Files
biopython/Tests/test_GenomeDiagram.py
ruff-isort de0bb21fb3 Apply isort (forcing single lines, not sorting by type) via ruff
$ ruff check --fix --select=I \
  --config=lint.isort.force-single-line=true \
  --config=lint.isort.order-by-type=false \
  BioSQL/ Bio/ Tests/ Scripts/ Doc/ setup.py

Using ruff version 0.4.10
2024-06-26 15:31:39 +09:00

1278 lines
46 KiB
Python

# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Tests for GenomeDiagram general functionality."""
import math
import os
import unittest
# Do we have ReportLab? Raise error if not present.
from Bio import MissingPythonDependencyError
try:
from reportlab.lib import colors
from reportlab.lib.units import cm
from reportlab.pdfbase import pdfmetrics
from reportlab.pdfbase.ttfonts import TTFont
except ImportError:
raise MissingPythonDependencyError(
"Install reportlab if you want to use Bio.Graphics."
) from None
try:
# The preferred PIL import has changed over time...
try:
from PIL import Image
except ImportError:
import Image
from reportlab.graphics import renderPM
except ImportError:
# This is an optional part of ReportLab, so may not be installed.
# We'll raise a missing dependency error if rendering to a
# bitmap format is attempted.
renderPM = None
from reportlab import rl_config
from Bio import SeqIO
from Bio.Graphics.GenomeDiagram import CrossLink
from Bio.Graphics.GenomeDiagram import Diagram
from Bio.Graphics.GenomeDiagram import FeatureSet
from Bio.Graphics.GenomeDiagram import GraphSet
from Bio.Graphics.GenomeDiagram import Track
from Bio.Graphics.GenomeDiagram._Colors import ColorTranslator
from Bio.Graphics.GenomeDiagram._Graph import GraphData
from Bio.SeqFeature import SeqFeature
from Bio.SeqFeature import SimpleLocation
rl_config.invariant = True
def fill_and_border(base_color, alpha=0.5):
"""Return fill and border colors given a base color."""
try:
c = base_color.clone()
c.alpha = alpha
return c, base_color
except AttributeError:
# Old ReportLab, no transparency and/or no clone
return base_color, base_color
###############################################################################
# Utility functions for graph plotting, originally in GenomeDiagram.Utilities #
# See Bug 2705 for discussion on where to put these functions in Biopython... #
###############################################################################
def apply_to_window(sequence, window_size, function, step=None):
"""Apply function to windows of the given sequence.
Returns a list of (position, value) tuples for fragments of the passed
sequence of length window_size (stepped by step), calculated by the passed
function. Returned positions are the midpoint of each window.
- sequence - Bio.Seq.Seq object.
- window_size - an integer describing the length of sequence to consider.
- step - an integer describing the step to take between windows
(default = window_size//2).
- function - Method or function that accepts a Bio.Seq.Seq object
as its sole argument and returns a single value.
"""
seqlen = len(sequence) # Total length of sequence to be used
if step is None: # No step specified, so use half window-width or 1 if larger
step = max(window_size // 2, 1)
else: # Use specified step, or 1 if greater
step = max(step, 1)
results = [] # Holds (position, value) results
# Perform the passed function on as many windows as possible, short of
# overrunning the sequence
pos = 0
while pos < seqlen - window_size + 1:
# Obtain sequence fragment
start, middle, end = pos, (pos + window_size + pos) // 2, pos + window_size
fragment = sequence[start:end]
# Apply function to the sequence fragment
value = function(fragment)
results.append((middle, value)) # Add results to list
# Advance to next fragment
pos += step
# Use the last available window on the sequence, even if it means
# re-covering old ground
if pos != seqlen - window_size:
# Obtain sequence fragment
pos = seqlen - window_size
start, middle, end = pos, (pos + window_size + pos) // 2, pos + window_size
fragment = sequence[start:end]
# Apply function to sequence fragment
value = function(fragment)
results.append((middle, value)) # Add results to list
return results # Return the list of (position, value) results
def calc_gc_content(sequence):
"""Return the % G+C content in a passed sequence.
Arguments:
- sequence - a Bio.Seq.Seq object.
calc_gc_content(sequence)
"""
d = {}
for nt in ["A", "T", "G", "C"]:
d[nt] = sequence.count(nt) + sequence.count(nt.lower())
gc = d.get("G", 0) + d.get("C", 0)
if gc == 0:
return 0
return gc / (d["A"] + d["T"] + gc)
def calc_at_content(sequence):
"""Return the % A+T content in a passed sequence.
Arguments:
- sequence - a Bio.Seq.Seq object.
calc_at_content(sequence)
"""
d = {}
for nt in ["A", "T", "G", "C"]:
d[nt] = sequence.count(nt) + sequence.count(nt.lower())
at = d.get("A", 0) + d.get("T", 0)
if at == 0:
return 0
return at / (d["G"] + d["G"] + at)
def calc_gc_skew(sequence):
"""Return the (G-C)/(G+C) GC skew in a passed sequence.
