Files
biopython/Bio/Blast/__init__.py
ruff-isort de0bb21fb3 Apply isort (forcing single lines, not sorting by type) via ruff
$ ruff check --fix --select=I \
  --config=lint.isort.force-single-line=true \
  --config=lint.isort.order-by-type=false \
  BioSQL/ Bio/ Tests/ Scripts/ Doc/ setup.py

Using ruff version 0.4.10
2024-06-26 15:31:39 +09:00

1333 lines
50 KiB
Python

# Copyright 1999 by Jeffrey Chang. All rights reserved.
# Revisions 2023 by Michiel de Hoon. All rights reserved.
#
# This file is part of the Biopython distribution and governed by your
# choice of the "Biopython License Agreement" or the "BSD 3-Clause License".
# Please see the LICENSE file that should have been included as part of this
# package.
"""Code to parse and store BLAST XML output, and to invoke the NCBI BLAST web server.
This module provides code to parse and store BLAST XML output, following its
definition in the associated BLAST XML DTD file:
https://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd
This module also provides code to invoke the BLAST web server provided by NCBI.
https://blast.ncbi.nlm.nih.gov/
Variables:
- email Set the Blast email parameter (default is None).
- tool Set the Blast tool parameter (default is ``biopython``).
"""
import io
import textwrap
import time
import warnings
from collections import UserList
from urllib.parse import urlencode
from urllib.request import build_opener
from urllib.request import HTTPBasicAuthHandler
from urllib.request import HTTPPasswordMgrWithDefaultRealm
from urllib.request import install_opener
from urllib.request import Request
from urllib.request import urlopen
from xml.parsers import expat
import numpy as np
from Bio import BiopythonWarning
from Bio import StreamModeError
from Bio._utils import function_with_previous
from Bio.Align import Alignment
from Bio.Align import Alignments
from Bio.Blast import _writers
email = None
tool = "biopython"
NCBI_BLAST_URL = "https://blast.ncbi.nlm.nih.gov/Blast.cgi"
BLOCK = 2048 # default block size from expat
class NotXMLError(ValueError):
"""Failed to parse file as XML."""
def __init__(self, message):
"""Initialize the class."""
self.msg = message
def __str__(self):
"""Return a string summary of the exception."""
return (
"Failed to parse the XML data (%s). Please make sure that the input data "
"are in XML format." % self.msg
)
class CorruptedXMLError(ValueError):
"""Corrupted XML."""
def __init__(self, message):
"""Initialize the class."""
self.msg = message
def __str__(self):
"""Return a string summary of the exception."""
return (
"Failed to parse the XML data (%s). Please make sure that the input data "
"are not corrupted." % self.msg
)
class HSP(Alignment):
"""Stores an alignment of one query sequence against a target sequence.
An HSP (High-scoring Segment Pair) stores the alignment of one query
sequence segment against one target (hit) sequence segment. The
``Bio.Blast.HSP`` class inherits from the ``Bio.Align.Alignment`` class.
In addition to the ``target`` and ``query`` attributes of a
``Bio.Align.Alignment``, a ``Bio.Blast.HSP`` object has the following
attributes:
- score: score of HSP;
- annotations: a dictionary that may contain the following keys:
- 'bit score': score (in bits) of HSP (float);
- 'evalue': e-value of HSP (float);
- 'identity': number of identities in HSP (integer);
- 'positive': number of positives in HSP (integer);
- 'gaps': number of gaps in HSP (integer);
- 'midline': formatting middle line.
A ``Bio.Blast.HSP`` object behaves the same as a `Bio.Align.Alignment``
object and can be used as such. However, when printing a ``Bio.Blast.HSP``
object, the BLAST e-value and bit score are included in the output (in
addition to the alignment itself).
See the documentation of ``Bio.Blast.Record`` for a more detailed
explanation of how the information in BLAST records is stored in
Biopython.
"""
def __repr__(self):
query = self.query
target = self.target
n, m = self.shape
return f"<Bio.Blast.HSP target.id={target.id!r} query.id={query.id!r}; {n} rows x {m} columns>"
def __str__(self):
alignment_text = super().__str__()
query = self.query
target = self.target
query_strand = (
"Plus" if self.coordinates[1, 0] <= self.coordinates[1, -1] else "Minus"
)
target_strand = (
"Plus" if self.coordinates[0, 0] <= self.coordinates[0, -1] else "Minus"
)
indent = " " * 8
query_description = textwrap.fill(
query.description,
width=80,
initial_indent=indent,
subsequent_indent=indent,
)
target_description = textwrap.fill(
target.description,
width=80,
initial_indent=indent,
subsequent_indent=indent,
)
evalue = self.annotations["evalue"]
bitscore = self.annotations["bit score"]
score = self.score
steps = np.diff(self.coordinates, 1)
aln_span = sum(abs(steps).max(0))
terms = []
identity = self.annotations["identity"]
identity_percentage = round(100.0 * identity / aln_span)
identity_text = "Identities:%d/%d(%d%%)" % (
identity,
aln_span,
identity_percentage,
)
terms.append(identity_text)
positive = self.annotations.get("positive")
if positive is not None:
positive_percentage = round(100.0 * positive / aln_span)
positive_text = "Positives:%d/%d(%d%%)" % (
positive,
aln_span,
positive_percentage,
)
terms.append(positive_text)
try:
gaps = self.annotations["gaps"]
except KeyError:
pass
else:
gaps_percentage = round(100.0 * gaps / aln_span)
gaps_text = "Gaps:%d.%d(%d%%)" % (gaps, aln_span, gaps_percentage)
terms.append(gaps_text)
counts_line = ", ".join(terms)
return """\
Query : %s Length: %d Strand: %s
%s
Target: %s Length: %d Strand: %s
%s
Score:%d bits(%d), Expect:%.1g,
%s
%s
""" % (
query.id,
len(query),
query_strand,
query_description,
target.id,
len(target),
target_strand,
target_description,
bitscore,
score,
evalue,
counts_line,
alignment_text,
)
class Hit(Alignments):
"""Stores a single BLAST hit of one single query against one target.
