
|
||||
|
||||
|
||||
def generate_function_doc(kernel_module: ModuleType, kernel_name: str) -> None:
|
||||
print("\n## Functions")
|
||||
|
||||
# Track if we found any functions
|
||||
found_functions = False
|
||||
|
||||
for name, func in inspect.getmembers(kernel_module, inspect.isfunction):
|
||||
# Do not include imported functions.
|
||||
if func.__module__ != kernel_module.__name__:
|
||||
continue
|
||||
|
||||
# Exclude private functions.
|
||||
if name.startswith("_"):
|
||||
continue
|
||||
|
||||
found_functions = True
|
||||
|
||||
try:
|
||||
sig = inspect.signature(func)
|
||||
docstring = _get_docstring(func)
|
||||
except ValueError:
|
||||
print(
|
||||
f"Warning: Could not retrieve signature for {name} in {kernel_module.__name__}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
continue
|
||||
|
||||
print(f"\n### Function `{name}`")
|
||||
print(f"\n`{sig}`")
|
||||
|
||||
_process_and_print_docstring(
|
||||
docstring, kernel_name=kernel_name, context_name=name, header_level=3
|
||||
)
|
||||
|
||||
if not found_functions:
|
||||
print("\nNo public top-level functions.")
|
||||
|
||||
|
||||
def generate_layers_doc(kernel_module: ModuleType, kernel_name: str) -> None:
|
||||
# Check if layers module is available
|
||||
layers_module = getattr(kernel_module, "layers", None)
|
||||
if layers_module is None:
|
||||
return
|
||||
|
||||
print("\n## Layers")
|
||||
|
||||
# Track if we found any classes
|
||||
found_classes = False
|
||||
|
||||
for class_name, cls in inspect.getmembers(layers_module, inspect.isclass):
|
||||
# Exclude classes that were imported.
|
||||
if cls.__module__ != layers_module.__name__:
|
||||
continue
|
||||
|
||||
found_classes = True
|
||||
|
||||
try:
|
||||
# Get docstring, but not from superclasses.
|
||||
class_docstring = _get_docstring(cls, use_dict_check=True)
|
||||
except Exception:
|
||||
print(
|
||||
f"Warning: Could not retrieve documentation for class {class_name} in {layers_module.__name__}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
continue
|
||||
|
||||
print(f"\n### Class `{class_name}`")
|
||||
|
||||
# Always print class description (helper handles conversion and formatting)
|
||||
class_docstring_mdx = convert_rst_docstring_to_mdx(
|
||||
class_docstring, page_info={"package_name": kernel_name}
|
||||
)
|
||||
description = _extract_description_before_tags(class_docstring_mdx)
|
||||
print(f"\n{description}")
|
||||
|
||||
# Document methods
|
||||
print("\n#### Methods")
|
||||
|
||||
for method_name, method in inspect.getmembers(cls, inspect.isfunction):
|
||||
# Note: also skip __init__, since extension layers cannot have a constructor.
|
||||
if method_name.startswith("_"):
|
||||
continue
|
||||
|
||||
# Skip methods from superclasses.
|
||||
if method_name not in cls.__dict__:
|
||||
continue
|
||||
|
||||
try:
|
||||
sig = inspect.signature(method)
|
||||
method_docstring = _get_docstring(method)
|
||||
except ValueError:
|
||||
print(
|
||||
f"Warning: Could not retrieve signature for {method_name} in {class_name}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
continue
|
||||
|
||||
print(f"\n##### Method `{method_name}`")
|
||||
print(f"\n`{sig}`")
|
||||
|
||||
_process_and_print_docstring(
|
||||
method_docstring,
|
||||
kernel_name=kernel_name,
|
||||
context_name=method_name,
|
||||
header_level=6,
|
||||
)
|
||||
|
||||
if not found_classes:
|
||||
print("\nNo layers defined.")
|
@ -1,15 +1,67 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import inspect
|
||||
import os
|
||||
import warnings
|
||||
from contextvars import ContextVar
|
||||
from copy import deepcopy
|
||||
from dataclasses import dataclass, field
|
||||
from typing import TYPE_CHECKING, Callable, Dict, Union
|
||||
from enum import Flag, auto
|
||||
from types import MethodType
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Dict,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from .utils import get_kernel
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
_DISABLE_KERNEL_MAPPING: bool = bool(int(os.environ.get("DISABLE_KERNEL_MAPPING", "0")))
|
||||
|
||||
|
||||
class Mode(Flag):
|
||||
"""
|
||||
Kernelize mode
|
||||
|
||||
The `Mode` flag is used by `kernelize` to select kernels for the given
|
||||
mode. Mappings can be registered for specific modes.
|
||||
|
||||
* `INFERENCE`: The kernel is used for inference.
|
||||
* `TRAINING`: The kernel is used for training.
|
||||
* `TORCH_COMPILE`: The kernel is used with `torch.compile`.
|
||||
* `DEFAULT`: In a kernel mapping, this kernel is used when no other mode
|
||||
matches.
|
||||
|
||||
Different modes can be combined. For instance, `INFERENCE | TORCH_COMPILE`
|
||||
should be used for layers that are used for inference *with* `torch.compile`.
|
||||
"""
|
||||
|
||||
_NONE = 0
|
||||
DEFAULT = auto()
|
||||
TRAINING = auto()
|
||||
INFERENCE = auto()
|
||||
TORCH_COMPILE = auto()
|
||||
|
||||
def __or__(self, other: Mode) -> Mode:
|
||||
union = super().__or__(other)
|
||||
|
||||
if Mode.INFERENCE in union and Mode.TRAINING in union:
|
||||
raise ValueError("Mode.INFERENCE and Mode.TRAINING are mutually exclusive.")
|
||||
|
||||
if Mode.DEFAULT in union and union != Mode.DEFAULT:
|
||||
raise ValueError("Mode.DEFAULT cannot be combined with other modes.")
|
||||
|
||||
return union
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Device:
|
||||
type: str
|
||||
@ -49,16 +101,37 @@ class LayerRepository:
|
||||
return hash((self.layer_name, self.repo_id, self.revision))
|
||||
|
||||
|
||||
_KERNEL_MAPPING: ContextVar[Dict[str, Dict[Device, LayerRepository]]] = ContextVar(
|
||||
"_KERNEL_MAPPING", default={}
|
||||
_CACHED_LAYER: Dict[LayerRepository, Type["nn.Module"]] = {}
|
||||
|
||||
|
||||
_KERNEL_MAPPING: ContextVar[Dict[str, Dict[Device, Dict[Mode, LayerRepository]]]] = (
|
||||
ContextVar("_KERNEL_MAPPING", default={})
|
||||
)
|
||||
|
||||
|
||||
def use_kernel_mapping(mapping: Dict[str, Dict[Union[Device, str], LayerRepository]]):
|
||||
def use_kernel_mapping(
|
||||
mapping: Dict[
|
||||
str,
|
||||
Dict[Union[Device, str], Union[LayerRepository, Dict[Mode, LayerRepository]]],
|
||||
],
|
||||
*,
|
||||
inherit_mapping: bool = True,
|
||||
):
|
||||
"""
|
||||
Context manager that sets a mapping for a duration of the context.
