mirror of
https://github.com/huggingface/accelerate.git
synced 2025-11-13 21:59:16 +08:00
Compare commits
362 Commits
v0.31.0
...
wip-from-p
| Author | SHA1 | Date | |
|---|---|---|---|
| 6c624c4a6b | |||
| 9359a0194f | |||
| 2f075c724c | |||
| 7ecc2d7f39 | |||
| 12f89bb754 | |||
| 348aabaaaf | |||
| 3b13453bbf | |||
| 0408ab12d7 | |||
| 55e518a762 | |||
| 7e11ac43f0 | |||
| e2cc537db8 | |||
| 847ae58c74 | |||
| 6e104f31de | |||
| 524e5f9828 | |||
| d6c986c3f2 | |||
| 1ac8643df7 | |||
| 07ce74868c | |||
| 175fe91589 | |||
| fe16ce8bce | |||
| 5987d79a53 | |||
| 31af8d4e8e | |||
| b7493a82b1 | |||
| a16d2bb3c1 | |||
| cac22ed980 | |||
| be826a6b7b | |||
| 5939640829 | |||
| 7f9c8cbe34 | |||
| 9888c7ed23 | |||
| 42a68c30dc | |||
| 6597dae780 | |||
| 8878d93745 | |||
| 2eaf5cdbbc | |||
| 23c1d8db89 | |||
| 0af621bbec | |||
| bee04f1b01 | |||
| 8a953f08c6 | |||
| 3518c03584 | |||
| 2f8fd72e51 | |||
| d2e6b0313d | |||
| b9fee48c85 | |||
| 3a82b056cf | |||
| 6b61a373a2 | |||
| 682691deac | |||
| 791055b484 | |||
| 16bf1d8901 | |||
| ab3c604e48 | |||
| 273799c85d | |||
| 43526c5c08 | |||
| 07f2392f40 | |||
| ee2f48c2c3 | |||
| 4f3abb73a7 | |||
| db536cbfeb | |||
| 4e9d0deba6 | |||
| 8cb3ace894 | |||
| b6d97cb856 | |||
| 33967d4733 | |||
| 5b1fcda371 | |||
| f55f0533b5 | |||
| 1ec99f0b58 | |||
| 417bc52965 | |||
| 97c93c4809 | |||
| cd37bbb629 | |||
| 7aa3b56c80 | |||
| 14f4306ca6 | |||
| e6e717589e | |||
| 1f6efcea0b | |||
| 9fa97f9600 | |||
| 764eee4a48 | |||
| 202e6c178a | |||
| 32874257f3 | |||
| 281314b479 | |||
| 3524a504c8 | |||
| f48d95c493 | |||
| f76208f5a8 | |||
| ae0499ea96 | |||
| ddc49f1e9a | |||
| 9b2d6eaf32 | |||
| 7b5774ac55 | |||
| 7013365791 | |||
| 8d8fd83672 | |||
| 3a941d4b4e | |||
| d02e51cc21 | |||
| c5caa11e85 | |||
| 39e2bebb12 | |||
| 0af45bf1e8 | |||
| 806ac848c9 | |||
| 23b092507a | |||
| 8fb073536a | |||
| 4f35cf713c | |||
| ada21cfbbd | |||
| b451956fd6 | |||
| 6a9a61520d | |||
| 423fbbfdea | |||
| 34c1779828 | |||
| 54496571fd | |||
| 4a3cbcb63c | |||
| 583b26db3c | |||
| 7812d979c3 | |||
| 67adb473a4 | |||
| ee4cab96ed | |||
| 73c2378c55 | |||
| b2f937faec | |||
| 3b89987710 | |||
| a43e4170fc | |||
| 334d6ab957 | |||
| 650b6659c0 | |||
| fb90996365 | |||
| 32b2e1606f | |||
| 8c0a29626d | |||
| 63168b151f | |||
| 3cf5e4c802 | |||
| 9642a1ac81 | |||
| 3169339f5b | |||
| 67a768be07 | |||
| 531643436e | |||
| 83e09a9331 | |||
| 9c4eeb9ba8 | |||
| a0edc8dcf2 | |||
| 11a3c0001d | |||
| 8b31a2fe2c | |||
| 3f636d6260 | |||
| 803b6648b4 | |||
| 17f9c19f48 | |||
| d7c741a6bc | |||
| 8ab01d32cf | |||
| 140acb356e | |||
| 8576112bc8 | |||
| 806f661cd3 | |||
| 9015a26f09 | |||
| 6de900e10a | |||
| ffb27138f7 | |||
| 4b6be89910 | |||
| a702364256 | |||
| a31bd767c1 | |||
| 71036329f7 | |||
| f648feba97 | |||
| 14fc61eeac | |||
| d9e6af8773 | |||
| b271eb1365 | |||
| 4677b8089f | |||
| e456796be8 | |||
| ac3749dc11 | |||
| 6e8eea2e73 | |||
| c7b3625592 | |||
| 90f81986b9 | |||
| fa26dc6156 | |||
| 6fcc8efd2e | |||
| 8039158d71 | |||
| e34db4d0d2 | |||
| 526925b48c | |||
| 24f8d0276c | |||
| 5cc99e6e02 | |||
| ce63623421 | |||
| f19b95700f | |||
| 81d8a0356c | |||
| f076495580 | |||
| 03153658f4 | |||
| 675e35bcd4 | |||
| 8f2d31c5b9 | |||
| 4c2c89ea90 | |||
| 28c171b05a | |||
| 65356780d4 | |||
| 78b8126bff | |||
| 7e324103c4 | |||
| 02d25612a5 | |||
| fbfa53bc5e | |||
| d09040dfc9 | |||
| 828aae4e32 | |||
| f0b030554c | |||
| 80973430ee | |||
| c67d47ae79 | |||
| 8c423cff79 | |||
| 95f34d6243 | |||
| ba90f85627 | |||
| b13aadcb67 | |||
| 58f14364d5 | |||
| 54370d4504 | |||
| d6d3e03cd4 | |||
| acfbf72a7f | |||
| 200c9eb783 | |||
| 7b2edc0bf2 | |||
| b92fb4774f | |||
| 3e62fbb09c | |||
| cb8b7c637a | |||
| aa16d69561 | |||
| f9a2e7902f | |||
| 51fd482d6e | |||
| 60461ff7c4 | |||
| f8c77f0522 | |||
| b626ef5f00 | |||
| dd68af886a | |||
| 11818e657b | |||
| 1f508a6df6 | |||
| 4a100eef43 | |||
| c6f34a060f | |||
| 29be478862 | |||
| e11d3ceff3 | |||
| 08101b9dde | |||
| 5f96369161 | |||
| 069743775e | |||
| 77f2b6235e | |||
| d7b1b368e9 | |||
| 8ad2b3b8e7 | |||
| e724c9a97f | |||
| cf169a1ae6 | |||
| 8ade23cc6a | |||
| c0552c9012 | |||
| bf4572b6ce | |||
| a4a44aca1f | |||
| b0e5fd353c | |||
| 8159c98d43 | |||
| 497eb3cf86 | |||
| 87732a4c32 | |||
| ffbca15979 | |||
| ba7ab93f5e | |||
| 85f35647db | |||
| 2f39575bbd | |||
| 1ace241db4 | |||
| 78e1bdd088 | |||
| 4dda5797bd | |||
| 1f4fbb77a2 | |||
| c809f8e45c | |||
| 39dc2b120f | |||
| 735dfa3018 | |||
| a84327e596 | |||
| 292954b547 | |||
| 0e61127b5a | |||
| 6f79b63b86 | |||
| 1d2ca747f1 | |||
| cba3f2d5e0 | |||
| f1f2b4d1a8 | |||
| fd9880da91 | |||
| 21c994c298 | |||
| 52581c3f01 | |||
| f4ee5a2dc7 | |||
| 55136b8dc4 | |||
| fb68cb9d0e | |||
| 506d732230 | |||
| ae9cb6e4db | |||
| 127818fc27 | |||
| bcc13c00b5 | |||
| d4d6b6e7f5 | |||
| 1077611552 | |||
| cd93e35e08 | |||
| e93b056687 | |||
| 5060574827 | |||
| 018a99e5f6 | |||
| 4305033f80 | |||
| 4617be3760 | |||
| 521eb5bee4 | |||
| 9f9951325c | |||
| e9e5a73fcc | |||
| 79a8426416 | |||
| 8a43837cc9 | |||
| a768b2b753 | |||
| 85b1a03552 | |||
| fc52fa969e | |||
| 3a670bd0da | |||
| b32d8bcb75 | |||
| d5b7b70e06 | |||
| 1ce2eb6385 | |||
| 3fd02e60dc | |||
| ed9a574564 | |||
| 7d3bbe721b | |||
| 4b4c036933 | |||
| e7e01812df | |||
| 5ad982ac51 | |||
| 9d67867ad9 | |||
| 52b3421d8f | |||
| f1ca8ac78f | |||
| ab89fc7e1d | |||
| b5235f21d8 | |||
| 8931e5e48c | |||
| a84859242d | |||
| 758d6243a7 | |||
| b07ad2adf2 | |||
| 1d09a20fc1 | |||
| 3fcc9461c4 | |||
| 939ce400cb | |||
| c2120927b0 | |||
| 654e1d9984 | |||
| 8c3aded21a | |||
| 2789933938 | |||
| 726140cad2 | |||
| 2d4f1dda7e | |||
| c0cf860dc6 | |||
| ad3f574a3b | |||
| 1a6af0bd6d | |||
| 52fae0960c | |||
| 7ffe7662ca | |||
| 5536a3a893 | |||
| 7ec8eab955 | |||
| 589fddd317 | |||
| 99c69aaf73 | |||
| 00785cd9fc | |||
| a452327e8e | |||
| 851cf34351 | |||
| cd5698bb32 | |||
| 90d5023901 | |||
| 3bde615607 | |||
| dc3b5ad82e | |||
| 12a5befdd6 | |||
| 79ca85c27d | |||
| 13d93c4f50 | |||
| d982751aec | |||
| 95edc68cb3 | |||
| 288accc0ec | |||
| 83b0610155 | |||
| 386f7d2825 | |||
| 308a8e9689 | |||
| f35cbd1f02 | |||
| a14260c9da | |||
| 32f368ec3f | |||
| 415eddf1be | |||
| 230857691a | |||
| a5a3e57125 | |||
| 0af1d8b8de | |||
| d16d7371a1 | |||
| 7a5c231b9e | |||
| 4f02bb764a | |||
| 709fd1e42b | |||
| f4f1260a0e | |||
| c6da9f8693 | |||
| 3ebbe573ad | |||
| 24bf5ec546 | |||
| e1247de01e | |||
| 12a007d559 | |||
| 5bdcd7e169 | |||
| 2471eacdd6 | |||
| 167cb5eb20 | |||
| 947f64ee62 | |||
| 8330b375d4 | |||
| 92404fbf5f | |||
| 3a02754915 | |||
| fec1170e35 | |||
| eac206f063 | |||
| 6882ff2bea | |||
| 57a4c7465e | |||
| 404510a5ec | |||
| 3086e26db9 | |||
| 5d5d07abfc | |||
| 5a0b7dc597 | |||
| c799c198e9 | |||
| 1f7a79b428 | |||
| 4cc3530b64 | |||
| 5d4a3beb01 | |||
| 0284f9a9f6 | |||
| 573d22d48f | |||
| 13ca7dccb6 | |||
| 3b5a00e048 | |||
| 3c4eaedd46 | |||
| c0faec766c | |||
| 91a2599f93 | |||
| 5f9235a731 | |||
| 7a36a75c7c | |||
| f62854a281 | |||
| a9869ea0dc | |||
| 6d59614603 | |||
| 2d74c0c077 | |||
| 40007b4e97 | |||
| 7141881b1f | |||
| f0049b2cfb |
12
.github/PULL_REQUEST_TEMPLATE.md
vendored
12
.github/PULL_REQUEST_TEMPLATE.md
vendored
@ -37,11 +37,11 @@ members/contributors who may be interested in your PR.
|
||||
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
|
||||
|
||||
- Big modeling: @SunMarc
|
||||
- Fully-Sharded Data Parallism: @muellerzr
|
||||
- DeepSpeed: @muellerzr
|
||||
- Command Line Interface: @muellerzr
|
||||
- Documentation: @muellerzr
|
||||
- Core parts of the library: @muellerzr @BenjaminBossan @SunMarc
|
||||
- Maintained examples: @muellerzr or @SunMarc
|
||||
- Fully-Sharded Data Parallism: @SunMarc @zach-huggingface
|
||||
- DeepSpeed: @SunMarc @zach-huggingface
|
||||
- Command Line Interface: @SunMarc @zach-huggingface
|
||||
- Documentation: @SunMarc @zach-huggingface
|
||||
- Core parts of the library: @BenjaminBossan @SunMarc @zach-huggingface
|
||||
- Maintained examples: @SunMarc or @zach-huggingface
|
||||
|
||||
-->
|
||||
@ -15,13 +15,14 @@ jobs:
|
||||
outputs:
|
||||
version: ${{ steps.step1.outputs.version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- uses: actions/checkout@4
|
||||
- id: step1
|
||||
run: echo "version=$(python setup.py --version)" >> $GITHUB_OUTPUT
|
||||
|
||||
version-cpu:
|
||||
name: "Latest Accelerate CPU [version]"
|
||||
runs-on: [self-hosted, intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
needs: get-version
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
@ -41,7 +42,8 @@ jobs:
|
||||
|
||||
version-cuda:
|
||||
name: "Latest Accelerate GPU [version]"
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
needs: get-version
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
@ -61,7 +63,8 @@ jobs:
|
||||
|
||||
version-cuda-deepspeed:
|
||||
name: "Latest Accelerate GPU DeepSpeed [version]"
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
needs: get-version
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
@ -79,3 +82,23 @@ jobs:
|
||||
push: true
|
||||
tags: huggingface/accelerate:gpu-deepspeed-release-${{needs.get-version.outputs.version}}
|
||||
|
||||
version-cuda-fp8-transformerengine:
|
||||
name: "Latest Accelerate GPU FP8 TransformerEngine [version]"
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
needs: get-version
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
- name: Build and Push GPU
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
file: docker/accelerate-gpu/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/accelerate:gpu-fp8-transformerengine-release-${{needs.get-version.outputs.version}}
|
||||
6
.github/workflows/build_and_run_tests.yml
vendored
6
.github/workflows/build_and_run_tests.yml
vendored
@ -16,13 +16,13 @@ jobs:
|
||||
outputs:
|
||||
changed: ${{ steps.was_changed.outputs.changed }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: "2"
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v41
|
||||
uses: tj-actions/changed-files@3f54ebb830831fc121d3263c1857cfbdc310cdb9 #v42
|
||||
|
||||
- name: Was setup changed
|
||||
id: was_changed
|
||||
@ -47,4 +47,4 @@ jobs:
|
||||
run-integration-tests:
|
||||
needs: build-docker-containers
|
||||
if: always()
|
||||
uses: ./.github/workflows/self_hosted_integration_tests.yml
|
||||
uses: ./.github/workflows/self_hosted_integration_tests.yml
|
||||
|
||||
43
.github/workflows/build_docker_images.yml
vendored
43
.github/workflows/build_docker_images.yml
vendored
@ -13,7 +13,8 @@ concurrency:
|
||||
jobs:
|
||||
latest-cpu:
|
||||
name: "Latest Accelerate CPU [dev]"
|
||||
runs-on: [self-hosted, intel-cpu, 8-cpu, ci]
|
||||
runs-on:
|
||||
group: aws-general-8-plus
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
@ -29,7 +30,7 @@ jobs:
|
||||
- name: Build and Push CPU
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
file: docker/accelerate-cpu/Dockerfile
|
||||
file: docker/accelerate-cpu/Dockerfile
|
||||
push: true
|
||||
tags: |
|
||||
huggingface/accelerate:cpu-nightly
|
||||
@ -37,7 +38,8 @@ jobs:
|
||||
|
||||
latest-cuda:
|
||||
name: "Latest Accelerate GPU [dev]"
|
||||
runs-on: [self-hosted, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
@ -53,7 +55,7 @@ jobs:
|
||||
- name: Build and Push GPU
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
file: docker/accelerate-gpu/Dockerfile
|
||||
file: docker/accelerate-gpu/Dockerfile
|
||||
push: true
|
||||
tags: |
|
||||
huggingface/accelerate:gpu-nightly
|
||||
@ -61,7 +63,8 @@ jobs:
|
||||
|
||||
latest-cuda-deepspeed:
|
||||
name: "Latest Accelerate GPU DeepSpeed [dev]"
|
||||
runs-on: [self-hosted, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
@ -77,9 +80,37 @@ jobs:
|
||||
- name: Build and Push GPU
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
file: docker/accelerate-gpu-deepspeed/Dockerfile
|
||||
file: docker/accelerate-gpu-deepspeed/Dockerfile
|
||||
push: true
|
||||
tags: |
|
||||
huggingface/accelerate:gpu-deepspeed-nightly
|
||||
huggingface/accelerate:gpu-deepspeed-nightly-${{ env.date }}
|
||||
|
||||
latest-cuda-fp8-transformerengine:
|
||||
name: "Latest Accelerate GPU FP8 TransformerEngine [dev]"
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v2
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
- name: Get current date
|
||||
id: date
|
||||
run: |
|
||||
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
|
||||
# Get the previous month
|
||||
echo "base_year=$(date -d 'last month' '+%y')" >> $GITHUB_ENV
|
||||
echo "base_month=$(date -d 'last month' '+%m')" >> $GITHUB_ENV
|
||||
- name: Build and Push GPU
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
file: benchmarks/fp8/transformer_engine/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/accelerate:gpu-fp8-transformerengine-nightly-${{ env.date }}
|
||||
build-args: |
|
||||
BASE_YEAR=${{ env.base_year }}
|
||||
BASE_MONTH=${{ env.base_month }}
|
||||
37
.github/workflows/fp8_runner.yml
vendored
Normal file
37
.github/workflows/fp8_runner.yml
vendored
Normal file
@ -0,0 +1,37 @@
|
||||
name: Test FP8 Runner
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
jobs:
|
||||
set-prev-day:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
prev-day: ${{ steps.set-prev-day.outputs.prev-day }}
|
||||
steps:
|
||||
- name: Set PREV_DAY
|
||||
id: set-prev-day
|
||||
run: |
|
||||
PREV_DAY=$(date -d "yesterday" '+%Y-%m-%d')
|
||||
echo "prev-day=$PREV_DAY" >> $GITHUB_OUTPUT
|
||||
run-fp8-tests:
|
||||
needs: set-prev-day
|
||||
runs-on:
|
||||
group: aws-g6e-12xlarge
|
||||
container:
|
||||
image: huggingface/accelerate:gpu-fp8-transformerengine-nightly-${{ needs.set-prev-day.outputs.prev-day }}
|
||||
options: --gpus all --shm-size "16gb"
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Install the library
|
||||
run: |
|
||||
pip install -e .[test_prod,test_fp8]
|
||||
- name: Show installed libraries
|
||||
run: |
|
||||
pip freeze
|
||||
- name: Run TE FP8 tests
|
||||
run: |
|
||||
python -m pytest -s -v ./tests/test_fp8.py
|
||||
|
||||
87
.github/workflows/gaudi3_scheduled.yml
vendored
Normal file
87
.github/workflows/gaudi3_scheduled.yml
vendored
Normal file
@ -0,0 +1,87 @@
|
||||
name: Gaudi3 tests (scheduled)
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
schedule: # every day at 6 AM UTC
|
||||
- cron: "0 6 * * *"
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
run-gaudi3-tests:
|
||||
runs-on:
|
||||
group: itac-bm-emr-gaudi3-dell-2gaudi
|
||||
|
||||
container:
|
||||
image: docker://vault.habana.ai/gaudi-docker/1.21.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
options: --runtime=habana --shm-size=64G --cap-add=sys_nice --env HABANA_VISIBLE_DEVICES
|
||||
env:
|
||||
OMPI_MCA_btl_vader_single_copy_mechanism: none
|
||||
PT_ENABLE_INT64_SUPPORT: 1
|
||||
PT_HPU_LAZY_MODE: 0
|
||||
RUN_SLOW: 1
|
||||
|
||||
steps:
|
||||
- name: HL-SMI (1)
|
||||
run: |
|
||||
hl-smi
|
||||
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
|
||||
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
|
||||
|
||||
- name: Extract HPU visible modules
|
||||
id: add-modules
|
||||
run: |
|
||||
export HABANA_VISIBLE_MODULES=$(hl-smi -Q module_id -f csv,noheader | tr '\n' ',' | sed 's/,$//')
|
||||
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}" >> $GITHUB_ENV
|
||||
|
||||
- name: HL-SMI (2)
|
||||
run: |
|
||||
hl-smi
|
||||
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
|
||||
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
|
||||
|
||||
- name: Checkout to Accelerate
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Install Accelerate with Transformers & DeepSpeed
|
||||
run: |
|
||||
pip install -e .[testing] \
|
||||
git+https://github.com/HabanaAI/DeepSpeed.git@1.20.0 \
|
||||
git+https://github.com/huggingface/transformers.git
|
||||
|
||||
- name: Run CLI tests
|
||||
if: ${{ !cancelled() && (success() || failure()) }}
|
||||
run: |
|
||||
make test_cli
|
||||
|
||||
- name: Run Core tests
|
||||
if: ${{ !cancelled() && (success() || failure()) }}
|
||||
run: |
|
||||
make test_core
|
||||
|
||||
- name: Run Big Modeling tests
|
||||
if: ${{ !cancelled() && (success() || failure()) }}
|
||||
run: |
|
||||
make test_big_modeling
|
||||
|
||||
- name: Run DeepSpeed integration tests
|
||||
if: ${{ !cancelled() && (success() || failure()) }}
|
||||
run: |
|
||||
make test_deepspeed
|
||||
|
||||
- name: Run FSDP integration tests
|
||||
if: ${{ !cancelled() && (success() || failure()) }}
|
||||
run: |
|
||||
make test_fsdp
|
||||
|
||||
- name: Run TP integration tests
|
||||
if: ${{ !cancelled() && (success() || failure()) }}
|
||||
run: |
|
||||
make test_tp
|
||||
|
||||
- name: Run Examples tests
|
||||
if: ${{ !cancelled() && (success() || failure()) }}
|
||||
run: |
|
||||
make test_examples
|
||||
10
.github/workflows/integration_tests.yml
vendored
10
.github/workflows/integration_tests.yml
vendored
@ -26,11 +26,13 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
steps:
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- name: Set up python 3.8
|
||||
uses: actions/setup-python@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up python 3.9
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.8
|
||||
python-version: 3.9
|
||||
cache: 'pip'
|
||||
cache-dependency-path: 'setup.py'
|
||||
|
||||
- name: Install Accelerate from source
|
||||
run: |
|
||||
|
||||
22
.github/workflows/nightly.yml
vendored
22
.github/workflows/nightly.yml
vendored
@ -13,7 +13,8 @@ env:
|
||||
|
||||
jobs:
|
||||
run_core_tests_single_gpu:
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
TEST_TYPE: "single_gpu"
|
||||
@ -43,7 +44,7 @@ jobs:
|
||||
run: |
|
||||
source activate accelerate
|
||||
make test
|
||||
|
||||
|
||||
- name: Run examples on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
@ -51,7 +52,7 @@ jobs:
|
||||
source activate accelerate
|
||||
pip uninstall comet_ml -y
|
||||
make test_examples
|
||||
|
||||
|
||||
- name: Generate Report
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
@ -60,7 +61,8 @@ jobs:
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_deepspeed_tests_single_gpu:
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
TEST_TYPE: "single_gpu_deepspeed"
|
||||
@ -105,7 +107,7 @@ jobs:
|
||||
source activate accelerate
|
||||
pip uninstall comet_ml -y
|
||||
make test_examples
|
||||
|
||||
|
||||
- name: Generate Report
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
@ -114,7 +116,8 @@ jobs:
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_core_tests_multi_gpu:
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-12xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0,1"
|
||||
TEST_TYPE: "multi_gpu"
|
||||
@ -170,7 +173,8 @@ jobs:
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_deepspeed_tests_multi_gpu:
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-12xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0,1"
|
||||
TEST_TYPE: "multi_gpu_deepspeed"
|
||||
@ -223,7 +227,7 @@ jobs:
|
||||
pip install slack_sdk tabulate
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
|
||||
|
||||
run-integration-tests:
|
||||
if: always()
|
||||
uses: ./.github/workflows/self_hosted_integration_tests.yml
|
||||
uses: ./.github/workflows/self_hosted_integration_tests.yml
|
||||
|
||||
19
.github/workflows/pr_style_bot.yml
vendored
Normal file
19
.github/workflows/pr_style_bot.yml
vendored
Normal file
@ -0,0 +1,19 @@
|
||||
# To run this bot, comment "@bot /style" on a PR
|
||||
name: Style Bot
|
||||
|
||||
on:
|
||||
issue_comment:
|
||||
types: [created]
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
style:
|
||||
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
|
||||
with:
|
||||
python_quality_dependencies: "[quality]"
|
||||
style_command_type: "default"
|
||||
secrets:
|
||||
bot_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
10
.github/workflows/quality.yml
vendored
10
.github/workflows/quality.yml
vendored
@ -6,11 +6,13 @@ jobs:
|
||||
quality:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- name: Set up Python 3.8
|
||||
uses: actions/setup-python@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.8
|
||||
python-version: 3.9
|
||||
cache: 'pip'
|
||||
cache-dependency-path: 'setup.py'
|
||||
- name: Install Python dependencies
|
||||
run: pip install -e .[quality]
|
||||
- name: Run Quality check
|
||||
|
||||
18
.github/workflows/run_merge_tests.yml
vendored
18
.github/workflows/run_merge_tests.yml
vendored
@ -10,7 +10,8 @@ env:
|
||||
|
||||
jobs:
|
||||
run_core_tests_single_gpu:
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
container:
|
||||
@ -39,7 +40,7 @@ jobs:
|
||||
run: |
|
||||
source activate accelerate;
|
||||
make test_cli
|
||||
|
||||
|
||||
- name: Run test on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
@ -62,7 +63,8 @@ jobs:
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_deepspeed_tests_single_gpu:
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-4xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
container:
|
||||
@ -85,7 +87,7 @@ jobs:
|
||||
run: |
|
||||
source activate accelerate;
|
||||
pip freeze
|
||||
|
||||
|
||||
- name: Run test on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
@ -101,7 +103,8 @@ jobs:
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_core_tests_multi_gpu:
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-12xlarge-plus
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
container:
|
||||
@ -147,7 +150,8 @@ jobs:
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_deepspeed_tests_multi_gpu:
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-12xlarge-plus
|
||||
container:
|
||||
image: huggingface/accelerate:gpu-deepspeed-nightly
|
||||
options: --gpus all --shm-size "16gb"
|
||||
@ -181,4 +185,4 @@ jobs:
|
||||
if: always()
|
||||
run: |
|
||||
pip install tabulate;
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# CI for specifically ensuring integrations work fine (`transformers` mainly) on GPUs
