Files
accelerate/tests/test_utils.py
Zach Mueller b13aadcb67 Bye bye torch <2 (#3331)
* Bye bye torch <1

* Add 2.6.0 dl args

* Rm require fsdp

* Adjust imports + 2.0 specific modeling code

* Bring back is_bf16
2025-01-09 12:11:08 -05:00

593 lines
23 KiB
Python

# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import tempfile
import unittest
import warnings
from collections import UserDict, namedtuple
from typing import NamedTuple, Optional
from unittest.mock import Mock, patch
import numpy as np
import pytest
import torch
from torch import nn
from accelerate.big_modeling import cpu_offload_with_hook
from accelerate.hooks import attach_align_device_hook, remove_hook_from_module
from accelerate.state import PartialState
from accelerate.test_utils.testing import (
require_huggingface_suite,
require_non_cpu,
require_non_torch_xla,
require_torch_min_version,
require_tpu,
require_triton,
torch_device,
)
from accelerate.test_utils.training import RegressionModel
from accelerate.utils import (
CannotPadNestedTensorWarning,
check_os_kernel,
clear_environment,
convert_dict_to_env_variables,
convert_outputs_to_fp32,
convert_to_fp32,
extract_model_from_parallel,
find_device,
has_offloaded_params,
is_torch_xla_available,
listify,
pad_across_processes,
pad_input_tensors,
patch_environment,
purge_accelerate_environment,
recursively_apply,
save,
send_to_device,
)
from accelerate.utils.operations import is_namedtuple
if is_torch_xla_available():
import torch_xla.distributed.spmd as xs
import torch_xla.runtime as xr
from torch_xla.experimental.spmd_fully_sharded_data_parallel import SpmdFullyShardedDataParallel as FSDPv2
ExampleNamedTuple = namedtuple("ExampleNamedTuple", "a b c")
class UtilsTester(unittest.TestCase):
def setUp(self):
# logging requires initialized state
PartialState()
def test_send_to_device(self):
tensor = torch.randn(5, 2)
device = torch.device(f"{torch_device}:0")
result1 = send_to_device(tensor, device)
assert torch.equal(result1.cpu(), tensor)
result2 = send_to_device((tensor, [tensor, tensor], 1), device)
assert isinstance(result2, tuple)
assert torch.equal(result2[0].cpu(), tensor)
assert isinstance(result2[1], list)
assert torch.equal(result2[1][0].cpu(), tensor)
assert torch.equal(result2[1][1].cpu(), tensor)
assert result2[2] == 1
result2 = send_to_device({"a": tensor, "b": [tensor, tensor], "c": 1}, device)
assert isinstance(result2, dict)
assert torch.equal(result2["a"].cpu(), tensor)
assert isinstance(result2["b"], list)
assert torch.equal(result2["b"][0].cpu(), tensor)
assert torch.equal(result2["b"][1].cpu(), tensor)
assert result2["c"] == 1
result3 = send_to_device(ExampleNamedTuple(a=tensor, b=[tensor, tensor], c=1), device)
assert isinstance(result3, ExampleNamedTuple)
assert torch.equal(result3.a.cpu(), tensor)
assert isinstance(result3.b, list)
assert torch.equal(result3.b[0].cpu(), tensor)
assert torch.equal(result3.b[1].cpu(), tensor)
assert result3.c == 1
result4 = send_to_device(UserDict({"a": tensor, "b": [tensor, tensor], "c": 1}), device)
assert isinstance(result4, UserDict)
assert torch.equal(result4["a"].cpu(), tensor)
assert isinstance(result4["b"], list)
assert torch.equal(result4["b"][0].cpu(), tensor)
assert torch.equal(result4["b"][1].cpu(), tensor)
assert result4["c"] == 1
def test_honor_type(self):
with self.assertRaises(TypeError) as cm:
_ = recursively_apply(torch.tensor, (torch.tensor(1), 1), error_on_other_type=True)
assert (
str(cm.exception)
== "Unsupported types (<class 'int'>) passed to `tensor`. Only nested list/tuple/dicts of objects that are valid for `is_torch_tensor` should be passed."