Arguments:
- sequence - a Bio.Seq.Seq object.
calc_gc_skew(sequence)
"""
g = sequence.count("G") + sequence.count("g")
c = sequence.count("C") + sequence.count("c")
if g + c == 0:
return 0.0 # TODO - return NaN or None here?
else:
return (g - c) / (g + c)
def calc_at_skew(sequence):
"""Return the (A-T)/(A+T) AT skew in a passed sequence.
Arguments:
- sequence - a Bio.Seq.Seq object.
calc_at_skew(sequence)
"""
a = sequence.count("A") + sequence.count("a")
t = sequence.count("T") + sequence.count("t")
if a + t == 0:
return 0.0 # TODO - return NaN or None here?
else:
return (a - t) / (a + t)
def calc_dinucleotide_counts(sequence):
"""Return the total count of di-nucleotides repeats (e.g. "AA", "CC").
This is purely for the sake of generating some non-random sequence
based score for plotting, with no expected biological meaning.
NOTE - Only considers same case pairs.
NOTE - "AA" scores 1, "AAA" scores 2, "AAAA" scores 3 etc.
"""
total = 0
for letter in "ACTGUactgu":
total += sequence.count(letter + letter)
return total
###############################################################################
# End of utility functions for graph plotting #
###############################################################################
# Tests
# class TrackTest(unittest.TestCase):
# # TODO Bring code from Track.py, unsure about what test does
# pass
class ColorsTest(unittest.TestCase):
"""Color tests."""
def test_color_conversions(self):
"""Test color translations."""
translator = ColorTranslator()
# Does the translate method correctly convert the passed argument?
self.assertEqual(
translator.float1_color((0.5, 0.5, 0.5)),
translator.translate((0.5, 0.5, 0.5)),
"Did not correctly translate colour from floating point RGB tuple",
)
self.assertEqual(
translator.int255_color((1, 75, 240)),
translator.translate((1, 75, 240)),
"Did not correctly translate colour from integer RGB tuple",
)
self.assertEqual(
translator.artemis_color(7),
translator.translate(7),
"Did not correctly translate colour from Artemis colour scheme",
)
self.assertEqual(
translator.scheme_color(2),
translator.translate(2),
"Did not correctly translate colour from user-defined colour scheme",
)
class GraphTest(unittest.TestCase):
"""Graph tests."""
def test_limits(self):
"""Check line graphs."""
# TODO - Fix GD so that the same min/max is used for all three lines?
points = 1000
scale = math.pi * 2.0 / points
data1 = [math.sin(x * scale) for x in range(points)]
data2 = [math.cos(x * scale) for x in range(points)]
data3 = [2 * math.sin(2 * x * scale) for x in range(points)]
gdd = Diagram(
"Test Diagram",
circular=False,
y=0.01,
yt=0.01,
yb=0.01,
x=0.01,
xl=0.01,
xr=0.01,
)
gdt_data = gdd.new_track(1, greytrack=False)
gds_data = gdt_data.new_set("graph")
for data_values, _name, color in zip(
[data1, data2, data3], ["sin", "cos", "2sin2"], ["red", "green", "blue"]
):
data = list(zip(range(points), data_values))
gds_data.new_graph(
data, "", style="line", color=color, altcolor=color, center=0
)
gdd.draw(
format="linear",
tracklines=False,
pagesize=(15 * cm, 15 * cm),
fragments=1,
start=0,
end=points,
)
gdd.write(os.path.join("Graphics", "line_graph.pdf"), "pdf")
# Circular diagram
gdd.draw(
tracklines=False,
pagesize=(15 * cm, 15 * cm),
circular=True, # Data designed to be periodic
start=0,
end=points,
circle_core=0.5,
)
gdd.write(os.path.join("Graphics", "line_graph_c.pdf"), "pdf")
def test_slicing(self):
"""Check GraphData slicing."""
gd = GraphData()
gd.set_data([(1, 10), (5, 15), (20, 40)])
gd.add_point((10, 20))
self.assertEqual(
gd[4:16],
[(5, 15), (10, 20)], # noqa 231
"Unable to insert and retrieve points correctly",
)
class LabelTest(unittest.TestCase):
"""Check label positioning."""
def setUp(self):
"""Start a diagram."""
self.gdd = Diagram(
"Test Diagram",
circular=False,
y=0.01,
yt=0.01,
yb=0.01,
x=0.01,
xl=0.01,
xr=0.01,
)
def finish(self, name, circular=True):
"""Draw it..."""