|
||||
# Useful tips:
|
||||
# - `working-directory` should be set to the root of the repo, which is cloned on the actual CI runner.
|
||||
# It follows the directory structure of `actions-runner/_work/{repo_name}/{repo_name}/{cloned_repo} on
|
||||
# It follows the directory structure of `actions-runner/_work/{repo_name}/{repo_name}/{cloned_repo} on
|
||||
# prem, but in Actions setting `working-directory` looks just in the `{repo_name}` level.
|
||||
# - New integrations to test should have its own job, and follow a strategy method where we check both
|
||||
# the pypi and github versions.
|
||||
@ -25,12 +25,13 @@ jobs:
|
||||
container:
|
||||
image: huggingface/accelerate:gpu-deepspeed-nightly
|
||||
options: --gpus all --shm-size "16gb"
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-12xlarge-plus
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
cuda_visible_devices: [
|
||||
"0",
|
||||
"0",
|
||||
"0,1"
|
||||
]
|
||||
steps:
|
||||
@ -51,7 +52,7 @@ jobs:
|
||||
pip install -e .[testing];
|
||||
pip uninstall comet_ml wandb dvclive -y
|
||||
cd ..;
|
||||
|
||||
|
||||
- name: Show installed libraries
|
||||
run: |
|
||||
source activate accelerate;
|
||||
@ -90,12 +91,13 @@ jobs:
|
||||
container:
|
||||
image: huggingface/accelerate:gpu-nightly
|
||||
options: --gpus all --shm-size "16gb"
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g6-12xlarge-plus
|
||||
strategy:
|
||||
fail-fast: false
|
||||
steps:
|
||||
- name: Install accelerate
|
||||
run:
|
||||
run:
|
||||
source activate accelerate;
|
||||
git clone https://github.com/huggingface/accelerate;
|
||||
cd accelerate;
|
||||
@ -122,4 +124,4 @@ jobs:
|
||||
working-directory: skorch/
|
||||
run: |
|
||||
source activate accelerate;
|
||||
pytest -sv -k TestAccelerate
|
||||
pytest -sv -k TestAccelerate
|
||||
|
||||
13
.github/workflows/stale.yml
vendored
13
.github/workflows/stale.yml
vendored
@ -10,19 +10,24 @@ jobs:
|
||||
name: Close Stale Issues
|
||||
if: github.repository == 'huggingface/accelerate'
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
pull-requests: write
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- uses: actions/checkout@v4
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v3
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.8
|
||||
python-version: 3.9
|
||||
cache: 'pip'
|
||||
cache-dependency-path: 'setup.py'
|
||||
|
||||
- name: Install requirements
|
||||
run: |
|
||||
pip install PyGithub
|
||||
- name: Close stale issues
|
||||
run: |
|
||||
python utils/stale.py
|
||||
python utils/stale.py
|
||||
|
||||
16
.github/workflows/test.yml
vendored
16
.github/workflows/test.yml
vendored
@ -38,19 +38,21 @@ jobs:
|
||||
test_rest
|
||||
]
|
||||
steps:
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- name: Set up python 3.8
|
||||
uses: actions/setup-python@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up python 3.9
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.8
|
||||
python-version: 3.9
|
||||
cache: 'pip'
|
||||
cache-dependency-path: 'setup.py'
|
||||
|
||||
- name: Install the library
|
||||
run: |
|
||||
if [[ ${{ matrix.test-kind }} = test_prod ]]; then pip install -e .[test_prod]; fi
|
||||
if [[ ${{ matrix.test-kind }} != test_prod ]]; then pip install -e .[testing,test_trackers]; fi
|
||||
if [[ ${{ matrix.test-kind }} = test_rest ]]; then pip uninstall comet_ml -y; fi
|
||||
if [[ ${{ matrix.test-kind }} = minimum ]]; then pip install torch==1.10.0; fi
|
||||
pip install pytest-reportlog tabulate setuptools
|
||||
if [[ ${{ matrix.pytorch-version }} = minimum ]]; then pip install torchvision==0.18.1 torch==2.3.1; fi
|
||||
pip install pytest-reportlog tabulate setuptools importlib_metadata
|
||||
|
||||
- name: Show installed libraries
|
||||
run: |
|
||||
@ -65,4 +67,4 @@ jobs:
|
||||
- name: Generate Report
|
||||
if: always()
|
||||
run: |
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
55
.github/workflows/test_imports.yml
vendored
Normal file
55
.github/workflows/test_imports.yml
vendored
Normal file
@ -0,0 +1,55 @@
|
||||
name: Run Import Tests
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
paths:
|
||||
- "src/**"
|
||||
- "tests/**"
|
||||
- ".github/**"
|
||||
- "examples/**"
|
||||
- "setup.py"
|
||||
types: [opened, synchronize, reopened]
|
||||
|
||||
env:
|
||||
HF_HOME: ~/hf_cache
|
||||
TESTING_MOCKED_DATALOADERS: "1"
|
||||
IS_GITHUB_CI: "1"
|
||||
|
||||
jobs:
|
||||
run-tests:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
pytorch-version: [
|
||||
latest,
|
||||
minimum,
|
||||
]
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up python 3.9
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.9
|
||||
cache: 'pip'
|
||||
cache-dependency-path: 'setup.py'
|
||||
|
||||
- name: Install the library
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install pytest-reportlog tabulate setuptools git+https://github.com/muellerzr/import-timer
|
||||
|
||||
- name: Show installed libraries
|
||||
run: |
|
||||
pip freeze
|
||||
|
||||
- name: Run Import Tests
|
||||
env:
|
||||
PYTORCH_VERSION: ${{ matrix.pytorch-version }}
|
||||
run: |
|
||||
pytest -sv tests/test_imports.py
|
||||
|
||||
- name: Generate Report
|
||||
if: always()
|
||||
run: |
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
15
.github/workflows/trufflehog.yml
vendored
Normal file
15
.github/workflows/trufflehog.yml
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
on:
|
||||
push:
|
||||
|
||||
name: Secret Leaks
|
||||
|
||||
jobs:
|
||||
trufflehog:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Secret Scanning
|
||||
uses: trufflesecurity/trufflehog@main
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@ -142,3 +142,6 @@ wandb
|
||||
|
||||
# ruff
|
||||
.ruff_cache
|
||||
|
||||
|
||||
models
|
||||
|
||||
@ -123,12 +123,15 @@ Follow these steps to start contributing:
|
||||
4. Set up a development environment by running the following command in a conda or a virtual environment you've created for working on this library:
|
||||
|
||||
```bash
|
||||
$ pip install -e ".[quality]"
|
||||
$ pip install -e ".[dev]"
|
||||
```
|
||||
|
||||
This will install all testing and linting/code quality dependencies for the library (see `quality`, `test_dev`,
|
||||
`test_prod` targets in [`setup.py`](./setup.py)).
|
||||
|
||||
(If accelerate was already installed in the virtual environment, remove
|
||||
it with `pip uninstall accelerate` before reinstalling it in editable
|
||||
mode with the `-e` flag.)
|
||||
mode with the `-e` flag).
|
||||
|
||||
Alternatively, if you are using [Visual Studio Code](https://code.visualstudio.com/Download), the fastest way to get set up is by using
|
||||
the provided Dev Container. Documentation on how to get started with dev containers is available [here](https://code.visualstudio.com/docs/remote/containers).
|
||||
|
||||
41
Makefile
41
Makefile
@ -23,22 +23,32 @@ style:
|
||||
doc-builder style src/accelerate docs/source --max_len 119
|
||||
|
||||
# Run tests for the library
|
||||
test_big_modeling:
|
||||
python -m pytest -s -v ./tests/test_big_modeling.py ./tests/test_modeling_utils.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_big_modeling.log",)
|
||||
|
||||
test_core:
|
||||
python -m pytest -s -v ./tests/ --ignore=./tests/test_examples.py --ignore=./tests/deepspeed --ignore=./tests/test_big_modeling.py \
|
||||
--ignore=./tests/fsdp --ignore=./tests/test_cli.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_core.log",)
|
||||
python -m pytest -s -v ./tests/ \
|
||||
--ignore=./tests/test_big_modeling.py \
|
||||
--ignore=./tests/test_modeling_utils.py \
|
||||
--ignore=./tests/test_examples.py \
|
||||
--ignore=./tests/test_cli.py \
|
||||
--ignore=./tests/deepspeed \
|
||||
--ignore=./tests/fsdp \
|
||||
--ignore=./tests/tp \
|
||||
$(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_core.log",)
|
||||
|
||||
test_cli:
|
||||
python -m pytest -s -v ./tests/test_cli.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_cli.log",)
|
||||
|
||||
test_big_modeling:
|
||||
python -m pytest -s -v ./tests/test_big_modeling.py ./tests/test_modeling_utils.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_big_modeling.log",)
|
||||
|
||||
test_deepspeed:
|
||||
python -m pytest -s -v ./tests/deepspeed $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_deepspeed.log",)
|
||||
|
||||
test_fsdp:
|
||||
python -m pytest -s -v ./tests/fsdp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_fsdp.log",)
|
||||
|
||||
test_tp:
|
||||
python -m pytest -s -v ./tests/tp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_tp.log",)
|
||||
|
||||
# Since the new version of pytest will *change* how things are collected, we need `deepspeed` to
|
||||
# run after test_core and test_cli
|
||||
test:
|
||||
@ -47,13 +57,14 @@ test:
|
||||
$(MAKE) test_big_modeling
|
||||
$(MAKE) test_deepspeed
|
||||
$(MAKE) test_fsdp
|
||||
$(MAKE) test_tp
|
||||
|
||||
test_examples:
|
||||
python -m pytest -s -v ./tests/test_examples.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_examples.log",)
|
||||
|
||||
# Broken down example tests for the CI runners
|
||||
test_integrations:
|
||||
python -m pytest -s -v ./tests/deepspeed ./tests/fsdp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_integrations.log",)
|
||||
python -m pytest -s -v ./tests/deepspeed ./tests/fsdp ./tests/tp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_integrations.log",)
|
||||
|
||||
test_example_differences:
|
||||
python -m pytest -s -v ./tests/test_examples.py::ExampleDifferenceTests $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_example_diff.log",)
|
||||
@ -70,3 +81,21 @@ test_prod:
|
||||
|
||||
test_rest:
|
||||
python -m pytest -s -v ./tests/test_examples.py::FeatureExamplesTests -k "not by_step and not by_epoch" $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_rest.log",)
|
||||
|
||||
# For developers to prepare a release
|
||||
prepare_release:
|
||||
rm -rf dist build
|
||||
python setup.py bdist_wheel sdist
|
||||
|
||||
# Make sure this is ran in a fresh venv of some form
|
||||
install_test_release:
|
||||
pip uninstall accelerate -y
|
||||
pip install -i https://testpypi.python.org/pypi --extra-index-url https://pypi.org/simple accelerate$(if $(version),==$(version),)
|
||||
|
||||
# Run as `make target=testpypi upload_release`
|
||||
upload_release:
|
||||
@if [ "$(target)" != "testpypi" ] && [ "$(target)" != "pypi" ]; then \
|
||||
echo "Error: target must be either 'testpypi' or 'pypi'"; \
|
||||
exit 1; \
|
||||
fi
|
||||
twine upload dist/* -r $(target)
|
||||
24
README.md
24
README.md
@ -22,22 +22,12 @@ limitations under the License.
|
||||
|
||||
<p align="center">
|
||||
<!-- Uncomment when CircleCI is set up
|
||||
<a href="https://circleci.com/gh/huggingface/accelerate">
|
||||
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
|
||||
</a>
|
||||
<a href="https://circleci.com/gh/huggingface/accelerate"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"></a>
|
||||
-->
|
||||
<a href="https://github.com/huggingface/accelerate/blob/main/LICENSE">
|
||||
<img alt="License" src="https://img.shields.io/github/license/huggingface/accelerate.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/accelerate/index.html">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/accelerate/index.html.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/accelerate/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/accelerate.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md">
|
||||
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/accelerate/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/accelerate.svg?color=blue"></a>
|
||||
<a href="https://huggingface.co/docs/accelerate/index.html"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/accelerate/index.html.svg?down_color=red&down_message=offline&up_message=online"></a>
|
||||
<a href="https://github.com/huggingface/accelerate/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/accelerate.svg"></a>
|
||||
<a href="https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"></a>
|
||||
</p>
|
||||
|
||||
<h3 align="center">
|
||||
@ -167,6 +157,8 @@ accelerate launch --multi_gpu --num_processes 2 examples/nlp_example.py
|
||||
|
||||
To learn more, check the CLI documentation available [here](https://huggingface.co/docs/accelerate/package_reference/cli).
|
||||
|
||||
Or view the configuration zoo [here](https://github.com/huggingface/accelerate/blob/main/examples/config_yaml_templates/)
|
||||
|
||||
## Launching multi-CPU run using MPI
|
||||
|
||||
🤗 Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on [this page](https://www.open-mpi.org/faq/?category=building#easy-build). You can use Intel MPI or MVAPICH as well.
|
||||
@ -266,7 +258,7 @@ pip install accelerate
|
||||
- multi-GPU on several nodes (machines)
|
||||
- TPU
|
||||
- FP16/BFloat16 mixed precision
|
||||
- FP8 mixed precision with [Transformer Engine](https://github.com/NVIDIA/TransformerEngine)
|
||||
- FP8 mixed precision with [Transformer Engine](https://github.com/NVIDIA/TransformerEngine) or [MS-AMP](https://github.com/Azure/MS-AMP/)
|
||||
- DeepSpeed support (Experimental)
|
||||
- PyTorch Fully Sharded Data Parallel (FSDP) support (Experimental)
|
||||
- Megatron-LM support (Experimental)
|
||||
|
||||
@ -1,46 +1,5 @@
|
||||
# Big model inference benchmarks
|
||||
# Benchmarks
|
||||
|
||||
Running inference with Accelerate on big models.
|
||||
The folders below contain suites to test various functionalities in Accelerate.
|
||||
|
||||
## Setup
|
||||
|
||||
These benchmarks use the `transformers` library:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
To reproduce or test a new setup, run
|
||||
|
||||
```py
|
||||
python inference_acc.py model_name
|
||||
```
|
||||
|
||||
This script supports `gpt-j-6b`, `gpt-neox`, `opt` (30B version) and `T0pp` out of the box, but you can specify any valid checkpoint for `model_name`.
|
||||
|
||||
To force a different `torch_dtype` than the one in the config: `--torch_dtype xxx`.
|
||||
|
||||
If you get an error linked to disk offload, you need to add the option `--disk-offload`
|
||||
|
||||
## Results
|
||||
|
||||
On a setup with two Titan RTXs (24GB of RAM) and 32GB of RAM, we get the following benchmarks (T0pp does not run in float16, which is why it's not included).
|
||||
|
||||
| Model | Model load time | Generation time | dtype | GPU 0 use | GPU 1 use | CPU use | Disk offload |
|
||||
|:-----:|:---------------:|:---------------:|:-----:|:---------:|:---------:|:-------:|:------------:|
|
||||
| GPT-J-6B | 8.7s | 0.05s per token | float16 | 11.7GB | 0GB | 0GB | no |
|
||||
| GPT-J-6B | 12.4s | 0.06s per token | float32 | 21.9GB | 1.5GB | 0GB | no |
|
||||
| GPT-Neo-X-20B | 30.9s | 0.08s per token | float16 | 21.5GB | 18GB | 0GB | no |
|
||||
| GPT-Neo-X-20B | 78.2s | 10.72s per token | float32 | 20.3GB | 22.7 GB | 24.4GB | yes |
|
||||
| T0pp (11B) | 29.4s | 0.05s per token | float32 | 21.1GB | 21.3GB | 0GB | no |
|
||||
| OPT-30B | 34.5s | 2.37s per token | float16 | 20.7GB | 22.3GB | 14.1GB | no |
|
||||
| OPT-30B | 112.3s | 33.9s per token | float32 | 20.2GB | 21.2GB | 23.5GB | yes |
|
||||
|
||||
Note on the results:
|
||||
- using two GPUs instead of one does not slow down generation
|
||||
- using CPU offload slows down a bit (see OPT-30b)
|
||||
- using disk offload slows down a lot (need to implement prefetching)
|
||||
|
||||
You will also note that Accelerate does not use anymore GPU and CPU RAM than necessary:
|
||||
- peak GPU memory is exactly the size of the model put on a given GPU
|
||||
- peak CPU memory is either the size of the biggest checkpoint shard or the part of the model offloaded on CPU, whichever is bigger.
|
||||
See their relevant README.md's for more information.
|
||||
|
||||
46
benchmarks/big_model_inference/README.md
Normal file
46
benchmarks/big_model_inference/README.md
Normal file
@ -0,0 +1,46 @@
|
||||
# Big model inference benchmarks
|
||||
|
||||
Running inference with Accelerate on big models.
|
||||
|
||||
## Setup
|
||||
|
||||
These benchmarks use the `transformers` library:
|
||||
|
||||
```bash
|
||||
pip install transformers
|
||||
```
|
||||
|
||||
To reproduce or test a new setup, run
|
||||
|
||||
```py
|
||||
python big_model_inference.py model_name
|
||||
```
|
||||
|
||||
This script supports `gpt-j-6b`, `gpt-neox`, `opt` (30B version) and `T0pp` out of the box, but you can specify any valid checkpoint for `model_name`.
|
||||
|
||||
To force a different `torch_dtype` than the one in the config: `--torch_dtype xxx`.
|
||||
|
||||
If you get an error linked to disk offload, you need to add the option `--disk-offload`
|
||||
|
||||
## Results
|
||||
|
||||
On a setup with two Titan RTXs (24GB of RAM) and 32GB of RAM, we get the following benchmarks (T0pp does not run in float16, which is why it's not included).
|
||||
|
||||
| Model | Model load time | Generation time | dtype | GPU 0 use | GPU 1 use | CPU use | Disk offload |
|
||||
|:-----:|:---------------:|:---------------:|:-----:|:---------:|:---------:|:-------:|:------------:|
|
||||
| GPT-J-6B | 8.7s | 0.05s per token | float16 | 11.7GB | 0GB | 0GB | no |
|
||||
| GPT-J-6B | 12.4s | 0.06s per token | float32 | 21.9GB | 1.5GB | 0GB | no |
|
||||
| GPT-Neo-X-20B | 30.9s | 0.08s per token | float16 | 21.5GB | 18GB | 0GB | no |
|
||||
| GPT-Neo-X-20B | 78.2s | 10.72s per token | float32 | 20.3GB | 22.7 GB | 24.4GB | yes |
|
||||
| T0pp (11B) | 29.4s | 0.05s per token | float32 | 21.1GB | 21.3GB | 0GB | no |
|
||||
| OPT-30B | 34.5s | 2.37s per token | float16 | 20.7GB | 22.3GB | 14.1GB | no |
|
||||
| OPT-30B | 112.3s | 33.9s per token | float32 | 20.2GB | 21.2GB | 23.5GB | yes |
|
||||
|
||||
Note on the results:
|
||||
- using two GPUs instead of one does not slow down generation
|
||||
- using CPU offload slows down a bit (see OPT-30b)
|
||||
- using disk offload slows down a lot (need to implement prefetching)
|
||||
|
||||
You will also note that Accelerate does not use anymore GPU and CPU RAM than necessary:
|
||||
- peak GPU memory is exactly the size of the model put on a given GPU
|
||||
- peak CPU memory is either the size of the biggest checkpoint shard or the part of the model offloaded on CPU, whichever is bigger.
|
||||
@ -18,6 +18,12 @@ import time
|
||||
import psutil
|
||||
import torch
|
||||
|
||||
from accelerate.test_utils.testing import get_backend
|
||||
|
||||
|
||||
torch_device_type, _, _ = get_backend()
|
||||
torch_accelerator_module = getattr(torch, torch_device_type, torch.cuda)
|
||||
|
||||
|
||||
class PeakCPUMemory:
|
||||
def __init__(self):
|
||||
@ -54,16 +60,16 @@ def start_measure():
|
||||
measures = {"time": time.time()}
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch_accelerator_module.empty_cache()
|
||||
|
||||
# CPU mem
|
||||
measures["cpu"] = psutil.Process().memory_info().rss
|
||||
cpu_peak_tracker.start()
|
||||
|
||||
# GPU mem
|
||||
for i in range(torch.cuda.device_count()):
|
||||
measures[str(i)] = torch.cuda.memory_allocated(i)
|
||||
torch.cuda.reset_peak_memory_stats()
|
||||
for i in range(torch_accelerator_module.device_count()):
|
||||
measures[str(i)] = torch_accelerator_module.memory_allocated(i)
|
||||
torch_accelerator_module.reset_peak_memory_stats()
|
||||
|
||||
return measures
|
||||
|
||||
@ -73,16 +79,16 @@ def end_measure(start_measures):
|
||||
measures = {"time": time.time() - start_measures["time"]}
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
torch_accelerator_module.empty_cache()
|
||||
|
||||
# CPU mem
|
||||
measures["cpu"] = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20
|
||||
measures["cpu-peak"] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20
|
||||
|
||||
# GPU mem
|
||||
for i in range(torch.cuda.device_count()):
|
||||
measures[str(i)] = (torch.cuda.memory_allocated(i) - start_measures[str(i)]) / 2**20
|
||||
measures[f"{i}-peak"] = (torch.cuda.max_memory_allocated(i) - start_measures[str(i)]) / 2**20
|
||||
for i in range(torch_accelerator_module.device_count()):
|
||||
measures[str(i)] = (torch_accelerator_module.memory_allocated(i) - start_measures[str(i)]) / 2**20
|
||||
measures[f"{i}-peak"] = (torch_accelerator_module.max_memory_allocated(i) - start_measures[str(i)]) / 2**20
|
||||
|
||||
return measures
|
||||
|
||||
@ -90,9 +96,9 @@ def end_measure(start_measures):
|
||||
def log_measures(measures, description):
|
||||
print(f"{description}:")
|
||||
print(f"- Time: {measures['time']:.2f}s")
|
||||
for i in range(torch.cuda.device_count()):
|
||||
print(f"- GPU {i} allocated: {measures[str(i)]:.2f}MiB")
|
||||
for i in range(torch_accelerator_module.device_count()):
|
||||
print(f"- {torch_device_type} {i} allocated: {measures[str(i)]:.2f}MiB")
|
||||
peak = measures[f"{i}-peak"]
|
||||
print(f"- GPU {i} peak: {peak:.2f}MiB")
|
||||
print(f"- {torch_device_type} {i} peak: {peak:.2f}MiB")
|
||||
print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB")
|
||||
print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB")
|
||||
12
benchmarks/fp8/ms_amp/Dockerfile
Normal file
12
benchmarks/fp8/ms_amp/Dockerfile
Normal file
@ -0,0 +1,12 @@
|
||||
FROM ghcr.io/azure/msamp
|
||||
|
||||
RUN pip install transformers evaluate datasets
|
||||
RUN git clone https://github.com/huggingface/accelerate
|
||||
|
||||
RUN cd accelerate && \
|
||||
pip install -e . && \
|
||||
cd benchmarks/fp8
|
||||
|
||||
CMD ["bash"]
|
||||
|
||||
|
||||
123
benchmarks/fp8/ms_amp/ddp.py
Normal file
123
benchmarks/fp8/ms_amp/ddp.py
Normal file
@ -0,0 +1,123 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`.
|
||||
|
||||
This particular script verifies this for DDP training.
|
||||
"""
|
||||
|
||||
import evaluate
|
||||
import msamp
|
||||
import torch
|
||||
from fp8_utils import evaluate_model, get_training_utilities
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import FP8RecipeKwargs, get_grad_scaler, set_seed
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def train_baseline(opt_level="O2"):
|
||||
set_seed(42)
|
||||
scaler = get_grad_scaler()
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
accelerator = Accelerator()
|
||||
device = accelerator.device
|
||||
|
||||
model, optimizer = msamp.initialize(model, optimizer, opt_level=opt_level)
|
||||
|
||||
model.to(device)
|
||||
|
||||
# Convert the model to DDP
|
||||
device_ids, output_device = [accelerator.local_process_index], accelerator.local_process_index
|
||||
model = DDP(model, device_ids=device_ids, output_device=output_device)
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for i, batch in enumerate(train_dataloader):
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
scaler.scale(loss).backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration(opt_level="O2"):
|
||||
kwargs_handlers = [FP8RecipeKwargs(backend="msamp", opt_level=opt_level)]
|
||||
AcceleratorState()._reset_state(True)
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer = accelerator.prepare(model, optimizer)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
for i, batch in enumerate(train_dataloader):
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for opt_level in ["O1", "O2"]:
|
||||
baseline_not_trained, baseline_trained = train_baseline(opt_level)
|
||||
accelerator_not_trained, accelerator_trained = train_integration(opt_level)
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy not the same for untrained baseline and accelerator using opt_level={opt_level}: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 not the same for untrained baseline and accelerator using opt_level={opt_level}: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy not the same for trained baseline and accelerator using opt_level={opt_level}: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 not the same for trained baseline and accelerator using opt_level={opt_level}: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
161
benchmarks/fp8/ms_amp/distrib_deepspeed.py
Normal file
161
benchmarks/fp8/ms_amp/distrib_deepspeed.py
Normal file
@ -0,0 +1,161 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`.
|
||||
|
||||
This particular script verifies this for DeepSpeed training.
|
||||
|
||||
NOTE: MS-AMP does *not* support ZeRO-3.
