mirror of
https://github.com/huggingface/accelerate.git
synced 2025-10-20 18:13:46 +08:00
77 lines
2.4 KiB
Python
77 lines
2.4 KiB
Python
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import unittest
|
|
from dataclasses import dataclass
|
|
|
|
import pytest
|
|
|
|
from accelerate.commands.config.config_args import SageMakerConfig
|
|
from accelerate.utils import ComputeEnvironment
|
|
from accelerate.utils.launch import _convert_nargs_to_dict
|
|
|
|
|
|
@dataclass
|
|
class MockLaunchConfig(SageMakerConfig):
|
|
compute_environment = ComputeEnvironment.AMAZON_SAGEMAKER
|
|
fp16 = True
|
|
ec2_instance_type = "ml.p3.2xlarge"
|
|
iam_role_name = "accelerate_sagemaker_execution_role"
|
|
profile = "hf-sm"
|
|
region = "us-east-1"
|
|
num_machines = 1
|
|
base_job_name = "accelerate-sagemaker-1"
|
|
pytorch_version = "1.6"
|
|
transformers_version = "4.4"
|
|
training_script = "train.py"
|
|
success_training_script_args = [
|
|
"--model_name_or_path",
|
|
"bert",
|
|
"--do_train",
|
|
"False",
|
|
"--epochs",
|
|
"3",
|
|
"--learning_rate",
|
|
"5e-5",
|
|
"--max_steps",
|
|
"50.5",
|
|
]
|
|
fail_training_script_args = [
|
|
"--model_name_or_path",
|
|
"bert",
|
|
"--do_train",
|
|
"--do_test",
|
|
"False",
|
|
"--do_predict",
|
|
"--epochs",
|
|
"3",
|
|
"--learning_rate",
|
|
"5e-5",
|
|
"--max_steps",
|
|
"50.5",
|
|
]
|
|
|
|
|
|
class SageMakerLaunch(unittest.TestCase):
|
|
def test_args_convert(self):
|
|
# If no defaults are changed, `to_kwargs` returns an empty dict.
|
|
converted_args = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args)
|
|
assert isinstance(converted_args["model_name_or_path"], str)
|
|
assert isinstance(converted_args["do_train"], bool)
|
|
assert isinstance(converted_args["epochs"], int)
|
|
assert isinstance(converted_args["learning_rate"], float)
|
|
assert isinstance(converted_args["max_steps"], float)
|
|
|
|
with pytest.raises(ValueError):
|
|
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args)
|