The ``Bio.Blast.Hit`` class inherits from the ``Bio.Align.Alignments``
class, which is a subclass of a Python list. The ``Bio.Blast.Hit`` class
stores ``Bio.Blast.HSP`` objwcts, which inherit from
``Bio.Align.Alignment``. A ``Bio.Blast.Hit`` object is therefore
effectively a list of ``Bio.Align.Alignment`` objects. Most hits consist of
only 1 or a few Alignment objects.
Each ``Bio.Blast.Hit`` object has a ``target`` attribute containing the
following information:
- target.id: seqId of subject;
- target.description: definition line of subject;
- target.name: accession of subject;
- len(target.seq): sequence length of subject.
See the documentation of ``Bio.Blast.Record`` for a more detailed
explanation of the information stored in the alignments contained in the
``Bio.Blast.Hit`` object.
"""
def __getitem__(self, key):
try:
value = super().__getitem__(key)
except IndexError:
raise IndexError("index out of range") from None
if isinstance(key, slice):
hit = Hit(value)
hit.target = self.target
return hit
else:
return value
def __repr__(self):
target = self.target
try:
alignment = self[0]
except IndexError:
return f"<Bio.Blast.Hit target.id={target.id!r}; no hits>"
query = alignment.query
nhsps = len(self)
if nhsps == 1:
unit = "HSP"
else: # nhsps > 1
unit = "HSPs"
return f"<Bio.Blast.Hit target.id={target.id!r} query.id={query.id!r}; {nhsps} {unit}>"
def __str__(self):
"""Return a human readable summary of the Hit object."""
lines = []
# set query id line
query = self[0].query
qid_line = "Query: %s" % query.id
lines.append(qid_line)
indent = " " * 7
description_lines = textwrap.wrap(
query.description,
width=80,
initial_indent=indent,
subsequent_indent=indent,
)
lines.extend(description_lines)
# set hit id line
target = self.target
hid_line = " Hit: %s (length=%i)" % (target.id, len(target))
lines.append(hid_line)
description_lines = textwrap.wrap(
target.description,
width=80,
initial_indent=indent,
subsequent_indent=indent,
)
lines.extend(description_lines)
# set hsp line and table
lines.append(
" HSPs: %s %s %s %s %s %s"
% ("-" * 4, "-" * 8, "-" * 9, "-" * 6, "-" * 15, "-" * 21)
)
pattern = "%11s %8s %9s %6s %15s %21s"
lines.append(
pattern % ("#", "E-value", "Bit score", "Span", "Query range", "Hit range")
)
lines.append(pattern % ("-" * 4, "-" * 8, "-" * 9, "-" * 6, "-" * 15, "-" * 21))
for idx, hsp in enumerate(self):
# evalue
evalue = format(hsp.annotations["evalue"], ".2g")
# bit score
bitscore = format(hsp.annotations["bit score"], ".2f")
# alignment length
steps = np.diff(hsp.coordinates, 1)
aln_span = sum(abs(steps).max(0))
# query region
query_start = hsp.coordinates[1, 0]
query_end = hsp.coordinates[1, -1]
query_range = f"[{query_start}:{query_end}]"
# max column length is 18
query_range = (
query_range[:13] + "~]" if len(query_range) > 15 else query_range
)
# hit region
hit_start = hsp.coordinates[0, 0]
hit_end = hsp.coordinates[0, -1]
hit_range = f"[{hit_start}:{hit_end}]"
hit_range = hit_range[:19] + "~]" if len(hit_range) > 21 else hit_range
# append the hsp row
lines.append(
pattern % (idx, evalue, bitscore, aln_span, query_range, hit_range)
)
return "\n".join(lines)
class Record(list):
"""Stores the BLAST results for a single query.
A ``Bio.Blast.Record`` object is a list of ``Bio.Blast.Hit`` objects, each
corresponding to one hit for the query in the BLAST output.
The ``Bio.Blast.Record`` object may have the following attributes:
- query: A ``SeqRecord`` object which may contain some or all of the
following information:
- query.id: SeqId of query;
- query.description: Definition line of query;
- len(query.seq): Length of the query sequence.
- stat: A dictionary with summary statistics of the BLAST run. It may
contain the following keys:
- 'db-num': number of sequences in BLAST db (integer);
- 'db-len': length of BLAST db (integer);
- 'hsp-len': effective HSP length (integer);
- 'eff-space': effective search space (float);
- 'kappa': Karlin-Altschul parameter K (float);
- 'lambda': Karlin-Altschul parameter Lambda (float);
- 'entropy': Karlin-Altschul parameter H (float).
- message: Some (error?) information.
