Files
biopython/Bio/Graphics/GenomeDiagram/_LinearDrawer.py
ruff-isort de0bb21fb3 Apply isort (forcing single lines, not sorting by type) via ruff
$ ruff check --fix --select=I \
  --config=lint.isort.force-single-line=true \
  --config=lint.isort.order-by-type=false \
  BioSQL/ Bio/ Tests/ Scripts/ Doc/ setup.py

Using ruff version 0.4.10
2024-06-26 15:31:39 +09:00

1589 lines
62 KiB
Python

# Copyright 2003-2008 by Leighton Pritchard. All rights reserved.
# Revisions copyright 2008-2009 by Peter Cock.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
#
# Contact: Leighton Pritchard, The James Hutton Institute,
# Invergowrie, Dundee, Scotland, DD2 5DA, UK
# Leighton.Pritchard@hutton.ac.uk
################################################################################
"""Linear Drawer module.
Provides:
- LinearDrawer - Drawing object for linear diagrams
For drawing capabilities, this module uses reportlab to draw and write
the diagram: http://www.reportlab.com
"""
# ReportLab imports
from math import ceil
from reportlab.graphics.shapes import Drawing
from reportlab.graphics.shapes import Group
from reportlab.graphics.shapes import Line
from reportlab.graphics.shapes import Polygon
from reportlab.graphics.shapes import String
from reportlab.lib import colors
from ._AbstractDrawer import _stroke_and_fill_colors
# GenomeDiagram imports
from ._AbstractDrawer import AbstractDrawer
from ._AbstractDrawer import angle2trig
from ._AbstractDrawer import deduplicate
from ._AbstractDrawer import draw_arrow
from ._AbstractDrawer import draw_box
from ._AbstractDrawer import draw_cut_corner_box
from ._AbstractDrawer import intermediate_points
from ._FeatureSet import FeatureSet
from ._GraphSet import GraphSet
class LinearDrawer(AbstractDrawer):
"""Linear Drawer.
Inherits from:
- AbstractDrawer
Attributes:
- tracklines Boolean for whether to draw lines delineating tracks
- pagesize Tuple describing the size of the page in pixels
- x0 Float X co-ord for leftmost point of drawable area
- xlim Float X co-ord for rightmost point of drawable area
- y0 Float Y co-ord for lowest point of drawable area
- ylim Float Y co-ord for topmost point of drawable area
- pagewidth Float pixel width of drawable area
- pageheight Float pixel height of drawable area
- xcenter Float X co-ord of center of drawable area
- ycenter Float Y co-ord of center of drawable area
- start Int, base to start drawing from
- end Int, base to stop drawing at
- length Int, size of sequence to be drawn
- fragments Int, number of fragments into which to divide the
drawn sequence
- fragment_size Float (0->1) the proportion of the fragment height to
draw in
- track_size Float (0->1) the proportion of the track height to
draw in
- drawing Drawing canvas
- drawn_tracks List of ints denoting which tracks are to be drawn
- current_track_level Int denoting which track is currently being
drawn
- fragment_height Float total fragment height in pixels
- fragment_bases Int total fragment length in bases
- fragment_lines Dictionary of top and bottom y-coords of fragment,
keyed by fragment number
- fragment_limits Dictionary of start and end bases of each fragment,
keyed by fragment number
- track_offsets Dictionary of number of pixels that each track top,
center and bottom is offset from the base of a fragment, keyed by track
- cross_track_links List of tuples each with four entries (track A,
feature A, track B, feature B) to be linked.
"""
def __init__(
self,
parent=None,
pagesize="A3",
orientation="landscape",
x=0.05,
y=0.05,
xl=None,
xr=None,
yt=None,
yb=None,
start=None,
end=None,
tracklines=0,
fragments=10,
fragment_size=None,
track_size=0.75,
cross_track_links=None,
):
"""Initialize.
Arguments:
- parent Diagram object containing the data that the drawer draws
- pagesize String describing the ISO size of the image, or a tuple
of pixels
- orientation String describing the required orientation of the
final drawing ('landscape' or 'portrait')
- x Float (0->1) describing the relative size of the X
margins to the page
- y Float (0->1) describing the relative size of the Y
margins to the page
- xl Float (0->1) describing the relative size of the left X
margin to the page (overrides x)
- xl Float (0->1) describing the relative size of the left X
margin to the page (overrides x)
- xr Float (0->1) describing the relative size of the right X
margin to the page (overrides x)
- yt Float (0->1) describing the relative size of the top Y
margin to the page (overrides y)
- yb Float (0->1) describing the relative size of the lower Y
margin to the page (overrides y)
- start Int, the position to begin drawing the diagram at
- end Int, the position to stop drawing the diagram at
- tracklines Boolean flag to show (or not) lines delineating tracks
on the diagram
- fragments Int, the number of equal fragments into which the
sequence should be divided for drawing
- fragment_size Float(0->1) The proportion of the available height
for the fragment that should be taken up in drawing
- track_size The proportion of the available track height that
should be taken up in drawing
- cross_track_links List of tuples each with four entries (track A,
feature A, track B, feature B) to be linked.
"""
# Use the superclass' instantiation method
AbstractDrawer.__init__(
self,
parent,
pagesize,
orientation,
x,
y,
xl,
xr,
yt,
yb,
start,
end,
tracklines,
cross_track_links,
)
# Useful measurements on the page
self.fragments = fragments
if fragment_size is not None:
self.fragment_size = fragment_size
else:
if self.fragments == 1:
# For single fragments, default to full height
self.fragment_size = 1
else:
# Otherwise keep a 10% gap between fragments
self.fragment_size = 0.9
self.track_size = track_size
def draw(self):
"""Draw a linear diagram of the data in the parent Diagram object."""
