mirror of
https://github.com/huggingface/accelerate.git
synced 2025-10-21 02:33:46 +08:00
* enable fsdp2 benchmark on XPU Signed-off-by: Matrix YAO <matrix.yao@intel.com> * add deterministic Signed-off-by: Matrix YAO <matrix.yao@intel.com> --------- Signed-off-by: Matrix YAO <matrix.yao@intel.com>
131 lines
4.5 KiB
Python
131 lines
4.5 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import json
|
|
import os
|
|
import threading
|
|
import time
|
|
|
|
import psutil
|
|
import torch
|
|
|
|
from accelerate import PartialState
|
|
|
|
|
|
class MemoryTracker:
|
|
def __init__(
|
|
self,
|
|
device: torch.device,
|
|
output_directory: str,
|
|
run_name: str,
|
|
save_memory_snapshot: bool,
|
|
log_interval: float = 0.01,
|
|
):
|
|
"""Class for tracking gpu and cpu memory usage of the process.
|
|
|
|
Args:
|
|
device (`torch.device`):
|
|
PyTorch device to monitor.
|
|
output_directory (`str`):
|
|
Directory to save the memory usage data to, will be created if it doesn't exist.
|
|
run_name (`str`):
|
|
Name of the run, will be used to name the output files.
|
|
save_memory_snapshot (`bool`):
|
|
Whether to also save `torch.cuda.memory._dump_snapshot` to the output directory.
|
|
log_interval (`float`, *optional*):
|
|
Interval in seconds between memory measurements. Defaults to 0.01.
|
|
"""
|
|
self.log_interval = log_interval
|
|
self.save_memory_snapshot = save_memory_snapshot
|
|
self.output_directory = output_directory
|
|
self.run_name = run_name
|
|
|
|
self.timestamps = []
|
|
self.allocated_memory = []
|
|
self.reserved_memory = []
|
|
self.virtual_memory = []
|
|
|
|
self.start_time = None
|
|
self.running = False
|
|
|
|
self._thread = None
|
|
self._state = PartialState()
|
|
self._process = psutil.Process()
|
|
self._device = device
|
|
self.torch_accelerator_module = getattr(torch, device.type, torch.cuda)
|
|
|
|
def _monitor(self):
|
|
self.start_time = time.time()
|
|
|
|
while self.running:
|
|
allocated = self.torch_accelerator_module.memory_allocated(self._device) / (1024 * 1024)
|
|
reserved = self.torch_accelerator_module.memory_reserved(self._device) / (1024 * 1024)
|
|
virtual_memory = self._process.memory_info().rss / (1024 * 1024)
|
|
|
|
self.allocated_memory.append(allocated)
|
|
self.reserved_memory.append(reserved)
|
|
self.virtual_memory.append(virtual_memory)
|
|
self.timestamps.append(time.time() - self.start_time)
|
|
|
|
time.sleep(self.log_interval)
|
|
|
|
def start(self):
|
|
gc.collect()
|
|
self.torch_accelerator_module.empty_cache()
|
|
|
|
if self.output_directory:
|
|
os.makedirs(self.output_directory, exist_ok=True)
|
|
|
|
if self.save_memory_snapshot:
|
|
self.torch_accelerator_module.memory._record_memory_history()
|
|
|
|
self.running = True
|
|
self._thread = threading.Thread(target=self._monitor)
|
|
self._thread.daemon = True
|
|
self._thread.start()
|
|
|
|
def stop(self):
|
|
self.running = False
|
|
if self._thread:
|
|
self._thread.join()
|
|
|
|
if self.save_memory_snapshot and self._state.is_main_process and self.output_directory:
|
|
output_file = os.path.join(self.output_directory, f"{self.run_name}_memory_snapshot.pkl")
|
|
self.torch_accelerator_module.memory._dump_snapshot(output_file)
|
|
|
|
if self._state.is_main_process and self.output_directory:
|
|
path = os.path.join(self.output_directory, f"{self.run_name}_memory_usage.json")
|
|
with open(path, "w") as f:
|
|
json.dump(
|
|
{
|
|
"timestamps": self.timestamps,
|
|
"allocated_memory": self.allocated_memory,
|
|
"reserved_memory": self.reserved_memory,
|
|
"virtual_memory": self.virtual_memory,
|
|
},
|
|
f,
|
|
)
|
|
if self.save_memory_snapshot:
|
|
self.torch_accelerator_module.memory._record_memory_history(False)
|
|
self.torch_accelerator_module.empty_cache()
|
|
|
|
@property
|
|
def peak_allocated_memory(self):
|
|
return max(self.allocated_memory)
|
|
|
|
@property
|
|
def peak_reserved_memory(self):
|
|
return max(self.reserved_memory)
|