# Copyright 2024 DeepMind Technologies Limited # # AlphaFold 3 source code is licensed under CC BY-NC-SA 4.0. To view a copy of # this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/ # # To request access to the AlphaFold 3 model parameters, follow the process set # out at https://github.com/google-deepmind/alphafold3. You may only use these # if received directly from Google. Use is subject to terms of use available at # https://github.com/google-deepmind/alphafold3/blob/main/WEIGHTS_TERMS_OF_USE.md """Tests the AlphaFold 3 data pipeline.""" import contextlib import datetime import difflib import functools import hashlib import json import os import pathlib import pickle from typing import Any from absl.testing import absltest from absl.testing import parameterized from alphafold3 import structure from alphafold3.common import folding_input from alphafold3.common import resources from alphafold3.common.testing import data as testing_data from alphafold3.constants import chemical_components from alphafold3.data import featurisation from alphafold3.data import pipeline from alphafold3.model.atom_layout import atom_layout import jax import numpy as np import run_alphafold import shutil _JACKHMMER_BINARY_PATH = shutil.which('jackhmmer') _NHMMER_BINARY_PATH = shutil.which('nhmmer') _HMMALIGN_BINARY_PATH = shutil.which('hmmalign') _HMMSEARCH_BINARY_PATH = shutil.which('hmmsearch') _HMMBUILD_BINARY_PATH = shutil.which('hmmbuild') @contextlib.contextmanager def _output(name: str): with open(result_path := f'{absltest.TEST_TMPDIR.value}/{name}', "wb") as f: yield result_path, f @functools.singledispatch def _hash_data(x: Any, /) -> str: if x is None: return '<>' return _hash_data(json.dumps(x).encode('utf-8')) @_hash_data.register def _(x: bytes, /) -> str: return hashlib.sha256(x).hexdigest() @_hash_data.register def _(x: jax.Array) -> str: return _hash_data(jax.device_get(x)) @_hash_data.register def _(x: np.ndarray) -> str: if x.dtype == object: return ';'.join(map(_hash_data, x.ravel().tolist())) return _hash_data(x.tobytes()) @_hash_data.register def _(_: structure.Structure) -> str: return '<>' @_hash_data.register def _(_: atom_layout.AtomLayout) -> str: return '<>' def _generate_diff(actual: str, expected: str) -> str: return '\n'.join( difflib.unified_diff( expected.split('\n'), actual.split('\n'), fromfile='expected', tofile='actual', lineterm='', ) ) class DataPipelineTest(parameterized.TestCase): """Test AlphaFold 3 inference.""" def setUp(self): super().setUp() small_bfd_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/bfd-first_non_consensus_sequences__subsampled_1000.fasta' ).path() mgnify_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/mgy_clusters__subsampled_1000.fa' ).path() uniprot_cluster_annot_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/uniprot_all__subsampled_1000.fasta' ).path() uniref90_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/uniref90__subsampled_1000.fasta' ).path() ntrna_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/nt_rna_2023_02_23_clust_seq_id_90_cov_80_rep_seq__subsampled_1000.fasta' ).path() rfam_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/rfam_14_4_clustered_rep_seq__subsampled_1000.fasta' ).path() rna_central_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/rnacentral_active_seq_id_90_cov_80_linclust__subsampled_1000.fasta' ).path() pdb_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/pdb_mmcif' ).path() seqres_database_path = testing_data.Data( resources.ROOT / 'test_data/miniature_databases/pdb_seqres_2022_09_28__subsampled_1000.fasta' ).path() self._data_pipeline_config = pipeline.DataPipelineConfig( jackhmmer_binary_path=_JACKHMMER_BINARY_PATH, nhmmer_binary_path=_NHMMER_BINARY_PATH, hmmalign_binary_path=_HMMALIGN_BINARY_PATH, hmmsearch_binary_path=_HMMSEARCH_BINARY_PATH, hmmbuild_binary_path=_HMMBUILD_BINARY_PATH, small_bfd_database_path=small_bfd_database_path, mgnify_database_path=mgnify_database_path, uniprot_cluster_annot_database_path=uniprot_cluster_annot_database_path, uniref90_database_path=uniref90_database_path, ntrna_database_path=ntrna_database_path, rfam_database_path=rfam_database_path, rna_central_database_path=rna_central_database_path, pdb_database_path=pdb_database_path, seqres_database_path=seqres_database_path, max_template_date=datetime.date(2021, 