# Instantiate the drawing canvas
self.drawing = Drawing(self.pagesize[0], self.pagesize[1])
feature_elements = [] # holds feature elements
feature_labels = [] # holds feature labels
greytrack_bgs = [] # holds track background
greytrack_labels = [] # holds track foreground labels
scale_axes = [] # holds scale axes
scale_labels = [] # holds scale axis labels
# Get the tracks to be drawn
self.drawn_tracks = self._parent.get_drawn_levels()
# Set fragment and track sizes
self.init_fragments()
self.set_track_heights()
# Go through each track in the parent (if it is to be drawn) one by
# one and collate the data as drawing elements
for track_level in self.drawn_tracks: # only use tracks to be drawn
self.current_track_level = track_level # establish track level
track = self._parent[track_level] # get the track at that level
gbgs, glabels = self.draw_greytrack(track) # get greytrack elements
greytrack_bgs.append(gbgs)
greytrack_labels.append(glabels)
features, flabels = self.draw_track(track) # get feature and graph elements
feature_elements.append(features)
feature_labels.append(flabels)
if track.scale:
axes, slabels = self.draw_scale(track) # get scale elements
scale_axes.append(axes)
scale_labels.append(slabels)
feature_cross_links = []
for cross_link_obj in self.cross_track_links:
cross_link_elements = self.draw_cross_link(cross_link_obj)
if cross_link_elements:
feature_cross_links.append(cross_link_elements)
# Groups listed in order of addition to page (from back to front)
# Draw track backgrounds
# Draw feature cross track links
# Draw features and graphs
# Draw scale axes
# Draw scale labels
# Draw feature labels
# Draw track labels
element_groups = [
greytrack_bgs,
feature_cross_links,
feature_elements,
scale_axes,
scale_labels,
feature_labels,
greytrack_labels,
]
for element_group in element_groups:
for element_list in element_group:
[self.drawing.add(element) for element in element_list]
if self.tracklines: # Draw test tracks over top of diagram
self.draw_test_tracks()
def init_fragments(self):
"""Initialize useful values for positioning diagram elements."""
# Set basic heights, lengths etc
self.fragment_height = self.pageheight / self.fragments
# total fragment height in pixels
self.fragment_bases = ceil(self.length / self.fragments)
# fragment length in bases
# Key fragment base and top lines by fragment number
# Holds bottom and top line locations of fragments, keyed by fragment number
self.fragment_lines = {}
# Number of pixels to crop the fragment:
fragment_crop = (1 - self.fragment_size) / 2
fragy = self.ylim # Holder for current absolute fragment base
for fragment in range(self.fragments):
fragtop = fragy - fragment_crop * self.fragment_height # top - crop
fragbtm = (
fragy - (1 - fragment_crop) * self.fragment_height
) # bottom + crop
self.fragment_lines[fragment] = (fragbtm, fragtop)
fragy -= self.fragment_height # next fragment base
# Key base starts and ends for each fragment by fragment number
self.fragment_limits = {} # Holds first and last base positions in a fragment
fragment_step = self.fragment_bases # bases per fragment
fragment_count = 0
# Add start and end positions for each fragment to dictionary
for marker in range(int(self.start), int(self.end), int(fragment_step)):
self.fragment_limits[fragment_count] = (marker, marker + fragment_step)
fragment_count += 1
def set_track_heights(self):
"""Set track heights.
Since tracks may not be of identical heights, the bottom and top
offsets of each track relative to the fragment top and bottom is
stored in a dictionary - self.track_offsets, keyed by track number.
"""
bot_track = min(min(self.drawn_tracks), 1)
top_track = max(self.drawn_tracks) # The 'highest' track number to draw
trackunit_sum = 0 # Total number of 'units' for the tracks
trackunits = {} # The start and end units for each track, keyed by track number
heightholder = 0 # placeholder variable
for track in range(bot_track, top_track + 1): # for all track numbers to 'draw'
try:
trackheight = self._parent[track].height # Get track height
except Exception: # TODO: IndexError?
trackheight = 1 # ...or default to 1
trackunit_sum += trackheight # increment total track unit height
trackunits[track] = (heightholder, heightholder + trackheight)
heightholder += trackheight # move to next height
trackunit_height = self.fragment_height * self.fragment_size / trackunit_sum
# Calculate top and bottom offsets for each track, relative to fragment
# base
track_offsets = {} # The offsets from fragment base for each track
track_crop = (
trackunit_height * (1 - self.track_size) / 2.0
) # 'step back' in pixels
assert track_crop >= 0
for track in trackunits:
top = trackunits[track][1] * trackunit_height - track_crop # top offset
btm = trackunits[track][0] * trackunit_height + track_crop # bottom offset
ctr = btm + (top - btm) / 2.0 # center offset
track_offsets[track] = (btm, ctr, top)
self.track_offsets = track_offsets
def draw_test_tracks(self):
"""Draw test tracks.
Draw red lines indicating the top and bottom of each fragment,
and blue ones indicating tracks to be drawn.
"""
# Add lines for each fragment
for fbtm, ftop in self.fragment_lines.values():
self.drawing.add(
Line(self.x0, ftop, self.xlim, ftop, strokeColor=colors.red)
) # top line
self.drawing.add(
Line(self.x0, fbtm, self.xlim, fbtm, strokeColor=colors.red)
) # bottom line
# Add track lines for this fragment - but only for drawn tracks
for track in self.drawn_tracks:
trackbtm = fbtm + self.track_offsets[track][0]
trackctr = fbtm + self.track_offsets[track][1]
tracktop = fbtm + self.track_offsets[track][2]
self.drawing.add(
Line(
self.x0, tracktop, self.xlim, tracktop, strokeColor=colors.blue
)
) # top line
self.drawing.add(
Line(
self.x0, trackctr, self.xlim, trackctr, strokeColor=colors.green
)
) # center line
self.drawing.add(
Line(
self.x0, trackbtm, self.xlim, trackbtm, strokeColor=colors.blue
)
) # bottom line
def draw_track(self, track):
"""Draw track.