|
||||
|
||||
When `inherit_mapping` is set to `True` the current mapping will be
|
||||
extended by `mapping` inside the context. If it is `False`, only
|
||||
`mapping` is used inside the context.
|
||||
"""
|
||||
|
||||
class ContextManager:
|
||||
def __enter__(self):
|
||||
# Mappings always stack on previous mappings.
|
||||
self.token = _KERNEL_MAPPING.set(deepcopy(_KERNEL_MAPPING.get()))
|
||||
if inherit_mapping:
|
||||
self.token = _KERNEL_MAPPING.set(deepcopy(_KERNEL_MAPPING.get()))
|
||||
else:
|
||||
self.token = _KERNEL_MAPPING.set({})
|
||||
register_kernel_mapping(mapping)
|
||||
|
||||
def __exit__(self, exc_type, exc_value, traceback):
|
||||
@ -68,12 +141,17 @@ def use_kernel_mapping(mapping: Dict[str, Dict[Union[Device, str], LayerReposito
|
||||
|
||||
|
||||
def register_kernel_mapping(
|
||||
mapping: Dict[str, Dict[Union[Device, str], LayerRepository]]
|
||||
mapping: Dict[
|
||||
str,
|
||||
Dict[Union[Device, str], Union[LayerRepository, Dict[Mode, LayerRepository]]],
|
||||
],
|
||||
):
|
||||
"""
|
||||
Allows one to register a mapping between a layer name the corresponding kernel to use, depending on the device.
|
||||
This should be use in conjunction with `use_kernel_hub_forward` decorator on the classname.
|
||||
Exemple usage:
|
||||
Allows one to register a mapping between a layer name and the corresponding
|
||||
kernel(s) to use, depending on the device. This should be used in conjunction
|
||||
with `kernelize`.
|
||||
|
||||
Example usage:
|
||||
|
||||
```python
|
||||
from kernels import LayerRepository, register_kernel_mapping
|
||||
@ -94,90 +172,179 @@ def register_kernel_mapping(
|
||||
for new_kernel, new_device_repos in mapping.items():
|
||||
device_repo = _KERNEL_MAPPING.get().setdefault(new_kernel, {})
|
||||
for new_device, new_repo in new_device_repos.items():
|
||||
if isinstance(new_device, str):
|
||||
device_repo[Device(type=new_device)] = new_repo
|
||||
device = (
|
||||
Device(type=new_device) if isinstance(new_device, str) else new_device
|
||||
)
|
||||
|
||||
if isinstance(new_repo, LayerRepository):
|
||||
kernel_options = {Mode.DEFAULT: new_repo}
|
||||
else:
|
||||
device_repo[new_device] = new_repo
|
||||
kernel_options = new_repo
|
||||
|
||||
device_repo[device] = kernel_options
|
||||
|
||||
|
||||
def replace_kernel_forward_from_hub(cls, layer_name: str, *, use_fallback: bool = True):
|
||||
def replace_kernel_forward_from_hub(
|
||||
cls,
|
||||
layer_name: str,
|
||||
):
|
||||
"""
|
||||
Replace the forward function of a layer using a layer from the kernel hub.
|
||||
This function monkeypatches a layer, replacing the `forward` method
|
||||
of the layer with that of a layer from the hub. The replacement is done
|
||||
when a layer matching `layer_name` and device type is registered through
|
||||
`register_layer_mapping`. The device type is inferred from the first
|
||||
argument to `forward`.
|
||||
Decorator that prepares a layer class to use a kernel from the Hugging Face Hub.
|
||||
|
||||
This decorator stores the layer name and original forward method, which will be used
|
||||
by the kernelize function to replace the forward implementation with the appropriate
|
||||
kernel from the hub.
|
||||
|
||||
Args:
|
||||
cls: The layer class to decorate
|
||||
layer_name: The name of the layer to use for kernel lookup
|
||||
"""
|
||||
cls.kernel_layer_name = layer_name
|
||||
|
||||
fallback_forward = cls.forward
|
||||
|
||||
cached_forward: Dict[LayerRepository, Callable] = {}
|
||||
def _select_repository(
|
||||
repositories: Dict[Mode, LayerRepository],
|
||||
*,
|
||||
mode: Mode,
|
||||
) -> Optional[Tuple[LayerRepository, Mode]]:
|
||||
if mode in repositories:
|
||||
return (repositories[mode], mode)
|
||||
elif Mode.DEFAULT in repositories:
|
||||
return (repositories[Mode.DEFAULT], Mode.DEFAULT)
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def kernelize(
|
||||
model: "nn.Module",
|
||||
*,
|
||||
mode: Mode,
|
||||
device: Optional[Union[str, "torch.device"]] = None,
|
||||
use_fallback: bool = True,
|
||||
):
|
||||
"""
|
||||
Iterate over all modules in the model and replace the `forward` method of
|
||||
extensible layers for which kernels are registered using `register_kernel_mapping`
|
||||
or `use_kernel_mapping`.
|
||||
|
||||
Args:
|
||||
model: The PyTorch model to kernelize
|
||||
mode: the mode that the kernel is going to be used in (e.g.
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` kernelizes the model for training
|
||||
and `torch.compile`).
|
||||
device: The device type to load kernels for. The device type will be inferred
|
||||
from the parameters of the model when not provided.
|
||||
use_fallback: Whether to use the original forward method of modules when no
|
||||
compatible kernel could be found. If set to `False`, an exception will
|
||||
be raised in such cases.
|
||||
|
||||
Returns:
|
||||
The kernelized model
|
||||
"""
|
||||
import torch
|
||||
|
||||
if mode == Mode.DEFAULT:
|
||||
raise ValueError("Mode.DEFAULT can only be used to register kernel mappings.")
|
||||
|
||||
# Type check ignored because this causes a false negative on Python < 3.11.
|
||||
# Looks similar to: https://github.com/python/mypy/issues/9642
|
||||
# Remove once we start doing typing checks on >= 3.11.
|
||||
if Mode.INFERENCE not in mode and Mode.TRAINING not in mode: # type: ignore[operator]
|
||||
raise ValueError("kernelize mode must contain Mode.INFERENCE or Mode.TRAINING.")
|
||||
|
||||
if device is None:
|
||||
device_type = _find_device(model)
|
||||
elif isinstance(device, str):
|
||||
device_type = Device(type=torch.device(device).type)
|
||||
else:
|
||||
device_type = Device(device.type)
|
||||
assert isinstance(device_type, Device)
|
||||
|
||||
for _, module in model.named_modules():
|
||||
module_class = type(module)
|
||||
if not hasattr(module_class, "kernel_layer_name"):
|
||||
continue
|
||||
layer_name = module_class.kernel_layer_name
|
||||
|
||||
if _DISABLE_KERNEL_MAPPING:
|
||||
_replace_forward(module, module_class)
|
||||
continue
|
||||
|
||||
kernel = _KERNEL_MAPPING.get().get(str(layer_name))
|
||||
|
||||
def forward(self, x, **args):
|
||||
kernel = _KERNEL_MAPPING.get().get(layer_name)
|
||||
if kernel is None:
|
||||
warnings.warn(
|
||||
"\n"
|
||||
f"No kernel mapping found for layer `{layer_name}`. "
|
||||
f"Check if the layer name matches one of the kernels in the mapping or add the kernel "
|
||||
f"you want to use to the mapping. Defaulting to original forward implementation."