Each ``Bio.Blast.Hit`` object has a ``target`` attribute containing the
following information:
- target.id: seqId of subject;
- target.description: definition line of subject;
- target.name: accession of subject;
- len(target.seq): sequence length of subject.
The ``Bio.Blast.Hit`` class inherits from the ``Bio.Align.Alignments``
class, which inherits from a Python list. In this list, the
``Bio.Blast.Hit`` object stores ``Bio.Blast.HSP`` objects, which inherit
from the ``Bio.Align.Alignment`` class. A ``Bio.Blast.Hit`` object is
therefore effectively a list of alignment objects.
Each HSP in a ``Bio.Blast.Hit`` object has the attributes ``target`` and
``query`` attributes, as usual for of a ``Bio.Align.Alignment`` object
storing a pairwise alignment, pointing to a ``SeqRecord`` object
representing the target and query, respectively. For translated BLAST
searches, the ``features`` attribute of the target or query may contain a
``SeqFeature`` of type CDS that stores the amino acid sequence region. The
``qualifiers`` attribute of such a feature is a dictionary with a single
key 'coded_by'; the corresponding value specifies the nucleotide sequence
region, in a GenBank-style string with 1-based coordinates, that encodes
the amino acid sequence.
Each ``Bio.Blast.HSP`` object has the following additional attributes:
- score: score of HSP;
- annotations: a dictionary that may contain the following keys:
- 'bit score': score (in bits) of HSP (float);
- 'evalue': e-value of HSP (float);
- 'identity': number of identities in HSP (integer);
- 'positive': number of positives in HSP (integer);
- 'gaps': number of gaps in HSP (integer);
- 'midline': formatting middle line.
>>> from Bio import Blast
>>> record = Blast.read("Blast/xml_2212L_blastx_001.xml")
>>> record.query
SeqRecord(seq=Seq(None, length=556), id='gi|1347369|gb|G25137.1|G25137', name='<unknown name>', description='human STS EST48004, sequence tagged site', dbxrefs=[])
>>> record.stat
{'db-num': 2934173, 'db-len': 1011751523, 'hsp-len': 0, 'eff-space': 0, 'kappa': 0.041, 'lambda': 0.267, 'entropy': 0.14}
>>> len(record)
78
>>> hit = record[0]
>>> type(hit)
<class 'Bio.Blast.Hit'>
>>> from Bio.Align import Alignments
>>> isinstance(hit, Alignments)
True
>>> hit.target
SeqRecord(seq=Seq(None, length=319), id='gi|12654095|gb|AAH00859.1|', name='AAH00859', description='Unknown (protein for IMAGE:3459481) [Homo sapiens]', dbxrefs=[])
Most hits consist of only 1 or a few Alignment objects:
>>> len(hit)
1
>>> alignment = hit[0]
>>> type(alignment)
<class 'Bio.Blast.HSP'>
>>> alignment.score
630.0
>>> alignment.annotations
{'bit score': 247.284, 'evalue': 1.69599e-64, 'identity': 122, 'positive': 123, 'gaps': 0, 'midline': 'DLQLLIKAVNLFPAGTNSRWEVIANYMNIHSSSGVKRTAKDVIGKAKSLQKLDPHQKDDINKKAFDKFKKEHGVVPQADNATPSERF GPYTDFTP TTE QKL EQAL TYPVNT ERW IA AVPGR K+'}
Target and query information are stored in the respective attributes of the
alignment:
>>> alignment.target
SeqRecord(seq=Seq({155: 'DLQLLIKAVNLFPAGTNSRWEVIANYMNIHSSSGVKRTAKDVIGKAKSLQKLDP...TKK'}, length=319), id='gi|12654095|gb|AAH00859.1|', name='AAH00859', description='Unknown (protein for IMAGE:3459481) [Homo sapiens]', dbxrefs=[])
>>> alignment.query
SeqRecord(seq=Seq('DLQLLIKAVNLFPAGTNSRWEVIANYMNIHSSSGVKRTAKDVIGKAKSLQKLDP...XKE'), id='gi|1347369|gb|G25137.1|G25137', name='<unknown name>', description='human STS EST48004, sequence tagged site', dbxrefs=[])
This was a BLASTX run, so the query sequence was translated:
>>> len(alignment.target.features)
0
>>> len(alignment.query.features)
1
>>> feature = alignment.query.features[0]
>>> feature
SeqFeature(SimpleLocation(ExactPosition(0), ExactPosition(133)), type='CDS', qualifiers=...)
>>> feature.qualifiers
{'coded_by': 'gi|1347369|gb|G25137.1|G25137:1..399'}
i.e., nucleotides 0:399 (in zero-based coordinates) encode the amino acids
of the query in the alignment.