Arguments:
- track Track object
Returns a tuple (list of elements in the track, list of labels in
the track).
"""
track_elements = [] # Holds elements from features and graphs
track_labels = [] # Holds labels from features and graphs
# Distribution dictionary for dealing with different set types
set_methods = {FeatureSet: self.draw_feature_set, GraphSet: self.draw_graph_set}
for set in track.get_sets(): # Draw the feature or graph sets
elements, labels = set_methods[set.__class__](set)
track_elements += elements
track_labels += labels
return track_elements, track_labels
def draw_tick(self, tickpos, ctr, ticklen, track, draw_label):
"""Draw tick.
Arguments:
- tickpos Int, position of the tick on the sequence
- ctr Float, Y co-ord of the center of the track
- ticklen How long to draw the tick
- track Track, the track the tick is drawn on
- draw_label Boolean, write the tick label?
Returns a drawing element that is the tick on the scale
"""
if self.start >= tickpos and tickpos >= self.end:
raise RuntimeError(
"Tick at %i, but showing %i to %i" % (tickpos, self.start, self.end)
)
if not (
(track.start is None or track.start <= tickpos)
and (track.end is None or tickpos <= track.end)
):
raise RuntimeError(
"Tick at %i, but showing %r to %r for track"
% (tickpos, track.start, track.end)
)
fragment, tickx = self.canvas_location(tickpos) # Tick coordinates
assert fragment >= 0, "Fragment %i, tickpos %i" % (fragment, tickpos)
tctr = ctr + self.fragment_lines[fragment][0] # Center line of the track
tickx += self.x0 # Tick X co-ord
ticktop = tctr + ticklen # Y co-ord of tick top
tick = Line(tickx, tctr, tickx, ticktop, strokeColor=track.scale_color)
if draw_label: # Put tick position on as label
if track.scale_format == "SInt":
if tickpos >= 1000000:
tickstring = str(tickpos // 1000000) + " Mbp"
elif tickpos >= 1000:
tickstring = str(tickpos // 1000) + " Kbp"
else:
tickstring = str(tickpos)
else:
tickstring = str(tickpos)
label = String(
0,
0,
tickstring, # Make label string
fontName=track.scale_font,
fontSize=track.scale_fontsize,
fillColor=track.scale_color,
)
labelgroup = Group(label)
rotation = angle2trig(track.scale_fontangle)
labelgroup.transform = (
rotation[0],
rotation[1],
rotation[2],
rotation[3],
tickx,
ticktop,
)
else:
labelgroup = None
return tick, labelgroup
def draw_scale(self, track):
"""Draw scale.
Argument:
- track Track object
Returns a tuple of (list of elements in the scale, list of labels
in the scale).
"""
scale_elements = [] # Holds axes and ticks
scale_labels = [] # Holds labels
if not track.scale: # No scale required, exit early
return [], []
# Get track location
btm, ctr, top = self.track_offsets[self.current_track_level]
trackheight = top - ctr
# For each fragment, draw the scale for this track
start, end = self._current_track_start_end()
start_f, start_x = self.canvas_location(start)
end_f, end_x = self.canvas_location(end)
for fragment in range(start_f, end_f + 1):
tbtm = btm + self.fragment_lines[fragment][0]
tctr = ctr + self.fragment_lines[fragment][0]
ttop = top + self.fragment_lines[fragment][0]
# X-axis
if fragment == start_f:
x_left = start_x
else:
x_left = 0
if fragment == end_f:
x_right = end_x
# Y-axis end marker
scale_elements.append(
Line(
self.x0 + x_right,
tbtm,
self.x0 + x_right,
ttop,
strokeColor=track.scale_color,
)
)
else:
x_right = self.xlim - self.x0
scale_elements.append(
Line(
self.x0 + x_left,
tctr,
self.x0 + x_right,
tctr,
strokeColor=track.scale_color,
)
)
# Y-axis start marker
scale_elements.append(
Line(
self.x0 + x_left,
tbtm,
self.x0 + x_left,
ttop,
strokeColor=track.scale_color,
)
)
start, end = self._current_track_start_end()
if track.scale_ticks: # Ticks are required on the scale
# Draw large ticks
# I want the ticks to be consistently positioned relative to
# the start of the sequence (position 0), not relative to the
# current viewpoint (self.start and self.end)
ticklen = track.scale_largeticks * trackheight
tickiterval = int(track.scale_largetick_interval)
# Note that we could just start the list of ticks using
# range(0,self.end,tickinterval) and the filter out the
# ones before self.start - but this seems wasteful.
# Using tickiterval * (self.start//tickiterval) is a shortcut.
for tickpos in range(
tickiterval * (self.start // tickiterval), int(self.end), tickiterval
):
if tickpos <= start or end <= tickpos:
continue
tick, label = self.draw_tick(
tickpos, ctr, ticklen, track, track.scale_largetick_labels
)
scale_elements.append(tick)
if label is not None: # If there's a label, add it
scale_labels.append(label)
# Draw small ticks
ticklen = track.scale_smallticks * trackheight
tickiterval = int(track.scale_smalltick_interval)
for tickpos in range(
tickiterval * (self.start // tickiterval), int(self.end), tickiterval
):
if tickpos <= start or end <= tickpos:
continue
tick, label = self.draw_tick(
tickpos, ctr, ticklen, track, track.scale_smalltick_labels
)
scale_elements.append(tick)
if label is not None: # If there's a label, add it
scale_labels.append(label)
# Check to see if the track contains a graph - if it does, get the
# minimum and maximum values, and put them on the scale Y-axis
if track.axis_labels:
for set in track.get_sets(): # Check all sets...