|
||||
)
|
||||
if not use_fallback:
|
||||
raise ValueError(f"No layer mapping for `{layer_name}`")
|
||||
return fallback_forward(self, x, **args)
|
||||
_replace_forward(module, module_class)
|
||||
continue
|
||||
|
||||
device = getattr(x, "device", None)
|
||||
if device is None:
|
||||
return fallback_forward(self, x, **args)
|
||||
# Get kernel options for the device
|
||||
repos = kernel.get(device_type)
|
||||
|
||||
repo = kernel.get(Device(type=device.type))
|
||||
if repo is None:
|
||||
if repos is None:
|
||||
if not use_fallback:
|
||||
raise ValueError(
|
||||
f"No layer mapping for `{layer_name}` with device type `{device.type}`"
|
||||
f"No layer mapping for `{layer_name}` with device type `{device_type}`"
|
||||
)
|
||||
return fallback_forward(self, x, **args)
|
||||
_replace_forward(module, module_class)
|
||||
continue
|
||||
|
||||
# Short-circuit if we already loaded the layer.
|
||||
layer_forward = cached_forward.get(repo, None)
|
||||
if layer_forward is not None:
|
||||
return layer_forward(self, x, **args)
|
||||
|
||||
layer = _get_kernel_layer(
|
||||
repo_id=repo.repo_id,
|
||||
layer_name=repo.layer_name,
|
||||
revision=repo.revision,
|
||||
repo_with_mode = _select_repository(
|
||||
repos,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
# We have to validate against the original signature.
|
||||
orig_forward = cls.forward
|
||||
try:
|
||||
cls.forward = fallback_forward
|
||||
_validate_layer(check_cls=cls, cls=layer)
|
||||
finally:
|
||||
cls.forward = orig_forward
|
||||
if repo_with_mode is None:
|
||||
if not use_fallback:
|
||||
raise ValueError(
|
||||
f"No repository for `{layer_name}` for configuration mode={mode}"
|
||||
)
|
||||
_replace_forward(module, module_class)
|
||||
continue
|
||||
|
||||
layer_forward = layer.forward
|
||||
cached_forward[repo] = layer_forward
|
||||
repo, repo_mode = repo_with_mode
|
||||
|
||||
return layer_forward(self, x, **args)
|
||||
layer = _get_layer_memoize(repo, module_class)
|
||||
|
||||
cls.forward = forward
|
||||
# Ideally we would do validation on the mapping where we check that
|
||||
# e.g. if a repo class is registered for TRAINING | TORCH_COMPILE,
|
||||
# the actual layer is compatible with that. Unfortunately, this would
|
||||
# mean that we have to pre-download everything.
|
||||
_validate_layer_has_mode(
|
||||
layer_name=layer_name, module=layer, repo=repo, repo_mode=repo_mode
|
||||
)
|
||||
|
||||
_conditionally_replace_forward(
|
||||
module=module,
|
||||
layer=layer,
|
||||
mode=mode,
|
||||
use_fallback=use_fallback,
|
||||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def use_kernel_forward_from_hub(layer_name: str, *, use_fallback: bool = True):
|
||||
def use_kernel_forward_from_hub(layer_name: str):
|
||||
"""
|
||||
Replace the forward function of a layer using a layer from the kernel hub.
|
||||
This decorator can be applied to a layer and replaces the forward method
|
||||
of the layer with that of a layer from the hub. The replacement is done
|
||||
when a layer matching `layer_name` and device type is registered through
|
||||
`register_layer_mapping`. The device type is inferred from the first
|
||||
argument to `forward`.
|
||||
Make a layer extensible using the name `layer_name`.
|
||||
"""
|
||||
|
||||
def decorator(cls):
|
||||
replace_kernel_forward_from_hub(cls, layer_name, use_fallback=use_fallback)
|
||||
replace_kernel_forward_from_hub(cls, layer_name)
|
||||
return cls
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def _get_kernel_layer(*, repo_id: str, layer_name: str, revision: str) -> "nn.Module":
|
||||
def _get_kernel_layer(
|
||||
*, repo_id: str, layer_name: str, revision: str
|
||||
) -> Type["nn.Module"]:
|
||||
"""Get a layer from a kernel."""
|
||||
|
||||
kernel = get_kernel(repo_id, revision=revision)
|
||||
@ -194,13 +361,13 @@ def _get_kernel_layer(*, repo_id: str, layer_name: str, revision: str) -> "nn.Mo
|
||||
|
||||
|
||||
def _validate_layer(*, check_cls, cls):
|
||||
import torch.nn as nn
|
||||
|
||||
# The layer must have at least have the following properties: (1) it
|
||||
# must be stateless; (2) the forward signature should correspond to
|
||||
# the signature it is replacing; (3) forward should not call other
|
||||
# methods.
|
||||
|
||||
from torch import nn
|
||||
|
||||
if not issubclass(cls, nn.Module):
|
||||
raise TypeError(f"Layer `{cls}` is not a Torch layer.")
|
||||
|
||||
@ -212,7 +379,9 @@ def _validate_layer(*, check_cls, cls):
|
||||
# ... or predefined member variables.
|
||||
torch_module_members = {name for name, _ in inspect.getmembers(nn.Module)}
|
||||
cls_members = {name for name, _ in inspect.getmembers(cls)}
|
||||
if cls_members - torch_module_members != set():
|
||||
difference = cls_members - torch_module_members
|
||||
# verify if : difference ⊄ {"can_torch_compile", "has_backward"}
|
||||
if not difference <= {"can_torch_compile", "has_backward"}:
|
||||
raise TypeError("Layer must not contain additional members.")
|
||||
|
||||
# Check whether the forward signatures are similar.
|
||||
@ -229,3 +398,92 @@ def _validate_layer(*, check_cls, cls):
|
||||
raise TypeError(
|
||||
f"Forward signature does not match: different kind of arguments ({param} ({param.kind}) and {ref_param} ({ref_param.kind})"
|
||||
)
|
||||
|
||||
|
||||
def _find_device(model: "nn.Module") -> Device:
|
||||
try:
|
||||
param = next(model.parameters())
|
||||
except StopIteration:
|
||||
raise ValueError(
|
||||
"Cannot determine model device, provide as `device` argument to `kernelize`."