|
||||
"""
|
||||
|
||||
# import msamp.deepspeed as msamp_deepspeed
|
||||
import evaluate
|
||||
import torch
|
||||
from fp8_utils import evaluate_model, get_training_utilities
|
||||
from msamp import deepspeed as msamp_deepspeed
|
||||
|
||||
from accelerate import Accelerator, DeepSpeedPlugin
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import set_seed
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def train_baseline(zero_stage: int = 1, opt_level: str = "O1"):
|
||||
set_seed(42)
|
||||
accelerator = Accelerator()
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
config = {
|
||||
"train_batch_size": 32,
|
||||
"train_micro_batch_size_per_gpu": 16,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"zero_optimization": {
|
||||
"stage": zero_stage,
|
||||
"offload_optimizer": {"device": "none", "nvme_path": None},
|
||||
"offload_param": {"device": "none", "nvme_path": None},
|
||||
},
|
||||
"gradient_clipping": 1.0,
|
||||
"steps_per_print": np.inf,
|
||||
"bf16": {"enabled": True},
|
||||
"fp16": {"enabled": False},
|
||||
"zero_allow_untested_optimizer": True,
|
||||
"msamp": {
|
||||
"enabled": True,
|
||||
"opt_level": opt_level,
|
||||
},
|
||||
}
|
||||
(
|
||||
model,
|
||||
optimizer,
|
||||
_,
|
||||
_,
|
||||
) = msamp_deepspeed.initialize(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
config_params=config,
|
||||
)
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
model.backward(loss)
|
||||
model.step()
|
||||
for _ in range(accelerator.num_processes):
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
AcceleratorState()._reset_state(True)
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration(zero_stage: int = 1, opt_level: str = "O1"):
|
||||
set_seed(42)
|
||||
deepspeed_plugin = DeepSpeedPlugin(
|
||||
zero_stage=zero_stage,
|
||||
enable_msamp=True,
|
||||
msamp_opt_level=opt_level,
|
||||
)
|
||||
accelerator = Accelerator(mixed_precision="fp8", deepspeed_plugin=deepspeed_plugin)
|
||||
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = 16
|
||||
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.destroy()
|
||||
torch.cuda.empty_cache()
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
AcceleratorState()._reset_state(True)
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for zero_stage in [1, 2]:
|
||||
for opt_level in ["O1", "O2", "O3"]:
|
||||
baseline_not_trained, baseline_trained = train_baseline(zero_stage, opt_level)
|
||||
accelerator_not_trained, accelerator_trained = train_integration(zero_stage, opt_level)
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nAccuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nF1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nAccuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nF1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
|
||||
torch.distributed.destroy_process_group()
|
||||
118
benchmarks/fp8/ms_amp/fp8_utils.py
Normal file
118
benchmarks/fp8/ms_amp/fp8_utils.py
Normal file
@ -0,0 +1,118 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
|
||||
|
||||
def get_dataloaders(model_name: str, batch_size: int = 16):
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
datasets = load_dataset("glue", "mrpc")
|
||||
|
||||
def tokenize_function(examples):
|
||||
# max_length=None => use the model max length (it's actually the default)
|
||||
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
||||
return outputs
|
||||
|
||||
# Apply the method we just defined to all the examples in all the splits of the dataset
|
||||
# starting with the main process first:
|
||||
tokenized_datasets = datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
remove_columns=["idx", "sentence1", "sentence2"],
|
||||
)
|
||||
|
||||
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
|
||||
# transformers library
|
||||
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
||||
|
||||
def collate_fn(examples):
|
||||
return tokenizer.pad(
|
||||
examples,
|
||||
padding="longest",
|
||||
pad_to_multiple_of=16, # Specific for FP8
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
# Instantiate dataloaders.
|
||||
train_dataloader = DataLoader(
|
||||
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
|
||||
)
|
||||
eval_dataloader = DataLoader(
|
||||
tokenized_datasets["validation"],
|
||||
shuffle=False,
|
||||
collate_fn=collate_fn,
|
||||
batch_size=16,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
return train_dataloader, eval_dataloader
|
||||
|
||||
|
||||
def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None):
|
||||
"""
|
||||
Returns a tuple of:
|
||||
- Model
|
||||
- Optimizer
|
||||
- Train dataloader (prepared)
|
||||
- Eval dataloader (prepared)
|
||||
- LR Scheduler
|
||||
Suitable for training on the MRPC dataset
|
||||
"""
|
||||
from torch.optim import AdamW
|
||||
from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup
|
||||
|
||||
from accelerate import Accelerator
|
||||
|
||||
if accelerator is None:
|
||||
accelerator = Accelerator()
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size)
|
||||
optimizer = AdamW(model.parameters(), lr=0.0001)
|
||||
lr_scheduler = get_linear_schedule_with_warmup(
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=100,
|
||||
num_training_steps=len(train_dataloader) * 2,
|
||||
)
|
||||
train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader)
|
||||
return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
|
||||
|
||||
def get_named_parameters(model):
|
||||
"""
|
||||
Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted
|
||||
from parallel)
|
||||
"""
|
||||
from accelerate.utils import extract_model_from_parallel
|
||||
|
||||
model = extract_model_from_parallel(model)
|
||||
return {n: p for n, p in model.named_parameters()}
|
||||
|
||||
|
||||
def evaluate_model(model, dataloader, metric, accelerator=None):
|
||||
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
|
||||
model.eval()
|
||||
for step, batch in enumerate(dataloader):
|
||||
with torch.no_grad():
|
||||
# W/ MS-AMP, we need to cast while evaluating
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
outputs = model(**batch)
|
||||
predictions = outputs.logits.argmax(dim=-1)
|
||||
references = batch["labels"]
|
||||
if accelerator is not None and accelerator.num_processes > 1:
|
||||
predictions, references = accelerator.gather_for_metrics((predictions, references))
|
||||
metric.add_batch(predictions=predictions, references=references)
|
||||
return metric.compute()
|
||||
118
benchmarks/fp8/ms_amp/non_distributed.py
Normal file
118
benchmarks/fp8/ms_amp/non_distributed.py
Normal file
@ -0,0 +1,118 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`.
|
||||
|
||||
This particular script verifies this for single GPU training.
|
||||
"""
|
||||
|
||||
import evaluate
|
||||
import msamp
|
||||
import torch
|
||||
from fp8_utils import evaluate_model, get_training_utilities
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import FP8RecipeKwargs, get_grad_scaler, set_seed
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def train_baseline(opt_level="O2"):
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
|
||||
model, optimizer = msamp.initialize(model, optimizer, opt_level=opt_level)
|
||||
model.to("cuda")
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
model.train()
|
||||
scaler = get_grad_scaler()
|
||||
|
||||
for batch in train_dataloader:
|
||||
batch = batch.to("cuda")
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss = scaler.scale(loss)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration(opt_level="O2"):
|
||||
kwargs_handlers = [FP8RecipeKwargs(backend="msamp", opt_level=opt_level)]
|
||||
AcceleratorState()._reset_state(True)
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for opt_level in ["O1", "O2"]:
|
||||
baseline_not_trained, baseline_trained = train_baseline(opt_level)
|
||||
accelerator_not_trained, accelerator_trained = train_integration(opt_level)
|
||||
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
12
benchmarks/fp8/torchao/Dockerfile
Normal file
12
benchmarks/fp8/torchao/Dockerfile
Normal file
@ -0,0 +1,12 @@
|
||||
FROM nvcr.io/nvidia/pytorch:24.07-py3
|
||||
|
||||
RUN pip install transformers evaluate datasets
|
||||
RUN git clone https://github.com/huggingface/accelerate.git
|
||||
|
||||
RUN cd accelerate && \
|
||||
pip install -e . && \
|
||||
cd benchmarks/fp8
|
||||
|
||||
RUN /bin/bash
|
||||
|
||||
|
||||
32
benchmarks/fp8/torchao/README.md
Normal file
32
benchmarks/fp8/torchao/README.md
Normal file
@ -0,0 +1,32 @@
|
||||
# FP8 Benchmarks
|
||||
|
||||
Comparing and running [torchao](https://github.com/pytorch/ao/tree/main/torchao/float8) FP8 with accelerate
|
||||
|
||||
## Overview
|
||||
|
||||
This repo provides scripts which compare native `torchao` model training against `accelerate`'s own integration. Each modeling type is segmented out via a script, supporting the following:
|
||||
|
||||
* Single GPU training (`non_distributed.py`)
|
||||
* Multi-GPU training via DistributedDataParallelism (`ddp.py`)
|
||||
* Fully Sharded Data Parallelism (`fsdp.py`)
|
||||
* DeepSpeed ZeRO 1-3 (`deepspeed.py`)
|
||||
|
||||
To run them, it's recommended to use a docker image (see the attached `Dockerfile`) and not install `torchao` manually.
|
||||
|
||||
## Running:
|
||||
|
||||
There are official Docker images located at `huggingface/accelerate:gpu-fp8-torchao-nightly` which can be used.
|
||||
|
||||
You can run all scripts using the core `accelerate launch` command without any `accelerate config` being needed.
|
||||
|
||||
For single GPU, run it via `python`:
|
||||
|
||||
```bash
|
||||
python non_distributed.py
|
||||
```
|
||||
|
||||
For the rest, run it via `accelerate launch`:
|
||||
|
||||
```bash
|
||||
accelerate launch ddp.py # or distrib_deepspeed.py, ddp.py
|
||||
```
|
||||
158
benchmarks/fp8/torchao/ddp.py
Normal file
158
benchmarks/fp8/torchao/ddp.py
Normal file
@ -0,0 +1,158 @@
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
|
||||
|
||||
This particular script verifies this for DDP training.
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
|
||||
import evaluate
|
||||
import torch
|
||||
from fp8_utils import get_training_utilities
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torchao.float8 import convert_to_float8_training
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import AORecipeKwargs, set_seed
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def evaluate_model(model, dataloader, metric, accelerator=None):
|
||||
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
|
||||
model.eval()
|
||||
for step, batch in enumerate(dataloader):
|
||||
with torch.no_grad():
|
||||
outputs = model(**batch)
|
||||
predictions = outputs.logits.argmax(dim=-1)
|
||||
references = batch["labels"]
|
||||
if accelerator is not None and accelerator.num_processes > 1:
|
||||
predictions, references = accelerator.gather_for_metrics((predictions, references))
|
||||
metric.add_batch(predictions=predictions, references=references)
|
||||
return metric.compute()
|
||||
|
||||
|
||||
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
|
||||
return False
|
||||
# For stability reasons, we skip the first and last linear layers
|
||||
# Otherwise can lead to the model not training or converging properly
|
||||
if fqn in (first_layer_name, last_layer_name):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def train_baseline():
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
first_linear = None
|
||||
last_linear = None
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if first_linear is None:
|
||||
first_linear = name
|
||||
last_linear = name
|
||||
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
|
||||
accelerator = Accelerator()
|
||||
device = accelerator.device
|
||||
model.to(device)
|
||||
|
||||
convert_to_float8_training(model, module_filter_fn=func)
|
||||
|
||||
# Convert the model to DDP
|
||||
device_ids, output_device = [accelerator.local_process_index], accelerator.local_process_index
|
||||
model = DDP(model, device_ids=device_ids, output_device=output_device)
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
batch = batch.to(device)
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration():
|
||||
AcceleratorState()._reset_state(True)
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[AORecipeKwargs()])
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer = accelerator.prepare(model, optimizer)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
baseline_not_trained, baseline_trained = train_baseline()
|
||||
accelerator_not_trained, accelerator_trained = train_integration()
|
||||
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
|
||||
torch.distributed.destroy_process_group()
|
||||
213
benchmarks/fp8/torchao/distrib_deepspeed.py
Normal file
213
benchmarks/fp8/torchao/distrib_deepspeed.py
Normal file
@ -0,0 +1,213 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
|
||||
|
||||
This particular script verifies this for deepspeed training.
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
from unittest.mock import patch
|
||||
|
||||
import deepspeed
|
||||
import evaluate
|
||||
import torch
|
||||
from fp8_utils import evaluate_model, get_training_utilities
|
||||
from torchao.float8 import convert_to_float8_training
|
||||
from transformers.integrations import HfDeepSpeedConfig
|
||||
|
||||
from accelerate import Accelerator, DeepSpeedPlugin
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import AORecipeKwargs, set_seed
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
|
||||
return False
|
||||
# For stability reasons, we skip the first and last linear layers
|
||||
# Otherwise can lead to the model not training or converging properly
|
||||
if fqn in (first_layer_name, last_layer_name):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def train_baseline(zero_stage: int = 1):
|
||||
set_seed(42)
|
||||
# This forces transformers to think Zero-3 Init should be used
|
||||
with patch("transformers.integrations.deepspeed.is_deepspeed_zero3_enabled") as mock:
|
||||
mock.return_value = zero_stage == 3
|
||||
|
||||
config = HfDeepSpeedConfig(
|
||||
{
|
||||
"train_micro_batch_size_per_gpu": 16,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"zero_optimization": {"stage": zero_stage},
|
||||
}
|
||||
)
|
||||
plugin = DeepSpeedPlugin(hf_ds_config=config)
|
||||
accelerator = Accelerator(deepspeed_plugin=plugin)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
first_linear = None
|
||||
last_linear = None
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if first_linear is None:
|
||||
first_linear = name
|
||||
last_linear = name
|
||||
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
|
||||
|
||||
convert_to_float8_training(model, module_filter_fn=func)
|
||||
|
||||
import numpy as np
|
||||
|
||||
config = {
|
||||
"train_batch_size": 32,
|
||||
"train_micro_batch_size_per_gpu": 16,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"zero_optimization": {
|
||||
"stage": zero_stage,
|
||||
"offload_optimizer": {"device": "none", "nvme_path": None},
|
||||
"offload_param": {"device": "none", "nvme_path": None},
|
||||
"stage3_gather_16bit_weights_on_model_save": False,
|
||||
},
|
||||
"gradient_clipping": 1.0,
|
||||
"steps_per_print": np.inf,
|
||||
"bf16": {"enabled": True},
|
||||
"fp16": {"enabled": False},
|
||||
"zero_allow_untested_optimizer": True,
|
||||
}
|
||||
|
||||
(
|
||||
model,
|
||||
optimizer,
|
||||
_,
|
||||
lr_scheduler,
|
||||
) = deepspeed.initialize(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
lr_scheduler=lr_scheduler,
|
||||
config_params=config,
|
||||
)
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
model_outputs = []
|
||||
data = []
|
||||
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
data.append(batch.to("cpu"))
|
||||
model_outputs.append(outputs.logits.to("cpu"))
|
||||
loss = outputs.loss
|
||||
model.backward(loss)
|
||||
model.step()
|
||||
for _ in range(accelerator.num_processes):
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.destroy()
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
del config
|
||||
return base_model_results, trained_model_results, model_outputs, data
|
||||
|
||||
|
||||
def train_integration(zero_stage: int = 1):
|
||||
set_seed(42)
|
||||
AcceleratorState()._reset_state(True)
|
||||
config = HfDeepSpeedConfig(
|
||||
{
|
||||
"train_micro_batch_size_per_gpu": 16,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"zero_optimization": {"stage": zero_stage},
|
||||
}
|
||||
)
|
||||
deepspeed_plugin = DeepSpeedPlugin(
|
||||
hf_ds_config=config,
|
||||
)
|
||||
# This forces transformers to think Zero-3 Init should be used
|
||||
with patch("transformers.integrations.deepspeed.is_deepspeed_zero3_enabled") as mock:
|
||||
mock.return_value = zero_stage == 3
|
||||
accelerator = Accelerator(
|
||||
mixed_precision="fp8", kwargs_handlers=[AORecipeKwargs()], deepspeed_plugin=deepspeed_plugin
|
||||
)
|
||||
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer, lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
|
||||
model, optimizer, lr_scheduler, train_dataloader, eval_dataloader
|
||||
)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
model_outputs = []
|
||||
data = []
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
data.append(batch.to("cpu"))
|
||||
model_outputs.append(outputs.logits.to("cpu"))
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.destroy()
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
del config
|
||||
return base_model_results, trained_model_results, model_outputs, data
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for zero_stage in [1, 2, 3]:
|
||||
baseline_not_trained, baseline_trained, baseline_outputs, baseline_data = train_baseline(zero_stage)
|
||||
accelerator_not_trained, accelerator_trained, accelerator_outputs, accelerator_data = train_integration(
|
||||
zero_stage
|
||||
)
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
AcceleratorState()._reset_state(True)
|
||||
torch.distributed.destroy_process_group()
|
||||
116
benchmarks/fp8/torchao/fp8_utils.py
Normal file
116
benchmarks/fp8/torchao/fp8_utils.py
Normal file
@ -0,0 +1,116 @@
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
|
||||
|
||||
def get_dataloaders(model_name: str, batch_size: int = 16):
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
datasets = load_dataset("glue", "mrpc")
|
||||
|
||||
def tokenize_function(examples):
|
||||
# max_length=None => use the model max length (it's actually the default)
|
||||
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
||||
return outputs
|
||||
|
||||
# Apply the method we just defined to all the examples in all the splits of the dataset
|
||||
# starting with the main process first:
|
||||
tokenized_datasets = datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
remove_columns=["idx", "sentence1", "sentence2"],
|
||||
)
|
||||
|
||||
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
|
||||
# transformers library
|
||||
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
||||
|
||||
def collate_fn(examples):
|
||||
return tokenizer.pad(
|
||||
examples,
|
||||
padding="longest",
|
||||
pad_to_multiple_of=16, # Specific for FP8
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
# Instantiate dataloaders.
|
||||
train_dataloader = DataLoader(
|
||||
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
|
||||
)
|
||||
eval_dataloader = DataLoader(
|
||||
tokenized_datasets["validation"],
|
||||
shuffle=False,
|
||||
collate_fn=collate_fn,
|
||||
batch_size=16,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
return train_dataloader, eval_dataloader
|
||||
|
||||
|
||||
def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None, prepare=True):
|
||||
"""
|
||||
Returns a tuple of:
|
||||
- Model
|
||||
- Optimizer
|
||||
- Train dataloader (prepared)
|
||||
- Eval dataloader (prepared)
|
||||
- LR Scheduler
|
||||
Suitable for training on the MRPC dataset
|
||||
"""
|
||||
from torch.optim import AdamW
|
||||
from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup
|
||||
|
||||
from accelerate import Accelerator
|
||||
|
||||
if accelerator is None:
|
||||
accelerator = Accelerator()
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size)
|
||||
optimizer = AdamW(model.parameters(), lr=0.0001)
|
||||
lr_scheduler = get_linear_schedule_with_warmup(
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=100,
|
||||
num_training_steps=len(train_dataloader) * 2,
|
||||
)
|
||||
train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader)
|
||||
return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
|
||||
|
||||
def get_named_parameters(model):
|
||||
"""
|
||||
Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted
|
||||
from parallel)
|
||||
"""
|
||||
from accelerate.utils import extract_model_from_parallel
|
||||
|
||||
model = extract_model_from_parallel(model)
|
||||
return {n: p for n, p in model.named_parameters()}
|
||||
|
||||
|
||||
def evaluate_model(model, dataloader, metric, accelerator=None):
|
||||
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
|
||||
model.eval()
|
||||
for step, batch in enumerate(dataloader):
|
||||
with torch.no_grad():
|
||||
outputs = model(**batch)
|
||||
predictions = outputs.logits.argmax(dim=-1)
|
||||
references = batch["labels"]
|
||||
if accelerator is not None and accelerator.num_processes > 1:
|
||||
predictions, references = accelerator.gather_for_metrics((predictions, references))
|
||||
metric.add_batch(predictions=predictions, references=references)
|
||||
return metric.compute()
|
||||
173
benchmarks/fp8/torchao/fsdp.py
Normal file
173
benchmarks/fp8/torchao/fsdp.py
Normal file
@ -0,0 +1,173 @@
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
|
||||
|
||||
This particular script verifies this for FSDP training.
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
|
||||
import evaluate
|
||||
import torch
|
||||
from fp8_utils import get_training_utilities
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
from torch.distributed.fsdp import MixedPrecision
|
||||
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
|
||||
from torchao.float8 import convert_to_float8_training
|
||||
from transformers.models.bert import BertLayer
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate import FullyShardedDataParallelPlugin as FSDPPlugin
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import AORecipeKwargs, set_seed
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
FSDP_WRAP_POLICY = partial(transformer_auto_wrap_policy, transformer_layer_cls={BertLayer})
|
||||
|
||||
|
||||
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
|
||||
return False
|
||||
# For stability reasons, we skip the first and last linear layers
|
||||
# Otherwise can lead to the model not training or converging properly
|
||||
if fqn in (first_layer_name, last_layer_name):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def evaluate_model(model, dataloader, metric, accelerator=None):
|
||||
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
|
||||
model.eval()
|
||||
for step, batch in enumerate(dataloader):
|
||||
with torch.no_grad():
|
||||
outputs = model(**batch)
|
||||
predictions = outputs.logits.argmax(dim=-1)
|
||||
references = batch["labels"]
|
||||
if accelerator is not None and accelerator.num_processes > 1:
|
||||
predictions, references = accelerator.gather_for_metrics((predictions, references))
|
||||
metric.add_batch(predictions=predictions, references=references)
|
||||
return metric.compute()
|
||||
|
||||
|
||||
def train_baseline():
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
first_linear = None
|
||||
last_linear = None
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if first_linear is None:
|
||||
first_linear = name
|
||||
last_linear = name
|
||||
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
|
||||
accelerator = Accelerator()
|
||||
device = accelerator.device
|
||||
model.to(device)
|
||||
|
||||
convert_to_float8_training(model, module_filter_fn=func)
|
||||
|
||||
# Convert the model to FSDP
|
||||
model = FSDP(
|
||||
model,
|
||||
use_orig_params=True,
|
||||
mixed_precision=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
|
||||
auto_wrap_policy=FSDP_WRAP_POLICY,
|
||||
)
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
batch = batch.to(device)
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration():
|
||||
AcceleratorState()._reset_state(True)
|
||||
fsdp_plugin = FSDPPlugin(
|
||||
auto_wrap_policy=FSDP_WRAP_POLICY,
|
||||
use_orig_params=True,
|
||||
mixed_precision_policy=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
|
||||
)
|
||||
accelerator = Accelerator(mixed_precision="fp8", fsdp_plugin=fsdp_plugin, kwargs_handlers=[AORecipeKwargs()])
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer = accelerator.prepare(model, optimizer)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
baseline_not_trained, baseline_trained = train_baseline()
|
||||
accelerator_not_trained, accelerator_trained = train_integration()
|
||||
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
|
||||
torch.distributed.destroy_process_group()
|
||||
145
benchmarks/fp8/torchao/non_distributed.py
Normal file
145
benchmarks/fp8/torchao/non_distributed.py
Normal file
@ -0,0 +1,145 @@
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
|
||||
|
||||
This particular script verifies this for single GPU training.
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
|
||||
import evaluate
|
||||
import torch
|
||||
from fp8_utils import get_training_utilities
|
||||
from torchao.float8 import convert_to_float8_training
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import AORecipeKwargs, set_seed
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def evaluate_model(model, dataloader, metric, accelerator=None):
|
||||
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
|
||||
model.eval()
|
||||
for step, batch in enumerate(dataloader):
|
||||
with torch.no_grad():
|
||||
outputs = model(**batch)
|
||||
predictions = outputs.logits.argmax(dim=-1)
|
||||
references = batch["labels"]
|
||||
if accelerator is not None and accelerator.num_processes > 1:
|
||||
predictions, references = accelerator.gather_for_metrics((predictions, references))
|
||||
metric.add_batch(predictions=predictions, references=references)
|
||||
return metric.compute()
|
||||
|
||||
|
||||
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
|
||||
return False
|
||||
# For stability reasons, we skip the first and last linear layers
|
||||
# Otherwise can lead to the model not training or converging properly
|
||||
if fqn in (first_layer_name, last_layer_name):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def train_baseline():
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
first_linear = None
|
||||
last_linear = None
|
||||
for name, module in model.named_modules():
|
||||
if isinstance(module, torch.nn.Linear):
|
||||
if first_linear is None:
|
||||
first_linear = name
|
||||
last_linear = name
|
||||
|
||||
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
|
||||
model.to("cuda")
|
||||
convert_to_float8_training(model, module_filter_fn=func)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration():
|
||||
set_seed(42)
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[AORecipeKwargs()])
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
model = accelerator.prepare(model)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
baseline_not_trained, baseline_trained = train_baseline()
|
||||
AcceleratorState._reset_state(True)
|
||||
accelerator_not_trained, accelerator_trained = train_integration()
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
15
benchmarks/fp8/transformer_engine/Dockerfile
Normal file
15
benchmarks/fp8/transformer_engine/Dockerfile
Normal file
@ -0,0 +1,15 @@
|
||||
ARG BASE_YEAR=25
|
||||
ARG BASE_MONTH=03
|
||||
|
||||
FROM nvcr.io/nvidia/pytorch:${BASE_YEAR}.${BASE_MONTH}-py3
|
||||
|
||||
RUN pip install transformers evaluate datasets
|
||||
RUN git clone https://github.com/huggingface/accelerate.git
|
||||
|
||||
RUN cd accelerate && \
|
||||
pip install -e .[deepspeed] && \
|
||||
cd benchmarks/fp8
|
||||
|
||||
RUN /bin/bash
|
||||
|
||||
|
||||
32
benchmarks/fp8/transformer_engine/README.md
Normal file
32
benchmarks/fp8/transformer_engine/README.md
Normal file
@ -0,0 +1,32 @@
|
||||
# FP8 Benchmarks
|
||||
|
||||
Comparing and running [TransformerEngine](https://github.com/NVIDIA/TransformerEngine) FP8 with accelerate
|
||||
|
||||
## Overview
|
||||
|
||||
This repo provides scripts which compare native TransformerEngine model training against `accelerate`'s own integration. Each modeling type is segmented out via a script, supporting the following:
|
||||
|
||||
* Single GPU training (`non_distributed.py`)
|
||||
* Multi-GPU training via DistributedDataParallelism (`ddp.py`)
|
||||
* Fully Sharded Data Parallelism (`fsdp.py`)
|
||||
* DeepSpeed ZeRO 1-3 (`deepspeed.py`)
|
||||
|
||||
To run them, it's recommended to use a docker image (see the attached `Dockerfile`) and not install `TransformerEngine` manually.
|
||||
|
||||
## Running:
|
||||
|
||||
There are official Docker images located at `huggingface/accelerate:gpu-fp8-transformerengine-nightly` which can be used.
|
||||
|
||||
You can run all scripts using the core `accelerate launch` command without any `accelerate config` being needed.
|
||||
|
||||
For single GPU, run it via `python`:
|
||||
|
||||
```bash
|
||||
python non_distributed.py
|
||||
```
|
||||
|
||||
For the rest, run it via `accelerate launch`:
|
||||
|
||||
```bash
|
||||
accelerate launch ddp.py # or distrib_deepspeed.py, ddp.py
|
||||
```
|
||||
144
benchmarks/fp8/transformer_engine/ddp.py
Normal file
144
benchmarks/fp8/transformer_engine/ddp.py
Normal file
@ -0,0 +1,144 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
|
||||
|
||||
This particular script verifies this for DDP training.