tracks = len(self.gdd.tracks)
# Work around the page orientation code being too clever
# and flipping the h & w round:
if tracks <= 3:
orient = "landscape"
else:
orient = "portrait"
self.gdd.draw(
format="linear",
orientation=orient,
tracklines=False,
pagesize=(15 * cm, 5 * cm * tracks),
fragments=1,
start=0,
end=400,
)
self.gdd.write(os.path.join("Graphics", name + ".pdf"), "pdf")
global renderPM
if renderPM:
try:
# For the tutorial this is useful:
self.gdd.write(os.path.join("Graphics", name + ".png"), "png")
except renderPM.RenderPMError:
# Probably a font problem, e.g.
# RenderPMError: Can't setFont(Times-Roman) missing the T1 files?
# Originally <type 'exceptions.TypeError'>: makeT1Font() argument 2
# must be string, not None
renderPM = None
except OSError:
# Probably a library problem, e.g.
# OSError: encoder zip not available
renderPM = None
if circular:
# Circular diagram
self.gdd.draw(
tracklines=False,
pagesize=(15 * cm, 15 * cm),
fragments=1,
circle_core=0.5,
start=0,
end=400,
)
self.gdd.write(os.path.join("Graphics", name + "_c.pdf"), "pdf")
def add_track_with_sigils(self, **kwargs):
"""Add track with sigils."""
self.gdt_features = self.gdd.new_track(1, greytrack=False)
self.gds_features = self.gdt_features.new_set()
for i in range(18):
start = int((400 * i) / 18.0)
end = start + 17
if i % 3 == 0:
strand = None
name = "Strandless"
color = colors.orange
elif i % 3 == 1:
strand = +1
name = "Forward"
color = colors.red
else:
strand = -1
name = "Reverse"
color = colors.blue
feature = SeqFeature(SimpleLocation(start, end, strand=strand))
self.gds_features.add_feature(
feature, name=name, color=color, label=True, **kwargs
)
def test_label_default(self):
"""Feature labels - default."""
self.add_track_with_sigils()
self.finish("labels_default")
class SigilsTest(unittest.TestCase):
"""Check the different feature sigils.
These figures are intended to be used in the Tutorial...
"""
def setUp(self):
"""Initialise diagram."""
self.gdd = Diagram(
"Test Diagram",
circular=False,
y=0.01,
yt=0.01,
yb=0.01,
x=0.01,
xl=0.01,
xr=0.01,
)
def add_track_with_sigils(self, track_caption="", **kwargs):
"""Add a track of features."""
self.gdt_features = self.gdd.new_track(
1, greytrack=(track_caption != ""), name=track_caption, greytrack_labels=1
)
# We'll just use one feature set for these features,
self.gds_features = self.gdt_features.new_set()
# Add three features to show the strand options,
feature = SeqFeature(SimpleLocation(25, 125, strand=+1))
self.gds_features.add_feature(feature, name="Forward", **kwargs)
feature = SeqFeature(SimpleLocation(150, 250, strand=None))
self.gds_features.add_feature(feature, name="strandless", **kwargs)
feature = SeqFeature(SimpleLocation(275, 375, strand=-1))
self.gds_features.add_feature(feature, name="Reverse", **kwargs)
def finish(self, name, circular=True):
"""Draw it..."""
tracks = len(self.gdd.tracks)
# Work around the page orientation code being too clever
# and flipping the h & w round:
if tracks <= 3:
orient = "landscape"
else:
orient = "portrait"
self.gdd.draw(
format="linear",
orientation=orient,
tracklines=False,
pagesize=(15 * cm, 5 * cm * tracks),
fragments=1,
start=0,
end=400,
)
self.gdd.write(os.path.join("Graphics", name + ".pdf"), "pdf")
global renderPM
if renderPM:
# For the tutorial this might be useful:
try:
self.gdd.write(os.path.join("Graphics", name + ".png"), "png")
except renderPM.RenderPMError:
# Probably a font problem
renderPM = None
if circular:
# Circular diagram
self.gdd.draw(
tracklines=False,
pagesize=(15 * cm, 15 * cm),
fragments=1,
circle_core=0.5,
start=0,
end=400,
)
self.gdd.write(os.path.join("Graphics", name + "_c.pdf"), "pdf")
def test_all_sigils(self):
"""All sigils."""
for glyph in ["BOX", "OCTO", "JAGGY", "ARROW", "BIGARROW"]:
self.add_track_with_sigils(track_caption=f' sigil="{glyph}"', sigil=glyph)
self.finish("GD_sigils")
def test_labels(self):
"""Feature labels."""
self.add_track_with_sigils(label=True)
self.add_track_with_sigils(
label=True,
color="green",
# label_position left as default!
label_size=25,
label_angle=0,
)
self.add_track_with_sigils(
label=True,
color="purple",
label_position="end",
label_size=4,
label_angle=90,
)
self.add_track_with_sigils(
label=True,
color="blue",
label_position="middle",
label_size=6,
label_angle=-90,
)
self.add_track_with_sigils(
label=True,
color="cyan",
label_position="start",
label_size=6,
label_angle=-90,
)
self.assertEqual(len(self.gdd.tracks), 5)
self.finish("GD_sigil_labels", circular=True)
def test_arrow_shafts(self):
"""Feature arrow sigils, varying shafts."""