)
def test_listify(self):
tensor = torch.tensor([1, 2, 3, 4, 5])
assert listify(tensor) == [1, 2, 3, 4, 5]
tensor = torch.tensor([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]])
assert listify(tensor) == [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]
tensor = torch.tensor([[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]])
assert listify(tensor) == [[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]
def test_patch_environment(self):
with patch_environment(aa=1, BB=2):
assert os.environ.get("AA") == "1"
assert os.environ.get("BB") == "2"
assert "AA" not in os.environ
assert "BB" not in os.environ
def test_patch_environment_key_exists(self):
# check that patch_environment correctly restores pre-existing env vars
with patch_environment(aa=1, BB=2):
assert os.environ.get("AA") == "1"
assert os.environ.get("BB") == "2"
with patch_environment(Aa=10, bb="20", cC=30):
assert os.environ.get("AA") == "10"
assert os.environ.get("BB") == "20"
assert os.environ.get("CC") == "30"
assert os.environ.get("AA") == "1"
assert os.environ.get("BB") == "2"
assert "CC" not in os.environ
assert "AA" not in os.environ
assert "BB" not in os.environ
assert "CC" not in os.environ
def test_patch_environment_restores_on_error(self):
# we need to find an upper-case envvar
# because `patch_environment upper-cases all keys...
key, orig_value = next(kv for kv in os.environ.items() if kv[0].isupper())
new_value = f"{orig_value}_foofoofoo"
with pytest.raises(RuntimeError), patch_environment(**{key: new_value}):
assert os.environ[key] == os.getenv(key) == new_value # noqa: TID251
raise RuntimeError("Oopsy daisy!")
assert os.environ[key] == os.getenv(key) == orig_value # noqa: TID251
def test_clear_environment(self):
key, value = os.environ.copy().popitem()
with pytest.raises(RuntimeError), clear_environment():
assert key not in os.environ
assert not os.getenv(key) # test the environment is actually cleared # noqa: TID251
raise RuntimeError("Oopsy daisy!")
# Test values are restored
assert os.getenv(key) == os.environ[key] == value # noqa: TID251
def test_can_undo_convert_outputs(self):
model = RegressionModel()
model._original_forward = model.forward
model.forward = convert_outputs_to_fp32(model.forward)
model = extract_model_from_parallel(model, keep_fp32_wrapper=False)
_ = pickle.dumps(model)
@require_non_cpu
def test_can_undo_fp16_conversion(self):
model = RegressionModel()
model._original_forward = model.forward
model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward)
model.forward = convert_outputs_to_fp32(model.forward)
model = extract_model_from_parallel(model, keep_fp32_wrapper=False)
_ = pickle.dumps(model)
@require_triton
@require_non_cpu
def test_dynamo(self):
model = RegressionModel()
model._original_forward = model.forward
model.forward = torch.autocast(device_type=torch_device, dtype=torch.float16)(model.forward)
model.forward = convert_outputs_to_fp32(model.forward)
model.forward = torch.compile(model.forward, backend="inductor")
inputs = torch.randn(4, 10).to(torch_device)
_ = model(inputs)
def test_extract_model(self):
model = RegressionModel()
# could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
distributed_model = torch.nn.parallel.DataParallel(model)
model_unwrapped = extract_model_from_parallel(distributed_model)
assert model == model_unwrapped
@require_tpu
@require_huggingface_suite
def test_extract_model_recursive_fsdpv2(self):
# Specifically tests for FSDPv2 extraction
# reported in https://github.com/huggingface/transformers/pull/29780
xr.use_spmd()
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("gpt2")
orig_state_dict_keys = list(model.state_dict().keys())
num_devices = xr.global_runtime_device_count()
# Set environment for FSDPv2 to be active
xs.set_global_mesh(xs.Mesh(np.array(range(num_devices)), (num_devices, 1), axis_names=("fsdp", "tensor")))
def nested_wrap(model):
layer = model.wte
wrapped_layer = FSDPv2(layer)
model.wte = wrapped_layer
return model
wrapped_model = nested_wrap(model)
unwrapped_model = extract_model_from_parallel(wrapped_model, recursive=True)
unwrapped_state_dict_keys = list(unwrapped_model.state_dict().keys())
for original_key, new_key in zip(orig_state_dict_keys, unwrapped_state_dict_keys):
assert original_key == new_key, f"Keys did not align: {original_key} != {new_key}"
def test_dynamo_extract_model_keep_torch_compile(self):
model = RegressionModel()
compiled_model = torch.compile(model)
# could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
distributed_model = torch.nn.parallel.DataParallel(model)
distributed_compiled_model = torch.compile(distributed_model)
compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=True)
assert compiled_model._orig_mod == compiled_model_unwrapped._orig_mod
def test_dynamo_extract_model_remove_torch_compile(self):
model = RegressionModel()
compiled_model = torch.compile(model)
# could also do a test with DistributedDataParallel, but difficult to run on CPU or single GPU
distributed_model = torch.nn.parallel.DataParallel(model)
distributed_compiled_model = torch.compile(distributed_model)
compiled_model_unwrapped = extract_model_from_parallel(distributed_compiled_model, keep_torch_compile=False)
assert compiled_model._orig_mod == compiled_model_unwrapped
def test_find_device(self):
assert find_device([1, "a", torch.tensor([1, 2, 3])]) == torch.device("cpu")