|
||||
"""
|
||||
|
||||
import evaluate
|
||||
import torch
|
||||
import transformer_engine.common.recipe as te_recipe
|
||||
import transformer_engine.pytorch as te
|
||||
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from transformer_engine.common.recipe import DelayedScaling
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import FP8RecipeKwargs, set_seed
|
||||
from accelerate.utils.transformer_engine import convert_model
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def train_baseline():
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
accelerator = Accelerator()
|
||||
device = accelerator.device
|
||||
model.to(device)
|
||||
|
||||
# Convert the model to TE
|
||||
old_named_params = get_named_parameters(model)
|
||||
|
||||
with torch.no_grad():
|
||||
convert_model(model)
|
||||
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
|
||||
|
||||
new_named_params = get_named_parameters(model)
|
||||
|
||||
# Convert the model to DDP
|
||||
device_ids, output_device = [accelerator.local_process_index], accelerator.local_process_index
|
||||
model = DDP(model, device_ids=device_ids, output_device=output_device)
|
||||
|
||||
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group["params"] = [mapping[p] for p in param_group["params"]]
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
batch = batch.to(device)
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration():
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
|
||||
AcceleratorState()._reset_state(True)
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer = accelerator.prepare(model, optimizer)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
baseline_not_trained, baseline_trained = train_baseline()
|
||||
accelerator_not_trained, accelerator_trained = train_integration()
|
||||
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
|
||||
torch.distributed.destroy_process_group()
|
||||
191
benchmarks/fp8/transformer_engine/distrib_deepspeed.py
Normal file
191
benchmarks/fp8/transformer_engine/distrib_deepspeed.py
Normal file
@ -0,0 +1,191 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
|
||||
|
||||
This particular script verifies this for DDP training.
|
||||
"""
|
||||
|
||||
from unittest.mock import patch
|
||||
|
||||
import deepspeed
|
||||
import evaluate
|
||||
import torch
|
||||
import transformer_engine.common.recipe as te_recipe
|
||||
import transformer_engine.pytorch as te
|
||||
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
|
||||
from transformer_engine.common.recipe import DelayedScaling
|
||||
|
||||
from accelerate import Accelerator, DeepSpeedPlugin
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import FP8RecipeKwargs, set_seed
|
||||
from accelerate.utils.transformer_engine import convert_model
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def train_baseline(zero_stage: int = 1):
|
||||
# This forces transformers to think Zero-3 Init should be used
|
||||
with patch("transformers.integrations.deepspeed.is_deepspeed_zero3_enabled") as mock:
|
||||
mock.return_value = zero_stage == 3
|
||||
set_seed(42)
|
||||
|
||||
accelerator = Accelerator()
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
# Convert the model to TE
|
||||
old_named_params = get_named_parameters(model)
|
||||
|
||||
with torch.no_grad():
|
||||
convert_model(model)
|
||||
new_named_params = get_named_parameters(model)
|
||||
|
||||
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group["params"] = [mapping[p] for p in param_group["params"]]
|
||||
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
|
||||
|
||||
import numpy as np
|
||||
|
||||
config = {
|
||||
"train_batch_size": 16,
|
||||
"train_micro_batch_size_per_gpu": 16,
|
||||
"gradient_accumulation_steps": 1,
|
||||
"zero_optimization": {
|
||||
"stage": zero_stage,
|
||||
"offload_optimizer": {"device": "none", "nvme_path": None},
|
||||
"offload_param": {"device": "none", "nvme_path": None},
|
||||
"stage3_gather_16bit_weights_on_model_save": False,
|
||||
},
|
||||
"gradient_clipping": 1.0,
|
||||
"steps_per_print": np.inf,
|
||||
"bf16": {"enabled": True},
|
||||
"fp16": {"enabled": False},
|
||||
"zero_allow_untested_optimizer": True,
|
||||
}
|
||||
|
||||
(
|
||||
model,
|
||||
optimizer,
|
||||
_,
|
||||
_,
|
||||
) = deepspeed.initialize(
|
||||
model=model,
|
||||
optimizer=optimizer,
|
||||
config_params=config,
|
||||
)
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
model_outputs = []
|
||||
data = []
|
||||
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
|
||||
outputs = model(**batch)
|
||||
data.append(batch.to("cpu"))
|
||||
model_outputs.append(outputs.logits.to("cpu"))
|
||||
loss = outputs.loss
|
||||
model.backward(loss)
|
||||
model.step()
|
||||
for _ in range(accelerator.num_processes):
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.destroy()
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results, model_outputs, data
|
||||
|
||||
|
||||
def train_integration(zero_stage: int = 1):
|
||||
set_seed(42)
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
|
||||
AcceleratorState()._reset_state(True)
|
||||
deepspeed_plugin = DeepSpeedPlugin(
|
||||
zero_stage=zero_stage,
|
||||
zero3_init_flag=zero_stage == 3,
|
||||
)
|
||||
accelerator = Accelerator(
|
||||
mixed_precision="fp8", kwargs_handlers=kwargs_handlers, deepspeed_plugin=deepspeed_plugin
|
||||
)
|
||||
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = 16
|
||||
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
model_outputs = []
|
||||
data = []
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
data.append(batch.to("cpu"))
|
||||
model_outputs.append(outputs.logits.to("cpu"))
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.destroy()
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results, model_outputs, data
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
for zero_stage in [1, 2, 3]:
|
||||
baseline_not_trained, baseline_trained, baseline_outputs, baseline_data = train_baseline(zero_stage)
|
||||
accelerator_not_trained, accelerator_trained, accelerator_outputs, accelerator_data = train_integration(
|
||||
zero_stage
|
||||
)
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
|
||||
torch.distributed.destroy_process_group()
|
||||
116
benchmarks/fp8/transformer_engine/fp8_utils.py
Normal file
116
benchmarks/fp8/transformer_engine/fp8_utils.py
Normal file
@ -0,0 +1,116 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
|
||||
|
||||
def get_dataloaders(model_name: str, batch_size: int = 16):
|
||||
from datasets import load_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
datasets = load_dataset("glue", "mrpc")
|
||||
|
||||
def tokenize_function(examples):
|
||||
# max_length=None => use the model max length (it's actually the default)
|
||||
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
|
||||
return outputs
|
||||
|
||||
# Apply the method we just defined to all the examples in all the splits of the dataset
|
||||
# starting with the main process first:
|
||||
tokenized_datasets = datasets.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
remove_columns=["idx", "sentence1", "sentence2"],
|
||||
)
|
||||
|
||||
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
|
||||
# transformers library
|
||||
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
||||
|
||||
def collate_fn(examples):
|
||||
return tokenizer.pad(
|
||||
examples,
|
||||
padding="longest",
|
||||
pad_to_multiple_of=16, # Specific for FP8
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
# Instantiate dataloaders.
|
||||
train_dataloader = DataLoader(
|
||||
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
|
||||
)
|
||||
eval_dataloader = DataLoader(
|
||||
tokenized_datasets["validation"],
|
||||
shuffle=False,
|
||||
collate_fn=collate_fn,
|
||||
batch_size=16,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
return train_dataloader, eval_dataloader
|
||||
|
||||
|
||||
def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None):
|
||||
"""
|
||||
Returns a tuple of:
|
||||
- Model
|
||||
- Optimizer
|
||||
- Train dataloader (prepared)
|
||||
- Eval dataloader (prepared)
|
||||
- LR Scheduler
|
||||
Suitable for training on the MRPC dataset
|
||||
"""
|
||||
from torch.optim import AdamW
|
||||
from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup
|
||||
|
||||
from accelerate import Accelerator
|
||||
|
||||
if accelerator is None:
|
||||
accelerator = Accelerator()
|
||||
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
||||
train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size)
|
||||
optimizer = AdamW(model.parameters(), lr=0.0001)
|
||||
lr_scheduler = get_linear_schedule_with_warmup(
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=100,
|
||||
num_training_steps=len(train_dataloader) * 2,
|
||||
)
|
||||
train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader)
|
||||
return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
|
||||
|
||||
def get_named_parameters(model):
|
||||
"""
|
||||
Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted
|
||||
from parallel)
|
||||
"""
|
||||
from accelerate.utils import extract_model_from_parallel
|
||||
|
||||
model = extract_model_from_parallel(model)
|
||||
return {n: p for n, p in model.named_parameters()}
|
||||
|
||||
|
||||
def evaluate_model(model, dataloader, metric, accelerator=None):
|
||||
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
|
||||
model.eval()
|
||||
for step, batch in enumerate(dataloader):
|
||||
with torch.no_grad():
|
||||
outputs = model(**batch)
|
||||
predictions = outputs.logits.argmax(dim=-1)
|
||||
references = batch["labels"]
|
||||
if accelerator is not None and accelerator.num_processes > 1:
|
||||
predictions, references = accelerator.gather_for_metrics((predictions, references))
|
||||
metric.add_batch(predictions=predictions, references=references)
|
||||
return metric.compute()
|
||||
161
benchmarks/fp8/transformer_engine/fsdp.py
Normal file
161
benchmarks/fp8/transformer_engine/fsdp.py
Normal file
@ -0,0 +1,161 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
|
||||
|
||||
This particular script verifies this for FSDP training.
|
||||
"""
|
||||
|
||||
from functools import partial
|
||||
|
||||
import evaluate
|
||||
import torch
|
||||
import transformer_engine.common.recipe as te_recipe
|
||||
import transformer_engine.pytorch as te
|
||||
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
from torch.distributed.fsdp import MixedPrecision
|
||||
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
|
||||
from transformer_engine.common.recipe import DelayedScaling
|
||||
from transformers.models.bert import BertLayer
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate import FullyShardedDataParallelPlugin as FSDPPlugin
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import FP8RecipeKwargs, set_seed
|
||||
from accelerate.utils.transformer_engine import convert_model
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
FSDP_WRAP_POLICY = partial(transformer_auto_wrap_policy, transformer_layer_cls={BertLayer})
|
||||
|
||||
|
||||
def train_baseline():
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
accelerator = Accelerator()
|
||||
device = accelerator.device
|
||||
model.to(device)
|
||||
|
||||
# Convert the model to TE
|
||||
old_named_params = get_named_parameters(model)
|
||||
|
||||
with torch.no_grad():
|
||||
convert_model(model)
|
||||
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
|
||||
|
||||
new_named_params = get_named_parameters(model)
|
||||
|
||||
# Convert the model to FSDP
|
||||
model = FSDP(
|
||||
model,
|
||||
use_orig_params=True,
|
||||
mixed_precision=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
|
||||
auto_wrap_policy=FSDP_WRAP_POLICY,
|
||||
)
|
||||
|
||||
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group["params"] = [mapping[p] for p in param_group["params"]]
|
||||
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
batch = batch.to(device)
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration():
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
|
||||
AcceleratorState()._reset_state(True)
|
||||
fsdp_plugin = FSDPPlugin(
|
||||
auto_wrap_policy=FSDP_WRAP_POLICY,
|
||||
use_orig_params=True,
|
||||
mixed_precision_policy=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
|
||||
)
|
||||
accelerator = Accelerator(mixed_precision="fp8", fsdp_plugin=fsdp_plugin, kwargs_handlers=kwargs_handlers)
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer = accelerator.prepare(model, optimizer)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
model.train()
|
||||
|
||||
for _ in range(2):
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
baseline_not_trained, baseline_trained = train_baseline()
|
||||
accelerator_not_trained, accelerator_trained = train_integration()
|
||||
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
|
||||
torch.distributed.destroy_process_group()
|
||||
132
benchmarks/fp8/transformer_engine/non_distributed.py
Normal file
132
benchmarks/fp8/transformer_engine/non_distributed.py
Normal file
@ -0,0 +1,132 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""
|
||||
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
|
||||
|
||||
This particular script verifies this for single GPU training.
|
||||
"""
|
||||
|
||||
import evaluate
|
||||
import torch
|
||||
import transformer_engine.common.recipe as te_recipe
|
||||
import transformer_engine.pytorch as te
|
||||
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
|
||||
from transformer_engine.common.recipe import DelayedScaling
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.state import AcceleratorState
|
||||
from accelerate.utils import FP8RecipeKwargs, set_seed
|
||||
from accelerate.utils.transformer_engine import convert_model
|
||||
|
||||
|
||||
MODEL_NAME = "bert-base-cased"
|
||||
METRIC = evaluate.load("glue", "mrpc")
|
||||
|
||||
|
||||
def train_baseline():
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
|
||||
|
||||
# Convert the model to TE
|
||||
old_named_params = get_named_parameters(model)
|
||||
|
||||
with torch.no_grad():
|
||||
convert_model(model)
|
||||
|
||||
new_named_params = get_named_parameters(model)
|
||||
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group["params"] = [mapping[p] for p in param_group["params"]]
|
||||
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
|
||||
|
||||
model.to("cuda")
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
|
||||
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
|
||||
batch = batch.to("cuda")
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
def train_integration():
|
||||
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
|
||||
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
|
||||
AcceleratorState()._reset_state(True)
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
|
||||
set_seed(42)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
|
||||
MODEL_NAME, accelerator=accelerator
|
||||
)
|
||||
|
||||
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
|
||||
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
model.train()
|
||||
|
||||
for batch in train_dataloader:
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
lr_scheduler.step()
|
||||
|
||||
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
|
||||
|
||||
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
|
||||
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
|
||||
)
|
||||
assert trained_model_results["f1"] > base_model_results["f1"], (
|
||||
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
|
||||
)
|
||||
|
||||
return base_model_results, trained_model_results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
baseline_not_trained, baseline_trained = train_baseline()
|
||||
accelerator_not_trained, accelerator_trained = train_integration()
|
||||
|
||||
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
|
||||
)
|
||||
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
|
||||
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
|
||||
)
|
||||
assert baseline_trained["f1"] == accelerator_trained["f1"], (
|
||||
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
|
||||
)
|
||||
74
benchmarks/fsdp2/README.md
Normal file
74
benchmarks/fsdp2/README.md
Normal file
@ -0,0 +1,74 @@
|
||||
# FSDP2 Benchmarks
|
||||
|
||||
This benchmark showcases `FSDP2` in 🤗 `accelerate` and compares it to `torch` baseline.
|
||||
|
||||
## Overview
|
||||
|
||||
This benchmark consists of two parts:
|
||||
- `main.py` is the main script that runs the benchmark
|
||||
- `visualize.py` is the script that visualizes the results (if `--output_dir` was specified for the previous command)
|
||||
|
||||
## Motivation
|
||||
|
||||
We want to showcase that 🤗 `accelerate`'s integration of `FSDP2` is on par raw PyTorch, and highlight a "broken" part in PyTorch that creating an optimizer before applying `FSDP2` **doesn't result in a working training loop**. (more on this later)
|
||||
This script showcases **matching memory usage and convergence between `accelerate` and `torch`'s baseline.**
|
||||
To deal with this breaking change (and maintain backward compatibility with FSDP1 in terms of an API), `accelerate` had to come up with a workaround since `accelerate` assumes that the user will nearly always create a model, optimizer, scheduler, etc beforehand and bring them themselves. This lead to an issue of a stark increase in memory as well as the model not even training if the user creates an optimizer beforehand.
|
||||
To workaround this, we replace the parameters inside the optimizer with the newly created FSDP2 sharded ones. More about this can be found in this [blog post (TBD)](TODO)
|
||||
> [!WARNING]
|
||||
> This script is intended to fit on 2x 24GB GPUs, though on so few GPUs it's not possible to see the memory difference (discrepancies in grad allocation result in lower memory usage in the non-fixed case), only the difference in convergence. Below are attached results from 8x H100 GPUs where the difference is visible.
|
||||
> TLDR: more GPUs = bigger memory difference between fixed and non-fixed cases.
|
||||
|
||||
## Results
|
||||
|
||||
Here are the results from running the benchmark on 8x H100 GPUs:
|
||||
|
||||
<p align="center">
|
||||
<img src="imgs/allocated_memory.png" width="80%" alt="Allocated Memory Usage">
|
||||
</p>
|
||||
<p align="center">
|
||||
<img src="imgs/reserved_memory.png" width="80%" alt="Reserved Memory Usage">
|
||||
</p>
|
||||
|
||||
As you can see, the memory usage of `accelerate` and `torch_post_shard` (the **intended** way) are very similar, while `torch_pre_shard_not_fixed` uses significantly more memory. Our fix in `torch_pre_shard_fixed` brings the memory usage back in line with the **intended** approach.
|
||||
|
||||
> [!WARNING]
|
||||
> Timing discrepancies are due to the benchmarks being ran in 1 script.
|
||||
|
||||
|
||||
## Running
|
||||
|
||||
To run the benchmark, you can either use `accelerate launch` or `torchrun`:
|
||||
```bash
|
||||
accelerate launch main.py
|
||||
```
|
||||
```bash
|
||||
# For two GPUs
|
||||
torchrun --nproc_per_node 2 main.py
|
||||
```
|
||||
|
||||
This supports multiple configurable options, you can learn about them by running:
|
||||
```bash
|
||||
python3 main.py --help
|
||||
```
|
||||
|
||||
This script will run 4 different benchmarks:
|
||||
- `torch_optimizer_after_fsdp`: `torch` baseline where optimizer is created after applying `FSDP2`, this is the **intended** way to do it
|
||||
- `torch_optimizer_before_fsdp_not_fixed`: `torch` baseline where optimizer is created before applying `FSDP2` without fixing the optimizer parameters
|
||||
- `torch_optimizer_before_fsdp_fixed`: `torch` baseline where optimizer is created before applying `FSDP2` with our fix to the optimizer
|
||||
- `accelerate`: `accelerate`'s own integration of `FSDP2` where optimizer is created before applying `FSDP2`, but we apply our fix to the optimizer
|
||||
|
||||
Memory results are saved in a folder specified by `--output_dir` argument.
|
||||
Optionally, you can specify `--save_memory_snapshot` to save the torch memory snapshot, which can then be viewed using [`torch memory viz`](https://pytorch.org/memory_viz)
|
||||
|
||||
## Visualizing results
|
||||
|
||||
To visualize the results, you can run:
|
||||
|
||||
```bash
|
||||
python3 visualize.py --dir <path_to_output_dir>
|
||||
```
|
||||
|
||||
This will then create two plots, showcasing allocated and reserved memory usage between all the different benchmarks discussed above.
|
||||
|
||||
|
||||
|
||||
BIN
benchmarks/fsdp2/imgs/allocated_memory.png
Normal file
BIN
benchmarks/fsdp2/imgs/allocated_memory.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 124 KiB |
BIN
benchmarks/fsdp2/imgs/reserved_memory.png
Normal file
BIN
benchmarks/fsdp2/imgs/reserved_memory.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 56 KiB |
122
benchmarks/fsdp2/main.py
Normal file
122
benchmarks/fsdp2/main.py
Normal file
@ -0,0 +1,122 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import functools
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
|
||||
from accelerate import Accelerator
|
||||
from utils import parse_args, prepare_accelerate, prepare_torch
|
||||
|
||||
|
||||
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
|
||||
LEARNING_RATE = 3e-5
|
||||
|
||||
CONFIG = {
|
||||
"model_name": MODEL_NAME,
|
||||
"learning_rate": LEARNING_RATE,
|
||||
}
|
||||
|
||||
|
||||
def train(
|
||||
model: torch.nn.Module,
|
||||
optimizer: torch.optim.Optimizer,
|
||||
train_dataloader: torch.utils.data.DataLoader,
|
||||
accelerator: Accelerator,
|
||||
) -> torch.Tensor:
|
||||
losses = []
|
||||
for batch in train_dataloader:
|
||||
optimizer.zero_grad()
|
||||
outputs = model(**batch, use_cache=False)
|
||||
|
||||
loss = outputs.loss
|
||||
losses.append(loss.item())
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
|
||||
return torch.tensor(losses)
|
||||
|
||||
|
||||
def evaluate(args, config: dict, init_fn: Callable, run_name: str) -> torch.Tensor:
|
||||
model, optimizer, dataloader, accelerator, memory_tracker = init_fn(args, config)
|
||||
|
||||
loss = train(model, optimizer, dataloader, accelerator)
|
||||
|
||||
memory_tracker.stop()
|
||||
msg = f"""Results for {run_name} (rank 0):
|
||||
Loss: {loss[-1].item()}
|
||||
Peak Allocated Memory: {float(memory_tracker.peak_allocated_memory):.2f} MB
|
||||
Peak Reserved Memory: {float(memory_tracker.peak_reserved_memory):.2f} MB
|
||||
{"-" * 34}"""
|
||||
accelerator.print(msg)
|
||||
return loss
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
evaluations = [
|
||||
functools.partial(
|
||||
evaluate,
|
||||
init_fn=functools.partial(prepare_torch, post_shard_optimizer=False, apply_optimizer_fix=True),
|
||||
run_name="Optimizer Before FSDP (w/ fix)",
|
||||
),
|
||||
functools.partial(
|
||||
evaluate,
|
||||
init_fn=functools.partial(prepare_torch, post_shard_optimizer=False, apply_optimizer_fix=False),
|
||||
run_name="Optimizer Before FSDP (w/o fix)",
|
||||
),
|
||||
functools.partial(
|
||||
evaluate,
|
||||
init_fn=functools.partial(prepare_torch, post_shard_optimizer=True),
|
||||
run_name="Optimizer After FSDP",
|
||||
),
|
||||
functools.partial(evaluate, init_fn=prepare_accelerate, run_name="Accelerate"),
|
||||
]
|
||||
labels = [
|
||||
"Optimizer Before FSDP (w/ fix)",
|
||||
"Optimizer Before FSDP (w/o fix)",
|
||||
"Optimizer After FSDP",
|
||||
"Accelerate",
|
||||
]
|
||||
|
||||
results = {}
|
||||
torch.use_deterministic_algorithms(True)
|
||||
|
||||
for evaluation, label in zip(evaluations, labels):
|
||||
results[label] = evaluation(args, CONFIG)
|
||||
|
||||
torch.testing.assert_close(
|
||||
results["Optimizer After FSDP"],
|
||||
results["Optimizer Before FSDP (w/ fix)"],
|
||||
msg="Optimizer After FSDP and Optimizer Before FSDP (w/ fix) should be the same",
|
||||
)
|
||||
|
||||
torch.testing.assert_close(
|
||||
results["Optimizer After FSDP"],
|
||||
results["Accelerate"],
|
||||
msg="Optimizer After FSDP and Accelerate should be the same",
|
||||
)
|
||||
|
||||
torch.testing.assert_close(
|
||||
results["Accelerate"],
|
||||
results["Optimizer Before FSDP (w/ fix)"],
|
||||
msg="Accelerate and Optimizer Before FSDP (w/ fix) should be the same",
|
||||
)
|
||||
|
||||
torch.distributed.destroy_process_group()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
130
benchmarks/fsdp2/measure_utils.py
Normal file
130
benchmarks/fsdp2/measure_utils.py
Normal file
@ -0,0 +1,130 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import gc
|
||||
import json
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
|
||||
import psutil
|
||||
import torch
|
||||
|
||||
from accelerate import PartialState
|
||||
|
||||
|
||||
class MemoryTracker:
|
||||
def __init__(
|
||||
self,
|
||||
device: torch.device,
|
||||
output_directory: str,
|
||||
run_name: str,
|
||||
save_memory_snapshot: bool,
|
||||
log_interval: float = 0.01,
|
||||
):
|
||||
"""Class for tracking gpu and cpu memory usage of the process.
|
||||
|
||||
Args:
|
||||
device (`torch.device`):
|
||||
PyTorch device to monitor.
|
||||
output_directory (`str`):
|
||||
Directory to save the memory usage data to, will be created if it doesn't exist.
|
||||
run_name (`str`):
|
||||
Name of the run, will be used to name the output files.
|
||||
save_memory_snapshot (`bool`):
|
||||
Whether to also save `torch.cuda.memory._dump_snapshot` to the output directory.
|
||||
log_interval (`float`, *optional*):
|
||||
Interval in seconds between memory measurements. Defaults to 0.01.
|
||||
"""
|
||||
self.log_interval = log_interval
|
||||
self.save_memory_snapshot = save_memory_snapshot
|
||||
self.output_directory = output_directory
|
||||
self.run_name = run_name
|
||||
|
||||
self.timestamps = []
|
||||
self.allocated_memory = []
|
||||
self.reserved_memory = []
|
||||
self.virtual_memory = []
|
||||
|
||||
self.start_time = None
|
||||
self.running = False
|
||||
|
||||
self._thread = None
|
||||
self._state = PartialState()
|
||||
self._process = psutil.Process()
|
||||
self._device = device
|
||||
self.torch_accelerator_module = getattr(torch, device.type, torch.cuda)
|
||||
|
||||
def _monitor(self):
|
||||
self.start_time = time.time()
|
||||
|
||||
while self.running:
|
||||
allocated = self.torch_accelerator_module.memory_allocated(self._device) / (1024 * 1024)
|
||||
reserved = self.torch_accelerator_module.memory_reserved(self._device) / (1024 * 1024)
|
||||
virtual_memory = self._process.memory_info().rss / (1024 * 1024)
|
||||
|
||||
self.allocated_memory.append(allocated)
|
||||
self.reserved_memory.append(reserved)
|
||||
self.virtual_memory.append(virtual_memory)
|
||||
self.timestamps.append(time.time() - self.start_time)
|
||||
|
||||
time.sleep(self.log_interval)
|
||||
|
||||
def start(self):
|
||||
gc.collect()
|
||||
self.torch_accelerator_module.empty_cache()
|
||||
|
||||
if self.output_directory:
|
||||
os.makedirs(self.output_directory, exist_ok=True)
|
||||
|
||||
if self.save_memory_snapshot:
|
||||
self.torch_accelerator_module.memory._record_memory_history()
|
||||
|
||||
self.running = True
|
||||
self._thread = threading.Thread(target=self._monitor)
|
||||
self._thread.daemon = True
|
||||
self._thread.start()
|
||||
|
||||
def stop(self):
|
||||
self.running = False
|
||||
if self._thread:
|
||||
self._thread.join()
|
||||
|
||||
if self.save_memory_snapshot and self._state.is_main_process and self.output_directory:
|
||||
output_file = os.path.join(self.output_directory, f"{self.run_name}_memory_snapshot.pkl")
|
||||
self.torch_accelerator_module.memory._dump_snapshot(output_file)
|
||||
|
||||
if self._state.is_main_process and self.output_directory:
|
||||
path = os.path.join(self.output_directory, f"{self.run_name}_memory_usage.json")
|
||||
with open(path, "w") as f:
|
||||
json.dump(
|
||||
{
|
||||
"timestamps": self.timestamps,
|
||||
"allocated_memory": self.allocated_memory,
|
||||
"reserved_memory": self.reserved_memory,
|
||||
"virtual_memory": self.virtual_memory,
|
||||
},
|
||||
f,
|
||||
)
|
||||
if self.save_memory_snapshot:
|
||||
self.torch_accelerator_module.memory._record_memory_history(False)
|
||||
self.torch_accelerator_module.empty_cache()
|
||||
|
||||
@property
|
||||
def peak_allocated_memory(self):
|
||||
return max(self.allocated_memory)
|
||||
|
||||
@property
|
||||
def peak_reserved_memory(self):
|
||||
return max(self.reserved_memory)
|
||||
290
benchmarks/fsdp2/utils.py
Normal file
290
benchmarks/fsdp2/utils.py
Normal file
@ -0,0 +1,290 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
from types import MethodType
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from measure_utils import MemoryTracker
|
||||
from torch.distributed.fsdp import MixedPrecisionPolicy, fully_shard
|
||||
from torch.optim import AdamW
|
||||
from torch.utils.data import DataLoader
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling
|
||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
|
||||
|
||||
from accelerate import Accelerator, FullyShardedDataParallelPlugin
|
||||
from accelerate.state import AcceleratorState, is_initialized
|
||||
from accelerate.utils import convert_outputs_to_fp32, set_seed
|
||||
|
||||
|
||||
SEED = 421
|
||||
|
||||
|
||||
def get_named_parameters(model: torch.nn.Module, drop_refs: bool = False) -> dict[str, Union[torch.Tensor, int]]:
|
||||
"""
|
||||
This function returns a dictionary mapping the parameter names to their data pointers or
|
||||
the original parameters if `drop_refs` is `False`.