self.add_track_with_sigils(sigil="ARROW")
self.add_track_with_sigils(sigil="ARROW", color="brown", arrowshaft_height=1.0)
self.add_track_with_sigils(sigil="ARROW", color="teal", arrowshaft_height=0.2)
self.add_track_with_sigils(
sigil="ARROW", color="darkgreen", arrowshaft_height=0.1
)
self.assertEqual(len(self.gdd.tracks), 4)
self.finish("GD_sigil_arrow_shafts")
def test_big_arrow_shafts(self):
"""Feature big-arrow sigils, varying shafts."""
self.add_track_with_sigils(sigil="BIGARROW")
self.add_track_with_sigils(
sigil="BIGARROW", color="orange", arrowshaft_height=1.0
)
self.add_track_with_sigils(
sigil="BIGARROW", color="teal", arrowshaft_height=0.2
)
self.add_track_with_sigils(
sigil="BIGARROW", color="green", arrowshaft_height=0.1
)
self.assertEqual(len(self.gdd.tracks), 4)
self.finish("GD_sigil_bigarrow_shafts")
def test_arrow_heads(self):
"""Feature arrow sigils, varying heads."""
self.add_track_with_sigils(sigil="ARROW")
self.add_track_with_sigils(sigil="ARROW", color="blue", arrowhead_length=0.25)
self.add_track_with_sigils(sigil="ARROW", color="orange", arrowhead_length=1)
self.add_track_with_sigils(
sigil="ARROW", color="red", arrowhead_length=10000
) # Triangles
self.assertEqual(len(self.gdd.tracks), 4)
self.finish("GD_sigil_arrows")
def short_sigils(self, glyph):
"""Draw sigils on top of grey box backgrounds."""
# The blue boxes are only relevant for the BIGARROW
# Add a track of features, bigger height to emphasise any sigil errors
self.gdt_features = self.gdd.new_track(1, greytrack=True, height=3)
# We'll just use one feature set for these features,
self.gds_features = self.gdt_features.new_set()
# For the ARROW and BIGARROW sigils:
# - Green arrows just have small heads (meaning if there is a mitre
# it will escape the bounding box).
# - Red arrows should be small triangles (so short no shaft shown)
# Forward strand:
feature = SeqFeature(SimpleLocation(15, 30, strand=-1))
self.gds_features.add_feature(feature, color="blue")
feature = SeqFeature(SimpleLocation(15, 30, strand=+1))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Forward", sigil=glyph, arrowhead_length=0.05
)
feature = SeqFeature(SimpleLocation(55, 60, strand=-1))
self.gds_features.add_feature(feature, color="blue")
feature = SeqFeature(SimpleLocation(55, 60, strand=+1))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Forward", sigil=glyph, arrowhead_length=1000, color="red"
)
feature = SeqFeature(SimpleLocation(75, 125, strand=-1))
self.gds_features.add_feature(feature, color="blue")
feature = SeqFeature(SimpleLocation(75, 125, strand=+1))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Forward", sigil=glyph, arrowhead_length=0.05
)
# Strandless:
feature = SeqFeature(SimpleLocation(140, 155, strand=None))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Strandless", sigil=glyph, arrowhead_length=0.05
)
feature = SeqFeature(SimpleLocation(180, 185, strand=None))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Strandless", sigil=glyph, arrowhead_length=1000, color="red"
)
feature = SeqFeature(SimpleLocation(200, 250, strand=None))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Strandless", sigil=glyph, arrowhead_length=0.05
)
# Reverse strand:
feature = SeqFeature(SimpleLocation(265, 280, strand=+1))
self.gds_features.add_feature(feature, color="blue")
feature = SeqFeature(SimpleLocation(265, 280, strand=-1))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Reverse", sigil=glyph, arrowhead_length=0.05
)
feature = SeqFeature(SimpleLocation(305, 310, strand=+1))
self.gds_features.add_feature(feature, color="blue")
feature = SeqFeature(SimpleLocation(305, 310, strand=-1))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Reverse", sigil=glyph, arrowhead_length=1000, color="red"
)
feature = SeqFeature(SimpleLocation(325, 375, strand=+1))
self.gds_features.add_feature(feature, color="blue")
feature = SeqFeature(SimpleLocation(325, 375, strand=-1))
self.gds_features.add_feature(feature, color="grey")
self.gds_features.add_feature(
feature, name="Reverse", sigil=glyph, arrowhead_length=0.05
)
self.finish(f"GD_sigil_short_{glyph}")
def test_short_arrow(self):
"""Feature arrow sigil heads within bounding box."""
self.short_sigils("ARROW")
def test_short_bigarrow(self):
"""Feature big-arrow sigil heads within bounding box."""
self.short_sigils("BIGARROW")
def test_short_jaggy(self):
"""Feature arrow sigil heads within bounding box."""
self.short_sigils("JAGGY")
def test_short_octo(self):
"""Feature big-arrow sigil heads within bounding box."""
self.short_sigils("OCTO")
def long_sigils(self, glyph):
"""Check feature sigils within bounding box."""