|
||||
)
|
||||
|
||||
return Device(type=param.device.type)
|
||||
|
||||
|
||||
def _conditionally_replace_forward(
|
||||
*,
|
||||
module: "nn.Module",
|
||||
layer: Type["nn.Module"],
|
||||
mode: Mode,
|
||||
use_fallback: bool,
|
||||
):
|
||||
module_class = type(module)
|
||||
|
||||
# Switch to fallback if the mode is not supported by the layer.
|
||||
# Note that this is useful even after _validate_layer_has_mode because
|
||||
# layers registered with the DEFAULT mode never get rejected by
|
||||
# _validate_layer_has_mode. For such layers, we want to fall back in
|
||||
# case the layer does not support the given mode.
|
||||
needs_fallback = Mode.TORCH_COMPILE in mode and not getattr(
|
||||
layer, "can_torch_compile", False
|
||||
)
|
||||
needs_fallback |= Mode.TRAINING in mode and not getattr(layer, "has_backward", True)
|
||||
|
||||
if needs_fallback:
|
||||
if use_fallback:
|
||||
_replace_forward(module, module_class)
|
||||
else:
|
||||
raise ValueError(f"Available kernel does not support mode: {mode}")
|
||||
else:
|
||||
_replace_forward(module, layer)
|
||||
|
||||
|
||||
def _replace_forward(module: "nn.Module", layer: Type["nn.Module"]):
|
||||
module.forward = MethodType(layer.forward, module) # type: ignore[method-assign]
|
||||
|
||||
|
||||
def _validate_layer_has_mode(
|
||||
*,
|
||||
layer_name: str,
|
||||
module: Type["nn.Module"],
|
||||
repo: LayerRepository,
|
||||
repo_mode: Mode,
|
||||
):
|
||||
"""
|
||||
Check that a repository supports the mode that it was registered for.
|
||||
"""
|
||||
|
||||
if Mode.TRAINING in repo_mode and not getattr(module, "has_backward", True):
|
||||
raise ValueError(
|
||||
f"Layer `{repo.layer_name}` ({repo.repo_id}, revision: {repo.revision}) does not support backward.\n"
|
||||
f"Was registered for `{layer_name}` with mode `{repo_mode}`"
|
||||
)
|
||||
|
||||
if Mode.TORCH_COMPILE in repo_mode and not getattr(
|
||||
module, "can_torch_compile", False
|
||||
):
|
||||
raise ValueError(
|
||||
f"Layer `{repo.layer_name}` ({repo.repo_id}, revision: {repo.revision}) does not support torch.compile.\n"
|
||||
f"Was registered for `{layer_name}` with mode `{repo_mode}`"
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def _get_layer_memoize(
|
||||
repo: LayerRepository, module_class: Type["nn.Module"]
|
||||
) -> Type["nn.Module"]:
|
||||
layer = _CACHED_LAYER.get(repo, None)
|
||||
if layer is not None:
|
||||
return layer
|
||||
|
||||
layer = _get_kernel_layer(
|
||||
repo_id=repo.repo_id,
|
||||
layer_name=repo.layer_name,
|
||||
revision=repo.revision,
|
||||
)
|
||||
_validate_layer(check_cls=module_class, cls=layer)
|
||||
_CACHED_LAYER[repo] = layer
|
||||
|
||||
return layer
|
||||
|
@ -4,6 +4,7 @@ import importlib
|
||||
import importlib.metadata
|
||||
import inspect
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import platform
|
||||
import sys
|
||||
@ -12,29 +13,54 @@ from pathlib import Path
|
||||
from types import ModuleType
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from huggingface_hub import file_exists, snapshot_download
|
||||
from packaging.version import parse
|
||||
|
||||
from kernels.lockfile import KernelLock, VariantLock
|
||||
|
||||
CACHE_DIR: Optional[str] = os.environ.get("HF_KERNELS_CACHE", None)
|
||||
|
||||
def _get_cache_dir() -> Optional[str]:
|
||||
"""Returns the kernels cache directory."""
|
||||
cache_dir = os.environ.get("HF_KERNELS_CACHE", None)
|
||||
if cache_dir is not None:
|
||||
logging.warning(
|
||||
"HF_KERNELS_CACHE will be removed in the future, use KERNELS_CACHE instead"
|
||||
)
|
||||
return cache_dir
|
||||
|
||||
return os.environ.get("KERNELS_CACHE", None)
|
||||
|
||||
|
||||
CACHE_DIR: Optional[str] = _get_cache_dir()
|
||||
|
||||
|
||||
def build_variant() -> str:
|
||||
import torch
|
||||
|
||||
if torch.version.cuda is None:
|
||||
if torch.version.cuda is not None:
|
||||
cuda_version = parse(torch.version.cuda)
|
||||
compute_framework = f"cu{cuda_version.major}{cuda_version.minor}"
|
||||
elif torch.version.hip is not None:
|
||||
rocm_version = parse(torch.version.hip.split("-")[0])
|
||||
compute_framework = f"rocm{rocm_version.major}{rocm_version.minor}"
|
||||
elif torch.backends.mps.is_available():
|
||||
compute_framework = "metal"
|
||||
else:
|
||||
raise AssertionError(
|
||||
"This kernel requires CUDA to be installed. Torch was not compiled with CUDA enabled."
|
||||
"Torch was not compiled with CUDA, Metal, or ROCm enabled."
|
||||
)
|
||||
|
||||
torch_version = parse(torch.__version__)
|
||||
cuda_version = parse(torch.version.cuda)
|
||||
cxxabi = "cxx11" if torch.compiled_with_cxx11_abi() else "cxx98"
|
||||
cpu = platform.machine()
|
||||
os = platform.system().lower()
|
||||
|
||||
return f"torch{torch_version.major}{torch_version.minor}-{cxxabi}-cu{cuda_version.major}{cuda_version.minor}-{cpu}-{os}"
|
||||
if os == "darwin":
|
||||
cpu = "aarch64" if cpu == "arm64" else cpu
|
||||
return f"torch{torch_version.major}{torch_version.minor}-{compute_framework}-{cpu}-{os}"
|
||||
|
||||
cxxabi = "cxx11" if torch.compiled_with_cxx11_abi() else "cxx98"
|
||||
|
||||
return f"torch{torch_version.major}{torch_version.minor}-{cxxabi}-{compute_framework}-{cpu}-{os}"
|
||||
|
||||
|
||||
def universal_build_variant() -> str:
|
||||
@ -84,6 +110,23 @@ def install_kernel(
|
||||
)
|
||||
)
|
||||
|
||||
try:
|
||||
return _load_kernel_from_path(repo_path, package_name, variant_locks)
|
||||
except FileNotFoundError:
|
||||
# Redo with more specific error message.
|
||||
raise FileNotFoundError(
|
||||
f"Kernel `{repo_id}` at revision {revision} does not have build: {variant}"
|
||||
)
|
||||
|
||||
|
||||
def _load_kernel_from_path(
|
||||
repo_path: Path,
|
||||
package_name: str,
|
||||
variant_locks: Optional[Dict[str, VariantLock]] = None,
|
||||
) -> Tuple[str, Path]:
|
||||
variant = build_variant()
|
||||
universal_variant = universal_build_variant()
|
||||
|
||||
variant_path = repo_path / "build" / variant
|
||||
universal_variant_path = repo_path / "build" / universal_variant
|
||||
|
||||
@ -102,7 +145,7 @@ def install_kernel(
|
||||
|
||||
if not os.path.exists(module_init_path):
|
||||
raise FileNotFoundError(
|
||||
f"Kernel `{repo_id}` at revision {revision} does not have build: {variant}"
|
||||
f"Kernel at path `{repo_path}` does not have build: {variant}"
|
||||
)
|
||||
|
||||
return package_name, variant_path
|
||||
@ -140,10 +183,47 @@ def install_kernel_all_variants(
|
||||
|
||||
|
||||
def get_kernel(repo_id: str, revision: str = "main") -> ModuleType:
|
||||
"""
|
||||
Download and import a kernel from the Hugging Face Hub.