assert find_device({"a": 1, "b": torch.tensor([1, 2, 3])}) == torch.device("cpu")
assert find_device([1, "a"]) is None
def test_check_os_kernel_no_warning_when_release_gt_min(self):
# min version is 5.5
with patch("platform.uname", return_value=Mock(release="5.15.0-35-generic", system="Linux")):
with warnings.catch_warnings(record=True) as w:
check_os_kernel()
assert len(w) == 0
def test_check_os_kernel_no_warning_when_not_linux(self):
# system must be Linux
with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Darwin")):
with warnings.catch_warnings(record=True) as w:
check_os_kernel()
assert len(w) == 0
def test_check_os_kernel_warning_when_release_lt_min(self):
# min version is 5.5
with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Linux")):
with self.assertLogs() as ctx:
check_os_kernel()
assert len(ctx.records) == 1
assert ctx.records[0].levelname == "WARNING"
assert "5.4.0" in ctx.records[0].msg
assert "5.5.0" in ctx.records[0].msg
@require_non_torch_xla
def test_save_safetensor_shared_memory(self):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.a = nn.Linear(100, 100)
self.b = self.a
def forward(self, x):
return self.b(self.a(x))
model = Model()
with tempfile.TemporaryDirectory() as tmp_dir:
save_path = os.path.join(tmp_dir, "model.safetensors")
with self.assertLogs(level="WARNING") as log:
save(model.state_dict(), save_path, safe_serialization=True)
assert len(log.records) == 1
assert "Removed shared tensor" in log.output[0]
@require_torch_min_version(version="1.12")
def test_pad_across_processes(self):
from torch.nested import nested_tensor
nt = nested_tensor([[1, 2, 3], [1], [1, 2]])
with self.assertWarns(CannotPadNestedTensorWarning):
nt2 = pad_across_processes(nt)
assert nt is nt2
# Basic functionality
tensor = torch.randn(4, 3, 100)
padded_tensor = pad_across_processes(tensor, dim=-1)
assert padded_tensor.shape[-1] == 100
# dim = -4 is out of bounds
padded_tensor = pad_across_processes(tensor, dim=-4)
assert padded_tensor is tensor
def test_slice_and_concatenate(self):
# First base case: 2 processes, batch size of 1
num_processes = 2
batch_size = 1
batch = torch.rand(batch_size, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 2 items now
assert result.shape == torch.Size([2, 4])
# Second base case: 2 processes, batch size of 3
num_processes = 2
batch_size = 3
batch = torch.rand(batch_size, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 4 items now
assert result.shape == torch.Size([4, 4])
# Third base case: 3 processes, batch size of 4
num_processes = 3
batch_size = 4
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Fourth base case: 4 processes, batch size of 3
num_processes = 4
batch_size = 3
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 4 items now
assert result.shape == torch.Size([4, 4, 4])
# Fifth base case: 6 processes, batch size of 4
num_processes = 6
batch_size = 4
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Sixth base case: 6 processes, batch size of 1
num_processes = 6
batch_size = 1
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Seventh base case: 6 processes, batch size of 2
num_processes = 6
batch_size = 2
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 6 items now
assert result.shape == torch.Size([6, 4, 4])
# Eighth base case: 6 processes, batch size of 61
num_processes = 6
batch_size = 61
batch = torch.rand(batch_size, 4, 4)
result = pad_input_tensors(batch, batch_size, num_processes)
# We should expect there to be 66 items now
assert result.shape == torch.Size([66, 4, 4])
def test_send_to_device_compiles(self):
compiled_send_to_device = torch.compile(send_to_device, fullgraph=True)
compiled_send_to_device(torch.zeros([1], dtype=torch.bfloat16), "cpu")
def test_convert_to_fp32(self):
compiled_convert_to_fp32 = torch.compile(convert_to_fp32, fullgraph=True)
compiled_convert_to_fp32(torch.zeros([1], dtype=torch.bfloat16))
def test_named_tuples(self):
class QuantTensorBase(NamedTuple):
value: torch.Tensor
scale: Optional[torch.Tensor]
zero_point: Optional[torch.Tensor]
class Second(QuantTensorBase):
pass
a = QuantTensorBase(torch.tensor(1.0), None, None)
b = Second(torch.tensor(1.0), None, None)
point = namedtuple("Point", ["x", "y"])
p = point(11, y=22)
self.assertTrue(is_namedtuple(a))
self.assertTrue(is_namedtuple(b))
self.assertTrue(is_namedtuple(p))
self.assertFalse(is_namedtuple((1, 2)))
self.assertFalse(is_namedtuple("hey"))
self.assertFalse(is_namedtuple(object()))
def test_convert_dict_to_env_variables(self):
env = {"ACCELERATE_DEBUG_MODE": "1", "BAD_ENV_NAME": "<mything", "OTHER_ENV": "2"}
with self.assertLogs("accelerate.utils.environment", level="WARNING"):
valid_env_items = convert_dict_to_env_variables(env)
assert valid_env_items == ["ACCELERATE_DEBUG_MODE=1\n", "OTHER_ENV=2\n"]
def test_has_offloaded_params(self):
model = RegressionModel()
assert not has_offloaded_params(model)
attach_align_device_hook(model, offload=False)
assert not has_offloaded_params(model)
remove_hook_from_module(model)
model, _ = cpu_offload_with_hook(model)
assert not has_offloaded_params(model)
remove_hook_from_module(model)
attach_align_device_hook(model, offload=True)
assert has_offloaded_params(model)
def set_dummy_accelerate_env_var():
"""Set an accelerate env var
This class emulates the behavior of, for instance, transformers.TrainingArguments, which is allowed to set
accelerate env vars but does not clean them up. E.g.