# Add a track of features, bigger height to emphasise any sigil errors
self.gdt_features = self.gdd.new_track(1, greytrack=True, height=3)
# We'll just use one feature set for these features if strand specific
self.gds_features = self.gdt_features.new_set()
if glyph in ["BIGARROW"]:
# These straddle the axis, so don't want to draw them on top of each other
feature = SeqFeature(SimpleLocation(25, 375, strand=None))
self.gds_features.add_feature(feature, color="lightblue")
feature = SeqFeature(SimpleLocation(25, 375, strand=+1))
else:
feature = SeqFeature(SimpleLocation(25, 375, strand=+1))
self.gds_features.add_feature(feature, color="lightblue")
self.gds_features.add_feature(
feature, name="Forward", sigil=glyph, color="blue", arrowhead_length=2.0
)
if glyph in ["BIGARROW"]:
# These straddle the axis, so don't want to draw them on top of each other
self.gdt_features = self.gdd.new_track(1, greytrack=True, height=3)
self.gds_features = self.gdt_features.new_set()
feature = SeqFeature(SimpleLocation(25, 375, strand=None))
self.gds_features.add_feature(feature, color="pink")
feature = SeqFeature(SimpleLocation(25, 375, strand=-1))
else:
feature = SeqFeature(SimpleLocation(25, 375, strand=-1))
self.gds_features.add_feature(feature, color="pink")
self.gds_features.add_feature(
feature, name="Reverse", sigil=glyph, color="red", arrowhead_length=2.0
)
# Add another track of features, bigger height to emphasise any sigil errors
self.gdt_features = self.gdd.new_track(1, greytrack=True, height=3)
# We'll just use one feature set for these features,
self.gds_features = self.gdt_features.new_set()
feature = SeqFeature(SimpleLocation(25, 375, strand=None))
self.gds_features.add_feature(feature, color="lightgreen")
self.gds_features.add_feature(
feature, name="Standless", sigil=glyph, color="green", arrowhead_length=2.0
)
self.finish(f"GD_sigil_long_{glyph}")
def test_long_arrow_heads(self):
"""Feature ARROW sigil heads within bounding box."""
self.long_sigils("ARROW")
def test_long_bigarrow_heads(self):
"""Feature BIGARROW sigil heads within bounding box."""
self.long_sigils("BIGARROW")
def test_long_octo_heads(self):
"""Feature OCTO sigil heads within bounding box."""
self.long_sigils("OCTO")
def test_long_jaggy(self):
"""Feature JAGGY sigil heads within bounding box."""
self.long_sigils("JAGGY")
class DiagramTest(unittest.TestCase):
"""Creating feature sets, graph sets, tracks etc individually for the diagram."""
def setUp(self):
"""Test setup, just loads a GenBank file as a SeqRecord."""
with open(os.path.join("GenBank", "NC_005816.gb")) as handle:
self.record = SeqIO.read(handle, "genbank")
self.gdd = Diagram("Test Diagram")
# Add a track of features,
self.gdd.new_track(
1, greytrack=True, name="CDS Features", greytrack_labels=0, height=0.5
)
def tearDown(self):
"""Release the drawing objects."""
del self.gdd
def test_str(self):
"""Test diagram's info as string."""
expected = (
"\n<<class 'Bio.Graphics.GenomeDiagram._Diagram.Diagram'>: Test Diagram>"
"\n1 tracks"
"\nTrack 1: "
"\n<<class 'Bio.Graphics.GenomeDiagram._Track.Track'>: CDS Features>"
"\n0 sets"
"\n"
)
self.assertEqual(expected, str(self.gdd))
def test_add_track(self):
"""Add track."""
track = Track(name="Annotated Features")
self.gdd.add_track(track, 2)
self.assertEqual(2, len(self.gdd.get_tracks()))
def test_add_track_to_occupied_level(self):
"""Add track to occupied level."""
new_track = self.gdd.get_tracks()[0]
self.gdd.add_track(new_track, 1)
self.assertEqual(2, len(self.gdd.get_tracks()))
def test_add_track_error(self):
"""Test adding unspecified track."""
self.assertRaises(ValueError, self.gdd.add_track, None, 1)
def test_del_tracks(self):
"""Delete track."""
self.gdd.del_track(1)
self.assertEqual(0, len(self.gdd.get_tracks()))
def test_get_tracks(self):
"""Get track."""
self.assertEqual(1, len(self.gdd.get_tracks()))
def test_move_track(self):
"""Move a track."""
self.gdd.move_track(1, 2)
expected = (
"\n<<class 'Bio.Graphics.GenomeDiagram._Diagram.Diagram'>: Test Diagram>"
"\n1 tracks"
"\nTrack 2: "
"\n<<class 'Bio.Graphics.GenomeDiagram._Track.Track'>: CDS Features>"
"\n0 sets"
"\n"
)
self.assertEqual(expected, str(self.gdd))
def test_renumber(self):
"""Test renumbering tracks."""
