mirror of
https://github.com/huggingface/kernels.git
synced 2025-10-20 12:33:46 +08:00
Compare commits
30 Commits
add-get-lo
...
ed048616fe
Author | SHA1 | Date | |
---|---|---|---|
ed048616fe | |||
b182cd3458 | |||
ce77658efc | |||
b96b154e7f | |||
b24ef9fa6b | |||
a7101b2cfd | |||
6241afa06e | |||
34a1932751 | |||
e39eac09c1 | |||
b0c431fee4 | |||
9a188eadbe | |||
457c7c1b8d | |||
fb8cd99a2c | |||
dfee307d54 | |||
93e5765611 | |||
bf488208be | |||
2a14472e4c | |||
055a953552 | |||
692d5ad458 | |||
2139df57f4 | |||
8f9a77bb6a | |||
6c00194680 | |||
d6b51eefb7 | |||
d383fdd4b4 | |||
07e5e8481a | |||
88f55d4728 | |||
e801ebf332 | |||
0ae07f05fc | |||
7611021100 | |||
767e7ccf13 |
17
.github/workflows/test.yml
vendored
17
.github/workflows/test.yml
vendored
@ -24,7 +24,7 @@ jobs:
|
||||
max-parallel: 4
|
||||
matrix:
|
||||
python-version: ["3.10", "3.12"]
|
||||
torch-version: ["2.6.0", "2.7.0"]
|
||||
torch-version: ["2.7.0", "2.8.0"]
|
||||
|
||||
env:
|
||||
UV_PYTHON_PREFERENCE: only-managed
|
||||
@ -51,7 +51,15 @@ jobs:
|
||||
run: uv run mypy src/kernels
|
||||
|
||||
- name: Run tests
|
||||
run: uv run pytest tests
|
||||
run: |
|
||||
uv run pytest tests
|
||||
|
||||
- name: Run staging tests
|
||||
env:
|
||||
HF_TOKEN: ${{ secrets.HF_STAGING_TOKEN }}
|
||||
run: |
|
||||
HUGGINGFACE_CO_STAGING=true uv run pytest --token -m "is_staging_test" tests/
|
||||
if: matrix.python_version == '3.10' && matrix.torch-version == '2.7.0'
|
||||
|
||||
- name: Check kernel conversion
|
||||
run: |
|
||||
@ -65,6 +73,11 @@ jobs:
|
||||
run: |
|
||||
uv run kernels generate-readme kernels-community/triton-layer-norm
|
||||
|
||||
- name: Check kernel check
|
||||
run: |
|
||||
uv pip install kernel-abi-check
|
||||
kernels check kernels-community/activation
|
||||
|
||||
- name: Import check without torch
|
||||
run: |
|
||||
uv pip uninstall torch
|
||||
|
8
Makefile
Normal file
8
Makefile
Normal file
@ -0,0 +1,8 @@
|
||||
.PHONY: style
|
||||
|
||||
export check_dirs := src examples tests
|
||||
|
||||
style:
|
||||
black ${check_dirs}
|
||||
isort ${check_dirs}
|
||||
ruff check ${check_dirs} --fix
|
@ -62,7 +62,6 @@ the Hub.
|
||||
- [Using layers](docs/source/layers.md)
|
||||
- [Locking kernel/layer versions](docs/source/locking.md)
|
||||
- [Environment variables](docs/source/env.md)
|
||||
- [Using kernels in a Docker container](docs/source/docker.md)
|
||||
- [Kernel requirements](docs/source/kernel-requirements.md)
|
||||
- [Frequently Asked Questions](docs/source/faq.md)
|
||||
- [Writing kernels](https://github.com/huggingface/kernel-builder/blob/main/docs/writing-kernels.md) using [kernel-builder](https://github.com/huggingface/kernel-builder/)
|
||||
|
@ -21,6 +21,8 @@
|
||||
title: Kernels
|
||||
- local: api/layers
|
||||
title: Layers
|
||||
- local: cli
|
||||
title: Kernels CLI
|
||||
title: API Reference
|
||||
- sections:
|
||||
- local: kernel-requirements
|
||||
|
@ -6,6 +6,10 @@
|
||||
|
||||
[[autodoc]] kernels.get_kernel
|
||||
|
||||
### get_local_kernel
|
||||
|
||||
[[autodoc]] kernels.get_local_kernel
|
||||
|
||||
### has_kernel
|
||||
|
||||
[[autodoc]] kernels.has_kernel
|
||||
|
@ -39,3 +39,11 @@
|
||||
### LayerRepository
|
||||
|
||||
[[autodoc]] kernels.LayerRepository
|
||||
|
||||
### LocalLayerRepository
|
||||
|
||||
[[autodoc]] kernels.LocalLayerRepository
|
||||
|
||||
### LockedLayerRepository
|
||||
|
||||
[[autodoc]] kernels.LockedLayerRepository
|
||||
|
@ -21,6 +21,22 @@ activation.gelu_fast(y, x)
|
||||
print(y)
|
||||
```
|
||||
|
||||
### Using version bounds
|
||||
|
||||
Kernels are versioned using tags of the form `v<major>.<minor>.<patch>`.
|
||||
You can specify which version to download using Python version specifiers:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from kernels import get_kernel
|
||||
|
||||
activation = get_kernel("kernels-community/activation", version=">=0.0.4,<0.1.0")
|
||||
```
|
||||
|
||||
This will get the latest kernel tagged `v0.0.z` where `z` is at least 4. It
|
||||
is strongly recommended to specify a version bound, since a kernel author
|
||||
might push incompatible changes to the `main` branch.
|
||||
|
||||
## Checking Kernel Availability
|
||||
|
||||
You can check if a specific kernel is available for your environment:
|
||||
|
58
docs/source/cli.md
Normal file
58
docs/source/cli.md
Normal file
@ -0,0 +1,58 @@
|
||||
# Kernels CLI Reference
|
||||
|
||||
## Main Functions
|
||||
|
||||
### kernels check
|
||||
|
||||
You can use `kernels check` to test compliance of a kernel on the Hub.
|
||||
This currently checks that the kernel:
|
||||
|
||||
- Supports the currently-required Python ABI version.
|
||||
- Works on supported operating system versions.
|
||||
|
||||
For example:
|
||||
|
||||
```bash
|
||||
$ kernels check kernels-community/flash-attn3
|
||||
Checking variant: torch28-cxx11-cu128-aarch64-linux
|
||||
🐍 Python ABI 3.9 compatible
|
||||
🐧 manylinux_2_28 compatible
|
||||
[...]
|
||||
```
|
||||
|
||||
### kernels to-wheel
|
||||
|
||||
We strongly recommend downloading kernels from the Hub using the `kernels`
|
||||
package, since this comes with large [benefits](index.md) over using Python
|
||||
wheels. That said, some projects may require deployment of kernels as
|
||||
wheels. The `kernels` utility provides a simple solution to this. You can
|
||||
convert any Hub kernel into a set of wheels with the `to-wheel` command:
|
||||
|
||||
```bash
|
||||
$ kernels to-wheel drbh/img2grey 1.1.2
|
||||
☸ img2grey-1.1.2+torch27cu128cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu124cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch27cu126cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx98-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch27cu128cxx11-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx98-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch27cu126cxx11-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch26cu126cxx11-cp39-abi3-manylinux_2_28_aarch64.whl
|
||||
☸ img2grey-1.1.2+torch26cu118cxx98-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu124cxx98-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch26cu118cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
☸ img2grey-1.1.2+torch27cu118cxx11-cp39-abi3-manylinux_2_28_x86_64.whl
|
||||
```
|
||||
|
||||
### kernels upload
|
||||
|
||||
Use `kernels upload <dir_containing_build> --repo_id="hub-username/kernel"` to upload
|
||||
your kernel builds to the Hub. To know the supported arguments run: `kernels upload -h`.
|
||||
|
||||
**Notes**:
|
||||
|
||||
- This will take care of creating a repository on the Hub with the `repo_id` provided.
|
||||
- If a repo with the `repo_id` already exists and if it contains a `build` with the build variant
|
||||
being uploaded, it will attempt to delete the files existing under it.
|
||||
- Make sure to be authenticated (run `hf auth login` if not) to be able to perform uploads to the Hub.
|
@ -1,6 +1,8 @@
|
||||
# FAQ
|
||||
|
||||
## Why is the kernelization step needed?
|
||||
## Kernel layers
|
||||
|
||||
### Why is the kernelization step needed as a separate step?
|
||||
|
||||
In earlier versions of `kernels`, a layer's `forward` method was replaced
|
||||
by `use_kernel_forward_from_hub` and `replace_kernel_forward_from_hub`.
|
||||
@ -11,3 +13,39 @@ on data-dependent branching.
|
||||
|
||||
To avoid branching, we have to make dispatch decisions ahead of time,
|
||||
which is what the `kernelize` function does.
|
||||
|
||||
### Why does kernelization only replace `forward` methods?
|
||||
|
||||
There are some other possible approaches. The first is to completely
|
||||
replace existing layers by kernel layers. However, since this would
|
||||
permit free-form layer classes, it would be much harder to validate
|
||||
that layers are fully compatible with the layers that they are
|
||||
replacing. For instance, they could have completely different member
|
||||
variables. Besides that, we would also need to hold on to the original
|
||||
layers, in case we need to revert to the base layers when the model
|
||||
is `kernelize`d again with different options.
|
||||
|
||||
A second approach would be to make an auxiliary layer that wraps the
|
||||
original layer and the kernel layer and dispatches to the kernel layer.
|
||||
This wouldn't have the issues of the first approach, because kernel layers
|
||||
could be similarly strict as they are now, and we would still have access
|
||||
to the original layers when `kernelize`-ing the model again. However,
|
||||
this would change the graph structure of the model and would break use
|
||||
cases where programs access the model internals (e.g.