if set.__class__ is GraphSet: # ...for a graph set
graph_label_min = []
graph_label_mid = []
graph_label_max = []
for graph in set.get_graphs():
quartiles = graph.quartiles()
minval, maxval = quartiles[0], quartiles[4]
if graph.center is None:
midval = (maxval + minval) / 2.0
graph_label_min.append(f"{minval:.3f}")
graph_label_max.append(f"{maxval:.3f}")
else:
diff = max((graph.center - minval), (maxval - graph.center))
minval = graph.center - diff
maxval = graph.center + diff
midval = graph.center
graph_label_mid.append(f"{midval:.3f}")
graph_label_min.append(f"{minval:.3f}")
graph_label_max.append(f"{maxval:.3f}")
for fragment in range(
start_f, end_f + 1
): # Add to all used fragment axes
tbtm = btm + self.fragment_lines[fragment][0]
tctr = ctr + self.fragment_lines[fragment][0]
ttop = top + self.fragment_lines[fragment][0]
if fragment == start_f:
x_left = start_x
else:
x_left = 0
for val, pos in [
(";".join(graph_label_min), tbtm),
(";".join(graph_label_max), ttop),
(";".join(graph_label_mid), tctr),
]:
label = String(
0,
0,
val,
fontName=track.scale_font,
fontSize=track.scale_fontsize,
fillColor=track.scale_color,
)
labelgroup = Group(label)
rotation = angle2trig(track.scale_fontangle)
labelgroup.transform = (
rotation[0],
rotation[1],
rotation[2],
rotation[3],
self.x0 + x_left,
pos,
)
scale_labels.append(labelgroup)
return scale_elements, scale_labels
def draw_greytrack(self, track):
"""Draw greytrack.
Arguments:
- track Track object
Put in a grey background to the current track in all fragments,
if track specifies that we should.
"""
greytrack_bgs = [] # Holds grey track backgrounds
greytrack_labels = [] # Holds grey foreground labels
if not track.greytrack: # No greytrack required, return early
return [], []
# Get track location
btm, ctr, top = self.track_offsets[self.current_track_level]
start, end = self._current_track_start_end()
start_fragment, start_offset = self.canvas_location(start)
end_fragment, end_offset = self.canvas_location(end)
# Add greytrack to all fragments for this track
for fragment in range(start_fragment, end_fragment + 1):
tbtm = btm + self.fragment_lines[fragment][0]
tctr = ctr + self.fragment_lines[fragment][0]
ttop = top + self.fragment_lines[fragment][0]
if fragment == start_fragment:
x1 = self.x0 + start_offset
else:
x1 = self.x0
if fragment == end_fragment:
x2 = self.x0 + end_offset
else:
x2 = self.xlim
box = draw_box(
(x1, tbtm),
(x2, ttop),
colors.Color(0.96, 0.96, 0.96), # Grey track bg
) # is just a box
greytrack_bgs.append(box)
if track.greytrack_labels: # If labels are required
# # how far apart should they be?
labelstep = self.pagewidth / track.greytrack_labels
label = String(
0,
0,
track.name, # label contents
fontName=track.greytrack_font,
fontSize=track.greytrack_fontsize,
fillColor=track.greytrack_fontcolor,
)
# Create a new labelgroup at each position the label is required
for x in range(int(self.x0), int(self.xlim), int(labelstep)):
if fragment == start_fragment and x < start_offset:
continue
if (
fragment == end_fragment
and end_offset < x + label.getBounds()[2]
):
continue
labelgroup = Group(label)
rotation = angle2trig(track.greytrack_font_rotation)
labelgroup.transform = (
rotation[0],
rotation[1],
rotation[2],
rotation[3],
x,
tbtm,
)
if not self.xlim - x <= labelstep:
# Don't overlap the end of the track
greytrack_labels.append(labelgroup)
return greytrack_bgs, greytrack_labels
def draw_feature_set(self, set):
"""Draw feature set.
Arguments:
- set FeatureSet object
Returns a tuple (list of elements describing features, list of
labels for elements).
"""
# print("draw feature set")
feature_elements = [] # Holds diagram elements belonging to the features
label_elements = [] # Holds diagram elements belonging to feature labels
# Collect all the elements for the feature set
for feature in set.get_features():
if self.is_in_bounds(feature.start) or self.is_in_bounds(feature.end):
features, labels = self.draw_feature(feature) # get elements and labels
feature_elements += features
label_elements += labels
return feature_elements, label_elements
def draw_feature(self, feature):
"""Draw feature.
Arguments:
- feature Feature containing location info
Returns tuple of (list of elements describing single feature, list
of labels for those elements).
"""
if feature.hide: # Feature hidden, don't draw it...
return [], []
feature_elements = [] # Holds diagram elements belonging to the feature
label_elements = [] # Holds labels belonging to the feature
start, end = self._current_track_start_end()
# A single feature may be split into subfeatures, so loop over them
for locstart, locend in feature.locations:
if locend < start:
continue
locstart = max(locstart, start)
if end < locstart:
continue
locend = min(locend, end)
feature_boxes = self.draw_feature_location(feature, locstart, locend)
for box, label in feature_boxes:
feature_elements.append(box)
if label is not None:
label_elements.append(label)
return feature_elements, label_elements
def draw_feature_location(self, feature, locstart, locend):
"""Draw feature location."""