|
||||
It is used to get the original parameter names before `fully_shard` is applied.
|
||||
|
||||
We only return the data pointers, so we drop the references to the original parameters
|
||||
and `fully_shard` will then trigger a new allocation for the sharded ones.
|
||||
|
||||
Args:
|
||||
model (`torch.nn.Module`): Model instance to get the named parameters from
|
||||
drop_refs (`bool`, *optional*, defaults to `False`): Whether to drop the references to the original parameters
|
||||
|
||||
Returns:
|
||||
`dict[str, Union[torch.Tensor, int]]`: Dictionary mapping the parameter names to their data pointers or the original parameters if `drop_refs` is `False`
|
||||
"""
|
||||
named_parameters = {}
|
||||
for n, p in model.named_parameters():
|
||||
# We only preserve the data pointers to have the unique 1:1 mapping between the original and the sharded parameters
|
||||
named_parameters[n] = p.data_ptr() if drop_refs else p
|
||||
return named_parameters
|
||||
|
||||
|
||||
def replace_optimizer_params(optimizer: torch.optim.Optimizer):
|
||||
"""
|
||||
This function is called before using `fully_shard` on the model. It replaces the parameters of the optimizer with
|
||||
empty tensors, so `fully_shard` can trigger a new allocation for the sharded ones. After this, we swap the parameters
|
||||
`data_ptr` to the original one, so we can reuse that later to map the sharded parameters to the original ones.
|
||||
This function modifies the optimizer in-place.
|
||||
|
||||
Args:
|
||||
optimizer (torch.optim.Optimizer): Optimizer instance which contains the original model parameters
|
||||
"""
|
||||
|
||||
for param_group in optimizer.param_groups:
|
||||
for i, p in enumerate(param_group["params"]):
|
||||
# We drop a reference to the original param here, so that _move_states_to_device triggers a reallocation
|
||||
# This is required or else the `fully_shard` -> `_move_states_to_device` uses the original memory address
|
||||
# for the sharded parameters, and we get a weird/undefined behavior.
|
||||
param_group["params"][i] = torch.empty_like(p)
|
||||
|
||||
# We save the original data_ptr, so we can swap back the parameters later
|
||||
param_group["params"][i].data_ptr = p.data_ptr()
|
||||
|
||||
|
||||
def swap_back_optimizer_params(
|
||||
model: torch.nn.Module, optimizer: torch.optim.Optimizer, old_named_parameter_pointers: dict[str, int]
|
||||
):
|
||||
"""
|
||||
This function is the counterpart of `replace_optimizer_params`. It is called after `fully_shard` being applied to
|
||||
the model. It swaps the parameters of the optimizer to their sharded counterparts.
|
||||
It is done using the `data_ptr` mapping prepared in `replace_optimizer_params` and `get_named_parameters`.
|
||||
|
||||
Args:
|
||||
model (`torch.nn.Module`): Model instance to get the new named parameters from
|
||||
optimizer (`torch.optim.Optimizer`): Optimizer instance to swap the parameters of
|
||||
old_named_parameter_pointers (`dict[str, int]`): Dictionary mapping the original parameter names: data_ptrs to the new ones
|
||||
"""
|
||||
# We get the new named parameters after `fully_shard` being applied
|
||||
# We don't drop the references as we need the sharded parameters now
|
||||
new_named_parameters = get_named_parameters(model, drop_refs=False)
|
||||
|
||||
# We create a mapping from the original data_ptr to the new sharded param corresponding to it
|
||||
mapping = {p: new_named_parameters[n] for n, p in old_named_parameter_pointers.items()}
|
||||
|
||||
for param_group in optimizer.param_groups:
|
||||
# We swap the parameters of the optimizer to the new sharded ones
|
||||
param_group["params"] = [mapping[p.data_ptr] for p in param_group["params"]]
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"--output_dir",
|
||||
type=str,
|
||||
help="Directory to save the benchmarking results.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_memory_snapshot",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="If True, `torch.cuda.memory._dump_snapshot` will be used to additionaly save the memory trace.",
|
||||
)
|
||||
######################
|
||||
# Training arguments #
|
||||
######################
|
||||
parser.add_argument(
|
||||
"--batch_size",
|
||||
type=int,
|
||||
default=2,
|
||||
help="Batch size for the training loop.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--block_size",
|
||||
type=int,
|
||||
default=128,
|
||||
help="The maximum sequence length to use with the model.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dataset_fraction",
|
||||
type=float,
|
||||
default=1.0,
|
||||
help="Fraction of the dataset to use.",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def prepare_dataloader(tokenizer, args, accelerator: Accelerator) -> DataLoader:
|
||||
dataset = load_dataset("tiny_shakespeare", split="train", trust_remote_code=True)
|
||||
|
||||
def tokenize_function(example):
|
||||
return tokenizer(
|
||||
example["text"],
|
||||
)
|
||||
|
||||
dataset = dataset.map(
|
||||
tokenize_function,
|
||||
batched=True,
|
||||
remove_columns=["text"],
|
||||
)
|
||||
|
||||
block_size = min(tokenizer.model_max_length, args.block_size)
|
||||
|
||||
def group_texts(examples):
|
||||
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
||||
total_length = len(concatenated_examples[list(examples.keys())[0]])
|
||||
|
||||
total_length = (total_length // block_size) * block_size
|
||||
|
||||
result = {
|
||||
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
||||
for k, t in concatenated_examples.items()
|
||||
}
|
||||
|
||||
result["labels"] = result["input_ids"].copy()
|
||||
return result
|
||||
|
||||
dataset = dataset.map(group_texts, batched=True)
|
||||
dataset = dataset.select(range(int(len(dataset) * args.dataset_fraction)))
|
||||
|
||||
def collate_fn(examples):
|
||||
return DataCollatorForLanguageModeling(
|
||||
tokenizer=tokenizer,
|
||||
mlm=False,
|
||||
)(examples)
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batch_size,
|
||||
collate_fn=collate_fn,
|
||||
)
|
||||
dataloader = accelerator.prepare(dataloader)
|
||||
return dataloader
|
||||
|
||||
|
||||
def get_model(model_name: str):
|
||||
# We reguire model to be loaded in fp32, otherwise benchmarks don't match as accelerate does upcasting of parameters to fp32
|
||||
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float32)
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
return model
|
||||
|
||||
|
||||
def get_tokenizer(model_name: str):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
return tokenizer
|
||||
|
||||
|
||||
def prepare_torch(
|
||||
args, config: dict, post_shard_optimizer: bool = False, apply_optimizer_fix: bool = False
|
||||
) -> tuple[torch.nn.Module, torch.optim.Optimizer, torch.utils.data.DataLoader, Accelerator]:
|
||||
mp_policy = MixedPrecisionPolicy(
|
||||
param_dtype=torch.bfloat16,
|
||||
reduce_dtype=torch.bfloat16,
|
||||
output_dtype=torch.bfloat16,
|
||||
)
|
||||
|
||||
accelerator = Accelerator(mixed_precision="bf16")
|
||||
set_seed(SEED)
|
||||
is_fixed = "fixed" if apply_optimizer_fix else "not_fixed"
|
||||
is_post_shard = "optimizer_after_fsdp" if post_shard_optimizer else "optimizer_before_fsdp"
|
||||
run_name = f"torch_{is_post_shard}" if post_shard_optimizer else f"torch_{is_post_shard}_{is_fixed}"
|
||||
|
||||
tokenizer = get_tokenizer(config["model_name"])
|
||||
train_dataloader = prepare_dataloader(tokenizer, args, accelerator)
|
||||
|
||||
memory_tracker = MemoryTracker(accelerator.device, args.output_dir, run_name, args.save_memory_snapshot)
|
||||
memory_tracker.start()
|
||||
|
||||
model = get_model(config["model_name"])
|
||||
optimizer = None
|
||||
|
||||
if not post_shard_optimizer:
|
||||
optimizer = AdamW(model.parameters(), lr=config["learning_rate"])
|
||||
|
||||
if apply_optimizer_fix:
|
||||
# We drop the references to the original parameters, so that `fully_shard` can trigger a new allocation
|
||||
# Then we get the `module_name: data_ptr` mapping, so we can swap back the parameters later
|
||||
old_named_parameters = get_named_parameters(model, drop_refs=True)
|
||||
|
||||
# We replace the parameters of the optimizer with empty tensors, so that `fully_shard` can trigger a new allocation
|
||||
# We also change the `data_ptr` of the parameters to the original ones, so we can swap back the parameters later
|
||||
replace_optimizer_params(optimizer)
|
||||
|
||||
for module in model.modules():
|
||||
if isinstance(module, Qwen2DecoderLayer):
|
||||
fully_shard(module, mp_policy=mp_policy)
|
||||
fully_shard(model, mp_policy=mp_policy)
|
||||
|
||||
# We do this to imitate how accelerate forces outputs to be in fp32 via `convert_outputs_to_fp32`
|
||||
autocast_context = torch.autocast(device_type=accelerator.state.device.type, dtype=torch.bfloat16)
|
||||
model_forward_func = model.forward.__func__
|
||||
new_forward = autocast_context(model_forward_func)
|
||||
model.forward = MethodType(new_forward, model)
|
||||
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
|
||||
|
||||
if post_shard_optimizer:
|
||||
optimizer = AdamW(model.parameters(), lr=config["learning_rate"])
|
||||
|
||||
if not post_shard_optimizer and apply_optimizer_fix:
|
||||
# We swap back the parameters of the optimizer to the original ones
|
||||
swap_back_optimizer_params(model, optimizer, old_named_parameters)
|
||||
|
||||
return model, optimizer, train_dataloader, accelerator, memory_tracker
|
||||
|
||||
|
||||
def prepare_accelerate(
|
||||
args, config: dict
|
||||
) -> tuple[torch.nn.Module, torch.optim.Optimizer, torch.utils.data.DataLoader, Accelerator]:
|
||||
if is_initialized():
|
||||
AcceleratorState()._reset_state(True)
|
||||
|
||||
fsdp_plugin = FullyShardedDataParallelPlugin(
|
||||
fsdp_version=2,
|
||||
auto_wrap_policy="transformer_based_wrap",
|
||||
transformer_cls_names_to_wrap=["Qwen2DecoderLayer"],
|
||||
)
|
||||
accelerator = Accelerator(
|
||||
fsdp_plugin=fsdp_plugin,
|
||||
mixed_precision="bf16",
|
||||
)
|
||||
set_seed(SEED)
|
||||
|
||||
tokenizer = get_tokenizer(config["model_name"])
|
||||
train_dataloader = prepare_dataloader(tokenizer, args, accelerator)
|
||||
|
||||
memory_tracker = MemoryTracker(accelerator.device, args.output_dir, "accelerate", args.save_memory_snapshot)
|
||||
memory_tracker.start()
|
||||
|
||||
model = get_model(config["model_name"])
|
||||
optimizer = AdamW(model.parameters(), lr=config["learning_rate"])
|
||||
|
||||
model, optimizer = accelerator.prepare(model, optimizer)
|
||||
|
||||
return model, optimizer, train_dataloader, accelerator, memory_tracker
|
||||
114
benchmarks/fsdp2/visualize.py
Normal file
114
benchmarks/fsdp2/visualize.py
Normal file
@ -0,0 +1,114 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--dir", type=str, help="Directory containing the memory usage data")
|
||||
parser.add_argument(
|
||||
"--memory_threshold",
|
||||
type=int,
|
||||
default=0,
|
||||
help="Memory threshold to filter data that is below this value (only filters 1st `--filter_partition` of the points which should roughtly correspond to the model loading)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--filter_partition",
|
||||
type=float,
|
||||
default=1 / 3,
|
||||
help="Partition to drop data from that are below the memory threshold",
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def filter_data(data, memory_threshold, filter_partition, key):
|
||||
timestamps = data["timestamps"]
|
||||
memory = data[key]
|
||||
|
||||
mid_point = int(len(timestamps) * filter_partition)
|
||||
filtered_times = []
|
||||
filtered_memory = []
|
||||
for i, (t, m) in enumerate(zip(timestamps, memory)):
|
||||
if i < mid_point and m < memory_threshold:
|
||||
continue
|
||||
filtered_times.append(t)
|
||||
filtered_memory.append(m)
|
||||
return filtered_times, filtered_memory
|
||||
|
||||
|
||||
def compare_memory_usage(data, labels, memory_threshold, filter_partition):
|
||||
plt.style.use("seaborn-v0_8")
|
||||
colors = ["#2ecc71", "#e74c3c", "#3498db", "#f1c40f"]
|
||||
|
||||
fig1, ax1 = plt.subplots(figsize=(15, 5))
|
||||
for data_item, label, color in zip(data, labels, colors):
|
||||
timestamps, allocated = filter_data(data_item, memory_threshold, filter_partition, "allocated_memory")
|
||||
ax1.plot(timestamps, allocated, label=label, color=color, linewidth=2)
|
||||
|
||||
ax1.set_xlabel("Time (s)", fontsize=12)
|
||||
ax1.set_ylabel("Allocated Memory (GB)", fontsize=12)
|
||||
ax1.set_title("Allocated Memory Usage Over Time", fontsize=14, pad=15)
|
||||
ax1.grid(True, linestyle="--", alpha=0.7)
|
||||
ax1.legend(frameon=True, fancybox=True, shadow=True, fontsize=10)
|
||||
ax1.spines["top"].set_visible(False)
|
||||
ax1.spines["right"].set_visible(False)
|
||||
plt.tight_layout()
|
||||
|
||||
fig2, ax2 = plt.subplots(figsize=(15, 5))
|
||||
for data_item, label, color in zip(data, labels, colors):
|
||||
timestamps, reserved = filter_data(data_item, memory_threshold, filter_partition, "reserved_memory")
|
||||
ax2.plot(timestamps, reserved, label=label, color=color, linewidth=2)
|
||||
|
||||
ax2.set_xlabel("Time (s)", fontsize=12)
|
||||
ax2.set_ylabel("Reserved Memory (GB)", fontsize=12)
|
||||
ax2.set_title("Reserved Memory Usage Over Time", fontsize=14, pad=15)
|
||||
ax2.grid(True, linestyle="--", alpha=0.7)
|
||||
ax2.legend(frameon=True, fancybox=True, shadow=True, fontsize=10)
|
||||
ax2.spines["top"].set_visible(False)
|
||||
ax2.spines["right"].set_visible(False)
|
||||
plt.tight_layout()
|
||||
|
||||
return fig1, fig2
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
DIR = args.dir
|
||||
with open(f"{DIR}/torch_optimizer_before_fsdp_not_fixed_memory_usage.json") as f:
|
||||
optimizer_before_fsdp_not_fixed = json.load(f)
|
||||
|
||||
with open(f"{DIR}/torch_optimizer_after_fsdp_memory_usage.json") as f:
|
||||
optimizer_after_fsdp = json.load(f)
|
||||
|
||||
with open(f"{DIR}/torch_optimizer_before_fsdp_fixed_memory_usage.json") as f:
|
||||
optimizer_before_fsdp_fixed = json.load(f)
|
||||
|
||||
with open(f"{DIR}/accelerate_memory_usage.json") as f:
|
||||
accelerate = json.load(f)
|
||||
|
||||
data = [optimizer_before_fsdp_not_fixed, optimizer_before_fsdp_fixed, optimizer_after_fsdp, accelerate]
|
||||
labels = [
|
||||
"Optimizer Before FSDP (w/o fix)",
|
||||
"Optimizer Before FSDP (w/ fix)",
|
||||
"Optimizer After FSDP",
|
||||
"Accelerate",
|
||||
]
|
||||
|
||||
fig1, fig2 = compare_memory_usage(data, labels, args.memory_threshold, args.filter_partition)
|
||||
fig1.savefig(f"{DIR}/allocated_memory.png")
|
||||
fig2.savefig(f"{DIR}/reserved_memory.png")
|
||||
111
benchmarks/torch.compile/README.md
Normal file
111
benchmarks/torch.compile/README.md
Normal file
@ -0,0 +1,111 @@
|
||||
# Regional Compilation Benchmark
|
||||
|
||||
This benchmark compares different compilation strategies using PyTorch's `torch.compile` and Accelerate's `compile_regions` utility, which is based on the recipe in [PyTorch documentation](https://pytorch.org/tutorials/recipes/regional_compilation.html).
|
||||
|
||||
## Overview
|
||||
|
||||
The benchmark evaluates three approaches:
|
||||
|
||||
- **Baseline**: No compilation, standard PyTorch eager execution.
|
||||
- **Full compilation**: Using PyTorch's `torch.compile()` on the entire model.
|
||||
- **Regional compilation**: Using `accelerate.utils.compile_regions()` which targets specific blocks of the model to optimize compilation time.
|
||||
|
||||
Each approach is tested with different batch sizes (1 and 4) and sequence lengths (128) on various LLaMA-based models ranging from 1B to 13B parameters. We purposefully run the forward pass outside of the `torch.no_grad()` context to simulate performance in a training environment, where gradients are needed.
|
||||
|
||||
## Usage
|
||||
|
||||
To run this benchmark:
|
||||
|
||||
```bash
|
||||
python regional_compilation.py
|
||||
```
|
||||
|
||||
The script will automatically download the model configurations, create models, and benchmark both compilation and inference times across different scenarios.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Suitable GPU memory for the models being tested.
|
||||
- PyTorch with CUDA support.
|
||||
- Transformers library.
|
||||
- Accelerate library.
|
||||
|
||||
## Results
|
||||
|
||||
The benchmark results are summarized in the following figures:
|
||||
|
||||
- Compilation time is how long it takes to run the first forward pass.
|
||||
- Speedup factor is the ratio of non-compiled baseline inference time to the fully/regionally compiled inference time.
|
||||
|
||||
<p align="center">
|
||||
<img src="imgs/compilation_time.png" width="80%" alt="Compilation Time">
|
||||
</p>
|
||||
<p align="center">
|
||||
<img src="imgs/speedup_factor.png" width="80%" alt="Speedup Factor">
|
||||
</p>
|
||||
|
||||
Full results are available in the tables below:
|
||||
|
||||
```markdown
|
||||
[-------------------------------------------------- NousResearch/Llama-3.2-1B ---------------------------------------------------]
|
||||
| Inference time (1x128) | Inference time (4x128) | Compile time (1x128) | Compile time (4x128)
|
||||
1 threads: -----------------------------------------------------------------------------------------------------------------------
|
||||
Baseline | 18.3 | 18.4 | |
|
||||
Full compilation | 6.3 | 10.0 | 10696.4 | 10248.0
|
||||
Regional compilation | 9.7 | 10.0 | 1952.7 | 2903.9
|
||||
|
||||
Times are in milliseconds (ms).
|
||||
|
||||
[---------------------------------------------- NousResearch/Hermes-3-Llama-3.2-3B ----------------------------------------------]
|
||||
| Inference time (1x128) | Inference time (4x128) | Compile time (1x128) | Compile time (4x128)
|
||||
1 threads: -----------------------------------------------------------------------------------------------------------------------
|
||||
Baseline | 33.4 | 33.6 | |
|
||||
Full compilation | 11.2 | 23.9 | 17857.5 | 17736.5
|
||||
Regional compilation | 17.3 | 23.7 | 2993.2 | 2478.8
|
||||
|
||||
Times are in milliseconds (ms).
|
||||
|
||||
[---------------------------------------------- NousResearch/Hermes-3-Llama-3.1-8B ----------------------------------------------]
|
||||
| Inference time (1x128) | Inference time (4x128) | Compile time (1x128) | Compile time (4x128)
|
||||
1 threads: -----------------------------------------------------------------------------------------------------------------------
|
||||
Baseline | 40.3 | 59.5 | |
|
||||
Full compilation | 18.9 | 54.4 | 20437.8 | 20152.3
|
||||
Regional compilation | 19.7 | 54.0 | 2903.1 | 2438.0
|
||||
|
||||
Times are in milliseconds (ms).
|
||||
|
||||
[--------------------------------------------- NousResearch/Nous-Hermes-Llama2-13b ----------------------------------------------]
|
||||
| Inference time (1x128) | Inference time (4x128) | Compile time (1x128) | Compile time (4x128)
|
||||
1 threads: -----------------------------------------------------------------------------------------------------------------------
|
||||
Baseline | 45.5 | 100.4 | |
|
||||
Full compilation | 29.4 | 89.7 | 23099.4 | 22885.9
|
||||
Regional compilation | 29.4 | 87.5 | 2945.5 | 2526.2
|
||||
|
||||
Times are in milliseconds (ms).
|
||||
```
|
||||
|
||||
## Results Summary
|
||||
|
||||
### Compilation Time
|
||||
|
||||
Regional compilation provides significantly faster compilation times compared to full model compilation:
|
||||
|
||||
- **Full compilation**: Takes ~10-23 seconds depending on model size.
|
||||
- **Regional compilation**: Takes only ~2-3 seconds across all model sizes.
|
||||
- **Speed improvement**: Regional compilation is **5-9x faster** to compile.
|
||||
|
||||
### Inference Time
|
||||
|
||||
Regional compilation delivers inference performance close to full compilation:
|
||||
|
||||
- For batch size 1:
|
||||
- For smaller models (1B-3B): Full compilation has a slight edge over regional compilation.
|
||||
- For larger models (8B-13B): Regional compilation performs similarly to full compilation.
|
||||
- For batch size 4: Regional compilation performs similarly to full compilation across all models.
|
||||
|
||||
## Key Takeaways
|
||||
|
||||
1. **Comparable Performance**: Regional compilation delivers performance speedups similar to full compilation, especially for larger models.
|
||||
2. **Faster Compilation**: Regional compilation significantly reduces the time taken to compile models, making it a more efficient choice for deployment.
|
||||
3. **Batch Size Impact**: At batch size 4, full compilation and regional compilation perform nearly identically.
|
||||
4. **Model Size Impact**: Even with a small batch size, full compilation and regional compilation perform similarly for larger models (8B-13B).
|
||||
5. **Practical Application**: For real-world applications, regional compilation is a practical choice for optimizing training cold start times, especially when working with large models.
|
||||
BIN
benchmarks/torch.compile/imgs/compilation_time.png
Normal file
BIN
benchmarks/torch.compile/imgs/compilation_time.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 242 KiB |
BIN
benchmarks/torch.compile/imgs/speedup_factor.png
Normal file
BIN
benchmarks/torch.compile/imgs/speedup_factor.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 218 KiB |
77
benchmarks/torch.compile/regional_compilation.py
Normal file
77
benchmarks/torch.compile/regional_compilation.py
Normal file
@ -0,0 +1,77 @@
|
||||
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from torch.utils.benchmark import Compare, Timer
|
||||
from transformers import AutoConfig, AutoModelForCausalLM
|
||||
|
||||
from accelerate.test_utils.testing import get_backend
|
||||
from accelerate.utils import compile_regions
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
COMPILE_ITERS = 2
|
||||
INFERENCE_ITERS = 100
|
||||
|
||||
BASELINE = "Baseline"
|
||||
COMPILE_TIME = "Compile time"
|
||||
INFRENCE_TIME = "Inference time"
|
||||
FULL_COMPILATION = "Full compilation"
|
||||
REGIONAL_COMPILATION = "Regional compilation"
|
||||
|
||||
INFRENCE_STMT = "model(input_ids, use_cache=False)"
|
||||
COMPILE_STMT = f"torch._dynamo.reset(); torch._inductor.utils.clear_inductor_caches(); {INFRENCE_STMT}"
|
||||
|
||||
torch_device_type, _, _ = get_backend()
|
||||
|
||||
results = []
|
||||
for model_id in [
|
||||
# non-gated llama models
|
||||
"NousResearch/Llama-3.2-1B",
|
||||
"NousResearch/Hermes-3-Llama-3.2-3B",
|
||||
"NousResearch/Hermes-3-Llama-3.1-8B",
|
||||
"NousResearch/Nous-Hermes-Llama2-13b",
|
||||
]:
|
||||
with torch.device(torch_device_type):
|
||||
config = AutoConfig.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_config(config).to(dtype=torch.float16).eval()
|
||||
|
||||
full_compilation_model = torch.compile(model)
|
||||
regional_compilation_model = compile_regions(model)
|
||||
|
||||
for model, sub_label, description, stmt, iters in [
|
||||
(model, BASELINE, INFRENCE_TIME, INFRENCE_STMT, INFERENCE_ITERS),
|
||||
(full_compilation_model, FULL_COMPILATION, COMPILE_TIME, COMPILE_STMT, COMPILE_ITERS),
|
||||
(full_compilation_model, FULL_COMPILATION, INFRENCE_TIME, INFRENCE_STMT, INFERENCE_ITERS),
|
||||
(regional_compilation_model, REGIONAL_COMPILATION, COMPILE_TIME, COMPILE_STMT, COMPILE_ITERS),
|
||||
(regional_compilation_model, REGIONAL_COMPILATION, INFRENCE_TIME, INFRENCE_STMT, INFERENCE_ITERS),
|
||||
]:
|
||||
for batch_size, sequence_length in [(1, 128), (4, 128)]:
|
||||
input_ids = torch.randint(
|
||||
0, 1000, size=(batch_size, sequence_length), dtype=torch.int64, device=torch_device_type
|
||||
)
|
||||
results.append(
|
||||
Timer(
|
||||
label=model_id,
|
||||
sub_label=sub_label,
|
||||
description=f"{description} ({batch_size}x{sequence_length})",
|
||||
globals={"model": model, "input_ids": input_ids},
|
||||
stmt=stmt,
|
||||
).timeit(number=iters)
|
||||
)
|
||||
|
||||
compare = Compare(results)
|
||||
compare.colorize()
|
||||
compare.print()
|
||||
@ -33,6 +33,7 @@ huggingface/accelerate:{accelerator}-{nightly,release}
|
||||
* `cpu`: Comes compiled off of `python:3.9-slim` and is designed for non-CUDA based workloads.