For an alignment against the reverse strand, the location in the qualifier
is shown as in this example:
>>> record[72][0].query.features[0].qualifiers
{'coded_by': 'complement(gi|1347369|gb|G25137.1|G25137:345..530)'}
"""
def __init__(self):
"""Initialize the Record object."""
self.query = None
def __repr__(self):
query = self.query
try:
query_id = query.id
except AttributeError:
query_id = "unknown"
nhits = len(self)
if nhits == 0:
return f"<Bio.Blast.Record query.id={query_id!r}; no hits>"
elif nhits == 1:
return f"<Bio.Blast.Record query.id={query_id!r}; 1 hit>"
else:
return f"<Bio.Blast.Record query.id={query_id!r}; {nhits} hits>"
def __str__(self):
lines = []
try:
version = self.version
except AttributeError:
pass
else:
lines.append(f"Program: {version}")
try:
db = self.db
except AttributeError:
pass
else:
lines.append(f" db: {db}")
if self.query is not None:
# self.query may be None with legacy Blast if there are no hits
lines.append(" Query: %s (length=%d)" % (self.query.id, len(self.query)))
indent = " " * 9
description_lines = textwrap.wrap(
self.query.description,
width=80,
initial_indent=indent,
subsequent_indent=indent,
)
lines.extend(description_lines)
if len(self) == 0:
lines.append(" Hits: No hits found")
else:
lines.append(" Hits: %s %s %s" % ("-" * 4, "-" * 5, "-" * 58))
pattern = "%13s %5s %s"
lines.append(pattern % ("#", "# HSP", "ID + description"))
lines.append(pattern % ("-" * 4, "-" * 5, "-" * 58))
for idx, hit in enumerate(self):
n = len(hit) # Number of HSPs
if idx < 30:
hid_line = "%s %s" % (hit.target.id, hit.target.description)
if len(hid_line) > 58:
hid_line = hid_line[:55] + "..."
lines.append(pattern % (idx, len(hit), hid_line))
elif idx > len(self) - 4:
hid_line = "%s %s" % (hit.target.id, hit.target.description)
if len(hid_line) > 58:
hid_line = hid_line[:55] + "..."
lines.append(pattern % (idx, len(hit), hid_line))
elif idx == 30:
lines.append("%14s" % "~~~")
return "\n".join(lines)
def __getitem__(self, key):
try:
value = super().__getitem__(key)
except IndexError:
raise IndexError("index out of range") from None
except TypeError:
if not isinstance(key, str):
raise TypeError("key must be an integer, slice, or str") from None
for hit in self:
if hit.target.id == key:
return hit
raise KeyError(key)
else:
if isinstance(key, slice):
record = Record()
record.extend(value)
# Only store the query attribute, as the other attributes
# pertain to the complete Blast record:
try:
query = self.query
except AttributeError:
pass
else:
record.query = query
# The following keys may be present if the record was created
# by Blast.read:
keys = (
"source",
"program",
"version",
"reference",
"db",
"param",
"mbstat",
)
for key in keys:
try:
value = getattr(self, key)
except AttributeError:
pass
else:
setattr(record, key, value)
return record
return value
def keys(self):
"""Return a list of the target.id of each hit."""
return [hit.target.id for hit in self]
def __contains__(self, key):
for hit in self:
if hit.target.id == key:
return True
return False
def index(self, key):
"""Return the index of the hit for which the target.id is equal to the key."""
for i, hit in enumerate(self):
if hit.target.id == key:
return i
raise ValueError(f"'{key}' not found")
class Records(UserList):
"""Stores the BLAST results of a single BLAST run.
A ``Bio.Blast.Records`` object is an iterator. Iterating over it returns
returns ``Bio.Blast.Record`` objects, each of which corresponds to one
BLAST query.
Common attributes of a ``Bio.Blast.Records`` object are
- source: The input data from which the ``Bio.Blast.Records`` object
was constructed.
- program: The specific BLAST program that was used (e.g., 'blastn').
- version: The version of the BLAST program (e.g., 'BLASTN 2.2.27+').
- reference: The literature reference to the BLAST publication.
- db: The BLAST database against which the query was run
(e.g., 'nr').
- query: A ``SeqRecord`` object which may contain some or all of the
following information:
- query.id: SeqId of the query;
- query.description: Definition line of the query;
- query.seq: The query sequence. The query sequence.
The query sequence.
- param: A dictionary with the parameters used for the BLAST run.
You may find the following keys in this dictionary:
- 'matrix': the scoring matrix used in the BLAST run
(e.g., 'BLOSUM62') (string);
- 'expect': threshold on the expected number of chance
matches (float);
- 'include': e-value threshold for inclusion in
multipass model in psiblast (float);
- 'sc-match': score for matching nucleotides (integer);
- 'sc-mismatch': score for mismatched nucleotides
(integer);
- 'gap-open': gap opening cost (integer);
- 'gap-extend': gap extension cost (integer);
- 'filter': filtering options applied in the BLAST
run (string);
- 'pattern': PHI-BLAST pattern (string);
- 'entrez-query': Limit of request to Entrez query (string).
- mbstat: A dictionary with Mega BLAST search statistics. As this
information is stored near the end of the XML file, this
attribute can only be accessed after the file has been read
completely (by iterating over the records until a
``StopIteration`` is issued. This dictionary can contain the
same keys as the dictionary stored under the ``stat``
attribute of a ``Record`` object.
>>> from Bio import Blast
>>> path = "Blast/xml_2218_blastp_002.xml"
In a script, you would use a ``with`` block, as in
>>> with Blast.parse(path) as records:
... print(records.source)
...
Blast/xml_2218_blastp_002.xml
to ensure that the file is closed at the end of the block.
Here, we will simply do
>>> records = Blast.parse("Blast/xml_2218_blastp_002.xml")
so we can see the output of each command right away.
>>> type(records)
<class 'Bio.Blast.Records'>
>>> records.source
'Blast/xml_2218_blastp_002.xml'
>>> records.program
'blastp'
>>> records.version
'BLASTP 2.2.18+'
>>> records.reference
'Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.'