feature_boxes = []
# Get start and end positions for feature/subfeatures
start_fragment, start_offset = self.canvas_location(locstart)
end_fragment, end_offset = self.canvas_location(locend)
# print("start_fragment, start_offset", start_fragment, start_offset)
# print("end_fragment, end_offset", end_fragment, end_offset)
# print("start, end", locstart, locend)
# Note that there is a strange situation where a feature may be in
# several parts, and one or more of those parts may end up being
# drawn on a non-existent fragment. So we check that the start and
# end fragments do actually exist in terms of the drawing
allowed_fragments = list(self.fragment_limits.keys())
if start_fragment in allowed_fragments and end_fragment in allowed_fragments:
# print(feature.name, feature.start, feature.end, start_offset, end_offset)
if start_fragment == end_fragment: # Feature is found on one fragment
feature_box, label = self.get_feature_sigil(
feature, start_offset, end_offset, start_fragment
)
feature_boxes.append((feature_box, label))
# feature_elements.append(feature_box)
# if label is not None: # There is a label for the feature
# label_elements.append(label)
else: # Feature is split over two or more fragments
fragment = start_fragment
start = start_offset
# The bit that runs up to the end of the first fragment,
# and any bits that subsequently span whole fragments
while self.fragment_limits[fragment][1] < locend:
# print(fragment, self.fragment_limits[fragment][1], locend)
feature_box, label = self.get_feature_sigil(
feature, start, self.pagewidth, fragment
)
fragment += 1 # move to next fragment
start = 0 # start next sigil from start of fragment
feature_boxes.append((feature_box, label))
# feature_elements.append(feature_box)
# if label is not None: # There's a label for the feature
# label_elements.append(label)
# The last bit of the feature
# print(locend, self.end, fragment)
# print(self.fragment_bases, self.length)
feature_box, label = self.get_feature_sigil(
feature, 0, end_offset, fragment
)
feature_boxes.append((feature_box, label))
# if locstart > locend:
# print(locstart, locend, feature.location.strand, feature_boxes, feature.name)
return feature_boxes
def draw_cross_link(self, cross_link):
"""Draw cross-link between two features."""
startA = cross_link.startA
startB = cross_link.startB
endA = cross_link.endA
endB = cross_link.endB
if not self.is_in_bounds(startA) and not self.is_in_bounds(endA):
return None
if not self.is_in_bounds(startB) and not self.is_in_bounds(endB):
return None
if startA < self.start:
startA = self.start
if startB < self.start:
startB = self.start
if self.end < endA:
endA = self.end
if self.end < endB:
endB = self.end
trackobjA = cross_link._trackA(list(self._parent.tracks.values()))
trackobjB = cross_link._trackB(list(self._parent.tracks.values()))
assert trackobjA is not None
assert trackobjB is not None
if trackobjA == trackobjB:
raise NotImplementedError
if trackobjA.start is not None:
if endA < trackobjA.start:
return
startA = max(startA, trackobjA.start)
if trackobjA.end is not None:
if trackobjA.end < startA:
return
endA = min(endA, trackobjA.end)
if trackobjB.start is not None:
if endB < trackobjB.start:
return
startB = max(startB, trackobjB.start)
if trackobjB.end is not None:
if trackobjB.end < startB:
return
endB = min(endB, trackobjB.end)
for track_level in self._parent.get_drawn_levels():
track = self._parent[track_level]
if track == trackobjA:
trackA = track_level
if track == trackobjB:
trackB = track_level
if trackA == trackB:
raise NotImplementedError
strokecolor, fillcolor = _stroke_and_fill_colors(
cross_link.color, cross_link.border
)
allowed_fragments = list(self.fragment_limits.keys())
start_fragmentA, start_offsetA = self.canvas_location(startA)
end_fragmentA, end_offsetA = self.canvas_location(endA)
if (
start_fragmentA not in allowed_fragments
or end_fragmentA not in allowed_fragments
):
return
start_fragmentB, start_offsetB = self.canvas_location(startB)
end_fragmentB, end_offsetB = self.canvas_location(endB)
if (
start_fragmentB not in allowed_fragments
or end_fragmentB not in allowed_fragments
):
return
# TODO - Better drawing of flips when split between fragments
answer = []
for fragment in range(
min(start_fragmentA, start_fragmentB), max(end_fragmentA, end_fragmentB) + 1
):
btmA, ctrA, topA = self.track_offsets[trackA]
btmA += self.fragment_lines[fragment][0]
ctrA += self.fragment_lines[fragment][0]
topA += self.fragment_lines[fragment][0]
btmB, ctrB, topB = self.track_offsets[trackB]
btmB += self.fragment_lines[fragment][0]
ctrB += self.fragment_lines[fragment][0]
topB += self.fragment_lines[fragment][0]
if self.fragment_limits[fragment][1] < endA:
xAe = self.x0 + self.pagewidth
crop_rightA = True
else:
xAe = self.x0 + end_offsetA
crop_rightA = False
if self.fragment_limits[fragment][1] < endB:
xBe = self.x0 + self.pagewidth
crop_rightB = True
else:
xBe = self.x0 + end_offsetB
crop_rightB = False
if fragment < start_fragmentA:
xAs = self.x0 + self.pagewidth
xAe = xAs
crop_leftA = False
elif fragment == start_fragmentA:
xAs = self.x0 + start_offsetA
crop_leftA = False
else:
xAs = self.x0
crop_leftA = True
if fragment < start_fragmentB:
xBs = self.x0 + self.pagewidth
xBe = xBs
crop_leftB = False
elif fragment == start_fragmentB:
xBs = self.x0 + start_offsetB
crop_leftB = False
else:
xBs = self.x0
crop_leftB = True
if ctrA < ctrB:
yA = topA
yB = btmB
else:
yA = btmA
yB = topB
if fragment < start_fragmentB or end_fragmentB < fragment:
if cross_link.flip:
# Just draw A as a triangle to left/right
if fragment < start_fragmentB:
extra = [self.x0 + self.pagewidth, 0.5 * (yA + yB)]
else:
extra = [self.x0, 0.5 * (yA + yB)]
else:
if fragment < start_fragmentB:
extra = [
self.x0 + self.pagewidth,
0.7 * yA + 0.3 * yB,
self.x0 + self.pagewidth,
0.3 * yA + 0.7 * yB,
]
else:
extra = [
self.x0,
0.3 * yA + 0.7 * yB,
self.x0,
0.7 * yA + 0.3 * yB,
]
answer.append(
Polygon(
deduplicate([xAs, yA, xAe, yA] + extra),
strokeColor=strokecolor,
fillColor=fillcolor,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
)
)
elif fragment < start_fragmentA or end_fragmentA < fragment:
if cross_link.flip:
# Just draw B as a triangle to left
if fragment < start_fragmentA:
extra = [self.x0 + self.pagewidth, 0.5 * (yA + yB)]
else:
extra = [self.x0, 0.5 * (yA + yB)]
else:
if fragment < start_fragmentA:
extra = [
self.x0 + self.pagewidth,
0.3 * yA + 0.7 * yB,
self.x0 + self.pagewidth,
0.7 * yA + 0.3 * yB,
]
else:
extra = [
self.x0,
0.7 * yA + 0.3 * yB,
self.x0,
0.3 * yA + 0.7 * yB,
]
answer.append(
Polygon(
deduplicate([xBs, yB, xBe, yB] + extra),
strokeColor=strokecolor,
fillColor=fillcolor,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
)
)
elif cross_link.flip and (
(crop_leftA and not crop_rightA) or (crop_leftB and not crop_rightB)
):
# On left end of fragment... force "crossing" to margin
answer.append(
Polygon(
deduplicate(
[
xAs,
yA,
xAe,
yA,
self.x0,
0.5 * (yA + yB),
xBe,
yB,
xBs,
yB,
]
),
strokeColor=strokecolor,
fillColor=fillcolor,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
)
)
elif cross_link.flip and (
(crop_rightA and not crop_leftA) or (crop_rightB and not crop_leftB)
):
# On right end... force "crossing" to margin
answer.append(
Polygon(
deduplicate(
[
xAs,
yA,
xAe,
yA,
xBe,
yB,
xBs,
yB,
self.x0 + self.pagewidth,
0.5 * (yA + yB),
]
),
strokeColor=strokecolor,
fillColor=fillcolor,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
)
)
elif cross_link.flip:
answer.append(
Polygon(
deduplicate([xAs, yA, xAe, yA, xBs, yB, xBe, yB]),
strokeColor=strokecolor,
fillColor=fillcolor,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
)
)
else:
answer.append(
Polygon(
deduplicate([xAs, yA, xAe, yA, xBe, yB, xBs, yB]),
strokeColor=strokecolor,
fillColor=fillcolor,
# default is mitre/miter which can stick out too much:
strokeLineJoin=1, # 1=round
strokewidth=0,
)
)
return answer
def get_feature_sigil(self, feature, x0, x1, fragment, **kwargs):
"""Get feature sigil.
Arguments:
- feature Feature object
- x0 Start X coordinate on diagram
- x1 End X coordinate on diagram
- fragment The fragment on which the feature appears
Returns a drawable indicator of the feature, and any required label
for it.
"""
# Establish coordinates for drawing
x0, x1 = self.x0 + x0, self.x0 + x1
btm, ctr, top = self.track_offsets[self.current_track_level]
try:
btm += self.fragment_lines[fragment][0]
ctr += self.fragment_lines[fragment][0]
top += self.fragment_lines[fragment][0]
except Exception: # Only called if the method screws up big time
print("We've got a screw-up")
print(f"{self.start} {self.end}")
print(self.fragment_bases)
print(f"{x0!r} {x1!r}")
for locstart, locend in feature.locations:
print(self.canvas_location(locstart))
print(self.canvas_location(locend))
print(f"FEATURE\n{feature}")
raise
# Distribution dictionary for various ways of drawing the feature
draw_methods = {
"BOX": self._draw_sigil_box,
"ARROW": self._draw_sigil_arrow,
"BIGARROW": self._draw_sigil_big_arrow,
"OCTO": self._draw_sigil_octo,
"JAGGY": self._draw_sigil_jaggy,
}
method = draw_methods[feature.sigil]
kwargs["head_length_ratio"] = feature.arrowhead_length
kwargs["shaft_height_ratio"] = feature.arrowshaft_height
# Support for clickable links... needs ReportLab 2.4 or later
# which added support for links in SVG output.
if hasattr(feature, "url"):
kwargs["hrefURL"] = feature.url
kwargs["hrefTitle"] = feature.name
# Get sigil for the feature, give it the bounding box straddling
# the axis (it decides strand specific placement)
sigil = method(
btm,
ctr,
top,
x0,
x1,
strand=feature.location.strand,
color=feature.color,
border=feature.border,
**kwargs,
)
if feature.label_strand:
strand = feature.label_strand
else:
strand = feature.location.strand
if feature.label: # Feature requires a label
label = String(
0,
0,
feature.name,
fontName=feature.label_font,
fontSize=feature.label_size,
fillColor=feature.label_color,
)
labelgroup = Group(label)
# Feature is on top, or covers both strands (location affects
# the height and rotation of the label)
if strand != -1:
rotation = angle2trig(feature.label_angle)
if feature.label_position in ("end", "3'", "right"):
pos = x1
elif feature.label_position in ("middle", "center", "centre"):
pos = (x1 + x0) / 2.0
else:
# Default to start, i.e. 'start', "5'", 'left'
pos = x0
labelgroup.transform = (
rotation[0],
rotation[1],
rotation[2],
rotation[3],
pos,
top,
)
else: # Feature on bottom strand
rotation = angle2trig(feature.label_angle + 180)
if feature.label_position in ("end", "3'", "right"):
pos = x0
elif feature.label_position in ("middle", "center", "centre"):
pos = (x1 + x0) / 2.0
else:
# Default to start, i.e. 'start', "5'", 'left'
pos = x1
labelgroup.transform = (
rotation[0],
rotation[1],
rotation[2],
rotation[3],
pos,
btm,
)
else:
labelgroup = None
return sigil, labelgroup
def draw_graph_set(self, set):
"""Draw graph set.
Arguments:
- set GraphSet object
Returns tuple (list of graph elements, list of graph labels).
"""
# print('draw graph set')
elements = [] # Holds graph elements
# Distribution dictionary for how to draw the graph
style_methods = {
"line": self.draw_line_graph,
"heat": self.draw_heat_graph,
"bar": self.draw_bar_graph,
}
for graph in set.get_graphs():
elements += style_methods[graph.style](graph)
return elements, []
def draw_line_graph(self, graph):
"""Return a line graph as a list of drawable elements.