|
||||
`model.layers[0].attention.query_weight`) or rely on the graph structure
|
||||
in other ways.
|
||||
|
||||
The approach of `forward`-replacement is the least invasive, because
|
||||
it preserves the original model graph. It is also reversible, since
|
||||
even though the `forward` of a layer _instance_ might be replaced,
|
||||
the corresponding class still has the original `forward`.
|
||||
|
||||
## Misc
|
||||
|
||||
### How can I disable kernel reporting in the user-agent?
|
||||
|
||||
By default, we collect telemetry when a call to `get_kernel()` is made.
|
||||
This only includes the `kernels` version, `torch` version, and the build
|
||||
information for the kernel being requested.
|
||||
|
||||
You can disable this by setting `export DISABLE_TELEMETRY=yes`.
|
||||
|
@ -34,6 +34,8 @@ Kernels are versioned on the Hub using Git tags. Version tags must be of
|
||||
the form `v<major>.<minor>.<patch>`. Versions are used by [locking](./locking.md)
|
||||
to resolve the version constraints.
|
||||
|
||||
We recommend using [semver](https://semver.org/) to version kernels.
|
||||
|
||||
## Native Python module
|
||||
|
||||
Kernels will typically contain a native Python module with precompiled
|
||||
@ -44,19 +46,28 @@ have dynamic library dependencies outside:
|
||||
- Torch;
|
||||
- CUDA/ROCm libraries installed as dependencies of Torch.
|
||||
|
||||
## Compatibility with torch.compile
|
||||
|
||||
The Kernel Hub also encourages to write the kernels in a `torch.compile`
|
||||
compliant way. This helps to ensure that the kernels are compatible with
|
||||
`torch.compile` without introducing any graph breaks and triggering
|
||||
recompilation which can limit the benefits of compilation.
|
||||
|
||||
[Here](https://github.com/huggingface/kernel-builder/blob/d1ee9bf9301ac8c5199099d90ee1c9d5c789d5ba/examples/relu-backprop-compile/tests/test_relu.py#L162) is a simple test example which checks for graph breaks and
|
||||
recompilation triggers during `torch.compile`.
|
||||
|
||||
### Linux
|
||||
|
||||
- Use [ABI3/Limited API](https://docs.python.org/3/c-api/stable.html#stable-application-binary-interface)
|
||||
for compatibility with Python 3.9 and later.
|
||||
- Compatible with [`manylinux_2_28`](https://github.com/pypa/manylinux?tab=readme-ov-file#manylinux_2_28-almalinux-8-based).
|
||||
This means that the extension **must not** use symbols versions higher than:
|
||||
|
||||
- GLIBC 2.28
|
||||
- GLIBCXX 3.4.24
|
||||
- CXXABI 1.3.11
|
||||
- GCC 7.0.0
|
||||
|
||||
These requirement can be checked with the ABI checker (see below).
|
||||
These requirements can be checked with the ABI checker (see below).
|
||||
|
||||
### macOS
|
||||
|
||||
|
@ -5,7 +5,7 @@ the Hub can replace the `forward` method of an existing layer for a certain
|
||||
device type. This makes it possible to provide more performant kernels for
|
||||
existing layers.
|
||||
|
||||
See [Kernel requirements](kernel-requirements.md) for more information the
|
||||
See [Kernel requirements](kernel-requirements.md) for more information on the
|
||||
requirements of Hub layers.
|
||||
|
||||
## Making a layer extensible with kernels from the hub
|
||||
@ -84,12 +84,6 @@ model = kernelize(model, mode=Mode.INFERENCE | Mode.TORCH_COMPILE)
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
|
||||
When the `mode` argument is not specified,
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` is used as the default. This mode
|
||||
aligns most closely with pure PyTorch layers which also support training
|
||||
and `torch.compile`. However, to select the most performant kernels, it
|
||||
is often good to make the mode specific as possible.
|
||||
|
||||
### Kernel device
|
||||
|
||||
Kernels can be registered per device type. For instance, separate `cuda` and
|
||||
@ -117,7 +111,7 @@ model = kernelize(model, mode=Mode.INFERENCE | Mode.TORCH_COMPILE, use_fallback=
|
||||
|
||||
This can be useful if you want to guarantee that Hub kernels are used.
|
||||
|
||||
### Inspecting kernels which kernels are used
|
||||
### Inspecting which kernels are used
|
||||
|
||||
The kernels that are used are logged at the `INFO` level by `kernelize`.
|
||||
See the [Python logging](https://docs.python.org/3/library/logging.html)
|
||||
@ -157,12 +151,39 @@ used with the `use_kernel_mapping` context manager:
|
||||
```python
|
||||
with use_kernel_mapping(kernel_layer_mapping):
|
||||
# Use the layer for which the mapping is applied.
|
||||
model = kernelize(model)
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
|
||||
This ensures that the mapping is not active anymore outside the
|
||||
`with`-scope.
|
||||
|
||||
### Using version bounds
|
||||
|
||||
Kernels are versioned using tags of the form `v<major>.<minor>.<patch>`.
|
||||
You can specify which version of the kernel to download using Python version
|
||||
specifiers:
|
||||
|
||||
```python
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
version=">=0.0.4,<0.1.0",
|
||||
),
|
||||
"rocm": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
version=">=0.0.4,<0.1.0",
|
||||
)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
This will get the layer from latest kernel tagged `v0.0.z` where `z` is at
|
||||
least 4. It is strongly recommended to specify a version bound, since a
|
||||
kernel author might push incompatible changes to the `main` branch.
|
||||
|
||||
### Registering kernels for specific modes
|
||||
|
||||
You might want to register two different kernels for a particular layer,
|
||||
@ -265,7 +286,6 @@ Capabilities behave as follows:
|
||||
an existing kernel, the new kernel will replace the old kernel.
|
||||
- When there are multiple kernels that support a capability, the kernel
|
||||
with the smaller capability interval will be used. E.g. given:
|
||||
|
||||
- `KernelA` with `min_capability=80` and `max_capability=89`;
|
||||
- `KernelB` with `min_capability=75` and `max_capability=89`;
|
||||
- `kernelize` runs on a system with capability 8.6.
|
||||
|
@ -20,11 +20,11 @@ activation.gelu_fast(y, x)
|
||||
print("Kernel successfully executed")
|
||||
|
||||
# Check results
|
||||
expected = torch.tensor([
|
||||
[0.8408, 1.9551, 2.9961],
|
||||
[4.0000, 5.0000, 6.0000],
|
||||
[7.0000, 8.0000, 9.0000]
|
||||
], device='cuda:0', dtype=torch.float16)
|
||||
expected = torch.tensor(
|
||||
[[0.8408, 1.9551, 2.9961], [4.0000, 5.0000, 6.0000], [7.0000, 8.0000, 9.0000]],
|
||||
device="cuda:0",
|
||||
dtype=torch.float16,
|
||||
)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
print("Calculated values are exact")
|
||||
|
@ -24,6 +24,7 @@
|
||||
in
|
||||
{
|
||||
formatter = pkgs.nixfmt-tree;
|
||||
packages.kernel-abi-check = pkgs.python3.pkgs.callPackage ./nix/kernel-abi-check.nix {};
|
||||
devShells = with pkgs; rec {
|
||||
default = mkShell {
|
||||
nativeBuildInputs = [
|
||||
@ -40,6 +41,7 @@
|
||||
++ (with python3.pkgs; [
|
||||
docutils
|
||||
huggingface-hub
|
||||
(callPackage ./nix/kernel-abi-check.nix {})
|
||||
mktestdocs
|
||||
pytest
|
||||
pytest-benchmark
|
||||
|
27
nix/kernel-abi-check.nix
Normal file
27
nix/kernel-abi-check.nix
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
buildPythonPackage,
|
||||
fetchPypi,
|
||||
rustPlatform,
|
||||
}:
|
||||
|
||||
buildPythonPackage rec {
|
||||
pname = "kernel-abi-check";
|
||||
version = "0.6.2";
|
||||
|
||||
src = fetchPypi {
|
||||
inherit version;
|
||||
pname = "kernel_abi_check";
|
||||
hash = "sha256-goWC7SK79FVNEvkp3bISBwbOqdSrmobANtrWIve9/Ys=";
|
||||
};
|
||||
|
||||
cargoDeps = rustPlatform.fetchCargoVendor {
|
||||
inherit pname version src sourceRoot;
|
||||
hash = "sha256-+1jdbKsDKmG+bf0NEVYMv8t7Meuge1z2cgYfbdB9q8A=";
|
||||
};
|
||||
|
||||
sourceRoot = "kernel_abi_check-${version}/bindings/python";
|
||||
|
||||
pyproject = true;
|
||||
|
||||
nativeBuildInputs = with rustPlatform; [ cargoSetupHook maturinBuildHook ];
|
||||
}
|
@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "kernels"
|
||||
version = "0.9.0.dev0"
|
||||
version = "0.10.4.dev0"
|
||||
description = "Download compute kernels"
|
||||
authors = [
|
||||
{ name = "OlivierDehaene", email = "olivier@huggingface.co" },
|
||||
@ -12,7 +12,7 @@ license = { text = "Apache-2.0" }
|
||||
readme = "README.md"
|
||||
requires-python = ">= 3.9"
|
||||
dependencies = [
|
||||
"huggingface_hub>=0.26.0,<1.0",
|
||||
"huggingface_hub>=0.26.0,<2.0",
|
||||
"packaging>=20.0",
|
||||
"pyyaml>=6",
|
||||
"tomli>=2.0; python_version<'3.11'",
|
||||
@ -34,6 +34,7 @@ dev = [
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
abi-check = ["kernel-abi-check>=0.6.2,<0.7.0"]
|
||||
torch = ["torch"]
|
||||
docs = [
|
||||
"hf-doc-builder",
|
||||
@ -45,6 +46,9 @@ kernels = "kernels.cli:main"
|
||||
[project.entry-points."egg_info.writers"]
|
||||
"kernels.lock" = "kernels.lockfile:write_egg_lockfile"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
line_length = 119
|
||||
|
||||
[tool.ruff]
|
||||
exclude = [
|
||||
@ -71,4 +75,4 @@ line-length = 119
|
||||
# Ignored rules:
|
||||
# "E501" -> line length violation
|
||||