>>> records.db
'gpipe/9606/Previous/protein'
>>> records.param
{'matrix': 'BLOSUM62', 'expect': 0.01, 'gap-open': 11, 'gap-extend': 1, 'filter': 'm L; R -d repeat/repeat_9606;'}
Iterating over the records returns Bio.Blast.Record objects:
>>> record = next(records)
>>> type(record)
<class 'Bio.Blast.Record'>
>>> record.query.id
'gi|585505|sp|Q08386|MOPB_RHOCA'
>>> record = next(records)
>>> type(record)
<class 'Bio.Blast.Record'>
>>> record.query.id
'gi|129628|sp|P07175.1|PARA_AGRTU'
>>> record = next(records) # doctest:+ELLIPSIS
Traceback (most recent call last):
...
StopIteration
You can also use the records as a list, for example by extracting a record
by index, or by calling ``len`` or ``print`` on the records. The parser
will then automatically iterate over the records and store them:
>>> records = Blast.parse("Blast/wnts.xml")
>>> record = records[3] # this causes all records to be read in and stored
>>> record.query.id
'Query_4'
>>> len(records)
5
After the records have been read in, you can still iterate over them:
>>> for i, record in enumerate(records):
... print(i, record.query.id)
...
0 Query_1
1 Query_2
2 Query_3
3 Query_4
4 Query_5
""" # noqa: RST201, RST203, RST301
def __init__(self, source):
"""Initialize the Records object."""
if isinstance(source, list): # UserList API requirement
self._records = source
self._loaded = True
self._index = 0
return
self.source = source
try:
stream = open(source, "rb")
except TypeError: # not a path, assume we received a stream
if source.read(0) != b"":
raise StreamModeError(
"BLAST output files must be opened in binary mode."
) from None
stream = source
self._stream = stream
self._read_header()
self._records = [] # for when we want to use Records as a list
self._loaded = False
def _read_header(self):
from Bio.Blast._parser import XMLHandler
stream = self._stream
source = self.source
try: # context manager won't kick in until after parse returns
parser = expat.ParserCreate(namespace_separator=" ")
self._parser = parser
handler = XMLHandler(parser)
handler._records = self
while True:
data = stream.read(BLOCK)
if data == b"":
try:
handler._parser
except AttributeError:
break
else:
raise ValueError(
f"premature end of XML file (after reading {parser.CurrentByteIndex} bytes)"
)
try:
parser.Parse(data, False)
except expat.ExpatError as e:
if parser.StartElementHandler:
# We saw the initial <!xml declaration, so we can be
# sure that we are parsing XML data. Most likely, the
# XML file is corrupted.
raise CorruptedXMLError(e) from None
else:
# We have not seen the initial <!xml declaration, so
# probably the input data is not in XML format.
raise NotXMLError(e) from None
try:
self._cache
except AttributeError:
pass
else:
# We have finished reading the header
break
except Exception:
if stream is not source:
stream.close()
raise
self._index = 0
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
try:
stream = self._stream
except AttributeError:
return
if stream is not self.source:
stream.close()
del self._stream
def __iter__(self):
return self
def __next__(self):
if self._loaded is True:
try:
record = self._records[self._index]
except IndexError:
raise StopIteration from None
self._index += 1
return record
try:
cache = self._cache
except AttributeError:
raise StopIteration from None
parser = self._parser
stream = self._stream
while True:
try:
record = self._cache.popleft()
except IndexError: # no record ready to be returned
pass
else:
self._index += 1
return record
# Read in another block of data from the file.
data = stream.read(BLOCK)
if data == b"":
del self._cache
del self._parser
if parser.StartElementHandler is not None:
raise ValueError(
f"premature end of XML file (after reading {parser.CurrentByteIndex} bytes)"
)
raise StopIteration
try:
parser.Parse(data, False)
except expat.ExpatError as e:
raise CorruptedXMLError(e) from None
def __getitem__(self, index):
item = super().__getitem__(index)
if index == slice(None, None, None):
for key, value in self.__dict__.items():
if key not in ("_stream", "_parser", "_cache"):
item.__dict__[key] = value
return item
@property
def data(self):
"""Overrides the data attribute of UserList."""
if self._loaded is False:
# Read all records and store them
index = self._index
if index > 0:
try:
self._stream.seek(0)
except io.UnsupportedOperation:
raise ValueError(
"list-like access after iterating is supported only if the input data is seekable."
)
self._read_header()
self._index = 0
for record in self:
self._records.append(record)
stream = self._stream
if stream is not self.source:
stream.close()
del self._stream
self._loaded = True
self._index = index
return self._records
def __repr__(self):
return f"<Bio.Blast.Records source={self.source!r} program={self.program!r} version={self.version!r} db={self.db!r}>"
def __str__(self):
text = """\
Program: %s
db: %s""" % (
self.version,
self.db,
)
records = self[:] # to ensure that the records are read in
for record in self._records:
text += "\n\n" + str(record)
return text
def parse(source):
"""Parse an XML file containing BLAST output and return a Bio.Blast.Records object.
This returns an iterator object; iterating over it returns Bio.Blast.Record
objects one by one.
The source can be a file stream or the path to an XML file containing the
BLAST output. If a file stream, source must be in binary mode. This allows
the parser to detect the encoding from the XML file,and to use it to convert
any text in the XML to the correct Unicode string. The qblast function in
Bio.Blast returns a file stream in binary mode. For files, please use mode
"rb" when opening the file, as in
>>> from Bio import Blast
>>> stream = open("Blast/wnts.xml", "rb") # opened in binary mode
>>> records = Blast.parse(stream)
>>> for record in records:
... print(record.query.id, record.query.description)
...