Arguments:
- graph Graph object
"""
# print('\tdraw_line_graph')
line_elements = [] # Holds drawable elements
# Get graph data
data_quartiles = graph.quartiles()
minval, maxval = data_quartiles[0], data_quartiles[4]
btm, ctr, top = self.track_offsets[self.current_track_level]
trackheight = 0.5 * (top - btm)
datarange = maxval - minval
if datarange == 0:
datarange = trackheight
start, end = self._current_track_start_end()
data = graph[start:end]
# midval is the value at which the x-axis is plotted, and is the
# central ring in the track
if graph.center is None:
midval = (maxval + minval) / 2.0
else:
midval = graph.center
# Whichever is the greatest difference: max-midval or min-midval, is
# taken to specify the number of pixel units resolved along the
# y-axis
resolution = max((midval - minval), (maxval - midval))
# Start from first data point
pos, val = data[0]
lastfrag, lastx = self.canvas_location(pos)
lastx += self.x0 # Start xy co-ords
lasty = (
trackheight * (val - midval) / resolution
+ self.fragment_lines[lastfrag][0]
+ ctr
)
lastval = val
# Add a series of lines linking consecutive data points
for pos, val in data:
frag, x = self.canvas_location(pos)
x += self.x0 # next xy co-ords
y = (
trackheight * (val - midval) / resolution
+ self.fragment_lines[frag][0]
+ ctr
)
if frag == lastfrag: # Points on the same fragment: draw the line
line_elements.append(
Line(
lastx,
lasty,
x,
y,
strokeColor=graph.poscolor,
strokeWidth=graph.linewidth,
)
)
else: # Points not on the same fragment, so interpolate
tempy = (
trackheight * (val - midval) / resolution
+ self.fragment_lines[lastfrag][0]
+ ctr
)
line_elements.append(
Line(
lastx,
lasty,
self.xlim,
tempy,
strokeColor=graph.poscolor,
strokeWidth=graph.linewidth,
)
)
tempy = (
trackheight * (val - midval) / resolution
+ self.fragment_lines[frag][0]
+ ctr
)
line_elements.append(
Line(
self.x0,
tempy,
x,
y,
strokeColor=graph.poscolor,
strokeWidth=graph.linewidth,
)
)
lastfrag, lastx, lasty, lastval = frag, x, y, val
return line_elements
def draw_heat_graph(self, graph):
"""Return a list of drawable elements for the heat graph."""
# print('\tdraw_heat_graph')
# At each point contained in the graph data, we draw a box that is the
# full height of the track, extending from the midpoint between the
# previous and current data points to the midpoint between the current
# and next data points
heat_elements = [] # Holds drawable elements for the graph
# Get graph data and information
data_quartiles = graph.quartiles()
minval, maxval = data_quartiles[0], data_quartiles[4]
midval = (maxval + minval) / 2.0 # mid is the value at the X-axis
btm, ctr, top = self.track_offsets[self.current_track_level]
trackheight = top - btm
start, end = self._current_track_start_end()
data = intermediate_points(start, end, graph[start:end])
if not data:
return []
# Create elements on the graph, indicating a large positive value by
# the graph's poscolor, and a large negative value by the graph's
# negcolor attributes
for pos0, pos1, val in data:
# assert start <= pos0 <= pos1 <= end
fragment0, x0 = self.canvas_location(pos0)
fragment1, x1 = self.canvas_location(pos1)
x0, x1 = self.x0 + x0, self.x0 + x1 # account for margin
# print('x1 before:', x1)
# Calculate the heat color, based on the differential between
# the value and the median value
heat = colors.linearlyInterpolatedColor(
graph.poscolor, graph.negcolor, maxval, minval, val
)
# Draw heat box
if fragment0 == fragment1: # Box is contiguous on one fragment
if pos1 >= self.fragment_limits[fragment0][1]:
x1 = self.xlim
ttop = top + self.fragment_lines[fragment0][0]
tbtm = btm + self.fragment_lines[fragment0][0]
# print('equal', pos0, pos1, val)
# print(pos0, pos1, fragment0, fragment1)
heat_elements.append(
draw_box((x0, tbtm), (x1, ttop), color=heat, border=None)
)
else: # box is split over two or more fragments
# if pos0 >= self.fragment_limits[fragment0][0]:
# fragment0 += 1
fragment = fragment0
start_x = x0
while self.fragment_limits[fragment][1] <= pos1:
# print(pos0, self.fragment_limits[fragment][1], pos1)
ttop = top + self.fragment_lines[fragment][0]
tbtm = btm + self.fragment_lines[fragment][0]
heat_elements.append(
draw_box(
(start_x, tbtm), (self.xlim, ttop), color=heat, border=None
)
)
fragment += 1
start_x = self.x0
ttop = top + self.fragment_lines[fragment][0]
tbtm = btm + self.fragment_lines[fragment][0]
# Add the last part of the bar
# print('x1 after:', x1, '\n')
heat_elements.append(
draw_box((self.x0, tbtm), (x1, ttop), color=heat, border=None)
)
return heat_elements
def draw_bar_graph(self, graph):
"""Return list of drawable elements for a bar graph."""