self.gdd.renumber_tracks(0)
expected = (
"\n<<class 'Bio.Graphics.GenomeDiagram._Diagram.Diagram'>: Test Diagram>"
"\n1 tracks"
"\nTrack 0: "
"\n<<class 'Bio.Graphics.GenomeDiagram._Track.Track'>: CDS Features>"
"\n0 sets"
"\n"
)
self.assertEqual(expected, str(self.gdd))
def test_write_arguments(self):
"""Check how the write methods respond to output format arguments."""
gdd = Diagram("Test Diagram")
gdd.drawing = None # Hack - need the ReportLab drawing object to be created.
filename = os.path.join("Graphics", "error.txt")
# We (now) allow valid formats in any case.
for output in ["XXX", "xxx", None, 123, 5.9]:
with self.assertRaises(ValueError):
gdd.write(filename, output)
with self.assertRaises(ValueError):
gdd.write_to_string(output)
def test_partial_diagram(self):
"""Construct and draw SVG and PDF for just part of a SeqRecord."""
genbank_entry = self.record
start = 6500
end = 8750
gdd = Diagram(
"Test Diagram",
# For the circular diagram we don't want a closed circle:
circular=False,
)
# Add a track of features,
gdt_features = gdd.new_track(
1,
greytrack=True,
name="CDS Features",
scale_largetick_interval=1000,
scale_smalltick_interval=100,
scale_format="SInt",
greytrack_labels=False,
height=0.5,
)
# We'll just use one feature set for these features,
gds_features = gdt_features.new_set()
for feature in genbank_entry.features:
if feature.type != "CDS":
# We're going to ignore these.
continue
# These may miss fuzzy locations where the integer sorting is a simplification
if feature.location.end < start:
# Out of frame (too far left)
continue
if feature.location.start > end:
# Out of frame (too far right)
continue
# This URL should work in SVG output from recent versions
# of ReportLab. You need ReportLab 2.4 or later
try:
url = (
"http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id="
+ str(feature.qualifiers["protein_id"][0])
)
except KeyError:
url = None
# Note that I am using strings for color names, instead
# of passing in color objects. This should also work!
if len(gds_features) % 2 == 0:
color = "white" # for testing the automatic black border!
else:
color = "red"
# Checking it can cope with the old UK spelling colour.
# Also show the labels perpendicular to the track.
gds_features.add_feature(
feature,
colour=color,
url=url,
sigil="ARROW",
label_position=None,
label_size=8,
label_angle=90,
label=True,
)
# And draw it...
gdd.draw(
format="linear",
orientation="landscape",
tracklines=False,
pagesize=(10 * cm, 6 * cm),
fragments=1,
start=start,
end=end,
)
output_filename = os.path.join("Graphics", "GD_region_linear.pdf")
gdd.write(output_filename, "PDF")
# Also check the write_to_string (bytes string) method matches,
with open(output_filename, "rb") as handle:
self.assertEqual(handle.read(), gdd.write_to_string("PDF"))
output_filename = os.path.join("Graphics", "GD_region_linear.svg")
gdd.write(output_filename, "SVG")
# Circular with a particular start/end is a bit odd, but by setting
# circular=False (above) a sweep of 90% is used (a wedge is left out)
gdd.draw(
format="circular",
tracklines=False,
pagesize=(10 * cm, 10 * cm),
start=start,
end=end,
)
output_filename = os.path.join("Graphics", "GD_region_circular.pdf")
gdd.write(output_filename, "PDF")
output_filename = os.path.join("Graphics", "GD_region_circular.svg")
gdd.write(output_filename, "SVG")
def test_diagram_via_methods_pdf(self):
"""Construct and draw PDF using method approach."""
genbank_entry = self.record
gdd = Diagram("Test Diagram")
# Add a track of features,
gdt_features = gdd.new_track(
1, greytrack=True, name="CDS Features", greytrack_labels=0, height=0.5
)
# We'll just use one feature set for the genes and misc_features,
gds_features = gdt_features.new_set()
for feature in genbank_entry.features:
if feature.type == "gene":
if len(gds_features) % 2 == 0:
color = "blue"
else:
color = "lightblue"
gds_features.add_feature(
feature,
color=color,
# label_position="middle",
# label_position="end",
label_position="start",
label_size=11,
# label_angle=90,
sigil="ARROW",
label=True,
)