|
||||
* More to come soon
|
||||
* `gpu-deepspeed`: Comes compiled off of the `nvidia/cuda` image and includes core parts like `bitsandbytes` as well as the latest `deepspeed` version. Runs off python 3.10.
|
||||
* `gpu-fp8-transformerengine`: Comes compiled off of `nvcr.io/nvidia/pytorch` and is specifically for running the `benchmarks/fp8` scripts on devices which support FP8 operations using the `TransformerEngine` library (RTX 4090, H100, etc)
|
||||
|
||||
## Nightlies vs Releases
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
# Builds CPU-only Docker image of PyTorch
|
||||
# Uses multi-staged approach to reduce size
|
||||
# Stage 1
|
||||
FROM python:3.8-slim as compile-image
|
||||
FROM python:3.9-slim as compile-image
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
@ -25,7 +25,7 @@ RUN python3 -m pip install --no-cache-dir \
|
||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||
|
||||
# Stage 2
|
||||
FROM python:3.8-slim AS build-image
|
||||
FROM python:3.9-slim AS build-image
|
||||
COPY --from=compile-image /opt/venv /opt/venv
|
||||
RUN useradd -ms /bin/bash user
|
||||
USER user
|
||||
|
||||
@ -25,12 +25,12 @@ RUN source activate accelerate && conda install -c conda-forge mpi4py
|
||||
RUN source activate accelerate && \
|
||||
python3 -m pip install --no-cache-dir \
|
||||
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers,deepspeed] \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu117
|
||||
--extra-index-url https://download.pytorch.org/whl/cu126
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
# Stage 2
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 AS build-image
|
||||
FROM nvidia/cuda:12.6.3-cudnn-devel-ubuntu22.04 AS build-image
|
||||
COPY --from=compile-image /opt/conda /opt/conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
|
||||
|
||||
@ -24,12 +24,12 @@ RUN source activate accelerate && conda install -c conda-forge mpi4py
|
||||
RUN source activate accelerate && \
|
||||
python3 -m pip install --no-cache-dir \
|
||||
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers] \
|
||||
--extra-index-url https://download.pytorch.org/whl/cu117
|
||||
--extra-index-url https://download.pytorch.org/whl/cu126
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
# Stage 2
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 AS build-image
|
||||
FROM nvidia/cuda:12.6.3-cudnn-devel-ubuntu22.04 AS build-image
|
||||
COPY --from=compile-image /opt/conda /opt/conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
|
||||
|
||||
@ -16,7 +16,7 @@
|
||||
- local: basic_tutorials/tpu
|
||||
title: TPU training
|
||||
- local: basic_tutorials/launch
|
||||
title: Launching distributed code
|
||||
title: Launching Accelerate scripts
|
||||
- local: basic_tutorials/notebook
|
||||
title: Launching distributed training from Jupyter Notebooks
|
||||
title: Tutorials
|
||||
@ -31,8 +31,10 @@
|
||||
title: Model quantization
|
||||
- local: usage_guides/tracking
|
||||
title: Experiment trackers
|
||||
- local: usage_guides/profiler
|
||||
title: Profiler
|
||||
- local: usage_guides/checkpoint
|
||||
title: Save and load training states
|
||||
title: Checkpointing
|
||||
- local: basic_tutorials/troubleshooting
|
||||
title: Troubleshoot
|
||||
- local: usage_guides/training_zoo
|
||||
@ -48,16 +50,24 @@
|
||||
title: Low precision (FP8) training
|
||||
- local: usage_guides/deepspeed
|
||||
title: DeepSpeed
|
||||
- local: usage_guides/deepspeed_multiple_model
|
||||
title: Using multiple models with DeepSpeed
|
||||
- local: usage_guides/ddp_comm_hook
|
||||
title: DDP Communication Hooks
|
||||
- local: usage_guides/fsdp
|
||||
title: Fully Sharded Data Parallelism
|
||||
title: Fully Sharded Data Parallel
|
||||
- local: usage_guides/megatron_lm
|
||||
title: Megatron-LM
|
||||
- local: usage_guides/sagemaker
|
||||
title: Amazon SageMaker
|
||||
- local: usage_guides/mps
|
||||
title: Apple M1 GPUs
|
||||
- local: usage_guides/ipex
|
||||
title: IPEX training with CPU
|
||||
- local: usage_guides/intel_cpu
|
||||
title: Intel CPU
|
||||
- local: usage_guides/gaudi
|
||||
title: Intel Gaudi
|
||||
- local: usage_guides/compilation
|
||||
title: Compilation
|
||||
title: Training
|
||||
- isExpanded: true
|
||||
sections:
|
||||
@ -69,7 +79,7 @@
|
||||
title: How to guides
|
||||
- sections:
|
||||
- local: concept_guides/internal_mechanism
|
||||
title: 🤗 Accelerate's internal mechanism
|
||||
title: Accelerate's internal mechanism
|
||||
- local: concept_guides/big_model_inference
|
||||
title: Loading big models into memory
|
||||
- local: concept_guides/performance
|
||||
@ -80,24 +90,26 @@
|
||||
title: Gradient synchronization
|
||||
- local: concept_guides/fsdp_and_deepspeed
|
||||
title: FSDP vs DeepSpeed
|
||||
- local: concept_guides/fsdp1_vs_fsdp2
|
||||
title: FSDP1 vs FSDP2
|
||||
- local: concept_guides/low_precision_training
|
||||
title: How training in low-precision environments is possible (FP8)
|
||||
title: Low precision training methods
|
||||
- local: concept_guides/training_tpu
|
||||
title: TPU best practices
|
||||
title: Training on TPUs
|
||||
title: Concepts and fundamentals
|
||||
- sections:
|
||||
- sections:
|
||||
- local: package_reference/accelerator
|
||||
title: Accelerator
|
||||
- local: package_reference/state
|
||||
title: Stateful configuration classes
|
||||
title: Stateful classes
|
||||
- local: package_reference/cli
|
||||
title: The Command Line
|
||||
- local: package_reference/torch_wrappers
|
||||
title: Torch wrapper classes
|
||||
title: DataLoaders, Optimizers, Schedulers
|
||||
- local: package_reference/tracking
|
||||
title: Experiment trackers
|
||||
- local: package_reference/launchers
|
||||
title: Distributed launchers
|
||||
title: Launchers
|
||||
- local: package_reference/deepspeed
|
||||
title: DeepSpeed utilities
|
||||
- local: package_reference/logging
|
||||
@ -105,13 +117,15 @@
|
||||
- local: package_reference/big_modeling
|
||||
title: Working with large models
|
||||
- local: package_reference/inference
|
||||
title: Distributed inference with big models
|
||||
title: Pipeline parallelism
|
||||
- local: package_reference/kwargs
|
||||
title: Kwargs handlers
|
||||
- local: package_reference/fp8
|
||||
title: FP8
|
||||
- local: package_reference/utilities
|
||||
title: Utility functions and classes
|
||||
- local: package_reference/megatron_lm
|
||||
title: Megatron-LM Utilities
|
||||
title: Megatron-LM utilities
|
||||
- local: package_reference/fsdp
|
||||
title: Fully Sharded Data Parallelism Utilities
|
||||
title: Fully Sharded Data Parallel utilities
|
||||
title: "Reference"
|
||||
|
||||
@ -13,31 +13,29 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Installation and Configuration
|
||||
# Installation
|
||||
|
||||
Before you start, you will need to setup your environment, install the appropriate packages, and configure 🤗 Accelerate. 🤗 Accelerate is tested on **Python 3.8+**.
|
||||
Before you start, you will need to setup your environment, install the appropriate packages, and configure Accelerate. Accelerate is tested on **Python 3.8+**.
|
||||
|
||||
## Installing 🤗 Accelerate
|
||||
Accelerate is available on pypi and conda, as well as on GitHub. Details to install from each are below:
|
||||
|
||||
🤗 Accelerate is available on pypi and conda, as well as on GitHub. Details to install from each are below:
|
||||
## pip
|
||||
|
||||
### pip
|
||||
|
||||
To install 🤗 Accelerate from pypi, perform:
|
||||
To install Accelerate from pypi, perform:
|
||||
|
||||
```bash
|
||||
pip install accelerate
|
||||
```
|
||||
|
||||
### conda
|
||||
## conda
|
||||
|
||||
🤗 Accelerate can also be installed with conda with:
|
||||
Accelerate can also be installed with conda with:
|
||||
|
||||
```bash
|
||||
conda install -c conda-forge accelerate
|
||||
```
|
||||
|
||||
### Source
|
||||
## Source
|
||||
|
||||
New features are added every day that haven't been released yet. To try them out yourself, install
|
||||
from the GitHub repository:
|
||||
@ -56,9 +54,9 @@ cd accelerate
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
## Configuring 🤗 Accelerate
|
||||
## Configuration
|
||||
|
||||
After installing, you need to configure 🤗 Accelerate for how the current system is setup for training.
|
||||
After installing, you need to configure Accelerate for how the current system is setup for training.
|
||||
To do so run the following and answer the questions prompted to you:
|
||||
|
||||
```bash
|
||||
@ -70,7 +68,8 @@ To write a barebones configuration that doesn't include options such as DeepSpee
|
||||
```bash
|
||||
python -c "from accelerate.utils import write_basic_config; write_basic_config(mixed_precision='fp16')"
|
||||
```
|
||||
🤗 Accelerate will automatically utilize the maximum number of GPUs available and set the mixed precision mode.
|
||||
|
||||
Accelerate will automatically utilize the maximum number of GPUs available and set the mixed precision mode.
|
||||
|
||||
To check that your configuration looks fine, run:
|
||||
|
||||
@ -80,23 +79,36 @@ accelerate env
|
||||
|
||||
An example output is shown below, which describes two GPUs on a single machine with no mixed precision being used:
|
||||
|
||||
|
||||
```bash
|
||||
- `Accelerate` version: 0.11.0.dev0
|
||||
- Platform: Linux-5.10.0-15-cloud-amd64-x86_64-with-debian-11.3
|
||||
- Python version: 3.7.12
|
||||
- Numpy version: 1.19.5
|
||||
- PyTorch version (GPU?): 1.12.0+cu102 (True)
|
||||
- `Accelerate` version: 1.2.0.dev0
|
||||
- Platform: Linux-6.8.0-47-generic-x86_64-with-glibc2.35
|
||||
- `accelerate` bash location: /home/zach/miniconda3/envs/accelerate/bin/accelerate
|
||||
- Python version: 3.10.13
|
||||
- Numpy version: 1.26.4
|
||||
- PyTorch version (GPU?): 2.5.1+cu124 (True)
|
||||
- PyTorch XPU available: False
|
||||
- PyTorch NPU available: False
|
||||
- PyTorch MLU available: False
|
||||
- PyTorch MUSA available: False
|
||||
- System RAM: 187.91 GB
|
||||
- GPU type: NVIDIA GeForce RTX 4090
|
||||
- `Accelerate` default config:
|
||||
- compute_environment: LOCAL_MACHINE
|
||||
- distributed_type: MULTI_GPU
|
||||
- mixed_precision: no
|
||||
- use_cpu: False
|
||||
- debug: False
|
||||
- num_processes: 2
|
||||
- machine_rank: 0
|
||||
- num_machines: 1
|
||||
- main_process_ip: None
|
||||
- main_process_port: None
|
||||
- gpu_ids: all
|
||||
- rdzv_backend: static
|
||||
- same_network: True
|
||||
- main_training_function: main
|
||||
- deepspeed_config: {}
|
||||
- fsdp_config: {}
|
||||
```
|
||||
- enable_cpu_affinity: False
|
||||
- downcast_bf16: no
|
||||
- tpu_use_cluster: False
|
||||
- tpu_use_sudo: False
|
||||
- tpu_env: []
|
||||
```
|
||||
|
||||
@ -13,9 +13,9 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Launching your 🤗 Accelerate scripts
|
||||
# Launching Accelerate scripts
|
||||
|
||||
In the previous tutorial, you were introduced to how to modify your current training script to use 🤗 Accelerate.
|
||||
In the previous tutorial, you were introduced to how to modify your current training script to use Accelerate.
|
||||
The final version of that code is shown below:
|
||||
|
||||
```python
|
||||
@ -69,14 +69,14 @@ Next, you need to launch it with `accelerate launch`.
|
||||
<Tip warning={true}>
|
||||
|
||||
It's recommended you run `accelerate config` before using `accelerate launch` to configure your environment to your liking.
|
||||
Otherwise 🤗 Accelerate will use very basic defaults depending on your system setup.
|
||||
Otherwise Accelerate will use very basic defaults depending on your system setup.
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
## Using accelerate launch
|
||||
|
||||
🤗 Accelerate has a special CLI command to help you launch your code in your system through `accelerate launch`.
|
||||
Accelerate has a special CLI command to help you launch your code in your system through `accelerate launch`.
|
||||
This command wraps around all of the different commands needed to launch your script on various platforms, without you having to remember what each of them is.
|
||||
|
||||
<Tip>
|
||||
@ -97,11 +97,14 @@ Since this runs the various torch spawn methods, all of the expected environment
|
||||
For example, here is how to use `accelerate launch` with a single GPU:
|
||||
|
||||
```bash
|
||||
# for cuda device:
|
||||
CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...
|
||||
# for xpu device:
|
||||
ZE_AFFINITY_MASK="0" accelerate launch {script_name.py} --arg1 --arg2 ...
|
||||
```
|
||||
|
||||
You can also use `accelerate launch` without performing `accelerate config` first, but you may need to manually pass in the right configuration parameters.
|
||||
In this case, 🤗 Accelerate will make some hyperparameter decisions for you, e.g., if GPUs are available, it will use all of them by default without the mixed precision.
|
||||
In this case, Accelerate will make some hyperparameter decisions for you, e.g., if GPUs are available, it will use all of them by default without the mixed precision.
|
||||
Here is how you would use all GPUs and train with mixed precision disabled:
|
||||
|
||||
```bash
|
||||
@ -129,14 +132,14 @@ accelerate launch -h
|
||||
|
||||
<Tip>
|
||||
|
||||
Even if you are not using 🤗 Accelerate in your code, you can still use the launcher for starting your scripts!
|
||||
Even if you are not using Accelerate in your code, you can still use the launcher for starting your scripts!
|
||||
|
||||
</Tip>
|
||||
|
||||
For a visualization of this difference, that earlier `accelerate launch` on multi-gpu would look something like so with `torchrun`:
|
||||
|
||||
```bash
|
||||
MIXED_PRECISION="fp16" torchrun --nproc_per_node=2 --num_machines=1 {script_name.py} {--arg1} {--arg2} ...
|
||||
MIXED_PRECISION="fp16" torchrun --nproc_per_node=2 --nnodes=1 {script_name.py} {--arg1} {--arg2} ...
|
||||
```
|
||||
|
||||
You can also launch your script utilizing the launch CLI as a python module itself, enabling the ability to pass in other python-specific
|
||||
@ -178,7 +181,7 @@ accelerate launch {script_name.py} {--arg1} {--arg2} ...
|
||||
## Custom Configurations
|
||||
|
||||
As briefly mentioned earlier, `accelerate launch` should be mostly used through combining set configurations
|
||||
made with the `accelerate config` command. These configs are saved to a `default_config.yaml` file in your cache folder for 🤗 Accelerate.
|
||||
made with the `accelerate config` command. These configs are saved to a `default_config.yaml` file in your cache folder for Accelerate.
|
||||
This cache folder is located at (with decreasing order of priority):
|
||||
|
||||
- The content of your environment variable `HF_HOME` suffixed with `accelerate`.
|
||||
@ -211,7 +214,7 @@ accelerate launch --config_file {path/to/config/my_config_file.yaml} {script_nam
|
||||
```
|
||||
|
||||
## Multi-node training
|
||||
Multi-node training with 🤗Accelerate is similar to [multi-node training with torchrun](https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html). The simplest way to launch a multi-node training run is to do the following:
|
||||
Multi-node training with Accelerate is similar to [multi-node training with torchrun](https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html). The simplest way to launch a multi-node training run is to do the following:
|
||||
|
||||
- Copy your codebase and data to all nodes. (or place them on a shared filesystem)
|
||||
- Setup your python packages on all nodes.
|
||||
|
||||
@ -145,7 +145,7 @@ Set the mixed precision type to use in the [`Accelerator`], and then use the [`~
|
||||
```diff
|
||||
+ accelerator = Accelerator(mixed_precision="fp16")
|
||||
+ with accelerator.autocast():
|
||||
loss = complex_loss_function(outputs, target):
|
||||
loss = complex_loss_function(outputs, target)
|
||||
```
|
||||
|
||||
## Save and load
|
||||
@ -219,3 +219,6 @@ During training, you may want to save the current state of the model, optimizer,
|
||||
To further customize where and how states are saved through [`~Accelerator.save_state`], use the [`~utils.ProjectConfiguration`] class. For example, if `automatic_checkpoint_naming` is enabled, each saved checkpoint is stored at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`.
|
||||
|
||||
Any other stateful items to be stored should be registered with the [`~Accelerator.register_for_checkpointing`] method so they can be saved and loaded. Every object passed to this method to be stored must have a `load_state_dict` and `state_dict` function.
|
||||
|
||||
> [!TIP]
|
||||
> If you have [`torchdata>=0.8.0`](https://github.com/pytorch/data/tree/main) installed, you can additionally pass `use_stateful_dataloader=True` into your [`~utils.DataLoaderConfiguration`]. This extends Accelerate's DataLoader classes with a `load_state_dict` and `state_dict` function, and makes it so `Accelerator.save_state` and `Accelerator.load_state` also track how far into the training dataset it has read when persisting the model.
|
||||
|
||||
@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Launching Multi-GPU Training from a Jupyter Environment
|
||||
# Launching distributed training from Jupyter Notebooks
|
||||
|
||||
This tutorial teaches you how to fine tune a computer vision model with 🤗 Accelerate from a Jupyter Notebook on a distributed system.
|
||||
You will also learn how to setup a few requirements needed for ensuring your environment is configured properly, your data has been prepared properly, and finally how to launch training.
|
||||
@ -26,13 +26,13 @@ You will also learn how to setup a few requirements needed for ensuring your env
|
||||
|
||||
## Configuring the Environment
|
||||
|
||||
Before any training can be performed, a 🤗 Accelerate config file must exist in the system. Usually this can be done by running the following in a terminal and answering the prompts:
|
||||
Before any training can be performed, an Accelerate config file must exist in the system. Usually this can be done by running the following in a terminal and answering the prompts:
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
However, if general defaults are fine and you are *not* running on a TPU, 🤗Accelerate has a utility to quickly write your GPU configuration into a config file via [`utils.write_basic_config`].
|
||||
However, if general defaults are fine and you are *not* running on a TPU, Accelerate has a utility to quickly write your GPU configuration into a config file via [`utils.write_basic_config`].
|
||||
|
||||
The following code will restart Jupyter after writing the configuration, as CUDA code was called to perform this.
|
||||
|
||||
@ -52,7 +52,7 @@ os._exit(00) # Restart the notebook
|
||||
|
||||
## Preparing the Dataset and Model
|
||||
|
||||
Next you should prepare your dataset. As mentioned at earlier, great care should be taken when preparing the `DataLoaders` and model to make sure that **nothing** is put on *any* GPU.
|
||||
Next you should prepare your dataset. As mentioned earlier, great care should be taken when preparing the `DataLoaders` and model to make sure that **nothing** is put on *any* GPU.
|
||||
|
||||
If you do, it is recommended to put that specific code into a function and call that from within the notebook launcher interface, which will be shown later.
|
||||
|
||||
@ -327,7 +327,7 @@ def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64):
|
||||
# Build dataloaders
|
||||
train_dataloader, eval_dataloader = get_dataloaders(batch_size)
|
||||
|
||||
# Instantiate the model (you build the model here so that the seed also controls new weight initaliziations)
|
||||
# Instantiate the model (you build the model here so that the seed also controls new weight initializations)
|
||||
model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id))
|
||||
|
||||
# Freeze the base model
|
||||
@ -454,7 +454,7 @@ epoch 4: 94.71
|
||||
|
||||
And that's it!
|
||||
|
||||
Please note that [`notebook_launcher`] ignores the 🤗 Accelerate config file, to launch based on the config use:
|
||||
Please note that [`notebook_launcher`] ignores the Accelerate config file, to launch based on the config use:
|
||||
|
||||
```bash
|
||||
accelerate launch
|
||||
|
||||
@ -15,10 +15,10 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Overview
|
||||
|
||||
Welcome to the 🤗 Accelerate tutorials! These introductory guides will help catch you up to speed on working with 🤗 Accelerate.
|
||||
Welcome to the Accelerate tutorials! These introductory guides will help catch you up to speed on working with Accelerate.
|
||||
You'll learn how to modify your code to have it work with the API seamlessly, how to launch your script properly,
|
||||
and more!
|
||||
|
||||
These tutorials assume some basic knowledge of Python and familiarity with the PyTorch framework.
|
||||
|
||||
If you have any questions about 🤗 Accelerate, feel free to join and ask the community on our [forum](https://discuss.huggingface.co/c/accelerate/18).
|
||||
If you have any questions about Accelerate, feel free to join and ask the community on our [forum](https://discuss.huggingface.co/c/accelerate/18).
|
||||
@ -111,17 +111,17 @@ Input shapes:
|
||||
|
||||
For early stopping in distributed training, if each process has a specific stopping condition (e.g. validation loss), it may not be synchronized across all processes. As a result, a break can happen on process 0 but not on process 1 which will cause your code to hang indefinitely until a timeout occurs.
|
||||
|
||||
If you have early stopping conditionals, use the `set_breakpoint` and `check_breakpoint` methods to make sure all the processes
|
||||
If you have early stopping conditionals, use the `set_trigger` and `check_trigger` methods to make sure all the processes
|
||||
are ended correctly.
|
||||
|
||||
```py
|
||||
# Assume `should_do_breakpoint` is a custom defined function that returns a conditional,
|
||||
# and that conditional might be true only on process 1
|
||||
if should_do_breakpoint(loss):
|
||||
accelerator.set_breakpoint()
|
||||
accelerator.set_trigger()
|
||||
|
||||
# Later in the training script when we need to check for the breakpoint
|
||||
if accelerator.check_breakpoint():
|
||||
if accelerator.check_trigger():
|
||||
break
|
||||
```
|
||||
|
||||
@ -142,9 +142,9 @@ hostnames for each of the nodes.
|
||||
mpirun -f hostfile -n {number of nodes} -ppn 1 hostname
|
||||
```
|
||||
|
||||
## CUDA Out-of-Memory
|
||||
## Out-of-Memory
|
||||
|
||||
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory". The entire script needs to be restarted and any progress is lost.
|
||||
One of the most frustrating errors when it comes to running training scripts is hitting "Out-of-Memory" on devices like CUDA, XPU or CPU. The entire script needs to be restarted and any progress is lost.
|
||||
|
||||
To address this problem, Accelerate provides the [`find_executable_batch_size`] utility that is heavily based on [toma](https://github.com/BlackHC/toma).
|
||||
This utility retries code that fails due to OOM (out-of-memory) conditions and automatically lowers batch sizes. For each OOM condition, the algorithm decreases the batch size by half and retries the code until it succeeds.
|
||||
@ -153,7 +153,7 @@ To use [`find_executable_batch_size`], restructure your training function to inc
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
The inner function **must** take batch size as the first parameter, but we do not pass one to it when called. The wrapper will handles this for you. Any object (models, optimizers) that consumes CUDA memory and is passed to the [`Accelerator`] also **must** be declared inside the inner function.
|
||||
The inner function **must** take batch size as the first parameter, but we do not pass one to it when called. The wrapper will handle this for you. Any object (models, optimizers) that consumes device memory and is passed to the [`Accelerator`] also **must** be declared inside the inner function.