# print('\tdraw_bar_graph')
# At each point contained in the graph data, we draw a vertical bar
# from the track center to the height of the datapoint value (positive
# values go up in one color, negative go down in the alternative
# color).
bar_elements = [] # Holds drawable elements for the graph
# Set the number of pixels per unit for the data
data_quartiles = graph.quartiles()
minval, maxval = data_quartiles[0], data_quartiles[4]
btm, ctr, top = self.track_offsets[self.current_track_level]
trackheight = 0.5 * (top - btm)
datarange = maxval - minval
if datarange == 0:
datarange = trackheight
data = graph[self.start : self.end]
# midval is the value at which the x-axis is plotted, and is the
# central ring in the track
if graph.center is None:
midval = (maxval + minval) / 2.0
else:
midval = graph.center
# Convert data into 'binned' blocks, covering half the distance to the
# next data point on either side, accounting for the ends of fragments
# and tracks
start, end = self._current_track_start_end()
data = intermediate_points(start, end, graph[start:end])
if not data:
return []
# Whichever is the greatest difference: max-midval or min-midval, is
# taken to specify the number of pixel units resolved along the
# y-axis
resolution = max((midval - minval), (maxval - midval))
if resolution == 0:
resolution = trackheight
# Create elements for the bar graph based on newdata
for pos0, pos1, val in data:
fragment0, x0 = self.canvas_location(pos0)
fragment1, x1 = self.canvas_location(pos1)
x0, x1 = self.x0 + x0, self.x0 + x1 # account for margin
barval = trackheight * (val - midval) / resolution
if barval >= 0: # Different colors for bars that extend above...
barcolor = graph.poscolor
else: # ...or below the axis
barcolor = graph.negcolor
# Draw bar
if fragment0 == fragment1: # Box is contiguous
if pos1 >= self.fragment_limits[fragment0][1]:
x1 = self.xlim
tctr = ctr + self.fragment_lines[fragment0][0]
barval += tctr
bar_elements.append(draw_box((x0, tctr), (x1, barval), color=barcolor))
else: # Box is split over two or more fragments
fragment = fragment0
# if pos0 >= self.fragment_limits[fragment0][0]:
# fragment += 1
start = x0
while self.fragment_limits[fragment][1] < pos1:
tctr = ctr + self.fragment_lines[fragment][0]
thisbarval = barval + tctr
bar_elements.append(
draw_box((start, tctr), (self.xlim, thisbarval), color=barcolor)
)
fragment += 1
start = self.x0
tctr = ctr + self.fragment_lines[fragment1][0]
barval += tctr
# Add the last part of the bar
bar_elements.append(
draw_box((self.x0, tctr), (x1, barval), color=barcolor)
)
return bar_elements
def canvas_location(self, base):
"""Canvas location of a base on the genome.
Arguments:
- base The base number on the genome sequence
Returns the x-coordinate and fragment number of a base on the
genome sequence, in the context of the current drawing setup
"""
base = int(base - self.start) # number of bases we are from the start
fragment = int(base / self.fragment_bases)
if fragment < 1: # First fragment
base_offset = base
fragment = 0
elif fragment >= self.fragments:
fragment = self.fragments - 1
base_offset = self.fragment_bases
else: # Calculate number of bases from start of fragment
base_offset = base % self.fragment_bases
assert fragment < self.fragments, (
base,
self.start,
self.end,
self.length,
self.fragment_bases,
)
# Calculate number of pixels from start of fragment
x_offset = self.pagewidth * base_offset / self.fragment_bases
return fragment, x_offset
def _draw_sigil_box(self, bottom, center, top, x1, x2, strand, **kwargs):
"""Draw BOX sigil (PRIVATE)."""
if strand == 1:
y1 = center
y2 = top
elif strand == -1:
y1 = bottom
y2 = center
else:
y1 = bottom
y2 = top
return draw_box((x1, y1), (x2, y2), **kwargs)
def _draw_sigil_octo(self, bottom, center, top, x1, x2, strand, **kwargs):
"""Draw OCTO sigil, a box with the corners cut off (PRIVATE)."""
if strand == 1:
y1 = center
y2 = top
elif strand == -1:
y1 = bottom
y2 = center
else:
y1 = bottom
y2 = top
return draw_cut_corner_box((x1, y1), (x2, y2), **kwargs)
def _draw_sigil_jaggy(
self, bottom, center, top, x1, x2, strand, color, border=None, **kwargs
):
"""Draw JAGGY sigil (PRIVATE).
Although we may in future expose the head/tail jaggy lengths, for now
both the left and right edges are drawn jagged.
"""
if strand == 1:
y1 = center
y2 = top
teeth = 2
elif strand == -1:
y1 = bottom
y2 = center
teeth = 2
else:
y1 = bottom
y2 = top
teeth = 4
xmin = min(x1, x2)
xmax = max(x1, x2)
height = y2 - y1
boxwidth = x2 - x1
tooth_length = min(height / teeth, boxwidth * 0.5)
headlength = tooth_length
taillength = tooth_length
strokecolor, color = _stroke_and_fill_colors(color, border)
points = []
for i in range(teeth):
points.extend(
(
xmin,
y1 + i * height / teeth,
xmin + taillength,
y1 + (i + 1) * height / teeth,
)
)
for i in range(teeth):
points.extend(
(
xmax,
y1 + (teeth - i) * height / teeth,
xmax - headlength,
y1 + (teeth - i - 1) * height / teeth,
)
)
return Polygon(
deduplicate(points),
strokeColor=strokecolor,
strokeWidth=1,
strokeLineJoin=1, # 1=round
fillColor=color,
**kwargs,
)
def _draw_sigil_arrow(self, bottom, center, top, x1, x2, strand, **kwargs):
"""Draw ARROW sigil (PRIVATE)."""
if strand == 1:
y1 = center
y2 = top
orientation = "right"
elif strand == -1:
y1 = bottom
y2 = center
orientation = "left"
else:
y1 = bottom
y2 = top
orientation = "right" # backward compatibility
return draw_arrow((x1, y1), (x2, y2), orientation=orientation, **kwargs)
def _draw_sigil_big_arrow(self, bottom, center, top, x1, x2, strand, **kwargs):
"""Draw BIGARROW sigil, like ARROW but straddles the axis (PRIVATE)."""
if strand == -1:
orientation = "left"
else:
orientation = "right"
return draw_arrow((x1, bottom), (x2, top), orientation=orientation, **kwargs)