lint.ignore = ["E501"]
|
||||
lint.select = ["E", "F", "I", "W"]
|
||||
lint.select = ["E", "F", "W"]
|
||||
|
@ -3,3 +3,7 @@ markers =
|
||||
cuda_only: marks tests that should only hosts with CUDA GPUs
|
||||
rocm_only: marks tests that should only run on hosts with ROCm GPUs
|
||||
darwin_only: marks tests that should only run on macOS
|
||||
xpu_only: marks tests that should only run on hosts with Intel XPUs
|
||||
npu_only: marks tests that should only run on Ascend NPUs
|
||||
token: enable tests that require a write token
|
||||
is_staging_test: Marks tests that should only run on a staging environment
|
||||
|
@ -1,3 +1,7 @@
|
||||
import importlib.metadata
|
||||
|
||||
__version__ = importlib.metadata.version("kernels")
|
||||
|
||||
from kernels.layer import (
|
||||
CUDAProperties,
|
||||
Device,
|
||||
@ -21,6 +25,7 @@ from kernels.utils import (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"__version__",
|
||||
"CUDAProperties",
|
||||
"Device",
|
||||
"LayerRepository",
|
||||
|
142
src/kernels/check.py
Normal file
142
src/kernels/check.py
Normal file
@ -0,0 +1,142 @@
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import snapshot_download
|
||||
from kernel_abi_check import (
|
||||
BinaryFormat,
|
||||
IncompatibleAbi3Symbol,
|
||||
IncompatibleMacOSVersion,
|
||||
IncompatibleManylinuxSymbol,
|
||||
MissingMacOSVersion,
|
||||
NonAbi3Symbol,
|
||||
ObjectFile,
|
||||
)
|
||||
|
||||
from kernels.utils import CACHE_DIR
|
||||
|
||||
|
||||
def check_kernel(
|
||||
*, macos: str, manylinux: str, python_abi: str, repo_id: str, revision: str
|
||||
):
|
||||
variants_path = (
|
||||
Path(
|
||||
snapshot_download(
|
||||
repo_id,
|
||||
allow_patterns=["build/*"],
|
||||
cache_dir=CACHE_DIR,
|
||||
revision=revision,
|
||||
)
|
||||
)
|
||||
/ "build"
|
||||
)
|
||||
|
||||
has_issues = False
|
||||
for variant_path in variants_path.iterdir():
|
||||
if not variant_path.is_dir():
|
||||
print(
|
||||
f"⛔ `build/` must only contain directories, found: {variant_path.name}",
|
||||
file=sys.stderr,
|
||||
)
|
||||
has_issues = True
|
||||
continue
|
||||
|
||||
print(f"Checking variant: {variant_path.name}", file=sys.stderr)
|
||||
|
||||
indent = 2
|
||||
|
||||
for dylib_path in variant_path.rglob("*.so"):
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"Dynamic library {dylib_path.relative_to(variant_path)}:",
|
||||
)
|
||||
|
||||
o = ObjectFile(dylib_path)
|
||||
has_issues |= check_abi3(o, python_abi, indent + 2)
|
||||
|
||||
# TODO: also check operating system
|
||||
if o.format() == BinaryFormat.ELF:
|
||||
has_issues |= check_manylinux(o, manylinux, indent + 2)
|
||||
elif o.format() == BinaryFormat.MACH_O:
|
||||
has_issues |= check_macos(o, macos, indent + 2)
|
||||
|
||||
if has_issues:
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
def check_abi3(object_file: ObjectFile, python_abi: str, indent: int) -> bool:
|
||||
has_issues = False
|
||||
violations = object_file.check_python_abi(python_abi)
|
||||
if violations != []:
|
||||
has_issues = True
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"⛔ Found symbols that are incompatible with Python ABI {python_abi}:",
|
||||
)
|
||||
for violation in violations:
|
||||
if isinstance(violation, IncompatibleAbi3Symbol):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"{violation.name}: {violation.version_added}",
|
||||
)
|
||||
elif isinstance(violation, NonAbi3Symbol):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"{violation.name}",
|
||||
)
|
||||
else:
|
||||
print_with_indent(indent, f"🐍 Python ABI {python_abi} compatible")
|
||||
|
||||
return has_issues
|
||||
|
||||
|
||||
def check_macos(object_file: ObjectFile, macos: str, indent: int) -> bool:
|
||||
has_issues = False
|
||||
violations = object_file.check_macos(macos)
|
||||
if violations != []:
|
||||
has_issues = True
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"⛔ Found incompatibility with macOS {macos}:",
|
||||
)
|
||||
|
||||
for violation in violations:
|
||||
if isinstance(violation, MissingMacOSVersion):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
"shared library does not contain macOS version",
|
||||
)
|
||||
elif isinstance(violation, IncompatibleMacOSVersion):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"shared library requires macOS {violation.version}",
|
||||
)
|
||||
else:
|
||||
print_with_indent(indent, f"🍏 compatible with macOS {macos}")
|
||||
|
||||
return has_issues
|
||||
|
||||
|
||||
def check_manylinux(object_file: ObjectFile, manylinux: str, indent: int) -> bool:
|
||||
has_issues = False
|
||||
violations = object_file.check_manylinux(manylinux)
|
||||
if violations != []:
|
||||
has_issues = True
|
||||
print_with_indent(
|
||||
indent,
|
||||
f"⛔ Found symbols that are incompatible with {manylinux}:",
|
||||
)
|
||||
|
||||
for violation in violations:
|
||||
if isinstance(violation, IncompatibleManylinuxSymbol):
|
||||
print_with_indent(
|
||||
indent + 3,
|
||||
f"{violation.name}_{violation.dep}: {violation.version}",
|
||||
)
|
||||
else:
|
||||
print_with_indent(indent, f"🐧 {manylinux} compatible")
|
||||
|
||||
return has_issues
|
||||
|
||||
|
||||
def print_with_indent(indent: int, message: str):
|
||||
print(f"{' ' * indent}{message}", file=sys.stderr)
|
@ -4,6 +4,8 @@ import json
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
from huggingface_hub import create_repo, upload_folder, create_branch
|
||||
|
||||
from kernels.compat import tomllib
|
||||
from kernels.lockfile import KernelLock, get_kernel_locks
|
||||
from kernels.utils import install_kernel, install_kernel_all_variants
|
||||
@ -18,6 +20,31 @@ def main():
|
||||
)
|
||||
subparsers = parser.add_subparsers(required=True)
|
||||
|
||||
check_parser = subparsers.add_parser("check", help="Check a kernel for compliance")
|
||||
check_parser.add_argument("repo_id", type=str, help="The kernel repo ID")
|
||||
check_parser.add_argument(
|
||||
"--revision",
|
||||
type=str,
|
||||
default="main",
|
||||
help="The kernel revision (branch, tag, or commit SHA, defaults to 'main')",
|
||||
)
|
||||
check_parser.add_argument("--macos", type=str, help="macOS version", default="15.0")
|
||||
check_parser.add_argument(
|
||||
"--manylinux", type=str, help="Manylinux version", default="manylinux_2_28"
|
||||
)
|
||||
check_parser.add_argument(
|
||||
"--python-abi", type=str, help="Python ABI version", default="3.9"
|
||||
)
|
||||
check_parser.set_defaults(
|
||||
func=lambda args: check_kernel(
|
||||
macos=args.macos,
|
||||
manylinux=args.manylinux,
|
||||
python_abi=args.python_abi,
|
||||
repo_id=args.repo_id,
|
||||
revision=args.revision,
|
||||
)
|
||||
)
|
||||
|
||||
download_parser = subparsers.add_parser("download", help="Download locked kernels")
|
||||
download_parser.add_argument(
|
||||
"project_dir",
|
||||
@ -31,6 +58,29 @@ def main():
|
||||
)
|
||||
download_parser.set_defaults(func=download_kernels)
|
||||
|
||||
upload_parser = subparsers.add_parser("upload", help="Upload kernels to the Hub")
|
||||
upload_parser.add_argument(
|
||||
"kernel_dir",
|
||||
type=Path,
|
||||
help="Directory of the kernel build",
|
||||
)
|
||||
upload_parser.add_argument(
|
||||
"--repo_id",
|
||||
type=str,
|
||||
help="Repository ID to use to upload to the Hugging Face Hub",
|
||||
)
|
||||
upload_parser.add_argument(
|
||||
"--branch",
|
||||
type=None,
|
||||
help="If set, the upload will be made to a particular branch of the provided `repo_id`.",
|
||||
)
|
||||
upload_parser.add_argument(
|
||||
"--private",
|
||||
action="store_true",
|
||||
help="If the repository should be private.",
|
||||
)
|
||||
upload_parser.set_defaults(func=upload_kernels)
|
||||
|
||||
lock_parser = subparsers.add_parser("lock", help="Lock kernel revisions")
|
||||
lock_parser.add_argument(
|
||||
"project_dir",
|
||||
@ -153,8 +203,61 @@ def lock_kernels(args):
|
||||
json.dump(all_locks, f, cls=_JSONEncoder, indent=2)
|
||||
|
||||
|
||||
def upload_kernels(args):
|
||||
# Resolve `kernel_dir` to be uploaded.
|
||||
kernel_dir = Path(args.kernel_dir).resolve()
|
||||
build_dir = kernel_dir / "build"
|
||||
if not kernel_dir.is_dir():
|
||||
raise ValueError(f"{kernel_dir} is not a directory")
|
||||
if not build_dir.is_dir():
|
||||
raise ValueError("Couldn't find `build` directory inside `kernel_dir`")
|
||||
|
||||
repo_id = create_repo(
|
||||
repo_id=args.repo_id, private=args.private, exist_ok=True
|
||||
).repo_id
|
||||
|
||||
if args.branch is not None:
|
||||
create_branch(repo_id=repo_id, branch=args.branch, exist_ok=True)
|
||||
|
||||
delete_patterns: set[str] = set()
|
||||
for build_variant in build_dir.iterdir():
|
||||
if build_variant.is_dir():
|
||||
delete_patterns.add(f"{build_variant.name}/**")
|
||||
|
||||
upload_folder(
|
||||
repo_id=repo_id,
|
||||
folder_path=build_dir,
|
||||
revision=args.branch,
|
||||
path_in_repo="build",
|
||||
delete_patterns=list(delete_patterns),
|
||||
commit_message="Build uploaded using `kernels`.",
|
||||
)
|
||||
print(f"✅ Kernel upload successful. Find the kernel in https://hf.co/{repo_id}.")