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -204,8 +204,8 @@ Vastly different GPUs within the same setup can lead to performance bottlenecks.
|
||||
|
||||
If none of the solutions and advice here helped resolve your issue, you can always reach out to the community and Accelerate team for help.
|
||||
|
||||
- Ask for help on the Hugging Face forums by posting your question in the [🤗 Accelerate category](https://discuss.huggingface.co/c/accelerate/18). Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
|
||||
- Ask for help on the Hugging Face forums by posting your question in the [Accelerate category](https://discuss.huggingface.co/c/accelerate/18). Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
|
||||
|
||||
- Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you.
|
||||
|
||||
- Create an Issue on the 🤗 Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you think you've found a bug related to the library. Include context regarding the bug and details about your distributed setup to help us better figure out what's wrong and how we can fix it.
|
||||
- Create an Issue on the Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you think you've found a bug related to the library. Include context regarding the bug and details about your distributed setup to help us better figure out what's wrong and how we can fix it.
|
||||
|
||||
@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Handling big models for inference
|
||||
# Loading big models into memory
|
||||
|
||||
When loading a pre-trained model in PyTorch, the usual workflow looks like this:
|
||||
|
||||
@ -46,7 +46,7 @@ This API is quite new and still in its experimental stage. While we strive to pr
|
||||
|
||||
### Instantiating an empty model
|
||||
|
||||
The first tool 🤗 Accelerate introduces to help with big models is a context manager [`init_empty_weights`] that helps you initialize a model without using any RAM so that step 1 can be done on models of any size. Here is how it works:
|
||||
The first tool Accelerate introduces to help with big models is a context manager [`init_empty_weights`] that helps you initialize a model without using any RAM so that step 1 can be done on models of any size. Here is how it works:
|
||||
|
||||
```py
|
||||
from accelerate import init_empty_weights
|
||||
@ -74,7 +74,7 @@ initializes an empty model with a bit more than 100B parameters. Behind the scen
|
||||
|
||||
It's possible your model is so big that even a single copy won't fit in RAM. That doesn't mean it can't be loaded: if you have one or several GPUs, this is more memory available to store your model. In this case, it's better if your checkpoint is split into several smaller files that we call checkpoint shards.
|
||||
|
||||
🤗 Accelerate will handle sharded checkpoints as long as you follow the following format: your checkpoint should be in a folder, with several files containing the partial state dicts, and there should be an index in the JSON format that contains a dictionary mapping parameter names to the file containing their weights. You can easily shard your model with [`~Accelerator.save_model`]. For instance, we could have a folder containing:
|
||||
Accelerate will handle sharded checkpoints as long as you follow the following format: your checkpoint should be in a folder, with several files containing the partial state dicts, and there should be an index in the JSON format that contains a dictionary mapping parameter names to the file containing their weights. You can easily shard your model with [`~Accelerator.save_model`]. For instance, we could have a folder containing:
|
||||
|
||||
```bash
|
||||
first_state_dict.bin
|
||||
@ -97,9 +97,9 @@ and `first_state_dict.bin` containing the weights for `"linear1.weight"` and `"l
|
||||
|
||||
### Loading weights
|
||||
|
||||
The second tool 🤗 Accelerate introduces is a function [`load_checkpoint_and_dispatch`], that will allow you to load a checkpoint inside your empty model. This supports full checkpoints (a single file containing the whole state dict) as well as sharded checkpoints. It will also automatically dispatch those weights across the devices you have available (GPUs, CPU RAM), so if you are loading a sharded checkpoint, the maximum RAM usage will be the size of the biggest shard.
|
||||
The second tool Accelerate introduces is a function [`load_checkpoint_and_dispatch`], that will allow you to load a checkpoint inside your empty model. This supports full checkpoints (a single file containing the whole state dict) as well as sharded checkpoints. It will also automatically dispatch those weights across the devices you have available (GPUs, CPU RAM), so if you are loading a sharded checkpoint, the maximum RAM usage will be the size of the biggest shard.
|
||||
|
||||
If you want to use big model inference with 🤗 Transformers models, check out this [documentation](https://huggingface.co/docs/transformers/main/en/main_classes/model#large-model-loading).
|
||||
If you want to use big model inference with Transformers models, check out this [documentation](https://huggingface.co/docs/transformers/main/en/main_classes/model#large-model-loading).
|
||||
|
||||
Here is how we can use this to load the [GPT2-1.5B](https://huggingface.co/marcsun13/gpt2-xl-linear-sharded) model.
|
||||
|
||||
@ -145,7 +145,7 @@ model = load_checkpoint_and_dispatch(
|
||||
)
|
||||
```
|
||||
|
||||
By passing `device_map="auto"`, we tell 🤗 Accelerate to determine automatically where to put each layer of the model depending on the available resources:
|
||||
By passing `device_map="auto"`, we tell Accelerate to determine automatically where to put each layer of the model depending on the available resources:
|
||||
- first, we use the maximum space available on the GPU(s)
|
||||
- if we still need space, we store the remaining weights on the CPU
|
||||
- if there is not enough RAM, we store the remaining weights on the hard drive as memory-mapped tensors
|
||||
@ -159,7 +159,7 @@ include a residual connection of some kind.
|
||||
|
||||
#### The `device_map`
|
||||
|
||||
You can see the `device_map` that 🤗 Accelerate picked by accessing the `hf_device_map` attribute of your model:
|
||||
You can see the `device_map` that Accelerate picked by accessing the `hf_device_map` attribute of your model:
|
||||
|
||||
```py
|
||||
model.hf_device_map
|
||||
@ -210,7 +210,7 @@ outputs = model.generate(x1, max_new_tokens=10, do_sample=False)[0]
|
||||
tokenizer.decode(outputs.cpu().squeeze())
|
||||
```
|
||||
|
||||
Behind the scenes, 🤗 Accelerate added hooks to the model, so that:
|
||||
Behind the scenes, Accelerate added hooks to the model, so that:
|
||||
- at each layer, the inputs are put on the right device (so even if your model is spread across several GPUs, it works)
|
||||
- for the weights offloaded on the CPU, they are put on a GPU just before the forward pass and cleaned up just after
|
||||
- for the weights offloaded on the hard drive, they are loaded in RAM then put on a GPU just before the forward pass and cleaned up just after
|
||||
@ -225,7 +225,7 @@ This way, your model can run for inference even if it doesn't fit on one of the
|
||||
|
||||
### Designing a device map
|
||||
|
||||
You can let 🤗 Accelerate handle the device map computation by setting `device_map` to one of the supported options (`"auto"`, `"balanced"`, `"balanced_low_0"`, `"sequential"`) or create one yourself if you want more control over where each layer should go.
|
||||
You can let Accelerate handle the device map computation by setting `device_map` to one of the supported options (`"auto"`, `"balanced"`, `"balanced_low_0"`, `"sequential"`) or create one yourself if you want more control over where each layer should go.
|
||||
|
||||
<Tip>
|
||||
|
||||
|
||||
@ -13,9 +13,9 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Deferring Executions
|
||||
# Executing and deferring jobs
|
||||
|
||||
When you run your usual script, instructions are executed in order. Using 🤗 Accelerate to deploy your script on several
|
||||
When you run your usual script, instructions are executed in order. Using Accelerate to deploy your script on several
|
||||
GPUs at the same time introduces a complication: while each process executes all instructions in order, some may be
|
||||
faster than others.
|
||||
|
||||
@ -127,4 +127,4 @@ for (x,y) in data_loader:
|
||||
# Later in the training script when we need to check for the breakpoint
|
||||
if accelerator.check_trigger():
|
||||
break
|
||||
```
|
||||
```
|
||||
|
||||
105
docs/source/concept_guides/fsdp1_vs_fsdp2.md
Normal file
105
docs/source/concept_guides/fsdp1_vs_fsdp2.md
Normal file
@ -0,0 +1,105 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# FSDP1 vs FSDP2
|
||||
|
||||
This guide explains the key differences between `FSDP1` and `FSDP2` and helps you migrate your existing code to use `FSDP2` with minimal changes.
|
||||
|
||||
## How is FSDP2 better than FSDP1?
|
||||
|
||||
First, we want to understand how `FSDP1` and `FSDP2` work internally to understand the differences between them. This also helps us understand the limitations of `FSDP1` and how `FSDP2` solves them.
|
||||
|
||||
We'll be discussing a scenario where we have a single `Layer` that contains 3 `Linear` layers and is wrapped using `FSDP` to be sharded across 2 GPUs.
|
||||
|
||||
<div align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/accelerate/layer.png" alt="Layer">
|
||||
</div>
|
||||
|
||||
### FSDP1
|
||||
First, we have to understand the original `FSDP1` and the limitations it brings. It represents each `FSDP` module as a single `FlatParameter` which is a single 1D tensor that contains all of the module parameters, which then get sharded across ranks. I.e. if you wrap the `Layer` with `FSDP1`, you'd achieve something as such:
|
||||
|
||||
<div align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/accelerate/fsdp1.png" alt="FSDP1">
|
||||
</div>
|
||||
|
||||
You might notice a problem. The whole `Layer` gets flattened into a single `FlatParameter`, which then gets sharded across ranks. But if it's a single `FlatParameter` object, how do we store metadata? That is one of the limitations. Properly storing per-parameter metadata such as `dtype`, `requires_grad`, etc. is not possible without some ugly hacks.
|
||||
|
||||
### FSDP2
|
||||
This is why `FSDP2` was introduced. It doesn't use `FlatParameter`, instead it uses `DTensor` which is short for "Distributed Tensor". Each `DTensor` basically represents a vanilla `torch.Tensor` that has been sharded across ranks. It contains metadata about the original `torch.Tensor` and how it's sharded, what is the [placement type](https://pytorch.org/docs/stable/distributed.tensor.html#module-torch.distributed.tensor.placement_types) and so on. This is why it's called `per-parameter sharding`. The following figure shows the difference:
|
||||
|
||||
<div align="center">
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/accelerate/fsdp2.png" alt="FSDP2">
|
||||
</div>
|
||||
|
||||
Each Parameter of the original `Layer` is sharded across the 0th dimension, and split between 2 GPUs. Now, each `Linear` layer is a separate `DTensor` and storing metadata per-parameter is possible and straightforward.
|
||||
|
||||
|
||||
> [!TIP]
|
||||
> In the image above, the tensors were sharded across the 1st dimension for the sake of fitting the image on the screen, in reality, they are sharded across the 0th dimension as stated above
|
||||
|
||||
## What does FSDP2 offer?
|
||||
|
||||
`FSDP2` is a new and improved version of PyTorch's fully-sharded data parallel training API. Its main advantage is using `DTensor` to represent sharded parameters. Compared to `FSDP1`, it offers:
|
||||
- Simpler internal implementation, where each `Parameter` is a separate `DTensor`
|
||||
- Enables simple partial parameter freezing because of the above, which makes methods as [`LORA`](https://arxiv.org/abs/2106.09685) work out of the box
|
||||
- With `DTensor`, `FSDP2` supports mixing `fp8` and other parameter types in the same model out of the box
|
||||
- Faster and simpler checkpointing without extra communication across ranks using `SHARDED_STATE_DICT` and [`torch.distributed.checkpoint`](https://pytorch.org/docs/stable/distributed.checkpoint.html), this way, each rank only saves its own shard and corresponding metadata
|
||||
- For loading, it uses a `state_dict` of the sharded model to directly load the sharded parameters
|
||||
- Support for asynchronous checkpointing, where parameters are first copied to CPU memory, after this, main thread continues training while another thread stores the parameters on disk
|
||||
- Memory efficiency and deterministic memory usage, `FSDP2` doesn't use `recordStream` anymore and uses stream-to-stream synchronization (for more technical details see [this forum post](https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486) and [this issue](https://github.com/pytorch/pytorch/issues/114299))
|
||||
- In the future, optimizations of the communication patterns via `torch.compile` are planned, further improving the performance and memory efficiency
|
||||
|
||||
|
||||
## API Differences
|
||||
|
||||
We have already discussed the internal differences, now let's discuss the differences, you, as a user, will need to know.
|
||||
|
||||
Here are the main changes in configuration options when using `FSDP2` through the `accelerate` CLI:
|
||||
|
||||
Previous (`FSDP1`) | New (`FSDP2`) | What Changed
|
||||
-- | -- | --
|
||||
`--fsdp_sharding_strategy` | `--fsdp_reshard_after_forward` | replaces `--fsdp_sharding_strategy`, changed to `true` (previously `FULL_SHARD`) or `false` (previously `SHARD_GRAD_OP`)
|
||||
`--fsdp_backward_prefetch` | \*\***REMOVED**\*\* | `FSDP2` uses previous `BACKWARD_PRE` option by default, as only this allows communication and computation overlap
|
||||
`--fsdp_forward_prefetch` | \*\***NOT YET IMPLEMENTED**\*\* | How to implement this is under active discussion, for now it is not supported in `FSDP2`
|
||||
`--fsdp_sync_module_states` | \*\***REMOVED**\*\* | with `FSDP2`, this parameter becomes redundant
|
||||
`--fsdp_cpu_ram_efficient_loading` | `--fsdp_cpu_ram_efficient_loading` | if `true`, `FSDP2` will similarly load the model only on rank 0, and then parameters get synced to other ranks, this is the same behavior as `FSDP1`, however, setting `--fsdp_sync_module_states` isn't required anymore
|
||||
`--fsdp_state_dict_type` | `--fsdp_state_dict_type` | `LOCAL_STATE_DICT` becomes obsolete and with `FSDP2` `SHARDED_STATE_DICT` is the default option, which results in no extra communication and each rank saving its own shard, other possible option is `FULL_STATE_DICT` which results in extra communication and spike in memory usage but saves the full model from rank 0.
|
||||
`--fsdp_use_orig_params` | \*\***REMOVED**\*\* | `FSDP2` uses a `DTensor` class on the background, which means it *always* uses the original parameters by default
|
||||
\*\***NEW**\*\* | `--fsdp_version` | `1` is the default option, to not break existing code, set to `2` to use `FSDP2`
|
||||
|
||||
For all other options that remain unchanged, see the [`FSDP` documentation](../usage_guides/fsdp.md).
|
||||
|
||||
## How to Switch to FSDP2
|
||||
|
||||
### If using Python code:
|
||||
Simply set `fsdp_version=2` when creating your plugin and replace options according to the table above.
|
||||
|
||||
```python
|
||||
from accelerate import FullyShardedDataParallelPlugin, Accelerator
|
||||
|
||||
fsdp_plugin = FullyShardedDataParallelPlugin(
|
||||
fsdp_version=2
|
||||
# other options...
|
||||
)
|
||||
accelerator = Accelerator(fsdp_plugin=fsdp_plugin)
|
||||
```
|
||||
|
||||
### If using YAML config:
|
||||
Use our conversion tool:
|
||||
```bash
|
||||
accelerate to-fsdp2 --config_file config.yaml --output_file new_config.yaml
|
||||
```
|
||||
|
||||
This will automatically convert all FSDP1 settings to their FSDP2 equivalents. Use `--overwrite` to update the existing file instead of creating a new one.
|
||||
@ -13,15 +13,15 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Moving between FSDP And DeepSpeed
|
||||
# FSDP vs DeepSpeed
|
||||
|
||||
🤗 Accelerate offers flexibilty of training frameworks, by integrating two extremely powerful tools for distributed training, namely [Pytorch FSDP](../usage_guides/fsdp.md) and [Microsoft DeepSpeed](../usage_guides/deepspeed.md). The aim of this tutorial is to draw parallels, as well as to outline potential differences, to empower the user to switch seamlessly between these two frameworks.
|
||||
Accelerate offers flexibilty of training frameworks, by integrating two extremely powerful tools for distributed training, namely [Pytorch FSDP](../usage_guides/fsdp) and [Microsoft DeepSpeed](../usage_guides/deepspeed). The aim of this tutorial is to draw parallels, as well as to outline potential differences, to empower the user to switch seamlessly between these two frameworks.
|
||||
|
||||
<Tip>
|
||||
|
||||
To switch between the frameworks, we recommend launching code 🤗 `accelerate launch` passing in the correct config file with `--config_file`, or passing in the respective arguments directly for [FSDP and DeepSpeed](../package_reference/cli#accelerate-launch) .
|
||||
To switch between the frameworks, we recommend launching code `accelerate launch` passing in the correct config file with `--config_file`, or passing in the respective arguments directly for [FSDP and DeepSpeed](../package_reference/cli#accelerate-launch) .
|
||||
|
||||
Example 🤗 Accelerate configurations can be found here for [DeepSpeed](../usage_guides/deepspeed#accelerate-deepspeed-plugin) and [FSDP](../usage_guides/fsdp#how-it-works-out-of-the-box), or in the [example zoo under "Launch Configurations"](../usage_guides/explore)
|
||||
Example Accelerate configurations can be found here for [DeepSpeed](../usage_guides/deepspeed#accelerate-deepspeed-plugin) and [FSDP](../usage_guides/fsdp#how-it-works-out-of-the-box), or in the [example zoo under "Launch Configurations"](../usage_guides/explore)
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -47,7 +47,7 @@ parameters summoning | FSDP<br>DeepSpeed | `--fsdp_use_orig_params`<br>None | `t
|
||||
parameters syncing | FSDP<br>DeepSpeed | `--fsdp_sync_module_states`<br>None | `true` |
|
||||
training | FSDP<br>DeepSpeed | None<br>`--gradient_accumulation_steps`<br>`--gradient_clipping` | <br>`auto`<br>`auto` | Transparent to user
|
||||
|
||||
For detailed descriptions of the above, refer to [🤗 `Accelerate` launch documentation](../package_reference/cli#accelerate-launch).
|
||||
For detailed descriptions of the above, refer to [`Accelerate` launch documentation](../package_reference/cli#accelerate-launch).
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -94,7 +94,7 @@ FSDP only allows *all-or-nothing* offload (i.e., either offload parameters, grad
|
||||
### Prefetching
|
||||
|
||||
FSDP allows two prefetching configurations `--fsdp_forward_prefetch` and `--fsdp_backward_prefetch` to improve overlap of comms / computation at a cost of extra memory, see [FSDP documentation](https://pytorch.org/docs/stable/fsdp.html).
|
||||
For DeepSpeed, the prefetching will be turned on when needed, and it turns on depending on certain hyper-params like `stage3_param_persistence_threshold`, `stage3_max_reuse_distance`, etc, [that can be configured for Zero3](https://www.deepspeed.ai/docs/config-json/#parameter-offloading); 🤗 `accelerate` may set these hyper-params automatically if you don't set those explicitly in the deepspeed config file.
|
||||
For DeepSpeed, the prefetching will be turned on when needed, and it turns on depending on certain hyper-params like `stage3_param_persistence_threshold`, `stage3_max_reuse_distance`, etc, [that can be configured for Zero3](https://www.deepspeed.ai/docs/config-json/#parameter-offloading); `accelerate` may set these hyper-params automatically if you don't set those explicitly in the deepspeed config file.
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -104,12 +104,12 @@ For DeepSpeed, the prefetching will be turned on when needed, and it turns on de
|
||||
|
||||
### Model Loading
|
||||
|
||||
While FSDP require an explicit `--fsdp_cpu_ram_efficient_loading true` to activate efficient model loading, 🤗 `transformers` will activate the similar feature whenever DeepSpeed Zero3 is used.
|
||||
While FSDP require an explicit `--fsdp_cpu_ram_efficient_loading true` to activate efficient model loading, `transformers` will activate the similar feature whenever DeepSpeed Zero3 is used.
|
||||
|
||||
<Tip>
|
||||
|
||||
For FSDP, whenever setting `--fsdp_cpu_ram_efficient_loading true`, 🤗 `accelerate` will automatically set `sync_module_states` to true.
|
||||
For RAM efficient loading the weights will be loaded only in a singe rank, and thus requires `sync_module_states` to broadcast weights to other ranks.
|
||||
For FSDP, whenever setting `--fsdp_cpu_ram_efficient_loading true`, `accelerate` will automatically set `sync_module_states` to true.
|
||||
For RAM efficient loading the weights will be loaded only in a single rank, and thus requires `sync_module_states` to broadcast weights to other ranks.
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -125,7 +125,7 @@ FSDP requires an explicit `--fsdp_auto_wrap_policy` for the algorithm to decide
|
||||
|
||||
### Parameters Summoning
|
||||
|
||||
FSDP requires an explicit `--fsdp_use_orig_params` flag if using `torch.compile`, see [the pytorch documenation](https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp). For DeepSpeed this is transparent to the user.
|
||||
FSDP requires an explicit `--fsdp_use_orig_params` flag if using `torch.compile`, see [the pytorch documentation](https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp). For DeepSpeed this is transparent to the user.
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -147,7 +147,7 @@ Deepspeed requires explicit `--gradient_accumulation_steps` and `--gradient_clip
|
||||
|
||||
## On Differences in Data Precision Handling
|
||||
|
||||
To discuss the how data precision is handled in both FSDP and Deepspeed, it is instructive to first give an overview of how model parameters are handled in these frameworks. Before the model / optimizer parameters are distributed across GPUs, parameter preparation is involved to first "flatten" them to one-dimensional [`torch.Tensor`](https://pytorch.org/docs/stable/tensors.html#torch-tensor). The implementation of FSDP / DeepSpeed varies in the respect of the `dtype` in which these "flattened" parameters are stored, and there are ramifications with regards to how [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) allocate their `dtype`s. The table below outlines the processes for both frameworks; the "Local" column indicates the process occurring at a per-gpu level, therefore any memory overheads by upcasting should be understood to be amortized by the number of gpus used.
|
||||
To discuss how data precision is handled in both FSDP and Deepspeed, it is instructive to first give an overview of how model parameters are handled in these frameworks. Before the model / optimizer parameters are distributed across GPUs, parameter preparation is involved to first "flatten" them to one-dimensional [`torch.Tensor`](https://pytorch.org/docs/stable/tensors.html#torch-tensor). The implementation of FSDP / DeepSpeed varies in the respect of the `dtype` in which these "flattened" parameters are stored, and there are ramifications with regards to how [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) allocate their `dtype`s. The table below outlines the processes for both frameworks; the "Local" column indicates the process occurring at a per-gpu level, therefore any memory overheads by upcasting should be understood to be amortized by the number of gpus used.
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -166,7 +166,7 @@ Optimizer (Actual Step) | ✅ | FSDP<br>DeepSpeed | occurs in `torch_dtype` <br
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Therefore when using DeepSpeed a small number of GPUs, be aware of potentially significant memory overheads due to the upcasting during preperation.
|
||||
Therefore when using DeepSpeed a small number of GPUs, be aware of potentially significant memory overheads due to the upcasting during preparation.
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -189,4 +189,4 @@ Framework | Model Loading (`torch_dtype`) | Mixed Precision | Preparation (Local
|
||||
--|--|--|--|--|--
|
||||
FSDP | bf16 | default (none) | bf16 | bf16 | bf16
|
||||
FSDP | bf16 | bf16 | fp32 | bf16 | fp32
|
||||
DeepSpeed | bf16 | bf16 | fp32 | bf16 | fp32
|
||||
DeepSpeed | bf16 | bf16 | fp32 | bf16 | fp32
|
||||
|
||||
@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Gradient Synchronization
|
||||
# Gradient synchronization
|
||||
|
||||
PyTorch's distributed module operates by communicating back and forth between all of the GPUs in your system.
|
||||
This communication takes time, and ensuring all processes know the states of each other happens at particular triggerpoints
|
||||
@ -28,7 +28,7 @@ from torch.nn.parallel import DistributedDataParallel
|
||||
model = nn.Linear(10, 10)
|
||||
ddp_model = DistributedDataParallel(model)
|
||||
```
|
||||
In 🤗 Accelerate this conversion happens automatically when calling [`~Accelerator.prepare`] and passing in your model.
|
||||
In Accelerate this conversion happens automatically when calling [`~Accelerator.prepare`] and passing in your model.
|
||||
|
||||
```diff
|
||||
+ from accelerate import Accelerator
|
||||
@ -90,7 +90,7 @@ for index, batch in enumerate(dataloader):
|
||||
optimizer.step()
|
||||
```
|
||||
|
||||
In 🤗 Accelerate to make this an API that can be called no matter the training device (though it may not do anything if you are not in a distributed system!),
|
||||
In Accelerate to make this an API that can be called no matter the training device (though it may not do anything if you are not in a distributed system!),
|
||||
`ddp_model.no_sync` gets replaced with [`~Accelerator.no_sync`] and operates the same way:
|
||||
|
||||
```diff
|
||||
|
||||
@ -13,9 +13,9 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# 🤗 Accelerate's internal mechanisms
|
||||
# Accelerate's internal mechanisms
|
||||
|
||||
Internally, 🤗 Accelerate works by first analyzing the environment in which the script is launched to determine which
|
||||
Internally, Accelerate works by first analyzing the environment in which the script is launched to determine which
|
||||
kind of distributed setup is used, how many different processes there are and which one the current script is in. All
|
||||
that information is stored in the [`~AcceleratorState`].
|
||||
|
||||
@ -69,4 +69,6 @@ setting the same seed in the main random number generator in all processes.
|
||||
|
||||
</Tip>
|
||||
|
||||
For more details about the internals, see the [Internals page](package_reference/torch_wrappers).
|
||||
If you have [`torchdata>=0.8.0`](https://github.com/pytorch/data/tree/main) installed, and you have passed `use_stateful_dataloader=True` into your [`~utils.DataLoaderConfiguration`], these classes will directly inherit from `StatefulDataLoader` instead, and maintain a `state_dict`.
|
||||
|
||||
For more details about the internals, see the [Internals page](../package_reference/torch_wrappers).
|
||||
|
||||
@ -13,12 +13,12 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Low Precision Training Methods
|
||||
# Low precision training methods
|
||||
|
||||
The release of new kinds of hardware led to the emergence of new training paradigms that better utilize them. Currently, this is in the form of training
|
||||
in 8-bit precision using packages such as [TransformersEngine](https://github.com/NVIDIA/TransformerEngine) (TE) or [MS-AMP](https://github.com/Azure/MS-AMP/tree/main).
|
||||
|
||||
For an introduction to the topics discussed today, we recommend reviewing the [low-precision usage guide](../usage_guides/low_precision_training.md) as this documentation will reference it regularly.
|
||||
For an introduction to the topics discussed today, we recommend reviewing the [low-precision usage guide](../usage_guides/low_precision_training) as this documentation will reference it regularly.
|
||||
|
||||
## A Quick Chart
|
||||
|
||||
@ -36,7 +36,7 @@ MS-AMP O3 | FP8 | FP8 | FP8 | FP16 | FP8 | FP8+FP16
|
||||
|
||||
`TransformersEngine` is the first solution to trying to train in 8-bit floating point. It works by using drop-in replacement layers for certain ones in a model that utilizes their FP8-engine to reduce the number of bits (such as 32 to 8) without degrading the final accuracy of the model.
|
||||
|
||||
Specifically, 🤗 Accelerate will find and replace the following layers with `TransformersEngine` versions:
|
||||
Specifically, Accelerate will find and replace the following layers with `TransformersEngine` versions:
|
||||
|
||||
* `nn.LayerNorm` for `te.LayerNorm`
|
||||
* `nn.Linear` for `te.Linear`
|
||||
@ -50,7 +50,7 @@ The `TransformerEngine` can receive many different arguments that customize how
|
||||
|
||||
* `margin`: The margin to use for the gradient scaling.
|
||||
* `interval`: The interval to use for how often the scaling factor is recomputed.
|
||||
* `fp8_format``: The format to use for the FP8 recipe. Must be one of `E4M3` or `HYBRID`.
|
||||
* `fp8_format``: The format to use for the FP8 recipe. Must be one of `HYBRID` or `E4M3`. (Generally `HYBRID` for training, `E4M3` for evaluation)
|
||||
* `amax_history_len`: The length of the history to use for the scaling factor computation
|
||||
* `amax_compute_algo`: The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`.
|
||||
* `override_linear_precision`: Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
|
||||
@ -67,7 +67,7 @@ MS-AMP takes a different approach to `TransformersEngine` by providing three dif
|
||||
|
||||
* The second optimization level (`O2`) improves upon this by also reducing the precision of the optimizer states. One is in FP8 while the other is in FP16. Generally it's been shown that this will only provide a net-gain of no degraded end accuracy, increased training speed, and reduced memory as now every state is either in FP16 or FP8.