9, 30), ) test_input = { 'name': '5tgy', 'modelSeeds': [1234], 'sequences': [ { 'protein': { 'id': 'P', 'sequence': ( 'SEFEKLRQTGDELVQAFQRLREIFDKGDDDSLEQVLEEIEELIQKHRQLFDNRQEAADTEAAKQGDQWVQLFQRFREAIDKGDKDSLEQLLEELEQALQKIRELAEKKN' ), 'modifications': [], 'unpairedMsa': None, 'pairedMsa': None, } }, {'ligand': {'id': 'LL', 'ccdCodes': ['7BU']}}, ], 'dialect': folding_input.JSON_DIALECT, 'version': folding_input.JSON_VERSION, } self._test_input_json = json.dumps(test_input) def compare_golden(self, result_path: str) -> None: filename = os.path.split(result_path)[1] golden_path = testing_data.Data( resources.ROOT / f'test_data/{filename}' ).path() with open(golden_path, 'r') as golden_file: golden_text = golden_file.read() with open(result_path, 'r') as result_file: result_text = result_file.read() diff = _generate_diff(result_text, golden_text) self.assertEqual(diff, "", f"Result differs from golden:\n{diff}") def test_config(self): model_config = run_alphafold.make_model_config() model_config_as_str = json.dumps( model_config.as_dict(), sort_keys=True, indent=2 ) with _output('model_config.json') as (result_path, output): output.write(model_config_as_str.encode('utf-8')) self.compare_golden(result_path) def test_featurisation(self): """Run featurisation and assert that the output is as expected.""" fold_input = folding_input.Input.from_json(self._test_input_json) data_pipeline = pipeline.DataPipeline(self._data_pipeline_config) full_fold_input = data_pipeline.process(fold_input) featurised_example = featurisation.featurise_input( full_fold_input, ccd=chemical_components.Ccd(), buckets=None, ) del featurised_example[0]['ref_pos'] # Depends on specific RDKit version. with _output('featurised_example.pkl') as (_, output): output.write(pickle.dumps(featurised_example)) featurised_example = jax.tree_util.tree_map(_hash_data, featurised_example) with _output('featurised_example.json') as (result_path, output): output.write( json.dumps(featurised_example, sort_keys=True, indent=2).encode( 'utf-8' ) ) self.compare_golden(result_path) def test_write_input_json(self): fold_input = folding_input.Input.from_json(self._test_input_json) output_dir = self.create_tempdir().full_path run_alphafold.write_fold_input_json(fold_input, output_dir) with open( os.path.join(output_dir, f'{fold_input.sanitised_name()}_data.json'), 'rt', ) as f: actual_fold_input = folding_input.Input.from_json(f.read()) self.assertEqual(actual_fold_input, fold_input) def test_process_fold_input_runs_only_data_pipeline(self): fold_input = folding_input.Input.from_json(self._test_input_json) output_dir = self.create_tempdir().full_path run_alphafold.process_fold_input( fold_input=fold_input, data_pipeline_config=self._data_pipeline_config, model_runner=None, output_dir=output_dir, ) with open( os.path.join(output_dir, f'{fold_input.sanitised_name()}_data.json'), 'rt', ) as f: actual_fold_input = folding_input.Input.from_json(f.read()) featurisation.validate_fold_input(actual_fold_input) @parameterized.product(num_db_dirs=tuple(range(1, 3))) def test_replace_db_dir(self, num_db_dirs: int) -> None: """Test that the db_dir is replaced correctly.""" db_dirs = [pathlib.Path(self.create_tempdir()) for _ in range(num_db_dirs)] db_dirs_posix = [db_dir.as_posix() for db_dir in db_dirs] for i, db_dir in enumerate(db_dirs): for j in range(i + 1): (db_dir / f'filename{j}.txt').write_text(f'hello world {i}') for i in range(num_db_dirs): self.assertEqual( pathlib.Path( run_alphafold.replace_db_dir( f'${{DB_DIR}}/filename{i}.txt', db_dirs_posix ) ).read_text(), f'hello world {i}', ) with self.assertRaises(FileNotFoundError): run_alphafold.replace_db_dir( f'${{DB_DIR}}/filename{num_db_dirs}.txt', db_dirs_posix ) if __name__ == '__main__': absltest.main()