|
||||
|
||||
|
||||
class _JSONEncoder(json.JSONEncoder):
|
||||
def default(self, o):
|
||||
if dataclasses.is_dataclass(o):
|
||||
return dataclasses.asdict(o)
|
||||
return super().default(o)
|
||||
|
||||
|
||||
def check_kernel(
|
||||
*, macos: str, manylinux: str, python_abi: str, repo_id: str, revision: str
|
||||
):
|
||||
try:
|
||||
import kernels.check
|
||||
except ImportError:
|
||||
print(
|
||||
"`kernels check` requires the `kernel-abi-check` package: pip install kernel-abi-check",
|
||||
file=sys.stderr,
|
||||
)
|
||||
sys.exit(1)
|
||||
|
||||
kernels.check.check_kernel(
|
||||
macos=macos,
|
||||
manylinux=manylinux,
|
||||
python_abi=python_abi,
|
||||
repo_id=repo_id,
|
||||
revision=revision,
|
||||
)
|
||||
|
@ -87,7 +87,7 @@ class Device:
|
||||
|
||||
Args:
|
||||
type (`str`):
|
||||
The device type (e.g., "cuda", "mps", "cpu").
|
||||
The device type (e.g., "cuda", "mps", "npu", "rocm", "xpu").
|
||||
properties ([`CUDAProperties`], *optional*):
|
||||
Device-specific properties. Currently only [`CUDAProperties`] is supported for CUDA devices.
|
||||
|
||||
@ -106,6 +106,12 @@ class Device:
|
||||
|
||||
# MPS device for Apple Silicon
|
||||
mps_device = Device(type="mps")
|
||||
|
||||
# XPU device (e.g., Intel(R) Data Center GPU Max 1550)
|
||||
xpu_device = Device(type="xpu")
|
||||
|
||||
# NPU device (Huawei Ascend)
|
||||
npu_device = Device(type="npu")
|
||||
```
|
||||
"""
|
||||
|
||||
@ -125,6 +131,10 @@ class Device:
|
||||
return _ROCMRepos()
|
||||
elif self.type == "mps":
|
||||
return _MPSRepos()
|
||||
elif self.type == "xpu":
|
||||
return _XPURepos()
|
||||
elif self.type == "npu":
|
||||
return _NPURepos()
|
||||
else:
|
||||
raise ValueError(f"Unknown device type: {self.type}")
|
||||
|
||||
@ -311,7 +321,7 @@ class LayerRepository:
|
||||
return hash((self.layer_name, self._repo_id, self._revision, self._version))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}) for layer `{self.layer_name}`"
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}), layer `{self.layer_name}`"
|
||||
|
||||
|
||||
class LocalLayerRepository:
|
||||
@ -367,7 +377,7 @@ class LocalLayerRepository:
|
||||
return hash((self.layer_name, self._repo_path, self._package_name))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_path}` (package: {self._package_name}) for layer `{self.layer_name}`"
|
||||
return f"`{self._repo_path}` (package: {self._package_name}), layer `{self.layer_name}`"
|
||||
|
||||
|
||||
class LockedLayerRepository:
|
||||
@ -422,7 +432,7 @@ class LockedLayerRepository:
|
||||
return hash((self.layer_name, self._repo_id))
|
||||
|
||||
def __str__(self) -> str:
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}) for layer `{self.layer_name}`"
|
||||
return f"`{self._repo_id}` (revision: {self._resolve_revision()}), layer `{self.layer_name}`"
|
||||
|
||||
|
||||
_CACHED_LAYER: Dict[LayerRepositoryProtocol, Type["nn.Module"]] = {}
|
||||
@ -447,6 +457,46 @@ class _DeviceRepos(ABC):
|
||||
...
|
||||
|
||||
|
||||
class _XPURepos(_DeviceRepos):
|
||||
_repos: Dict[Mode, LayerRepositoryProtocol]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._repos = {}
|
||||
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
return self._repos
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
if device.type != "xpu":
|
||||
raise ValueError(f"Device type must be 'xpu', got {device.type}")
|
||||
|
||||
self._repos = repos
|
||||
|
||||
|
||||
class _NPURepos(_DeviceRepos):
|
||||
_repos: Dict[Mode, LayerRepositoryProtocol]
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self._repos = {}
|
||||
|
||||
@property
|
||||
def repos(
|
||||
self,
|
||||
) -> Optional[Dict[Mode, LayerRepositoryProtocol]]:
|
||||
return self._repos
|
||||
|
||||
def insert(self, device: Device, repos: Dict[Mode, LayerRepositoryProtocol]):
|
||||
if device.type != "npu":
|
||||
raise ValueError(f"Device type must be 'npu', got {device.type}")
|
||||
|
||||
self._repos = repos
|
||||
|
||||
|
||||
class _MPSRepos(_DeviceRepos):
|
||||
_repos: Dict[Mode, LayerRepositoryProtocol]
|
||||
|
||||
@ -531,7 +581,7 @@ class _ROCMRepos(_DeviceRepos):
|
||||
|
||||
def _validate_device_type(device_type: str) -> None:
|
||||
"""Validate that the device type is supported."""
|
||||
supported_devices = {"cuda", "rocm", "mps", "cpu"}
|
||||
supported_devices = {"cuda", "mps", "npu", "rocm", "xpu"}
|
||||
if device_type not in supported_devices:
|
||||
raise ValueError(
|
||||
f"Unsupported device type '{device_type}'. Supported device types are: {', '.join(sorted(supported_devices))}"
|
||||
@ -578,7 +628,7 @@ def use_kernel_mapping(
|
||||
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
from kernels import use_kernel_mapping, LayerRepository, Device
|
||||
from kernels import kernelize
|
||||
from kernels import Mode, kernelize
|
||||
|
||||
# Define a mapping
|
||||
mapping = {
|
||||
@ -601,7 +651,7 @@ def use_kernel_mapping(
|
||||
# Use the mapping for the duration of the context.
|
||||
with use_kernel_mapping(mapping):
|
||||
# kernelize uses the temporary mapping
|
||||
model = kernelize(model, device="cuda")
|
||||
model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE, device="cuda")
|
||||
|
||||
# Outside the context, original mappings are restored
|
||||
```
|
||||
@ -772,7 +822,7 @@ def _select_repository(
|
||||
def kernelize(
|
||||
model: "nn.Module",
|
||||
*,
|
||||
mode: Mode = Mode.TRAINING | Mode.TORCH_COMPILE,
|
||||
mode: Mode,
|
||||
device: Optional[Union[str, "torch.device"]] = None,
|
||||
use_fallback: bool = True,
|
||||
):
|
||||
@ -785,11 +835,11 @@ def kernelize(
|
||||
Args:
|
||||
model (`nn.Module`):
|
||||
The PyTorch model to kernelize.
|
||||
mode ([`Mode`], *optional*, defaults to `Mode.TRAINING | Mode.TORCH_COMPILE`):
|
||||
The mode that the kernel is going to be used in. For example, `Mode.TRAINING | Mode.TORCH_COMPILE`
|
||||
kernelizes the model for training with `torch.compile`.
|
||||
mode ([`Mode`]): The mode that the kernel is going to be used in. For example,
|
||||
`Mode.TRAINING | Mode.TORCH_COMPILE` kernelizes the model for training with
|
||||
`torch.compile`.
|
||||
device (`Union[str, torch.device]`, *optional*):
|
||||
The device type to load kernels for. Supported device types are: "cuda", "rocm", "mps", "cpu".
|
||||
The device type to load kernels for. Supported device types are: "cuda", "mps", "npu", "rocm", "xpu".
|
||||
The device type will be inferred from the model parameters when not provided.
|
||||
use_fallback (`bool`, *optional*, defaults to `True`):
|
||||
Whether to use the original forward method of modules when no compatible kernel could be found.