# I want to include some strandless features, so for an example
# will use EcoRI recognition sites etc.
for site, name, color in [
("GAATTC", "EcoRI", "green"),
("CCCGGG", "SmaI", "orange"),
("AAGCTT", "HindIII", "red"),
("GGATCC", "BamHI", "purple"),
]:
index = 0
while True:
index = genbank_entry.seq.find(site, start=index)
if index == -1:
break
feature = SeqFeature(SimpleLocation(index, index + 6, strand=None))
# This URL should work in SVG output from recent versions
# of ReportLab. You need ReportLab 2.4 or later
try:
url = (
"http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id="
+ str(feature.qualifiers["protein_id"][0])
)
except KeyError:
url = None
gds_features.add_feature(
feature,
color=color,
url=url,
# label_position="middle",
label_size=10,
label_color=color,
# label_angle=90,
name=name,
label=True,
)
index += len(site)
del index
# Now add a graph track...
gdt_at_gc = gdd.new_track(
2, greytrack=True, name="AT and GC content", greytrack_labels=True
)
gds_at_gc = gdt_at_gc.new_set(type="graph")
step = len(genbank_entry) // 200
gds_at_gc.new_graph(
apply_to_window(genbank_entry.seq, step, calc_gc_content, step),
"GC content",
style="line",
color=colors.lightgreen,
altcolor=colors.darkseagreen,
)
gds_at_gc.new_graph(
apply_to_window(genbank_entry.seq, step, calc_at_content, step),
"AT content",
style="line",
color=colors.orange,
altcolor=colors.red,
)
# Finally draw it in both formats,
gdd.draw(
format="linear",
orientation="landscape",
tracklines=0,
pagesize="A4",
fragments=3,
)
output_filename = os.path.join("Graphics", "GD_by_meth_linear.pdf")
gdd.write(output_filename, "PDF")
gdd.draw(
format="circular",
tracklines=False,
circle_core=0.8,
pagesize=(20 * cm, 20 * cm),
circular=True,
)
output_filename = os.path.join("Graphics", "GD_by_meth_circular.pdf")
gdd.write(output_filename, "PDF")
def test_diagram_via_object_pdf(self):
"""Construct and draw PDF using object approach."""
genbank_entry = self.record
gdd = Diagram("Test Diagram")
gdt1 = Track(
"CDS features",
greytrack=True,
scale_largetick_interval=1e4,
scale_smalltick_interval=1e3,
greytrack_labels=10,
greytrack_font_color="red",
scale_format="SInt",
)
gdt2 = Track("gene features", greytrack=1, scale_largetick_interval=1e4)
# First add some feature sets:
gdfsA = FeatureSet(name="CDS backgrounds")
gdfsB = FeatureSet(name="gene background")
gdfs1 = FeatureSet(name="CDS features")
gdfs2 = FeatureSet(name="gene features")
gdfs3 = FeatureSet(name="misc_features")
gdfs4 = FeatureSet(name="repeat regions")
prev_gene = None
cds_count = 0
for feature in genbank_entry.features:
if feature.type == "CDS":
cds_count += 1
if prev_gene:
# Assuming it goes with this CDS!
if cds_count % 2 == 0:
dark, light = colors.peru, colors.tan
else:
dark, light = colors.burlywood, colors.bisque
# Background for CDS,
a = gdfsA.add_feature(
SeqFeature(
SimpleLocation(
feature.location.start, feature.location.end, strand=0
)
),
color=dark,
)
# Background for gene,
b = gdfsB.add_feature(
SeqFeature(
SimpleLocation(
prev_gene.location.start,
prev_gene.location.end,
strand=0,
)
),
color=dark,
)
# Cross link,
gdd.cross_track_links.append(CrossLink(a, b, light, dark))
prev_gene = None
if feature.type == "gene":
prev_gene = feature
# Some cross links on the same linear diagram fragment,
f, c = fill_and_border(colors.red)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(2220, 2230)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(2200, 2210)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, f, c))
f, c = fill_and_border(colors.blue)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(2150, 2200)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(2220, 2290)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, f, c, flip=True))
f, c = fill_and_border(colors.green)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(2250, 2560)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(2300, 2860)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, f, c))
# Some cross links where both parts are saddling the linear diagram fragment boundary,
f, c = fill_and_border(colors.red)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(3155, 3250)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(3130, 3300)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, f, c))
# Nestled within that (drawn on top),
f, c = fill_and_border(colors.blue)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(3160, 3275)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(3180, 3225)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, f, c, flip=True))
# Some cross links where two features are on either side of the linear diagram fragment boundary,
f, c = fill_and_border(colors.green)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(6450, 6550)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(6265, 6365)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, color=f, border=c))
f, c = fill_and_border(colors.gold)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(6265, 6365)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(6450, 6550)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, color=f, border=c))
f, c = fill_and_border(colors.red)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(6275, 6375)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(6430, 6530)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, color=f, border=c, flip=True))
f, c = fill_and_border(colors.blue)
a = gdfsA.add_feature(SeqFeature(SimpleLocation(6430, 6530)), color=f, border=c)
b = gdfsB.add_feature(SeqFeature(SimpleLocation(6275, 6375)), color=f, border=c)
gdd.cross_track_links.append(CrossLink(a, b, color=f, border=c, flip=True))
cds_count = 0
for feature in genbank_entry.features:
if feature.type == "CDS":
cds_count += 1
if cds_count % 2 == 0:
gdfs1.add_feature(feature, color=colors.pink, sigil="ARROW")
else:
gdfs1.add_feature(feature, color=colors.red, sigil="ARROW")
if feature.type == "gene":
# Note we set the colour of ALL the genes later on as a test,
gdfs2.add_feature(feature, sigil="ARROW")
if feature.type == "misc_feature":
gdfs3.add_feature(feature, color=colors.orange)
if feature.type == "repeat_region":
gdfs4.add_feature(feature, color=colors.purple)
# gdd.cross_track_links = gdd.cross_track_links[:1]
gdfs1.set_all_features("label", 1)
gdfs2.set_all_features("label", 1)
gdfs3.set_all_features("label", 1)
gdfs4.set_all_features("label", 1)
gdfs3.set_all_features("hide", 0)
gdfs4.set_all_features("hide", 0)
# gdfs1.set_all_features('color', colors.red)
gdfs2.set_all_features("color", colors.blue)
gdt1.add_set(gdfsA) # Before CDS so under them!