Query_1 gi|195230749:301-1383 Homo sapiens wingless-type MMTV integration site family member 2 (WNT2), transcript variant 1, mRNA
Query_2 gi|325053704:108-1166 Homo sapiens wingless-type MMTV integration site family, member 3A (WNT3A), mRNA
Query_3 gi|156630997:105-1160 Homo sapiens wingless-type MMTV integration site family, member 4 (WNT4), mRNA
Query_4 gi|371502086:108-1205 Homo sapiens wingless-type MMTV integration site family, member 5A (WNT5A), transcript variant 2, mRNA
Query_5 gi|53729353:216-1313 Homo sapiens wingless-type MMTV integration site family, member 6 (WNT6), mRNA
>>> stream.close()
"""
return Records(source)
def read(source):
"""Parse an XML file containing BLAST output for a single query and return it.
Internally, this function uses Bio.Blast.parse to obtain an iterator over
BLAST records. The function then reads one record from the iterator,
ensures that there are no further records, and returns the record it found
as a Bio.Blast.Record object. An exception is raised if no records are
found, or more than one record is found.
The source can be a file stream or the path to an XML file containing the
BLAST output. If a file stream, source must be in binary mode. This allows
the parser to detect the encoding from the XML file,and to use it to convert
any text in the XML to the correct Unicode string. The qblast function in
Bio.Blast returns a file stream in binary mode. For files, please use mode
"rb" when opening the file, as in
>>> from Bio import Blast
>>> stream = open("Blast/xml_21500_blastn_001.xml", "rb") # opened in binary mode
>>> record = Blast.read(stream)
>>> record.query.id
'Query_78041'
>>> record.query.description
'G26684.1 human STS STS_D11570, sequence tagged site'
>>> len(record)
11
>>> stream.close()
Use the Bio.Blast.parse function if you want to read a file containing
BLAST output for more than one query.
"""
with parse(source) as records:
try:
record = next(records)
except StopIteration:
raise ValueError("No BLAST output found.") from None
try:
next(records)
raise ValueError("BLAST output for more than one query found.")
except StopIteration:
pass
for key in ("source", "program", "version", "reference", "db", "param", "mbstat"):
try:
value = getattr(records, key)
except AttributeError:
pass
else:
setattr(record, key, value)
return record
def write(records, destination, fmt="XML"):
"""Write BLAST records as an XML file, and return the number of records.
Arguments:
- records - A ``Bio.Blast.Records`` object.
- destination - File or file-like object to write to, or filename as
string.
The File object must have been opened for writing in
binary mode, and must be closed (or flushed) by the caller
after this function returns to ensure that all records are
written.
- fmt - string describing the file format to write
(case-insensitive).
Currently, only "XML" and "XML2" are accepted.
Returns the number of records written (as an integer).
"""
fmt = fmt.upper()
if fmt == "XML":
Writer = _writers.XMLWriter
elif fmt == "XML2":
Writer = _writers.XML2Writer
else:
raise ValueError(f"Unknown format {fmt}; expected 'XML' or 'XML2'")
try:
stream = open(destination, "wb")
except TypeError: # not a path, assume we received a stream
try:
destination.write(b"")
except TypeError:
# destination was opened in text mode
raise StreamModeError(
"File must be opened in binary mode for writing."
) from None
stream = destination
writer = Writer(stream)
try:
count = writer.write(records)
finally:
if stream is not destination:
stream.close()
return count
@function_with_previous
def qblast(
program,
database,
sequence,
url_base=NCBI_BLAST_URL,
auto_format=None,
composition_based_statistics=None,
db_genetic_code=None,
endpoints=None,
entrez_query="(none)",
expect=10.0,
filter=None,
gapcosts=None,
genetic_code=None,
hitlist_size=50,
i_thresh=None,
layout=None,
lcase_mask=None,
matrix_name=None,
nucl_penalty=None,
nucl_reward=None,
other_advanced=None,
perc_ident=None,
phi_pattern=None,
query_file=None,
query_believe_defline=None,
query_from=None,
query_to=None,
searchsp_eff=None,
service=None,
threshold=None,
ungapped_alignment=None,
word_size=None,
short_query=None,
alignments=500,
alignment_view=None,
descriptions=500,
entrez_links_new_window=None,
expect_low=None,
expect_high=None,
format_entrez_query=None,
format_object=None,
format_type="XML",
ncbi_gi=None,
results_file=None,
show_overview=None,
megablast=None,
template_type=None,
template_length=None,
username="blast",
password=None,
):
"""BLAST search using NCBI's QBLAST server or a cloud service provider.
Supports all parameters of the old qblast API for Put and Get.
Please note that NCBI uses the new Common URL API for BLAST searches
on the internet (http://ncbi.github.io/blast-cloud/dev/api.html). Thus,
some of the parameters used by this function are not (or are no longer)
officially supported by NCBI. Although they are still functioning, this
may change in the future.
The Common URL API (http://ncbi.github.io/blast-cloud/dev/api.html) allows
doing BLAST searches on cloud servers. To use this feature, please set
``url_base='http://host.my.cloud.service.provider.com/cgi-bin/blast.cgi'``
and ``format_object='Alignment'``. For more details, please see
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=CloudBlast
Some useful parameters:
- program blastn, blastp, blastx, tblastn, or tblastx (lower case)
- database Which database to search against (e.g. "nr").