|
||||
@ -813,7 +863,7 @@ def kernelize(
|
||||
return F.silu(x[..., :d]) * x[..., d:]
|
||||
|
||||
mapping = {
|
||||
"LayerNorm": {
|
||||
"SiluAndMul": {
|
||||
"cuda": LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
@ -829,7 +879,7 @@ def kernelize(
|
||||
)
|
||||
|
||||
# Kernelize for inference
|
||||
kernelized_model = kernelize(model)
|
||||
kernelized_model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
```
|
||||
"""
|
||||
|
||||
@ -954,7 +1004,8 @@ def use_kernel_forward_from_hub(layer_name: str):
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from kernels import use_kernel_forward_from_hub, kernelize
|
||||
from kernels import use_kernel_forward_from_hub
|
||||
from kernels import Mode, kernelize
|
||||
|
||||
@use_kernel_forward_from_hub("MyCustomLayer")
|
||||
class MyCustomLayer(nn.Module):
|
||||
@ -969,7 +1020,7 @@ def use_kernel_forward_from_hub(layer_name: str):
|
||||
model = MyCustomLayer(768)
|
||||
|
||||
# The layer can now be kernelized:
|
||||
# model = kernelize(model, device="cuda")
|
||||
# model = kernelize(model, mode=Mode.TRAINING | Mode.TORCH_COMPILE, device="cuda")
|
||||
```
|
||||
"""
|
||||
|
||||
@ -994,7 +1045,7 @@ def _get_kernel_layer(repo: LayerRepositoryProtocol) -> Type["nn.Module"]:
|
||||
return layer
|
||||
|
||||
|
||||
def _validate_layer(*, check_cls, cls):
|
||||
def _validate_layer(*, check_cls, cls, repo: LayerRepositoryProtocol):
|
||||
import torch.nn as nn
|
||||
|
||||
# The layer must have at least have the following properties: (1) it
|
||||
@ -1003,12 +1054,12 @@ def _validate_layer(*, check_cls, cls):
|
||||
# methods.
|
||||
|
||||
if not issubclass(cls, nn.Module):
|
||||
raise TypeError(f"Layer `{cls}` is not a Torch layer.")
|
||||
raise TypeError(f"Layer `{cls.__name__}` is not a Torch layer.")
|
||||
|
||||
# We verify statelessness by checking that the does not have its own
|
||||
# constructor (since the constructor could add member variables)...
|
||||
if cls.__init__ is not nn.Module.__init__:
|
||||
raise TypeError("Layer must not override nn.Module constructor.")
|
||||
raise TypeError(f"{repo} must not override nn.Module constructor.")
|
||||
|
||||
# ... or predefined member variables.
|
||||
torch_module_members = {name for name, _ in inspect.getmembers(nn.Module)}
|
||||
@ -1016,7 +1067,9 @@ def _validate_layer(*, check_cls, cls):
|
||||
difference = cls_members - torch_module_members
|
||||
# verify if : difference ⊄ {"can_torch_compile", "has_backward"}
|
||||
if not difference <= {"can_torch_compile", "has_backward"}:
|
||||
raise TypeError("Layer must not contain additional members.")
|
||||
raise TypeError(
|
||||
f"{repo} must not contain additional members compared to `{check_cls.__name__}`."
|
||||
)
|
||||
|
||||
# Check whether the forward signatures are similar.
|
||||
params = inspect.signature(cls.forward).parameters
|
||||
@ -1024,13 +1077,13 @@ def _validate_layer(*, check_cls, cls):
|
||||
|
||||
if len(params) != len(ref_params):
|
||||
raise TypeError(
|
||||
"Forward signature does not match: different number of arguments."
|
||||
f"Forward signature of {repo} does not match `{check_cls.__name__}`: different number of arguments."
|
||||
)
|
||||
|
||||
for param, ref_param in zip(params.values(), ref_params.values()):
|
||||
if param.kind != ref_param.kind:
|
||||
raise TypeError(
|
||||
f"Forward signature does not match: different kind of arguments ({param} ({param.kind}) and {ref_param} ({ref_param.kind})"
|
||||
f"Forward signature of {repo} does not match `{check_cls.__name__}`: different kind of arguments ({param} ({param.kind}) and {ref_param} ({ref_param.kind})"
|
||||
)
|
||||
|
||||
|
||||
@ -1147,7 +1200,7 @@ def _get_layer_memoize(
|
||||
return layer
|
||||
|
||||
layer = _get_kernel_layer(repo)
|
||||
_validate_layer(check_cls=module_class, cls=layer)
|
||||
_validate_layer(check_cls=module_class, cls=layer, repo=repo)
|
||||
_CACHED_LAYER[repo] = layer
|
||||
|
||||
return layer
|
||||
|
@ -11,7 +11,7 @@ import sys
|
||||
from importlib.metadata import Distribution
|
||||
from pathlib import Path
|
||||
from types import ModuleType
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
from typing import Dict, List, Optional, Tuple, Union
|
||||
|
||||
from huggingface_hub import file_exists, snapshot_download
|
||||
from packaging.version import parse
|
||||
@ -19,6 +19,8 @@ from packaging.version import parse
|
||||
from kernels._versions import select_revision_or_version
|
||||
from kernels.lockfile import KernelLock, VariantLock
|
||||
|
||||
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
|
||||
|
||||
|
||||
def _get_cache_dir() -> Optional[str]:
|
||||
"""Returns the kernels cache directory."""
|
||||
@ -35,6 +37,14 @@ def _get_cache_dir() -> Optional[str]:
|
||||
CACHE_DIR: Optional[str] = _get_cache_dir()
|
||||
|
||||
|
||||
def _get_privateuse_backend_name() -> Optional[str]:
|
||||
import torch
|
||||
|
||||
if hasattr(torch._C, "_get_privateuse1_backend_name"):
|
||||
return torch._C._get_privateuse1_backend_name()
|
||||
return None
|
||||
|
||||
|
||||
def build_variant() -> str:
|
||||
import torch
|
||||
|
||||
@ -46,11 +56,17 @@ def build_variant() -> str:
|
||||
compute_framework = f"rocm{rocm_version.major}{rocm_version.minor}"
|
||||
elif torch.backends.mps.is_available():
|
||||
compute_framework = "metal"
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
compute_framework = "xpu"
|
||||
elif hasattr(torch.version, "xpu") and torch.version.xpu is not None:
|
||||
version = torch.version.xpu
|
||||
compute_framework = f"xpu{version[0:4]}{version[5:6]}"
|
||||
elif _get_privateuse_backend_name() == "npu":
|
||||
from torch_npu.utils.collect_env import get_cann_version # type: ignore[import-not-found]
|
||||
|
||||
cann_major, cann_minor = get_cann_version()[0], get_cann_version()[2]
|
||||
compute_framework = f"cann{cann_major}{cann_minor}"
|
||||
else:
|
||||
raise AssertionError(
|
||||
"Torch was not compiled with CUDA, Metal, XPU, or ROCm enabled."
|
||||
"Torch was not compiled with CUDA, Metal, XPU, NPU, or ROCm enabled."
|
||||
)
|
||||
|
||||
torch_version = parse(torch.__version__)
|
||||
@ -94,6 +110,7 @@ def install_kernel(
|
||||
revision: str,
|
||||
local_files_only: bool = False,
|
||||
variant_locks: Optional[Dict[str, VariantLock]] = None,
|
||||
user_agent: Optional[Union[str, dict]] = None,
|
||||
) -> Tuple[str, Path]:
|
||||
"""
|
||||
Download a kernel for the current environment to the cache.
|
||||
@ -109,6 +126,8 @@ def install_kernel(
|
||||
Whether to only use local files and not download from the Hub.
|
||||
variant_locks (`Dict[str, VariantLock]`, *optional*):
|
||||
Optional dictionary of variant locks for validation.
|
||||
user_agent (`Union[str, dict]`, *optional*):
|
||||
The `user_agent` info to pass to `snapshot_download()` for internal telemetry.
|
||||
|
||||
Returns:
|
||||
`Tuple[str, Path]`: A tuple containing the package name and the path to the variant directory.
|
||||
@ -116,6 +135,7 @@ def install_kernel(
|
||||
package_name = package_name_from_repo_id(repo_id)
|
||||
variant = build_variant()
|
||||
universal_variant = universal_build_variant()
|
||||
user_agent = _get_user_agent(user_agent=user_agent)
|
||||
repo_path = Path(
|
||||
snapshot_download(
|
||||
repo_id,
|
||||
@ -123,6 +143,7 @@ def install_kernel(
|
||||
cache_dir=CACHE_DIR,
|
||||
revision=revision,
|
||||
local_files_only=local_files_only,
|
||||
user_agent=user_agent,
|
||||
)
|
||||
)
|
||||
|
||||
@ -199,7 +220,10 @@ def install_kernel_all_variants(
|
||||
|
||||
|
||||
def get_kernel(
|
||||
repo_id: str, revision: Optional[str] = None, version: Optional[str] = None
|
||||
repo_id: str,
|
||||
revision: Optional[str] = None,
|
||||
version: Optional[str] = None,
|
||||
user_agent: Optional[Union[str, dict]] = None,
|
||||
) -> ModuleType:
|
||||
"""
|
||||
Load a kernel from the kernel hub.
|
||||
@ -215,6 +239,8 @@ def get_kernel(
|
||||
version (`str`, *optional*):
|
||||
The kernel version to download. This can be a Python version specifier, such as `">=1.0.0,<2.0.0"`.
|
||||
Cannot be used together with `revision`.
|
||||
user_agent (`Union[str, dict]`, *optional*):
|
||||
The `user_agent` info to pass to `snapshot_download()` for internal telemetry.
|
||||
|
||||
Returns:
|
||||
`ModuleType`: The imported kernel module.