|
||||
|
||||
The kernel is downloaded from the repository `repo_id` at
|
||||
branch/commit/tag `revision`.
|
||||
"""
|
||||
package_name, package_path = install_kernel(repo_id, revision=revision)
|
||||
return import_from_path(package_name, package_path / package_name / "__init__.py")
|
||||
|
||||
|
||||
def get_local_kernel(repo_path: Path, package_name: str) -> ModuleType:
|
||||
"""
|
||||
Import a kernel from a local kernel repository path.
|
||||
"""
|
||||
package_name, package_path = _load_kernel_from_path(repo_path, package_name)
|
||||
return import_from_path(package_name, package_path / package_name / "__init__.py")
|
||||
|
||||
|
||||
def has_kernel(repo_id: str, revision: str = "main") -> bool:
|
||||
"""
|
||||
Check whether a kernel build exists for the current environment
|
||||
(Torch version and compute framework).
|
||||
"""
|
||||
package_name = package_name_from_repo_id(repo_id)
|
||||
variant = build_variant()
|
||||
universal_variant = universal_build_variant()
|
||||
|
||||
if file_exists(
|
||||
repo_id,
|
||||
revision=revision,
|
||||
filename=f"build/{universal_variant}/{package_name}/__init__.py",
|
||||
):
|
||||
return True
|
||||
|
||||
return file_exists(
|
||||
repo_id,
|
||||
revision=revision,
|
||||
filename=f"build/{variant}/{package_name}/__init__.py",
|
||||
)
|
||||
|
||||
|
||||
def load_kernel(repo_id: str, *, lockfile: Optional[Path] = None) -> ModuleType:
|
||||
"""
|
||||
Get a pre-downloaded, locked kernel.
|
||||
|
186
src/kernels/wheel.py
Normal file
186
src/kernels/wheel.py
Normal file
@ -0,0 +1,186 @@
|
||||
import email.policy
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from email.message import Message
|
||||
from importlib.metadata import PackageNotFoundError, version
|
||||
from pathlib import Path
|
||||
from typing import Optional
|
||||
|
||||
try:
|
||||
KERNELS_VERSION = version("kernels")
|
||||
except PackageNotFoundError:
|
||||
KERNELS_VERSION = "unknown"
|
||||
|
||||
|
||||
@dataclass
|
||||
class Metadata:
|
||||
name: str
|
||||
version: str
|
||||
cuda_version: Optional[str]
|
||||
cxx_abi_version: Optional[str]
|
||||
torch_version: Optional[str]
|
||||
os: Optional[str]
|
||||
platform: Optional[str]
|
||||
|
||||
@property
|
||||
def is_universal(self) -> bool:
|
||||
return self.platform is None
|
||||
|
||||
|
||||
def build_variant_to_wheel(
|
||||
repo_id: str,
|
||||
*,
|
||||
version: str,
|
||||
variant_path: Path,
|
||||
wheel_dir: Path,
|
||||
manylinux_version: str = "2.28",
|
||||
python_version: str = "3.9",
|
||||
) -> Path:
|
||||
"""
|
||||
Create a wheel file from the variant path.
|
||||
"""
|
||||
name = repo_id.split("/")[-1].replace("_", "-")
|
||||
metadata = extract_metadata(name, version, variant_path)
|
||||
return build_wheel(
|
||||
metadata,
|
||||
variant_path=variant_path,
|
||||
wheel_dir=wheel_dir,
|
||||
manylinux_version=manylinux_version,
|
||||
python_version=python_version,
|
||||
)
|
||||
|
||||
|
||||
def extract_metadata(name: str, version: str, variant_path: Path) -> Metadata:
|
||||
"""
|
||||
Extract metadata from the variant path.
|
||||
"""
|
||||
if variant_path.name == "torch-universal":
|
||||
return Metadata(
|
||||
name=name,
|
||||
version=version,
|
||||
cuda_version=None,
|
||||
cxx_abi_version=None,
|
||||
torch_version=None,
|
||||
os=None,
|
||||
platform=None,
|
||||
)
|
||||
|
||||
if not variant_path.name.startswith("torch"):
|
||||
raise ValueError("Currently only conversion of Torch kernels is supported.")
|
||||
|
||||
variant_parts = variant_path.name.removeprefix("torch").split("-")
|
||||
if len(variant_parts) != 5:
|
||||
raise ValueError(f"Invalid variant name: {variant_path.name}")
|
||||
|
||||
torch_version = f"{variant_parts[0][:-1]}.{variant_parts[0][-1:]}"
|
||||
cpp_abi_version = variant_parts[1].removeprefix("cxx")
|
||||
cuda_version = variant_parts[2].removeprefix("cu")
|
||||
platform = variant_parts[3].replace("-", "_")
|
||||
os = variant_parts[4]
|
||||
|
||||
return Metadata(
|
||||
name=name,
|
||||
version=version,
|
||||
cuda_version=cuda_version,
|
||||
cxx_abi_version=cpp_abi_version,
|
||||
torch_version=torch_version,
|
||||
os=os,
|
||||
platform=platform,
|
||||
)
|
||||
|
||||
|
||||
def build_wheel(
|
||||
metadata: Metadata,
|
||||
*,
|
||||
variant_path: Path,
|
||||
wheel_dir: Path,
|
||||
manylinux_version: str = "2.28",
|
||||
python_version: str = "3.9",
|
||||
) -> Path:
|
||||
"""
|
||||
Build the wheel file.
|
||||
"""
|
||||
try:
|
||||
from wheel.wheelfile import WheelFile # type: ignore
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"The 'wheel' package is required to build wheels. Please install it with: `pip install wheel`"
|
||||
)
|
||||
|
||||
name = metadata.name.replace("-", "_")
|
||||
python_version_flat = python_version.replace(".", "")
|
||||
|
||||
if metadata.is_universal:
|
||||
python_tag = f"py{python_version_flat}"
|
||||
abi_tag = "none"
|
||||
platform_tag = "any"
|
||||
wheel_filename = (
|
||||
f"{name}-{metadata.version}-{python_tag}-{abi_tag}-{platform_tag}.whl"
|
||||
)
|
||||
dist_info_dir_name = f"{name}-{metadata.version}.dist-info"
|
||||
root_is_purelib = "true"
|
||||
requires_dist_torch = "torch"
|
||||
else:
|
||||
python_tag = f"cp{python_version_flat}"
|
||||
abi_tag = "abi3"
|
||||
|
||||
if (
|
||||
metadata.torch_version is None
|
||||
or metadata.cuda_version is None
|
||||
or metadata.cxx_abi_version is None
|
||||
or metadata.os is None
|
||||
or metadata.platform is None
|
||||
):
|
||||
raise ValueError(
|
||||
"Torch version, CUDA version, C++ ABI version, OS, and platform must be specified for non-universal wheels."