- sequence The sequence to search.
- ncbi_gi TRUE/FALSE whether to give 'gi' identifier.
- descriptions Number of descriptions to show. Def 500.
- alignments Number of alignments to show. Def 500.
- expect An expect value cutoff. Def 10.0.
- matrix_name Specify an alt. matrix (PAM30, PAM70, BLOSUM80, BLOSUM45).
- filter "none" turns off filtering. Default no filtering
- format_type "XML" (default), "HTML", "Text", "XML2", "JSON2",
or "Tabular".
- entrez_query Entrez query to limit Blast search
- hitlist_size Number of hits to return. Default 50
- megablast TRUE/FALSE whether to use MEga BLAST algorithm (blastn only)
- short_query TRUE/FALSE whether to adjust the search parameters for a
short query sequence. Note that this will override
manually set parameters like word size and e value. Turns
off when sequence length is > 30 residues. Default: None.
- service plain, psi, phi, rpsblast, megablast (lower case)
This function does no checking of the validity of the parameters
and passes the values to the server as is. More help is available at:
https://ncbi.github.io/blast-cloud/dev/api.html
The http.client.HTTPResponse object returned by this function has the
additional attributes rid and rtoe with the Request ID and Request Time Of
Execution for this BLAST search.
"""
programs = ["blastn", "blastp", "blastx", "tblastn", "tblastx"]
if program not in programs:
raise ValueError(
f"Program specified is {program}. Expected one of {', '.join(programs)}"
)
# SHORT_QUERY_ADJUST throws an error when using blastn (wrong parameter
# assignment from NCBIs side).
# Thus we set the (known) parameters directly:
if short_query and program == "blastn":
short_query = None
# We only use the 'short-query' parameters for short sequences:
if len(sequence) < 31:
expect = 1000
word_size = 7
nucl_reward = 1
filter = None
lcase_mask = None
warnings.warn(
'"SHORT_QUERY_ADJUST" is incorrectly implemented (by NCBI) for blastn.'
" We bypass the problem by manually adjusting the search parameters."
" Thus, results may slightly differ from web page searches.",
BiopythonWarning,
)
# Format the "Put" command, which sends search requests to qblast.
# Parameters taken from http://www.ncbi.nlm.nih.gov/BLAST/Doc/node5.html on 9 July 2007
# Additional parameters are taken from http://www.ncbi.nlm.nih.gov/BLAST/Doc/node9.html on 8 Oct 2010
# To perform a PSI-BLAST or PHI-BLAST search the service ("Put" and "Get" commands) must be specified
# (e.g. psi_blast = NCBIWWW.qblast("blastp", "refseq_protein", input_sequence, service="psi"))
parameters = {
"AUTO_FORMAT": auto_format,
"COMPOSITION_BASED_STATISTICS": composition_based_statistics,
"DATABASE": database,
"DB_GENETIC_CODE": db_genetic_code,
"ENDPOINTS": endpoints,
"ENTREZ_QUERY": entrez_query,
"EXPECT": expect,
"FILTER": filter,
"GAPCOSTS": gapcosts,
"GENETIC_CODE": genetic_code,
"HITLIST_SIZE": hitlist_size,
"I_THRESH": i_thresh,
"LAYOUT": layout,
"LCASE_MASK": lcase_mask,
"MEGABLAST": megablast,
"MATRIX_NAME": matrix_name,
"NUCL_PENALTY": nucl_penalty,
"NUCL_REWARD": nucl_reward,
"OTHER_ADVANCED": other_advanced,
"PERC_IDENT": perc_ident,
"PHI_PATTERN": phi_pattern,
"PROGRAM": program,
# ('PSSM': pssm: - It is possible to use PSI-BLAST via this API?
"QUERY": sequence,
"QUERY_FILE": query_file,
"QUERY_BELIEVE_DEFLINE": query_believe_defline,
"QUERY_FROM": query_from,
"QUERY_TO": query_to,
# 'RESULTS_FILE': ...: - Can we use this parameter?
"SEARCHSP_EFF": searchsp_eff,
"SERVICE": service,
"SHORT_QUERY_ADJUST": short_query,
"TEMPLATE_TYPE": template_type,
"TEMPLATE_LENGTH": template_length,
"THRESHOLD": threshold,
"UNGAPPED_ALIGNMENT": ungapped_alignment,
"WORD_SIZE": word_size,
"CMD": "Put",
}
if password is not None:
# handle authentication for BLAST cloud
password_mgr = HTTPPasswordMgrWithDefaultRealm()
password_mgr.add_password(None, url_base, username, password)
handler = HTTPBasicAuthHandler(password_mgr)
opener = build_opener(handler)
install_opener(opener)
if url_base == NCBI_BLAST_URL:
parameters.update({"email": email, "tool": tool})
parameters = {key: value for key, value in parameters.items() if value is not None}
message = urlencode(parameters).encode()
request = Request(url_base, message, {"User-Agent": "BiopythonClient"})