|
||||
@ -231,7 +257,9 @@ def get_kernel(
|
||||
```
|
||||
"""
|
||||
revision = select_revision_or_version(repo_id, revision, version)
|
||||
package_name, package_path = install_kernel(repo_id, revision=revision)
|
||||
package_name, package_path = install_kernel(
|
||||
repo_id, revision=revision, user_agent=user_agent
|
||||
)
|
||||
return import_from_path(package_name, package_path / package_name / "__init__.py")
|
||||
|
||||
|
||||
@ -487,3 +515,24 @@ def git_hash_object(data: bytes, object_type: str = "blob"):
|
||||
|
||||
def package_name_from_repo_id(repo_id: str) -> str:
|
||||
return repo_id.split("/")[-1].replace("-", "_")
|
||||
|
||||
|
||||
def _get_user_agent(
|
||||
user_agent: Optional[Union[dict, str]] = None,
|
||||
) -> Union[None, dict, str]:
|
||||
import torch
|
||||
|
||||
from . import __version__
|
||||
|
||||
if os.getenv("DISABLE_TELEMETRY", "false").upper() in ENV_VARS_TRUE_VALUES:
|
||||
return None
|
||||
|
||||
if user_agent is None:
|
||||
user_agent = {
|
||||
"kernels": __version__,
|
||||
"torch": torch.__version__,
|
||||
"build_variant": build_variant(),
|
||||
"file_type": "kernel",
|
||||
}
|
||||
|
||||
return user_agent
|
||||
|
@ -3,6 +3,8 @@ import sys
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from kernels.utils import _get_privateuse_backend_name
|
||||
|
||||
has_cuda = (
|
||||
hasattr(torch.version, "cuda")
|
||||
and torch.version.cuda is not None
|
||||
@ -13,6 +15,20 @@ has_rocm = (
|
||||
and torch.version.hip is not None
|
||||
and torch.cuda.device_count() > 0
|
||||
)
|
||||
has_xpu = (
|
||||
hasattr(torch.version, "xpu")
|
||||
and torch.version.xpu is not None
|
||||
and torch.xpu.device_count() > 0
|
||||
)
|
||||
has_npu = _get_privateuse_backend_name() == "npu"
|
||||
|
||||
|
||||
def pytest_addoption(parser):
|
||||
parser.addoption(
|
||||
"--token",
|
||||
action="store_true",
|
||||
help="run tests that require a token with write permissions",
|
||||
)
|
||||
|
||||
|
||||
def pytest_runtest_setup(item):
|
||||
@ -22,3 +38,9 @@ def pytest_runtest_setup(item):
|
||||
pytest.skip("skipping ROCm-only test on host without ROCm")
|
||||
if "darwin_only" in item.keywords and not sys.platform.startswith("darwin"):
|
||||
pytest.skip("skipping macOS-only test on non-macOS platform")
|
||||
if "xpu_only" in item.keywords and not has_xpu:
|
||||
pytest.skip("skipping XPU-only test on host without XPU")
|
||||
if "npu_only" in item.keywords and not has_npu:
|
||||
pytest.skip("skipping NPU-only test on host without NPU")
|
||||
if "token" in item.keywords and not item.config.getoption("--token"):
|
||||
pytest.skip("need --token option to run this test")
|
||||
|
@ -1,82 +1,70 @@
|
||||
[
|
||||
{
|
||||
"repo_id": "kernels-community/activation",
|
||||
"sha": "fd6842e88f1f23f198551d78a4541b8eb07e0538",
|
||||
"sha": "83046852be158d525114f68513cd79fd88911b37",
|
||||
"variants": {
|
||||
"torch25-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-61e3e51b5b59b30d4a6ba943a5e6e4ef5a9c8260cc4bca40b9fb462c0777842b",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx11-cu121-x86_64-linux": {
|
||||
"hash": "sha256-baa6b872040730bd1d676c011381f6f626fb96189837b828f587c806af8994fa",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx11-cu124-x86_64-linux": {
|
||||
"hash": "sha256-c1ec7457847fa1f0e4ab43234dfc3cd0959977e03dc2ffe89b4f6b90970c7965",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu118-x86_64-linux": {
|
||||
"hash": "sha256-412f9c841f20741e42f2c6cdb8c7da0e33ab436b219975acffe18b62b97ecd7c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu121-x86_64-linux": {
|
||||
"hash": "sha256-2fde7f97859506e000c1072b3916c0a75bc8cee750a9853ea8b68199e7b57bcd",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch25-cxx98-cu124-x86_64-linux": {
|
||||
"hash": "sha256-93309986f39a64a5630378108154866f0545178fa8dfef9b8f8ccfef9a78608e",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-3284d3c64b76d92c1ee930bce8013aff307f16eefb16c2d5dea9f2ca70e71e1f",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu124-x86_64-linux": {
|
||||
"hash": "sha256-36a8c93773c08ddf8ef624a8a6b2866be26d1861450dfe1ecac0bed59f9ffa47",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-f5afb734520f587717665659798ff738a69e5ae1e34d4bd95624edd18fb165cd",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-940841a7cb44f76c9a896d8b39f5bc0e0420f1c4c05ae9423da96778de4d1f2c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu118-x86_64-linux": {
|
||||
"hash": "sha256-8e0f907830c3acc8c6bebfc162c744012ff6973e8110d7bf8ecd74b492418204",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu124-x86_64-linux": {
|
||||
"hash": "sha256-0833414cbe658baec55b7ff63537cddccc973fe99e3c03008cced5e66e38b6c1",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu126-aarch64-linux": {
|
||||
"hash": "sha256-d94fa59a13a5b623b2071aadcd1e6c8477c4d557fd06ad144f15b46b1fc71aab",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch26-cxx98-cu126-x86_64-linux": {
|
||||
"hash": "sha256-64784f5f2f9e232d0f2fd824fbc47eadde505e3c232f351bead5b04c429c65c2",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu118-x86_64-linux": {
|
||||
"hash": "sha256-bcba3765f061649bac0e5a9159bea8349ced4780e24a2330aa62ce0f8d3a9d78",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-e4625df5706af025c70bd824d952b928d9a2965eeaefda72fc47be0fae680c5e",
|
||||
"hash": "sha256-e34965c814c4c092fcb634ebadefe82ea9a05b98343f8ebdefa7305dcc05359e",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-7d7d3e655f34a7b03d5603d7c1ab723ef3efc823291762421a8b3a4aa51bd405",
|
||||
"hash": "sha256-5f92b35922b37224a416398a39a29b7e5f1aca1df17d5c69f1b9e9cdb7033561",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu128-aarch64-linux": {
|
||||
"hash": "sha256-60e076194dcd55b32c5aca72f09816cba0fff52f340c8a063b17ff0577154d99",
|
||||
"hash": "sha256-125967cb23bacd2cec443799f184ac08247dfff33f5027e54ee16d3779ca5986",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch27-cxx11-cu128-x86_64-linux": {
|
||||
"hash": "sha256-f0a3802382efdcd78b40601187a9c416579a24ef2ed5a60d2296ef0951a89597",
|
||||
"hash": "sha256-496a84c99d7035a1b6f0ea1c026b751c3a2677956f4c1be546d3cc1505a5fdbb",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-f0775a30ffa290c90aba3a41037e3ca91edb15b4a9367561fafd5f25455e117a",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-081995e6230f306bdf6111186618794f2411cf0ffd9b4800330df60b4ebe1927",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu128-aarch64-linux": {
|
||||
"hash": "sha256-b937fef62a0c1cd71ab98490b651c473577af209b9a3e2a6b452350283d8812c",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu128-x86_64-linux": {
|
||||
"hash": "sha256-a3915686cc58641a3361ece63ab77b33e9d30315dea12547e4bda008d8810a01",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu129-aarch64-linux": {
|
||||
"hash": "sha256-a24dca8e998f88be42491921c9df89d88a6112ca630acd2efc2dd34a64b91fcb",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch28-cxx11-cu129-x86_64-linux": {
|
||||
"hash": "sha256-df6c70a70f425db2f68b86561c6f93c5675c1d5e5d058766d88ab17472229907",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu126-aarch64-linux": {
|
||||
"hash": "sha256-c120011c201072b4cfd70c2ba2d45c2f05337feaf604ddec3c6c4987def33ab3",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu126-x86_64-linux": {
|
||||
"hash": "sha256-765a7f3279009979be4001a23c5c70e5e6ab9553098d67886731a5275a6d4b32",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu128-aarch64-linux": {
|
||||
"hash": "sha256-266d057a9cd82b872a0e02f09ac5e2660fcffcf9a7b7fa1fa8ff33dc19c0f5c2",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu128-x86_64-linux": {
|
||||
"hash": "sha256-6850e594ba4588f289b5904eb88eda5a41870ee20a3bf1586f3268307caf4b53",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu130-aarch64-linux": {
|
||||
"hash": "sha256-23741b935462b53bdf868f8d1c9c8cff5f02f71ea3b0550df41dc8b030b0b474",
|
||||
"hash_type": "git_lfs_concat"
|
||||
},
|
||||
"torch29-cxx11-cu130-x86_64-linux": {
|
||||
"hash": "sha256-b884ae792dc1eada071f31645add0c2c76d479864f25aebcdd8318b675aaaf29",
|
||||
"hash_type": "git_lfs_concat"
|
||||
}
|
||||
}
|
||||
|
@ -10,10 +10,16 @@ def kernel():
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def local_kernel():
|
||||
def local_kernel_path():
|
||||
package_name, path = install_kernel("kernels-community/activation", "main")