|
||||
)
|
||||
|
||||
local_version = f"torch{metadata.torch_version.replace('.', '')}cu{metadata.cuda_version}cxx{metadata.cxx_abi_version}"
|
||||
|
||||
if metadata.os == "linux":
|
||||
platform_tag = (
|
||||
f"manylinux_{manylinux_version.replace('.', '_')}_{metadata.platform}"
|
||||
)
|
||||
else:
|
||||
platform_tag = f"{metadata.os}_{metadata.platform.replace('-', '_')}"
|
||||
|
||||
wheel_filename = f"{name}-{metadata.version}+{local_version}-{python_tag}-{abi_tag}-{platform_tag}.whl"
|
||||
dist_info_dir_name = f"{name}-{metadata.version}+{local_version}.dist-info"
|
||||
root_is_purelib = "false"
|
||||
requires_dist_torch = f"torch=={metadata.torch_version}.*"
|
||||
|
||||
wheel_path = wheel_dir / wheel_filename
|
||||
|
||||
wheel_msg = Message(email.policy.compat32)
|
||||
wheel_msg.add_header("Wheel-Version", "1.0")
|
||||
wheel_msg.add_header("Generator", f"kernels ({KERNELS_VERSION})")
|
||||
wheel_msg.add_header("Root-Is-Purelib", root_is_purelib)
|
||||
wheel_msg.add_header("Tag", f"{python_tag}-{abi_tag}-{platform_tag}")
|
||||
|
||||
metadata_msg = Message(email.policy.compat32)
|
||||
metadata_msg.add_header("Metadata-Version", "2.1")
|
||||
metadata_msg.add_header("Name", name)
|
||||
metadata_msg.add_header("Version", metadata.version)
|
||||
metadata_msg.add_header("Summary", f"{name} kernel")
|
||||
metadata_msg.add_header("Requires-Python", ">=3.9")
|
||||
metadata_msg.add_header("Requires-Dist", requires_dist_torch)
|
||||
|
||||
source_pkg_dir = variant_path / name
|
||||
|
||||
with WheelFile(wheel_path, "w") as wheel_file:
|
||||
for root, dirnames, filenames in os.walk(source_pkg_dir):
|
||||
for filename in filenames:
|
||||
if filename.endswith(".pyc"):
|
||||
continue
|
||||
|
||||
abs_filepath = os.path.join(root, filename)
|
||||
entry_name = os.path.relpath(abs_filepath, variant_path)
|
||||
wheel_file.write(abs_filepath, entry_name)
|
||||
|
||||
wheel_metadata_path = os.path.join(dist_info_dir_name, "WHEEL")
|
||||
wheel_file.writestr(wheel_metadata_path, str(wheel_msg).encode("utf-8"))
|
||||
|
||||
metadata_path = os.path.join(dist_info_dir_name, "METADATA")
|
||||
wheel_file.writestr(metadata_path, str(metadata_msg).encode("utf-8"))
|
||||
|
||||
return wheel_path
|
10
tests/conftest.py
Normal file
10
tests/conftest.py
Normal file
@ -0,0 +1,10 @@
|
||||
import sys
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def pytest_runtest_setup(item):
|
||||
if "linux_only" in item.keywords and not sys.platform.startswith("linux"):
|
||||
pytest.skip("skipping Linux-only test on non-Linux platform")
|
||||
if "darwin_only" in item.keywords and not sys.platform.startswith("darwin"):
|
||||
pytest.skip("skipping macOS-only test on non-macOS platform")
|
@ -1,54 +1,82 @@
|
||||
[
|
||||
{
|
||||
"repo_id": "kernels-community/activation",
|
||||
"sha": "6a030420d0dd33ffdc1281afc8ae8e94b4f4f9d0",
|
||||
"sha": "fd6842e88f1f23f198551d78a4541b8eb07e0538",
|
||||
"variants": {
|
||||
"torch25-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-3e39de10721a6b21806834fc95c96526b9cfe2c2052829184f2d3fa48ef5849d",
|
||||
"hash": "sha256-61e3e51b5b59b30d4a6ba943a5e6e4ef5a9c8260cc4bca40b9fb462c0777842b",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx11-cu121-x86_64-linux": {
|
||||
"hash": "sha256-b0dee22c65bb277fa8150f9ea3fc90e2b1c11f84b5d760bbf4ab9c7a4b102e58",
|
||||
"hash": "sha256-baa6b872040730bd1d676c011381f6f626fb96189837b828f587c806af8994fa",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx11-cu124-x86_64-linux": {
|
||||
"hash": "sha256-8960cf857d641d591a7c2d4264925cc2bf7b4a6f9d738b74082b2fb0806db19a",
|
||||
"hash": "sha256-c1ec7457847fa1f0e4ab43234dfc3cd0959977e03dc2ffe89b4f6b90970c7965",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu118-x86_64-linux": {
|
||||
"hash": "sha256-0496e04c2900a2dc7ab0f3b95fe8ce9da69faab6b5ca3f55ddd62c26c81268d0",
|
||||
"hash": "sha256-412f9c841f20741e42f2c6cdb8c7da0e33ab436b219975acffe18b62b97ecd7c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu121-x86_64-linux": {
|
||||
"hash": "sha256-172b793b24dfed3dcb9adc7d3487f260c05b310c598fc6ee8abb3e230c59a0a8",
|
||||
"hash": "sha256-2fde7f97859506e000c1072b3916c0a75bc8cee750a9853ea8b68199e7b57bcd",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu124-x86_64-linux": {
|
||||
"hash": "sha256-12f5e66f32dc4cf4b21f43f76efad198556024da67a1ce28e88ea2d49ad8bdcc",
|
||||
"hash": "sha256-93309986f39a64a5630378108154866f0545178fa8dfef9b8f8ccfef9a78608e",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-bb70e2f36f0b4d12868956c2ad713c756570ff0e0eb4cf7fc3a78ebde617975b",
|
||||
"hash": "sha256-3284d3c64b76d92c1ee930bce8013aff307f16eefb16c2d5dea9f2ca70e71e1f",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu124-x86_64-linux": {
|
||||
"hash": "sha256-a745732eb9ec5d6a54565dbeec5b3c983cc6aa072a4a2576ab2fef9b2a600005",
|
||||
"hash": "sha256-36a8c93773c08ddf8ef624a8a6b2866be26d1861450dfe1ecac0bed59f9ffa47",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-f5afb734520f587717665659798ff738a69e5ae1e34d4bd95624edd18fb165cd",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-1160684ca09c065864f27c5c110281807a1ec31d603bf05fcb974e9e7cfe35cc",
|
||||
"hash": "sha256-940841a7cb44f76c9a896d8b39f5bc0e0420f1c4c05ae9423da96778de4d1f2c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu118-x86_64-linux": {
|
||||
"hash": "sha256-24459d068943b93e4d55e94811469bf7e850d7958785132b108f1240724b846f",
|
||||
"hash": "sha256-8e0f907830c3acc8c6bebfc162c744012ff6973e8110d7bf8ecd74b492418204",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu124-x86_64-linux": {
|
||||
"hash": "sha256-5b009ba63ab6d52ac1aaf70057a2d0fa6ea5d1788a2416111be02103c6bcaaaf",
|
||||
"hash": "sha256-0833414cbe658baec55b7ff63537cddccc973fe99e3c03008cced5e66e38b6c1",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu126-aarch64-linux": {
|
||||
"hash": "sha256-d94fa59a13a5b623b2071aadcd1e6c8477c4d557fd06ad144f15b46b1fc71aab",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu126-x86_64-linux": {
|
||||
"hash": "sha256-05128889b4bdaf9ef58f3c07d93218deaa08e06f9121931b47efef8826482e4a",
|
||||
"hash": "sha256-64784f5f2f9e232d0f2fd824fbc47eadde505e3c232f351bead5b04c429c65c2",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-bcba3765f061649bac0e5a9159bea8349ced4780e24a2330aa62ce0f8d3a9d78",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-e4625df5706af025c70bd824d952b928d9a2965eeaefda72fc47be0fae680c5e",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-7d7d3e655f34a7b03d5603d7c1ab723ef3efc823291762421a8b3a4aa51bd405",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu128-aarch64-linux": {
|
||||
"hash": "sha256-60e076194dcd55b32c5aca72f09816cba0fff52f340c8a063b17ff0577154d99",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu128-x86_64-linux": {
|
||||
"hash": "sha256-f0a3802382efdcd78b40601187a9c416579a24ef2ed5a60d2296ef0951a89597",
|
||||
"hash_type": "git_lfs_concat"
|
||||
}
|
||||
}
|
||||
|
@ -1,7 +1,7 @@
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from kernels import get_kernel
|
||||
from kernels import get_kernel, get_local_kernel, has_kernel, install_kernel
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@ -9,6 +9,19 @@ def kernel():
|
||||
return get_kernel("kernels-community/activation")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def local_kernel():
|
||||
package_name, path = install_kernel("kernels-community/activation", "main")
