# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DataLoaderConfiguration, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # This example also demonstrates the checkpointing and sharding capabilities # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## MAX_GPU_BATCH_SIZE = 16 EVAL_BATCH_SIZE = 32 def training_function(config, args): # Initialize accelerator dataloader_config = DataLoaderConfiguration(use_stateful_dataloader=args.use_stateful_dataloader) if args.with_tracking: accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, dataloader_config=dataloader_config, log_with="all", project_dir=args.project_dir, ) else: accelerator = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, dataloader_config=dataloader_config ) if hasattr(args.checkpointing_steps, "isdigit"): if args.checkpointing_steps == "epoch": checkpointing_steps = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): checkpointing_steps = int(args.checkpointing_steps) else: raise ValueError( f"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: checkpointing_steps = None # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lr = config["lr"] num_epochs = int(config["num_epochs"]) seed = int(config["seed"]) batch_size = int(config["batch_size"]) # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run, config) tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") datasets = load_dataset("glue", "mrpc") metric = evaluate.load("glue", "mrpc") def tokenize_function(examples): # max_length=None => use the model max length (it's actually the default) outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): tokenized_datasets = datasets.map( tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library tokenized_datasets = tokenized_datasets.rename_column("label", "labels") # If the batch size is too big we use gradient accumulation gradient_accumulation_steps = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA: gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE batch_size = MAX_GPU_BATCH_SIZE def collate_fn(examples): # On TPU it's best to pad everything to the same length or training will be very slow. max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None return tokenizer.pad( examples, padding="longest", max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt", ) # Instantiate dataloaders. train_dataloader = DataLoader( tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size ) eval_dataloader = DataLoader( tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE ) set_seed(seed) # Instantiate the model (we build the model here so that the seed also control new weights initialization) model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). model = model.to(accelerator.device) # Instantiate optimizer optimizer = AdamW(params=model.parameters(), lr=lr) # Instantiate scheduler lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=100, num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to keep track of how many total steps we have iterated over overall_step = 0 # We also need to keep track of the stating epoch so files are named properly starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None else: resume_step = int(training_difference.replace("step_", "")) starting_epoch = resume_step // len(train_dataloader) resume_step -= starting_epoch * len(train_dataloader) # Now we train the model for epoch in range(starting_epoch, num_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step if not args.use_stateful_dataloader: active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) outputs = model(**batch) loss = outputs.loss loss = loss / gradient_accumulation_steps # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(checkpointing_steps, int): output_dir = f"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) model.eval() for step, batch in enumerate(eval_dataloader): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:", eval_metric) if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, }, step=epoch, ) if checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) accelerator.end_training() def main(): parser = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision", type=str, default=None, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.") parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--use_stateful_dataloader", action="store_true", help="If the dataloader should be a resumable stateful dataloader.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--output_dir", type=str, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--project_dir", type=str, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) args = parser.parse_args() config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(config, args) if __name__ == "__main__": main()