|
||||
# Path is the build variant path (build/torch-<...>), so the grandparent
|
||||
# is the kernel repository path.
|
||||
return package_name, path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def local_kernel(local_kernel_path):
|
||||
package_name, path = local_kernel_path
|
||||
return get_local_kernel(path.parent.parent, package_name)
|
||||
|
||||
|
||||
@ -66,6 +72,39 @@ def test_local_kernel(local_kernel, device):
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
def test_local_kernel_path_types(local_kernel_path, device):
|
||||
package_name, path = local_kernel_path
|
||||
|
||||
# Top-level repo path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071
|
||||
kernel = get_local_kernel(path.parent.parent, package_name)
|
||||
x = torch.arange(1, 10, dtype=torch.float16, device=device).view(3, 3)
|
||||
y = torch.empty_like(x)
|
||||
|
||||
kernel.gelu_fast(y, x)
|
||||
expected = torch.tensor(
|
||||
[[0.8408, 1.9551, 2.9961], [4.0000, 5.0000, 6.0000], [7.0000, 8.0000, 9.0000]],
|
||||
device=device,
|
||||
dtype=torch.float16,
|
||||
)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
# Build directory path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071/build
|
||||
kernel = get_local_kernel(path.parent.parent / "build", package_name)
|
||||
y = torch.empty_like(x)
|
||||
kernel.gelu_fast(y, x)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
# Explicit package path
|
||||
# ie: /home/ubuntu/.cache/huggingface/hub/models--kernels-community--activation/snapshots/2fafa6a3a38ccb57a1a98419047cf7816ecbc071/build/torch28-cxx11-cu128-x86_64-linux
|
||||
kernel = get_local_kernel(path, package_name)
|
||||
y = torch.empty_like(x)
|
||||
kernel.gelu_fast(y, x)
|
||||
assert torch.allclose(y, expected)
|
||||
|
||||
|
||||
@pytest.mark.darwin_only
|
||||
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
|
||||
def test_relu_metal(metal_kernel, dtype):
|
||||
|
@ -35,6 +35,7 @@ def test_load_locked():
|
||||
load_kernel("kernels-community/activation", lockfile=project_dir / "kernels.lock")
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
def test_layer_locked():
|
||||
project_dir = Path(__file__).parent / "layer_locking"
|
||||
|
||||
|
122
tests/test_kernel_upload.py
Normal file
122
tests/test_kernel_upload.py
Normal file
@ -0,0 +1,122 @@
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import pytest
|
||||
from huggingface_hub import delete_repo, model_info, list_repo_refs
|
||||
|
||||
from kernels.cli import upload_kernels
|
||||
|
||||
REPO_ID = "valid_org/kernels-upload-test"
|
||||
|
||||
|
||||
PY_CONTENT = """\
|
||||
#!/usr/bin/env python3
|
||||
|
||||
def main():
|
||||
print("Hello from torch-universal!")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class UploadArgs:
|
||||
kernel_dir: None
|
||||
repo_id: None
|
||||
private: False
|
||||
branch: None
|
||||
|
||||
|
||||
def next_filename(path: Path) -> Path:
|
||||
"""
|
||||
Given a path like foo_2050.py, return foo_2051.py.
|
||||
"""
|
||||
m = re.match(r"^(.*?)(\d+)(\.py)$", path.name)
|
||||
if not m:
|
||||
raise ValueError(
|
||||
f"Filename {path.name!r} does not match pattern <prefix>_<number>.py"
|
||||
)
|
||||
|
||||
prefix, number, suffix = m.groups()
|
||||
new_number = str(int(number) + 1).zfill(len(number))
|
||||
return path.with_name(f"{prefix}{new_number}{suffix}")
|
||||
|
||||
|
||||
def get_filename_to_change(repo_filenames):
|
||||
for f in repo_filenames:
|
||||
if "foo" in f and f.endswith(".py"):
|
||||
filename_to_change = os.path.basename(f)
|
||||
break
|
||||
assert filename_to_change
|
||||
return filename_to_change
|
||||
|
||||
|
||||
def get_filenames_from_a_repo(repo_id: str) -> List[str]:
|
||||
try:
|
||||
repo_info = model_info(repo_id=repo_id, files_metadata=True)
|
||||
repo_siblings = repo_info.siblings
|
||||
if repo_siblings is not None:
|
||||
return [f.rfilename for f in repo_siblings]
|
||||
else:
|
||||
raise ValueError("No repo siblings found.")
|
||||
except Exception as e:
|
||||
logging.error(f"Error connecting to the Hub: {e}.")
|
||||
|
||||
|
||||
@pytest.mark.token
|
||||
@pytest.mark.is_staging_test
|
||||
@pytest.mark.parametrize("branch", (None, "foo"))
|
||||
def test_kernel_upload_works_as_expected(branch):
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = f"{tmpdir}/build/torch-universal/upload_test"
|
||||
build_dir = Path(path)
|
||||
build_dir.mkdir(parents=True, exist_ok=True)
|
||||
script_path = build_dir / "foo.py"
|
||||
script_path.write_text(PY_CONTENT)
|
||||
upload_kernels(UploadArgs(tmpdir, REPO_ID, False, branch))
|
||||
|
||||
repo_filenames = get_filenames_from_a_repo(REPO_ID)
|
||||
assert any(str(script_path.name) for f in repo_filenames)
|
||||
|
||||
if branch is not None:
|
||||
refs = list_repo_refs(repo_id=REPO_ID)
|
||||
assert any(ref_branch.name == branch for ref_branch in refs.branches)
|
||||
|
||||
delete_repo(repo_id=REPO_ID)
|
||||
|
||||
|
||||
@pytest.mark.token
|
||||
@pytest.mark.is_staging_test
|
||||
def test_kernel_upload_deletes_as_expected():
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = f"{tmpdir}/build/torch-universal/upload_test"
|
||||
build_dir = Path(path)
|
||||
build_dir.mkdir(parents=True, exist_ok=True)
|
||||
script_path = build_dir / "foo_2025.py"
|
||||
script_path.write_text(PY_CONTENT)
|
||||
upload_kernels(UploadArgs(tmpdir, REPO_ID, False, None))
|
||||
|
||||
repo_filenames = get_filenames_from_a_repo(REPO_ID)
|
||||
filename_to_change = get_filename_to_change(repo_filenames)
|
||||
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
path = f"{tmpdir}/build/torch-universal/upload_test"
|
||||
build_dir = Path(path)
|
||||
build_dir.mkdir(parents=True, exist_ok=True)
|
||||
changed_filename = next_filename(Path(filename_to_change))
|
||||
script_path = build_dir / changed_filename
|
||||
script_path.write_text(PY_CONTENT)
|
||||
upload_kernels(UploadArgs(tmpdir, REPO_ID, False, None))
|
||||
|
||||
repo_filenames = get_filenames_from_a_repo(REPO_ID)
|
||||
assert any(str(changed_filename) in k for k in repo_filenames), f"{repo_filenames=}"
|
||||
assert not any(
|
||||
str(filename_to_change) in k for k in repo_filenames
|
||||
), f"{repo_filenames=}"
|
||||
delete_repo(repo_id=REPO_ID)
|
@ -21,14 +21,21 @@ from kernels.layer import (
|
||||
_KERNEL_MAPPING,
|
||||
_validate_layer,
|
||||
)
|
||||
from kernels.utils import install_kernel
|
||||
from kernels.utils import (
|
||||
_get_privateuse_backend_name,
|
||||
install_kernel,
|
||||
)
|
||||
|
||||
kernel_layer_mapping = {
|
||||
"SiluAndMul": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
repo_id="kernels-community/activation",
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
),
|
||||
"npu": LayerRepository(
|
||||
repo_id="kernels-ext-npu/SwiGlu",
|
||||
layer_name="SwiGlu",
|
||||
),
|
||||
},
|
||||
"SiluAndMulNoCompile": {
|
||||
"cuda": LayerRepository(
|
||||
@ -46,11 +53,37 @@ kernel_layer_mapping = {
|
||||
layer_name="SiluAndMul",
|
||||
)
|
||||
},
|
||||
"LigerRMSNorm": {
|
||||
"xpu": LayerRepository(
|
||||
repo_id="kernels-community/liger_kernels",
|
||||
layer_name="LigerRMSNorm", # Triton
|
||||
)
|
||||
},
|
||||
}
|
||||
|
||||
register_kernel_mapping(kernel_layer_mapping)
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, weight: torch.Tensor, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
# Used to check that we called hub kernel.
|
||||
self.n_calls = 0
|
||||
self.weight = nn.Parameter(weight)
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
self.n_calls += 1
|
||||
var = x.pow(2).mean(-1, keepdim=True)
|
||||
x_norm = x * torch.rsqrt(var + self.variance_epsilon)
|
||||
return x_norm * self.weight
|
||||
|
||||
|
||||
@use_kernel_forward_from_hub("LigerRMSNorm")
|
||||
class RMSNormWithKernel(RMSNorm):
|
||||
pass
|
||||
|
||||
|
||||
class SiluAndMul(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
@ -90,6 +123,18 @@ class TorchLinearWithCounter(nn.Linear):
|
||||
return super().forward(input)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def device():
|
||||
if torch.cuda.is_available():
|
||||
return "cuda"
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
return "xpu"
|
||||
elif _get_privateuse_backend_name() == "npu":
|
||||
return "npu"
|
||||
|
||||
pytest.skip("No CUDA, NPU or XPU")
|
||||
|
||||
|
||||
def test_arg_kinds():
|
||||
@use_kernel_forward_from_hub("ArgKind")
|
||||
class ArgKind(nn.Module):
|
||||
@ -110,24 +155,20 @@ def test_arg_kinds():
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@pytest.mark.parametrize("cls", [SiluAndMulWithKernel, SiluAndMulStringDevice])
|
||||
@pytest.mark.parametrize("device", ["cuda", "cpu"])
|
||||
def test_hub_forward(cls, device):
|
||||
def test_hub_forward(cls):
|
||||
torch.random.manual_seed(0)
|
||||
|
||||
silu_and_mul = SiluAndMul()
|
||||
X = torch.randn((32, 64), device=device)
|
||||
X = torch.randn((32, 64), device="cuda")
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = kernelize(cls(), device=device, mode=Mode.INFERENCE)
|
||||
silu_and_mul_with_kernel = kernelize(cls(), device="cuda", mode=Mode.INFERENCE)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert silu_and_mul.n_calls == 1
|
||||
if device == "cuda":
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
else:
|
||||
assert silu_and_mul_with_kernel.n_calls == 1
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.rocm_only
|
||||
@ -151,6 +192,54 @@ def test_hub_forward_rocm():
|
||||
assert silu_and_mul_with_kernel.n_calls in [0, 1]
|
||||
|
||||
|
||||
@pytest.mark.xpu_only
|
||||
def test_hub_forward_xpu():
|
||||
torch.manual_seed(0)
|
||||
|
||||
hidden_size = 1024
|
||||
weight = torch.ones(hidden_size, device="xpu")
|
||||
rms_norm = RMSNorm(weight).to("xpu")
|
||||
X = torch.randn(4, 16, hidden_size, device="xpu", dtype=torch.float32)
|
||||
Y = rms_norm(X)
|
||||
|
||||
rms_norm_with_kernel = kernelize(
|
||||
RMSNormWithKernel(weight), mode=Mode.INFERENCE, device="xpu"
|
||||
)
|
||||
Y_kernel = rms_norm_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert rms_norm.n_calls == 1
|
||||
assert rms_norm_with_kernel.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.npu_only
|
||||
def test_hub_forward_npu():
|
||||
torch.manual_seed(0)
|
||||
|
||||
silu_and_mul = SiluAndMul()
|
||||
X = torch.randn((32, 64), device="npu")
|
||||
Y = silu_and_mul(X)
|
||||
|
||||
silu_and_mul_with_kernel = kernelize(
|
||||
SiluAndMulWithKernel(), device="npu", mode=Mode.INFERENCE
|
||||
)
|
||||
Y_kernel = silu_and_mul_with_kernel(X)
|
||||
|
||||
torch.testing.assert_close(Y_kernel, Y)
|
||||
|
||||
assert silu_and_mul.n_calls == 1
|
||||
assert silu_and_mul_with_kernel.n_calls == 0
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
hasattr(torch, "xpu") and getattr(torch.xpu, "is_available", lambda: False)(),
|
||||
reason="Skip on xpu devices",
|
||||
)
|
||||
@pytest.mark.skipif(
|
||||
_get_privateuse_backend_name() == "npu",
|
||||
reason="Skip on npu devices",
|
||||
)
|
||||
def test_rocm_kernel_mapping():
|
||||
"""Test that ROCm shorthand device mapping works correctly."""