gdt1.add_set(gdfs1)
gdt2.add_set(gdfsB) # Before genes so under them!
gdt2.add_set(gdfs2)
gdt3 = Track(
"misc features and repeats", greytrack=1, scale_largetick_interval=1e4
)
gdt3.add_set(gdfs3)
gdt3.add_set(gdfs4)
# Now add some graph sets:
# Use a fairly large step so we can easily tell the difference
# between the bar and line graphs.
step = len(genbank_entry) // 200
gdgs1 = GraphSet("GC skew")
graphdata1 = apply_to_window(genbank_entry.seq, step, calc_gc_skew, step)
gdgs1.new_graph(
graphdata1,
"GC Skew",
style="bar",
color=colors.violet,
altcolor=colors.purple,
)
gdt4 = Track(
"GC Skew (bar)", height=1.94, greytrack=1, scale_largetick_interval=1e4
)
gdt4.add_set(gdgs1)
gdgs2 = GraphSet("GC and AT Content")
gdgs2.new_graph(
apply_to_window(genbank_entry.seq, step, calc_gc_content, step),
"GC content",
style="line",
color=colors.lightgreen,
altcolor=colors.darkseagreen,
)
gdgs2.new_graph(
apply_to_window(genbank_entry.seq, step, calc_at_content, step),
"AT content",
style="line",
color=colors.orange,
altcolor=colors.red,
)
gdt5 = Track(
"GC Content(green line), AT Content(red line)",
height=1.94,
greytrack=1,
scale_largetick_interval=1e4,
)
gdt5.add_set(gdgs2)
gdgs3 = GraphSet("Di-nucleotide count")
step = len(genbank_entry) // 400 # smaller step
gdgs3.new_graph(
apply_to_window(genbank_entry.seq, step, calc_dinucleotide_counts, step),
"Di-nucleotide count",
style="heat",
color=colors.red,
altcolor=colors.orange,
)
gdt6 = Track("Di-nucleotide count", height=0.5, greytrack=False, scale=False)
gdt6.add_set(gdgs3)
# Add the tracks (from both features and graphs)
# Leave some white space in the middle/bottom
gdd.add_track(gdt4, 3) # GC skew
gdd.add_track(gdt5, 4) # GC and AT content
gdd.add_track(gdt1, 5) # CDS features
gdd.add_track(gdt2, 6) # Gene features
gdd.add_track(gdt3, 7) # Misc features and repeat feature
gdd.add_track(gdt6, 8) # Feature depth
# Finally draw it in both formats, and full view and partial
gdd.draw(
format="circular", orientation="landscape", tracklines=0, pagesize="A0"
)
output_filename = os.path.join("Graphics", "GD_by_obj_circular.pdf")
gdd.write(output_filename, "PDF")
gdd.circular = False
gdd.draw(
format="circular",
orientation="landscape",
tracklines=0,
pagesize="A0",
start=3000,
end=6300,
)
output_filename = os.path.join("Graphics", "GD_by_obj_frag_circular.pdf")
gdd.write(output_filename, "PDF")
gdd.draw(
format="linear",
orientation="landscape",
tracklines=0,
pagesize="A0",
fragments=3,
)
output_filename = os.path.join("Graphics", "GD_by_obj_linear.pdf")
gdd.write(output_filename, "PDF")
gdd.set_all_tracks("greytrack_labels", 2)
gdd.draw(
format="linear",
orientation="landscape",
tracklines=0,
pagesize=(30 * cm, 10 * cm),
fragments=1,
start=3000,
end=6300,
)
output_filename = os.path.join("Graphics", "GD_by_obj_frag_linear.pdf")
gdd.write(output_filename, "PDF")
if __name__ == "__main__":
runner = unittest.TextTestRunner(verbosity=2)
unittest.main(testRunner=runner)