TrainingArguments(fp16=True, output_dir="/tmp/test")
leaves ACCELERATE_MIXED_PRECISION=fp16 as an env var.
"""
os.environ["ACCELERATE_SOME_ENV_VAR"] = "true"
@purge_accelerate_environment
class MyUnittest(unittest.TestCase):
def test_purge_env_vars_unittest_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_unittest_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@unittest.skipIf(False, "dummy unittest wrapper")
@purge_accelerate_environment
@unittest.skipUnless(True, "dummy unittest wrapper")
class MyUnittestWithDecorators(unittest.TestCase):
def test_purge_env_vars_unittest_with_wrapper_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_unittest_with_wrapper_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@unittest.skipIf(False, "dummy unittest wrapper")
def test_purge_env_vars_unittest_with_wrapper_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@unittest.skipIf(True, "this is always skipped")
def test_purge_env_vars_unittest_with_wrapper_4(self):
# ensure that unittest markers still do their job
assert False
@purge_accelerate_environment
class _BaseCls(unittest.TestCase):
def test_purge_env_vars_unittest_with_inheritance_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
class MyUnittestWithInheritance(_BaseCls):
def test_purge_env_vars_unittest_with_inheritance_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_unittest_with_inheritance_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@purge_accelerate_environment
class TestMyPytest:
def test_purge_env_vars_pytest_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_pytest_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@pytest.fixture
def dummy_fixture():
pass
@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
@purge_accelerate_environment
@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
class TestPytestWithWrapper:
def test_purge_env_vars_pytest_with_wrapper_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_pytest_with_wrapper_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@pytest.mark.skipif(False, reason="dummy pytest wrapper")
@pytest.mark.usefixtures("dummy_fixture")
def test_purge_env_vars_pytest_with_wrapper_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@pytest.mark.skipif(True, reason="this is always skipped")
def test_purge_env_vars_pytest_with_wrapper_4_should_be_skipped(self):
# ensure that pytest markers still do their job
assert False
@purge_accelerate_environment
class _PytestBaseCls:
def test_purge_env_vars_pytest_with_inheritance_3(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
class TestPytestWithInheritance(_PytestBaseCls):
def test_purge_env_vars_pytest_with_inheritance_1(self):
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_pytest_with_inheritance_2(self):
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
@purge_accelerate_environment
def test_purge_env_vars_standalone_1():
os.environ.pop("ACCELERATE_SOME_ENV_VAR", None)
set_dummy_accelerate_env_var()
assert "ACCELERATE_SOME_ENV_VAR" in os.environ
def test_purge_env_vars_standalone_2():
assert "ACCELERATE_SOME_ENV_VAR" not in os.environ
def test_purge_env_vars_restores_previous_values():
# Ensure that purge_accelerate_environment restores values of previous accelerate env vars and does not delete
# untouched env vars.
@purge_accelerate_environment
def dummy_func():
os.environ["ACCELERATE_SOME_ENV_VAR"] = "456"
os.environ["ACCELERATE_SOME_ENV_VAR"] = "1"
os.environ["ACCELERATE_ANOTHER_ENV_VAR"] = "2"
dummy_func()
assert os.environ["ACCELERATE_SOME_ENV_VAR"] == "1"
assert os.environ["ACCELERATE_ANOTHER_ENV_VAR"] == "2"
del os.environ["ACCELERATE_SOME_ENV_VAR"]
del os.environ["ACCELERATE_ANOTHER_ENV_VAR"]