|
||||
kernel_layer_mapping = {
|
||||
@ -238,16 +327,16 @@ def test_layer_fallback_works():
|
||||
kernelize(silu_and_mul, device="cuda", mode=Mode.INFERENCE)
|
||||
|
||||
|
||||
def test_local_layer_repo():
|
||||
def test_local_layer_repo(device):
|
||||
# Fetch a kernel to the local cache.
|
||||
package_name, path = install_kernel("kernels-test/backward-marker-test", "main")
|
||||
|
||||
linear = TorchLinearWithCounter(32, 32).to("cuda")
|
||||
linear = TorchLinearWithCounter(32, 32).to(device)
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Linear": {
|
||||
"cuda": LocalLayerRepository(
|
||||
device: LocalLayerRepository(
|
||||
# install_kernel will give the fully-resolved path.
|
||||
repo_path=path.parent.parent,
|
||||
package_name=package_name,
|
||||
@ -259,7 +348,7 @@ def test_local_layer_repo():
|
||||
):
|
||||
kernelize(linear, mode=Mode.INFERENCE)
|
||||
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
X = torch.randn(10, 32, device=device)
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
@ -327,6 +416,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
}
|
||||
|
||||
extra_mapping1 = {
|
||||
@ -344,6 +434,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
|
||||
@ -362,6 +453,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
@ -375,6 +467,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
@ -397,6 +490,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
"TestKernel",
|
||||
}
|
||||
assert (
|
||||
@ -408,6 +502,7 @@ def test_mapping_contexts():
|
||||
"SiluAndMul",
|
||||
"SiluAndMulStringDevice",
|
||||
"SiluAndMulNoCompile",
|
||||
"LigerRMSNorm",
|
||||
}
|
||||
|
||||
|
||||
@ -417,26 +512,43 @@ def test_validate_kernel_layer():
|
||||
super().__init__(*args, **kwargs)
|
||||
self.foo = 42
|
||||
|
||||
with pytest.raises(TypeError, match="not override"):
|
||||
_validate_layer(cls=BadLayer, check_cls=SiluAndMul)
|
||||
def stub_repo(layer):
|
||||
return LayerRepository(
|
||||
repo_id="kernels-test/nonexisting", layer_name=layer.__name__
|
||||
)
|
||||
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="`kernels-test/nonexisting`.*layer `BadLayer` must not override",
|
||||
):
|
||||
_validate_layer(cls=BadLayer, check_cls=SiluAndMul, repo=stub_repo(BadLayer))
|
||||
|
||||
class BadLayer2(nn.Module):
|
||||
foo: int = 42
|
||||
|
||||
with pytest.raises(TypeError, match="not contain additional members"):
|
||||
_validate_layer(cls=BadLayer2, check_cls=SiluAndMul)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="`kernels-test/nonexisting`.*layer `BadLayer2` must not contain.*SiluAndMul",
|
||||
):
|
||||
_validate_layer(cls=BadLayer2, check_cls=SiluAndMul, repo=stub_repo(BadLayer2))
|
||||
|
||||
class BadLayer3(nn.Module):
|
||||
def forward(self, x: torch.Tensor, foo: int) -> torch.Tensor: ...
|
||||
|
||||
with pytest.raises(TypeError, match="different number of arguments"):
|
||||
_validate_layer(cls=BadLayer3, check_cls=SiluAndMul)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="Forward.*`kernels-test/nonexisting`.*layer `BadLayer3` does not match `SiluAndMul`: different number of arguments",
|
||||
):
|
||||
_validate_layer(cls=BadLayer3, check_cls=SiluAndMul, repo=stub_repo(BadLayer3))
|
||||
|
||||
class BadLayer4(nn.Module):
|
||||
def forward(self, *, x: torch.Tensor) -> torch.Tensor: ...
|
||||
|
||||
with pytest.raises(TypeError, match="different kind of arguments"):
|
||||
_validate_layer(cls=BadLayer4, check_cls=SiluAndMul)
|
||||
with pytest.raises(
|
||||
TypeError,
|
||||
match="Forward.*`kernels-test/nonexisting`.*layer `BadLayer4` does not match `SiluAndMul`: different kind of arguments",
|
||||
):
|
||||
_validate_layer(cls=BadLayer4, check_cls=SiluAndMul, repo=stub_repo(BadLayer4))
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@ -488,11 +600,6 @@ def test_kernel_modes():
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
assert linear.n_calls == 0
|
||||
|
||||
# Case 2: register a kernel just for training. If no base kernel
|
||||
# layer is registered, we fall back to the original layer.
|
||||
with use_kernel_mapping(
|
||||
@ -522,12 +629,6 @@ def test_kernel_modes():
|
||||
# TRAINING | TORCH_COMPILE cannot fall back to TRAINING kernel, so uses original.
|
||||
assert linear.n_calls == 1
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE cannot fall back to TRAINING kernel, so uses original.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Case 3: register a kernel just for training and one for fallback.
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
@ -549,23 +650,17 @@ def test_kernel_modes():
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# Falls back to TRAINING.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# Falls back to the TRAINING kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE falls back to FALLBACK kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# TRAINING | TORCH_COMPILE falls back to FALLBACK kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
# Case 4: register a kernel with two preferences.
|
||||
with use_kernel_mapping(
|
||||
@ -585,22 +680,17 @@ def test_kernel_modes():
|
||||
X = torch.randn(10, 32, device="cuda")
|
||||
linear(X)
|
||||
# Falls back to the TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING)
|
||||
linear(X)
|
||||
# TRAINING can fall back to TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
kernelize(linear, mode=Mode.TRAINING | Mode.TORCH_COMPILE)
|
||||
linear(X)
|
||||
# Uses TRAINING | TORCH_COMPILE kernel.
|
||||
assert linear.n_calls == 2
|
||||
|
||||
kernelize(linear)
|
||||
linear(X)
|
||||
# Same as previous, since TRAINING | TORCH_COMPILE is the default.
|
||||
assert linear.n_calls == 2
|
||||
assert linear.n_calls == 1
|
||||
|
||||
|
||||
@pytest.mark.cuda_only
|
||||
@ -949,7 +1039,7 @@ def test_kernel_modes_cross_fallback():
|
||||
assert linear.n_calls == 2
|
||||
|
||||
|
||||
def test_layer_versions():
|
||||
def test_layer_versions(device):
|
||||
@use_kernel_forward_from_hub("Version")
|
||||
class Version(nn.Module):
|
||||
def forward(self) -> str:
|
||||
@ -960,20 +1050,20 @@ def test_layer_versions():
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
)
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.2.0"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version="<1.0.0",
|
||||
@ -981,13 +1071,13 @@ def test_layer_versions():
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.2.0"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version="<0.2.0",
|
||||
@ -995,13 +1085,13 @@ def test_layer_versions():
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.1.1"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version=">0.1.0,<0.2.0",
|
||||
@ -1009,13 +1099,13 @@ def test_layer_versions():
|
||||
}
|
||||
}
|
||||
):
|
||||
version = kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
version = kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
assert version() == "0.1.1"
|
||||
|
||||
with use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
version=">0.2.0",
|
||||
@ -1024,13 +1114,13 @@ def test_layer_versions():
|
||||
}
|
||||
):
|
||||
with pytest.raises(ValueError, match=r"No version.*satisfies requirement"):
|
||||
kernelize(version, device="cuda", mode=Mode.INFERENCE)
|
||||
kernelize(version, device=device, mode=Mode.INFERENCE)
|
||||
|
||||
with pytest.raises(ValueError, match=r"Either a revision or a version.*not both"):
|
||||
use_kernel_mapping(
|
||||
{
|
||||
"Version": {
|
||||
Device(type="cuda"): LayerRepository(
|
||||
Device(type=device): LayerRepository(
|
||||
repo_id="kernels-test/versions",
|
||||
layer_name="Version",
|
||||
revision="v0.1.0",
|
||||
|
Reference in New Issue
Block a user