|
||||
# Path is the build variant path (build/torch-<...>), so the grandparent
|
||||
# is the kernel repository path.
|
||||
return get_local_kernel(path.parent.parent, package_name)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def metal_kernel():
|
||||
return get_kernel("kernels-test/relu-metal")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def universal_kernel():
|
||||
return get_kernel("kernels-community/triton-scaled-mm")
|
||||
@ -21,6 +34,7 @@ def device():
|
||||
return "cuda"
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_gelu_fast(kernel, device):
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
@ -36,6 +50,48 @@ def test_gelu_fast(kernel, device):
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_local_kernel(local_kernel, device):
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
|
||||
local_kernel.gelu_fast(y, x)
|
||||
|
||||
expected = torch.tensor(
|
||||
[[0.8408, 1.9551, 2.9961], [4.0000, 5.0000, 6.0000], [7.0000, 8.0000, 9.0000]],
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
)
|
||||
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.darwin_only
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
def test_relu_metal(metal_kernel, dtype):
|
||||
x = torch.arange(-10, 10, dtype=dtype, device="mps")
|
||||
y = metal_kernel.relu(x)
|
||||
assert torch.allclose(y, torch.relu(x))
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.parametrize(
|
||||
"kernel_exists",
|
||||
[
|
||||
("kernels-community/activation", "main", True),
|
||||
("kernels-community/triton-layer-norm", "main", True),
|
||||
# Repo only contains Torch 2.4 kernels (and we don't
|
||||
# support/test against this version).
|
||||
("kernels-test/only-torch-2.4", "main", False),
|
||||
("google-bert/bert-base-uncased", "87565a309", False),
|
||||
],
|
||||
)
|
||||
def test_has_kernel(kernel_exists):
|
||||
repo_id, revision, kernel = kernel_exists
|
||||
assert has_kernel(repo_id, revision=revision) == kernel
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_universal_kernel(universal_kernel):
|
||||
torch.manual_seed(0)
|
||||
A = torch.randint(-10, 10, (64, 128), dtype=torch.int8, device="cuda")
|
||||
|
@ -16,18 +16,21 @@ def device():
|
||||
return "cuda"
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_gelu_small(kernel, device, benchmark):
|
||||
x = torch.randn(32, 32, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
benchmark(kernel.gelu_fast, y, x)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_gelu_medium(kernel, device, benchmark):
|
||||
x = torch.randn(128, 128, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
benchmark(kernel.gelu_fast, y, x)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_gelu_large(kernel, device, benchmark):
|
||||
x = torch.randn(512, 512, dtype=torch.float16, device=device)
|
||||
y = torch.empty_like(x)
|
||||
|
@ -1,6 +1,8 @@
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
|
||||
from kernels import load_kernel
|
||||
from kernels.cli import download_kernels
|
||||
|
||||
@ -17,6 +19,7 @@ def test_download_all_hash_validation():
|
||||
download_kernels(DownloadArgs(all_variants=True, project_dir=project_dir))
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_load_locked():
|
||||
project_dir = Path(__file__).parent / "kernel_locking"
|
||||
# Also validates that hashing works correctly.
|
||||
|
@ -1,3 +1,5 @@
|
||||
from contextlib import nullcontext
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -6,6 +8,8 @@ from torch.nn import functional as F
|
||||
from kernels import (
|
||||
Device,
|
||||
LayerRepository,
|
||||
Mode,
|
||||
kernelize,
|
||||
register_kernel_mapping,
|
||||
use_kernel_forward_from_hub,
|
||||
)
|
||||
@ -16,14 +20,18 @@ kernel_layer_mapping = {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
revision="layers",
|
||||
)
|
||||
},
|
||||
"SiluAndMulNoCompile": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-test/op-without-fake-test",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
},
|
||||
"SiluAndMulStringDevice": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
revision="layers",
|
||||
)
|
||||
},
|
||||
}
|
||||
@ -43,6 +51,11 @@ class SiluAndMul(nn.Module):
|
||||
return F.silu(input[..., :d]) * input[..., d:]
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("SiluAndMulNoCompile")
|
||||
class SiluAndMulNoCompileKernel(SiluAndMul):
|
||||
pass
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("SiluAndMul")
|
||||
class SiluAndMulWithKernel(SiluAndMul):
|
||||
pass
|
||||
@ -53,6 +66,37 @@ class SiluAndMulStringDevice(SiluAndMul):
|
||||
pass
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("Linear")
|
||||
class TorchLinearWithCounter(nn.Linear):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
# Used to check that we called hub kernel.
|
||||
self.n_calls = 0
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
self.n_calls += 1
|
||||
return super().forward(input)
|
||||
|
||||
|
||||
def test_arg_kinds():
|
||||
@use_kernel_forward_from_hub("ArgKind")
|
||||
class ArgKind(nn.Module):
|
||||
def forward(
|
||||
self,
|
||||
arg1,
|
||||
arg2,
|
||||
*,
|
||||
kwarg1,
|
||||
kwarg2=42,
|
||||
):
|
||||
return (arg1, arg2, kwarg1, kwarg2)
|
||||
|
||||
arg_kind = ArgKind()
|
||||
assert arg_kind("foo", "bar", kwarg1="baz") == ("foo", "bar", "baz", 42)
|
||||
assert arg_kind("foo", "bar", kwarg1="baz", kwarg2=5) == ("foo", "bar", "baz", 5)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulStringDevice])
|
||||
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
||||
def test_hub_forward(cls, device):
|
||||
@ -62,7 +106,7 @@ def test_hub_forward(cls, device):
|
||||
X = torch.randn((32, 64), device=device)
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = cls()
|
||||
silu_and_mul_with_kernel = kernelize(cls(), device=device, mode=Mode.INFERENCE)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
@ -80,11 +124,70 @@ def test_layer_fallback_works():