# Send off the initial query to qblast.
# Note the NCBI do not currently impose a rate limit here, other
# than the request not to make say 50 queries at once using multiple
# threads.
stream = urlopen(request)
# Format the "Get" command, which gets the formatted results from qblast
# Parameters taken from http://www.ncbi.nlm.nih.gov/BLAST/Doc/node6.html on 9 July 2007
rid, rtoe = _parse_qblast_ref_page(stream)
parameters = {
"ALIGNMENTS": alignments,
"ALIGNMENT_VIEW": alignment_view,
"DESCRIPTIONS": descriptions,
"ENTREZ_LINKS_NEW_WINDOW": entrez_links_new_window,
"EXPECT_LOW": expect_low,
"EXPECT_HIGH": expect_high,
"FORMAT_ENTREZ_QUERY": format_entrez_query,
"FORMAT_OBJECT": format_object,
"FORMAT_TYPE": format_type,
"NCBI_GI": ncbi_gi,
"RID": rid,
"RESULTS_FILE": results_file,
"SERVICE": service,
"SHOW_OVERVIEW": show_overview,
"CMD": "Get",
}
parameters = {key: value for key, value in parameters.items() if value is not None}
message = urlencode(parameters).encode()
# Poll NCBI until the results are ready.
# https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=DeveloperInfo
# 1. Do not contact the server more often than once every 10 seconds.
# 2. Do not poll for any single RID more often than once a minute.
# 3. Use the URL parameter email and tool, so that the NCBI
# can contact you if there is a problem.
# 4. Run scripts weekends or between 9 pm and 5 am Eastern time
# on weekdays if more than 50 searches will be submitted.
# --
# Could start with a 10s delay, but expect most short queries
# will take longer thus at least 70s with delay. Therefore,
# start with 20s delay, thereafter once a minute.
delay = 20 # seconds
start_time = time.time()
while True:
current = time.time()
wait = qblast.previous + delay - current
if wait > 0:
time.sleep(wait)
qblast.previous = current + wait
else:
qblast.previous = current
# delay by at least 60 seconds only if running the request against the public NCBI API
if delay < 60 and url_base == NCBI_BLAST_URL:
# Wasn't a quick return, must wait at least a minute
delay = 60
elapsed = time.time() - start_time
if elapsed >= 600:
warnings.warn(
f"BLAST request {rid} is taking longer than 10 minutes, consider re-issuing it",
BiopythonWarning,
)
request = Request(url_base, message, {"User-Agent": "BiopythonClient"})
stream = urlopen(request)
data = stream.peek()
if format_type == "HTML" and b"<title>NCBI Blast:</title>" in data:
continue
elif data.startswith(b"<!DOCTYPE html"):
continue
else:
break
if format_type == "XML":
assert data.startswith(b"<?xml ")
elif format_type == "HTML":
assert data.startswith(b"<!DOCTYPE html ")
elif format_type in ("Text", "Tabular"):
assert data.startswith(b"<p><!--\nQBlastInfoBegin")
elif format_type in ("XML2", "JSON2"):
assert data.startswith(b"PK\x03\x04") # zipped file
stream.rid = rid
stream.rtoe = rtoe
return stream
qblast.previous = 0
def _parse_qblast_ref_page(handle):
"""Extract a tuple of RID, RTOE from the 'please wait' page (PRIVATE).
The NCBI FAQ pages use TOE for 'Time of Execution', so RTOE is probably
'Request Time of Execution' and RID would be 'Request Identifier'.
"""
s = handle.read().decode()
i = s.find("RID =")
if i == -1:
rid = None
else:
j = s.find("\n", i)
rid = s[i + len("RID =") : j].strip()
i = s.find("RTOE =")
if i == -1:
rtoe = None
else:
j = s.find("\n", i)
rtoe = s[i + len("RTOE =") : j].strip()
if not rid and not rtoe:
# Can we reliably extract the error message from the HTML page?
# e.g. "Message ID#24 Error: Failed to read the Blast query:
# Nucleotide FASTA provided for protein sequence"
# or "Message ID#32 Error: Query contains no data: Query
# contains no sequence data"
#
# This used to occur inside a <div class="error msInf"> entry:
i = s.find('<div class="error msInf">')
if i != -1:
msg = s[i + len('<div class="error msInf">') :].strip()
msg = msg.split("</div>", 1)[0].split("\n", 1)[0].strip()
if msg:
raise ValueError(f"Error message from NCBI: {msg}")
# In spring 2010 the markup was like this:
i = s.find('<p class="error">')
if i != -1:
msg = s[i + len('<p class="error">') :].strip()
msg = msg.split("</p>", 1)[0].split("\n", 1)[0].strip()
if msg:
raise ValueError(f"Error message from NCBI: {msg}")
# Generic search based on the way the error messages start:
i = s.find("Message ID#")
if i != -1:
# Break the message at the first HTML tag
msg = s[i:].split("<", 1)[0].split("\n", 1)[0].strip()
raise ValueError(f"Error message from NCBI: {msg}")
# We didn't recognise the error layout :(
# print(s)
raise ValueError(
"No RID and no RTOE found in the 'please wait' page, "
"there was probably an error in your request but we "
"could not extract a helpful error message."
)
elif not rid:
# Can this happen?
raise ValueError(
f"No RID found in the 'please wait' page. (although RTOE = {rtoe!r})"
)
elif not rtoe:
# Can this happen?
raise ValueError(
f"No RTOE found in the 'please wait' page. (although RID = {rid!r})"
)
try:
return rid, int(rtoe)
except ValueError:
raise ValueError(
f"A non-integer RTOE found in the 'please wait' page, {rtoe!r}"
) from None
if __name__ == "__main__":
from Bio._utils import run_doctest
run_doctest()