|
||||
pass
|
||||
|
||||
# Check that we don't raise an exception for a non-existing kernel.
|
||||
SiluAndMulWithKernelFallback()
|
||||
silu_and_mul = SiluAndMulWithKernelFallback()
|
||||
kernelize(silu_and_mul, device="cuda", mode=Mode.INFERENCE)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel])
|
||||
@pytest.mark.parametrize("device", ["cuda"])
|
||||
def test_torch_compile_layer_without_fallback(cls, device):
|
||||
silu_and_mul = SiluAndMul()
|
||||
|
||||
X = torch.randn((32, 64), dtype=torch.float32, device=device)
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = cls()
|
||||
silu_and_mul_with_kernel.eval()
|
||||
|
||||
ctx = (
|
||||
pytest.raises(ValueError, match="does not support mode")
|
||||
if cls is SiluAndMulNoCompileKernel
|
||||
else nullcontext()
|
||||
)
|
||||
with ctx:
|
||||
silu_and_mul_with_kernel = kernelize(
|
||||
silu_and_mul_with_kernel,
|
||||
device=device,
|
||||
mode=Mode.INFERENCE | Mode.TORCH_COMPILE,
|
||||
use_fallback=False,
|
||||
)
|
||||
silu_and_mul_compiled = torch.compile(silu_and_mul_with_kernel, fullgraph=True)
|
||||
|
||||
Y_compiled = silu_and_mul_compiled(X)
|
||||
|
||||
torch.testing.assert_close(Y_compiled, Y)
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulNoCompileKernel])
|
||||
@pytest.mark.parametrize("device", ["cuda"])
|
||||
def test_torch_compile_layer_with_fallback(cls, device):
|
||||
silu_and_mul = SiluAndMul()
|
||||
|
||||
X = torch.randn((32, 64), dtype=torch.float32, device=device)
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = cls()
|
||||
silu_and_mul_with_kernel.eval()
|
||||
silu_and_mul_with_kernel = kernelize(
|
||||
silu_and_mul_with_kernel,
|
||||
device=device,
|
||||
mode=Mode.INFERENCE | Mode.TORCH_COMPILE,
|
||||
)
|
||||
silu_and_mul_compiled = torch.compile(silu_and_mul_with_kernel, fullgraph=True)
|
||||
|
||||
Y_compiled = silu_and_mul_compiled(X)
|
||||
|
||||
torch.testing.assert_close(Y_compiled, Y)
|
||||
|
||||
|
||||
def test_mapping_contexts():
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {"SiluAndMul", "SiluAndMulStringDevice"}
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
}
|
||||
|
||||
extra_mapping1 = {
|
||||
"TestKernel": {
|
||||
@ -100,6 +203,7 @@ def test_mapping_contexts():
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"TestKernel",
|
||||
}
|
||||
|
||||
@ -117,26 +221,57 @@ def test_mapping_contexts():
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"][Device(type="cuda")].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"][Device(type="cuda")][
|
||||
Mode.DEFAULT
|
||||
].repo_id
|
||||
== "kernels-community/non-existing"
|
||||
)
|
||||
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"][Device(type="cuda")].repo_id
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"][Device(type="cuda")][
|
||||
Mode.DEFAULT
|
||||
].repo_id
|
||||
== "kernels-community/activation"
|
||||
)
|
||||
|
||||
with use_kernel_mapping(extra_mapping2, inherit_mapping=False):
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"][Device(type="cuda")][
|
||||
Mode.DEFAULT
|
||||
].repo_id
|
||||
== "kernels-community/non-existing"
|
||||
)
|
||||
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
_KERNEL_MAPPING.get()["SiluAndMul"][Device(type="cuda")][
|
||||
Mode.DEFAULT
|
||||
].repo_id
|
||||
== "kernels-community/activation"
|
||||
)
|
||||
|
||||
assert set(_KERNEL_MAPPING.get().keys()) == {
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
}
|
||||
|
||||
|
||||
@ -166,3 +301,208 @@ def test_validate_kernel_layer():
|
||||
|
||||
with pytest.raises(TypeError, match="different kind of arguments"):
|
||||
_validate_layer(cls=BadLayer4, check_cls=SiluAndMul)
|
||||
|
||||
|
||||
def test_invalid_mode_for_mapping_rejected():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": {
|
||||
Mode.TRAINING: LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearNoBackward",
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
):
|
||||
with pytest.raises(ValueError, match="does not support backward"):
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
|
||||
|
||||
def test_kernel_modes():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
# Case 1: layer without further specification, becomes the
|
||||
# base layer.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Case 2: register a kernel just for training. If no base kernel
|
||||
# layer is registered, we fall back to the original layer.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": {
|
||||
Mode.TRAINING: LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# Training has a kernel, so fallback.
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# No kernel for training + torch.compile, so fallback.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Case 3: register a kernel just for training and one for fallback.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": {
|
||||
Mode.DEFAULT: LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
),
|
||||
Mode.TRAINING: LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# Uses the base kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# Uses the training kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# Uses the base kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Case 4: register a kernel with two preferences.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": {
|
||||
Mode.TRAINING
|
||||
| Mode.TORCH_COMPILE: LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# No inference kernel, so fallback.
|
||||
assert linear.n_calls == 3
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# No training kernel, so fallback.
|
||||
assert linear.n_calls == 4
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# We do have a training + torch.compile kernel.
|
||||
assert linear.n_calls == 4
|
||||
|
||||
|
||||
@pytest.mark.linux_only
|
||||
def test_fallback_used_when_training():
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
|
||||
# Case 1: kernel with explicit backward support should always
|
||||
# use the kernel.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearBackward",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
linear.train()
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
linear.eval()
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Case 2: kernel with implicit backward support should always
|
||||
# use the kernel.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-test/backward-marker-test",
|
||||
layer_name="LinearImplicitBackward",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
linear.train()
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
linear.eval()
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
|
||||
def test_invalid_mode_rejected():
|
||||
with pytest.raises(ValueError, match="mutually exclusive"):
|
||||
_ = Mode.INFERENCE | Mode.TRAINING
|
||||
|
||||
with pytest.raises(ValueError, match="cannot be combined with other modes"):
|
||||
_ = Mode.DEFAULT | Mode.TORCH_COMPILE
|
||||
|
||||
with pytest.raises(
|
||||
ValueError, match="can only be used to register kernel mappings"
|
||||
):
|
||||
kernelize(torch.nn.Linear(32, 32), mode=Mode.DEFAULT)
|
||||
|
||||
with pytest.raises(ValueError, match="mode must contain"):
|
||||
kernelize(torch.nn.Linear(32, 32), mode=Mode.TORCH_COMPILE)
|
||||
|
Reference in New Issue
Block a user