|
||||
|
||||
* Finally, MS-AMP has a third optimization level (`O3`) which helps during DDP scenarios such as DeepSpeed. The weights of the model in memory are fully cast to FP8, and the master weights are now stored in FP16. This fully reduces memory by the highest factor as now not only is almost everything in FP8, only two states are left in FP16. Currently, only DeepSpeed versions up through 0.9.2 are supported, so this capability is not included in the 🤗 Accelerate integration
|
||||
* Finally, MS-AMP has a third optimization level (`O3`) which helps during DDP scenarios such as DeepSpeed. The weights of the model in memory are fully cast to FP8, and the master weights are now stored in FP16. This fully reduces memory by the highest factor as now not only is almost everything in FP8, only two states are left in FP16. Currently, only DeepSpeed versions up through 0.9.2 are supported, so this capability is not included in the Accelerate integration
|
||||
|
||||
## Combining the two
|
||||
|
||||
|
||||
@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Comparing performance between different device setups
|
||||
# Comparing performance across distributed setups
|
||||
|
||||
Evaluating and comparing the performance from different setups can be quite tricky if you don't know what to look for.
|
||||
For example, you cannot run the same script with the same batch size across TPU, multi-GPU, and single-GPU with Accelerate
|
||||
@ -43,13 +43,13 @@ Why is this important? Under the hood this will set **5** different seed setting
|
||||
random.seed(seed)
|
||||
np.random.seed(seed)
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
torch.cuda.manual_seed_all(seed) # or torch.xpu.manual_seed_all, etc
|
||||
# ^^ safe to call this function even if cuda is not available
|
||||
if is_torch_xla_available():
|
||||
xm.set_rng_state(seed)
|
||||
```
|
||||
|
||||
The random state, numpy's state, torch, torch's cuda state, and if TPUs are available torch_xla's cuda state.
|
||||
The random state, numpy's state, torch, torch's device state, and if TPUs are available torch_xla's cuda state.
|
||||
|
||||
## Observed Batch Sizes
|
||||
|
||||
|
||||
@ -13,9 +13,9 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Training on TPUs with 🤗 Accelerate
|
||||
# Training on TPUs
|
||||
|
||||
Training on TPUs can be slightly different from training on multi-gpu, even with 🤗 Accelerate. This guide aims to show you
|
||||
Training on TPUs can be slightly different from training on multi-gpu, even with Accelerate. This guide aims to show you
|
||||
where you should be careful and why, as well as the best practices in general.
|
||||
|
||||
## Training in a Notebook
|
||||
@ -81,7 +81,7 @@ notebook_launcher(training_function)
|
||||
|
||||
<Tip>
|
||||
|
||||
The `notebook_launcher` will default to 8 processes if 🤗 Accelerate has been configured for a TPU
|
||||
The `notebook_launcher` will default to 8 processes if Accelerate has been configured for a TPU
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -128,10 +128,10 @@ And finally calling the training function with:
|
||||
|
||||
## Mixed Precision and Global Variables
|
||||
|
||||
As mentioned in the [mixed precision tutorial](../usage_guides/mixed_precision), 🤗 Accelerate supports fp16 and bf16, both of which can be used on TPUs.
|
||||
As mentioned in the [mixed precision tutorial](../usage_guides/mixed_precision), Accelerate supports fp16 and bf16, both of which can be used on TPUs.
|
||||
That being said, ideally `bf16` should be utilized as it is extremely efficient to use.
|
||||
|
||||
There are two "layers" when using `bf16` and 🤗 Accelerate on TPUs, at the base level and at the operation level.
|
||||
There are two "layers" when using `bf16` and Accelerate on TPUs, at the base level and at the operation level.
|
||||
|
||||
At the base level, this is enabled when passing `mixed_precision="bf16"` to `Accelerator`, such as:
|
||||
```python
|
||||
|
||||
BIN
docs/source/imgs/profile_export.png
Normal file
BIN
docs/source/imgs/profile_export.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 105 KiB |
@ -15,7 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Accelerate
|
||||
|
||||
🤗 Accelerate is a library that enables the same PyTorch code to be run across any distributed configuration by adding just four lines of code! In short, training and inference at scale made simple, efficient and adaptable.
|
||||
Accelerate is a library that enables the same PyTorch code to be run across any distributed configuration by adding just four lines of code! In short, training and inference at scale made simple, efficient and adaptable.
|
||||
|
||||
```diff
|
||||
+ from accelerate import Accelerator
|
||||
@ -37,7 +37,7 @@ rendered properly in your Markdown viewer.
|
||||
scheduler.step()
|
||||
```
|
||||
|
||||
Built on `torch_xla` and `torch.distributed`, 🤗 Accelerate takes care of the heavy lifting, so you don't have to write any custom code to adapt to these platforms.
|
||||
Built on `torch_xla` and `torch.distributed`, Accelerate takes care of the heavy lifting, so you don't have to write any custom code to adapt to these platforms.
|
||||
Convert existing codebases to utilize [DeepSpeed](usage_guides/deepspeed), perform [fully sharded data parallelism](usage_guides/fsdp), and have automatic support for mixed-precision training!
|
||||
|
||||
<Tip>
|
||||
@ -56,11 +56,11 @@ accelerate launch {my_script.py}
|
||||
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./basic_tutorials/overview"
|
||||
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div>
|
||||
<p class="text-gray-700">Learn the basics and become familiar with using 🤗 Accelerate. Start here if you are using 🤗 Accelerate for the first time!</p>
|
||||
<p class="text-gray-700">Learn the basics and become familiar with using Accelerate. Start here if you are using Accelerate for the first time!</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./usage_guides/explore"
|
||||
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div>
|
||||
<p class="text-gray-700">Practical guides to help you achieve a specific goal. Take a look at these guides to learn how to use 🤗 Accelerate to solve real-world problems.</p>
|
||||
<p class="text-gray-700">Practical guides to help you achieve a specific goal. Take a look at these guides to learn how to use Accelerate to solve real-world problems.</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./concept_guides/gradient_synchronization"
|
||||
><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
|
||||
@ -68,7 +68,7 @@ accelerate launch {my_script.py}
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./package_reference/accelerator"
|
||||
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
|
||||
<p class="text-gray-700">Technical descriptions of how 🤗 Accelerate classes and methods work.</p>
|
||||
<p class="text-gray-700">Technical descriptions of how Accelerate classes and methods work.</p>
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
@ -15,33 +15,96 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Working with large models
|
||||
|
||||
## Dispatching and Offloading Models
|
||||
## Dispatch and offload
|
||||
|
||||
### init_empty_weights
|
||||
|
||||
[[autodoc]] big_modeling.init_empty_weights
|
||||
|
||||
### cpu_offload
|
||||
|
||||
[[autodoc]] big_modeling.cpu_offload
|
||||
|
||||
### cpu_offload_with_hook
|
||||
|
||||
[[autodoc]] big_modeling.cpu_offload_with_hook
|
||||
|
||||
### disk_offload
|
||||
|
||||
[[autodoc]] big_modeling.disk_offload
|
||||
|
||||
### dispatch_model
|
||||
|
||||
[[autodoc]] big_modeling.dispatch_model
|
||||
|
||||
### load_checkpoint_and_dispatch
|
||||
|
||||
[[autodoc]] big_modeling.load_checkpoint_and_dispatch
|
||||
|
||||
### load_checkpoint_in_model
|
||||
|
||||
[[autodoc]] big_modeling.load_checkpoint_in_model
|
||||
|
||||
### infer_auto_device_map
|
||||
|
||||
[[autodoc]] utils.infer_auto_device_map
|
||||
|
||||
## Model Hooks
|
||||
## Hooks
|
||||
|
||||
### Hook Classes
|
||||
### ModelHook
|
||||
|
||||
[[autodoc]] hooks.ModelHook
|
||||
|
||||
### AlignDevicesHook
|
||||
|
||||
[[autodoc]] hooks.AlignDevicesHook
|
||||
|
||||
### SequentialHook
|
||||
|
||||
[[autodoc]] hooks.SequentialHook
|
||||
|
||||
### Adding Hooks
|
||||
### LayerwiseCastingHook
|
||||
|
||||
[[autodoc]] hooks.LayerwiseCastingHook
|
||||
|
||||
## Adding Hooks
|
||||
|
||||
### add_hook_to_module
|
||||
|
||||
[[autodoc]] hooks.add_hook_to_module
|
||||
|
||||
### attach_execution_device_hook
|
||||
|
||||
[[autodoc]] hooks.attach_execution_device_hook
|
||||
|
||||
### attach_align_device_hook
|
||||
|
||||
[[autodoc]] hooks.attach_align_device_hook
|
||||
|
||||
### attach_align_device_hook_on_blocks
|
||||
|
||||
[[autodoc]] hooks.attach_align_device_hook_on_blocks
|
||||
|
||||
### Removing Hooks
|
||||
### attach_layerwise_casting_hooks
|
||||
|
||||
[[autodoc]] big_modeling.attach_layerwise_casting_hooks
|
||||
|
||||
## Removing Hooks
|
||||
|
||||
### remove_hook_from_module
|
||||
|
||||
[[autodoc]] hooks.remove_hook_from_module
|
||||
[[autodoc]] hooks.remove_hook_from_submodules
|
||||
|
||||
### remove_hook_from_submodules
|
||||
|
||||
[[autodoc]] hooks.remove_hook_from_submodules
|
||||
|
||||
## Utilities
|
||||
|
||||
### has_offloaded_params
|
||||
|
||||
[[autodoc]] utils.has_offloaded_params
|
||||
|
||||
### align_module_device
|
||||
|
||||
[[autodoc]] utils.align_module_device
|
||||
|
||||
@ -139,16 +139,17 @@ values. They can also be passed in manually.
|
||||
* `--cpu` (`bool`) -- Whether or not to force the training on the CPU.
|
||||
* `--multi_gpu` (`bool`) -- Whether or not this should launch a distributed GPU training.
|
||||
* `--tpu` (`bool`) -- Whether or not this should launch a TPU training.
|
||||
* `--ipex` (`bool`) -- Whether or not this should launch an Intel Pytorch Extension (IPEX) training.
|
||||
* `--ipex` (`bool`) -- Whether or not this should launch an Intel Pytorch Extension (IPEX) training. **This argument is deprecated, will be removed in Accelerate v1.10**
|
||||
|
||||
**Resource Selection Arguments**:
|
||||
|
||||
The following arguments are useful for fine-tuning how available hardware should be used
|
||||
|
||||
* `--mixed_precision {no,fp16,bf16}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.
|
||||
* `--mixed_precision {no,fp16,bf16,fp8}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.
|
||||
* `--num_processes NUM_PROCESSES` (`int`) -- The total number of processes to be launched in parallel.
|
||||
* `--num_machines NUM_MACHINES` (`int`) -- The total number of machines used in this training.
|
||||
* `--num_cpu_threads_per_process NUM_CPU_THREADS_PER_PROCESS` (`int`) -- The number of CPU threads per process. Can be tuned for optimal performance.
|
||||
* `--enable_cpu_affinity` (`bool`) -- Whether or not CPU affinity and balancing should be enabled. Currently only supported on NVIDIA hardware.
|
||||
|
||||
**Training Paradigm Arguments**:
|
||||
|
||||
@ -157,27 +158,34 @@ The following arguments are useful for selecting which training paradigm to use.
|
||||
* `--use_deepspeed` (`bool`) -- Whether or not to use DeepSpeed for training.
|
||||
* `--use_fsdp` (`bool`) -- Whether or not to use FullyShardedDataParallel for training.
|
||||
* `--use_megatron_lm` (`bool`) -- Whether or not to use Megatron-LM for training.
|
||||
* `--use_xpu` (`bool`) -- Whether to use IPEX plugin to speed up training on XPU specifically.
|
||||
* `--use_xpu` (`bool`) -- Whether to use IPEX plugin to speed up training on XPU specifically. **This argument is deprecated and ignored, will be removed in Accelerate v1.10**
|
||||
|
||||
**Distributed GPU Arguments**:
|
||||
|
||||
The following arguments are only useful when `multi_gpu` is passed or multi-gpu training is configured through `accelerate config`:
|
||||
|
||||
* `--gpu_ids` (`str`) -- What GPUs (by id) should be used for training on this machine as a comma-seperated list
|
||||
* `--gpu_ids` (`str`) -- What GPUs (by id) should be used for training on this machine as a comma-separated list
|
||||
* `--same_network` (`bool`) -- Whether all machines used for multinode training exist on the same local network.
|
||||
* `--machine_rank MACHINE_RANK` (`int`) -- The rank of the machine on which this script is launched.
|
||||
* `--main_process_ip MAIN_PROCESS_IP` (`str`) -- The IP address of the machine of rank 0.
|
||||
* `--main_process_port MAIN_PROCESS_PORT` (`int`) -- The port to use to communicate with the machine of rank 0.
|
||||
* `--rdzv_backend` (`str`) -- The rendezvous method to use, such as "static" or "c10d"
|
||||
* `--machine_rank` (`int`) -- The rank of the machine on which this script is launched.
|
||||
* `--main_process_ip` (`str`) -- The IP address of the machine of rank 0.
|
||||
* `--main_process_port` (`int`) -- The port to use to communicate with the machine of rank 0.
|
||||
* `-t`, `--tee` (`str`) -- Tee std streams into a log file and also to console.
|
||||
* `--log_dir` (`str`) -- Base directory to use for log files when using torchrun/torch.distributed.run as launcher. Use with --tee to redirect std streams info log files.
|
||||
* `--role` (`str`) -- User-defined role for the workers.
|
||||
* `--rdzv_backend` (`str`) -- The rendezvous method to use, such as 'static' (the default) or 'c10d'
|
||||
* `--rdzv_conf` (`str`) -- Additional rendezvous configuration (<key1>=<value1>,<key2>=<value2>,...).
|
||||
* `--max_restarts` (`int`) -- Maximum number of worker group restarts before failing.
|
||||
* `--monitor_interval` (`float`) -- Interval, in seconds, to monitor the state of workers.
|
||||
* `--monitor_interval` (`int`) -- Interval, in seconds, to monitor the state of workers.
|
||||
|
||||
**TPU Arguments**:
|
||||
|
||||
The following arguments are only useful when `tpu` is passed or TPU training is configured through `accelerate config`:
|
||||
|
||||
* `--main_training_function MAIN_TRAINING_FUNCTION` (`str`) -- The name of the main function to be executed in your script.
|
||||
* `--tpu_cluster` (`bool`) -- Whether to use a GCP TPU pod for training.
|
||||
* `--tpu_use_sudo` (`bool`) -- Whether to use `sudo` when running the TPU training script in each pod.
|
||||
* `--vm` (`str`) -- List of single Compute VM instance names. If not provided we assume usage of instance groups. For TPU pods.
|
||||
* `--env` (`str`) -- List of environment variables to set on the Compute VM instances. For TPU pods.
|
||||
* `--main_training_function` (`str`) -- The name of the main function to be executed in your script (only for TPU training).
|
||||
* `--downcast_bf16` (`bool`) -- Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32.
|
||||
|
||||
**DeepSpeed Arguments**:
|
||||
@ -188,14 +196,16 @@ The following arguments are only useful when `use_deepspeed` is passed or `deeps
|
||||
* `--zero_stage` (`int`) -- DeepSpeed's ZeRO optimization stage.
|
||||
* `--offload_optimizer_device` (`str`) -- Decides where (none|cpu|nvme) to offload optimizer states.
|
||||
* `--offload_param_device` (`str`) -- Decides where (none|cpu|nvme) to offload parameters.
|
||||
* `--offload_optimizer_nvme_path` (`str`) -- Decides Nvme Path to offload optimizer states.
|
||||
* `--gradient_accumulation_steps` (`int`) -- No of gradient_accumulation_steps used in your training script.
|
||||
* `--gradient_clipping` (`float`) -- Gradient clipping value used in your training script.
|
||||
* `--zero3_init_flag` (`str`) -- Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with DeepSpeed ZeRO Stage-3.
|
||||
* `--zero3_save_16bit_model` (`str`) -- Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. Only applicable with DeepSpeed ZeRO Stage-3.
|
||||
* `--deepspeed_hostfile` (`str`) -- DeepSpeed hostfile for configuring multi-node compute resources.
|
||||
* `--deepspeed_exclusion_filter` (`str`) -- DeepSpeed exclusion filter string when using mutli-node setup.
|
||||
* `--deepspeed_inclusion_filter` (`str`) -- DeepSpeed inclusion filter string when using mutli-node setup.
|
||||
* `--deepspeed_exclusion_filter` (`str`) -- DeepSpeed exclusion filter string when using multi-node setup.
|
||||
* `--deepspeed_inclusion_filter` (`str`) -- DeepSpeed inclusion filter string when using multi-node setup.
|
||||
* `--deepspeed_multinode_launcher` (`str`) -- DeepSpeed multi-node launcher to use.
|
||||
* `--deepspeed_moe_layer_cls_names` (`str`) -- comma-separated list of transformer MoE layer class names (case-sensitive) to wrap, e.g, `MixtralSparseMoeBlock` `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock`
|
||||
|
||||
**Fully Sharded Data Parallelism Arguments**:
|
||||
|
||||
@ -210,8 +220,9 @@ The following arguments are only useful when `use_fsdp` is passed or Fully Shard
|
||||
* `--fsdp_state_dict_type` (`str`) -- FSDP's state dict type.
|
||||
* `--fsdp_forward_prefetch` (`str`) -- FSDP forward prefetch.
|
||||
* `--fsdp_use_orig_params` (`str`) -- If True, allows non-uniform `requires_grad` mixed in a FSDP unit.
|
||||
* `--fsdp_cpu_ram_efficient_loading` (`str`) - If true, only the first process loads the pretrained model checkoint while all other processes have empty weights. When using this, `--fsdp_sync_module_states` needs to True.
|
||||
* `--fsdp_sync_module_states` (`str`) - If true, each individually wrapped FSDP unit will broadcast module parameters from rank 0.
|
||||
* `--fsdp_cpu_ram_efficient_loading` (`str`) -- If true, only the first process loads the pretrained model checkoint while all other processes have empty weights. When using this, `--fsdp_sync_module_states` needs to True.
|
||||
* `--fsdp_sync_module_states` (`str`) -- If true, each individually wrapped FSDP unit will broadcast module parameters from rank 0.
|
||||
* `--fsdp_activation_checkpointing` (`bool`) -- Decides Whether intermediate activations are freed during the forward pass, and a checkpoint is left as a placeholder
|
||||
|
||||
**Megatron-LM Arguments**:
|
||||
|
||||
@ -225,6 +236,18 @@ The following arguments are only useful when `use_megatron_lm` is passed or Mega
|
||||
* `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Parallel (DP) ranks.
|
||||
* `--megatron_lm_gradient_clipping` (``) -- Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable).
|
||||
|
||||
**FP8 Arguments**:
|
||||
|
||||
* `--fp8_backend` (`str`) -- Choose a backend to train with FP8 (`te` or `msamp`)
|
||||
* `--fp8_use_autocast_during_eval` (`bool`) -- Whether to use FP8 autocast during eval mode (useful only when `--fp8_backend=te` is passed). Generally better metrics are found when this is not passed.
|
||||
* `--fp8_margin` (`int`) -- The margin to use for the gradient scaling (useful only when `--fp8_backend=te` is passed).
|
||||
* `--fp8_interval` (`int`) -- The interval to use for how often the scaling factor is recomputed (useful only when `--fp8_backend=te` is passed).
|
||||
* `--fp8_format` (`str`) -- The format to use for the FP8 recipe (useful only when `--fp8_backend=te` is passed).
|
||||
* `--fp8_amax_history_len` (`int`) -- The length of the history to use for the scaling factor computation (useful only when `--fp8_backend=te` is passed).
|
||||
* `--fp8_amax_compute_algo` (`str`) -- The algorithm to use for the scaling factor computation. (useful only when `--fp8_backend=te` is passed).
|
||||
* `--fp8_override_linear_precision` (`Tuple[bool, bool, bool]`) -- Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
|
||||
* `--fp8_opt_level` (`str`) -- What level of 8-bit collective communication should be used with MS-AMP (useful only when `--fp8_backend=msamp` is passed)
|
||||
|
||||
**AWS SageMaker Arguments**:
|
||||
|
||||
The following arguments are only useful when training in SageMaker
|
||||
|
||||
@ -13,16 +13,32 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Utilities for DeepSpeed
|
||||
# DeepSpeed utilities
|
||||
|
||||
## DeepSpeedPlugin
|
||||
|
||||
## get_active_deepspeed_plugin
|
||||
|
||||
[[autodoc]] utils.get_active_deepspeed_plugin
|
||||
|
||||
[[autodoc]] utils.DeepSpeedPlugin
|
||||
|
||||
[[autodoc]] utils.deepspeed.DummyOptim
|
||||
|
||||
[[autodoc]] utils.deepspeed.DummyScheduler
|
||||
|
||||
## DeepSpeedEnginerWrapper
|
||||
|
||||
[[autodoc]] utils.deepspeed.DeepSpeedEngineWrapper
|
||||
|
||||
## DeepSpeedOptimizerWrapper
|
||||
|
||||
[[autodoc]] utils.deepspeed.DeepSpeedOptimizerWrapper
|
||||
|
||||
## DeepSpeedSchedulerWrapper
|
||||
|
||||
[[autodoc]] utils.deepspeed.DeepSpeedSchedulerWrapper
|
||||
|
||||
## DummyOptim
|
||||
|
||||
[[autodoc]] utils.deepspeed.DummyOptim
|
||||
|
||||
## DummyScheduler
|
||||
38
docs/source/package_reference/fp8.md
Normal file
38
docs/source/package_reference/fp8.md
Normal file
@ -0,0 +1,38 @@
|
||||
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# FP8
|
||||
|
||||
Below are functions and classes relative to the underlying FP8 implementation
|
||||
|
||||
## FP8RecipeKwargs
|
||||
|
||||
[[autodoc]] utils.FP8RecipeKwargs
|
||||
|
||||
## convert_model
|
||||
|
||||
[[autodoc]] utils.convert_model
|
||||
|
||||
## has_transformer_engine_layers
|
||||
|
||||
[[autodoc]] utils.has_transformer_engine_layers
|
||||
|
||||
## contextual_fp8_autocast
|
||||
|
||||
[[autodoc]] utils.contextual_fp8_autocast
|
||||
|
||||
## apply_fp8_autowrap
|
||||
|
||||
[[autodoc]] utils.apply_fp8_autowrap
|
||||
@ -13,8 +13,34 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Utilities for Fully Sharded Data Parallelism
|
||||
# Fully Sharded Data Parallel utilities
|
||||
|
||||
## enable_fsdp_ram_efficient_loading
|
||||
|
||||
[[autodoc]] utils.enable_fsdp_ram_efficient_loading
|
||||
|
||||
## disable_fsdp_ram_efficient_loading
|
||||
|
||||
[[autodoc]] utils.disable_fsdp_ram_efficient_loading
|
||||
|
||||
## merge_fsdp_weights
|
||||
|
||||
[[autodoc]] utils.merge_fsdp_weights
|
||||
|
||||
[[autodoc]] utils.FullyShardedDataParallelPlugin
|
||||
## FullyShardedDataParallelPlugin
|
||||
|
||||
[[autodoc]] utils.FullyShardedDataParallelPlugin
|
||||
|
||||
## fsdp2_load_full_state_dict
|
||||
|
||||
[[autodoc]] utils.fsdp2_load_full_state_dict
|
||||
|
||||
## fsdp2_switch_optimizer_parameters
|
||||
|
||||
[[autodoc]] utils.fsdp2_switch_optimizer_parameters
|
||||
|
||||
## fsdp2_prepare_model
|
||||
|
||||
[[autodoc]] utils.fsdp2_prepare_model
|
||||
|
||||
## fsdp2_prepare_auto_wrap_policy
|
||||
|
||||
@ -13,8 +13,10 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# The inference API
|
||||
# Pipeline parallelism
|
||||
|
||||
These docs refer to the [PiPPy](https://github.com/PyTorch/PiPPy) integration.
|
||||
Accelerate supports pipeline parallelism for large-scale training with the PyTorch [torch.distributed.pipelining](https://pytorch.org/docs/stable/distributed.pipelining.html) API.
|
||||
|
||||
## prepare_pippy
|
||||
|
||||
[[autodoc]] inference.prepare_pippy
|
||||
|
||||
@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Kwargs Handlers
|
||||
# Kwargs handlers
|
||||
|
||||
The following objects can be passed to the main [`Accelerator`] to customize how some PyTorch objects
|
||||
related to distributed training or mixed precision are created.
|
||||
@ -30,6 +30,10 @@ related to distributed training or mixed precision are created.
|
||||
|
||||
[[autodoc]] utils.FP8RecipeKwargs
|
||||
|
||||
## ProfileKwargs
|
||||
|
||||
[[autodoc]] utils.ProfileKwargs
|
||||
|
||||
## GradScalerKwargs
|
||||
|
||||
[[autodoc]] GradScalerKwargs
|
||||
|
||||
@ -17,6 +17,10 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
Functions for launching training on distributed processes.
|
||||
|
||||
## notebook_launcher
|
||||
|
||||
[[autodoc]] accelerate.notebook_launcher
|
||||
|
||||
## debug_launcher
|
||||
|
||||
[[autodoc]] accelerate.debug_launcher
|
||||
@ -13,9 +13,9 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Logging with Accelerate
|
||||
# Logging
|
||||
|
||||
Refer to the [Troubleshooting guide](../usage_guides/troubleshooting#logging) or to the example below to learn
|
||||
how to use 🤗 Accelerate's logger.
|
||||
how to use Accelerate's logger.
|
||||
|
||||
[[autodoc]] logging.get_logger
|
||||
@ -13,20 +13,36 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Utilities for Megatron-LM
|
||||
# Megatron-LM utilities
|
||||
|
||||
## MegatronLMPlugin
|
||||
|
||||
[[autodoc]] utils.MegatronLMPlugin
|
||||
|
||||
## MegatronLMDummyScheduler
|
||||
|
||||
[[autodoc]] utils.MegatronLMDummyScheduler
|
||||
|
||||
## MegatronLMDummyDataLoader
|
||||
|
||||
[[autodoc]] utils.MegatronLMDummyDataLoader
|
||||
|
||||
## AbstractTrainStep
|
||||
|
||||
[[autodoc]] utils.AbstractTrainStep
|
||||
|
||||
## GPTTrainStep
|
||||
|
||||
[[autodoc]] utils.GPTTrainStep
|
||||
|
||||
## BertTrainStep
|
||||
|
||||
[[autodoc]] utils.BertTrainStep
|
||||
|
||||
## T5TrainStep
|
||||
|
||||
[[autodoc]] utils.T5TrainStep
|
||||
|
||||
## avg_losses_across_data_parallel_group
|
||||
|
||||
[[autodoc]] utils.avg_losses_across_data_parallel_group
|
||||
|
||||
@ -21,8 +21,14 @@ instances share the same state, which is initialized on the first instantiation.
|
||||
These classes are immutable and store information about certain configurations or
|
||||
states.
|
||||
|
||||
## PartialState
|
||||
|
||||
[[autodoc]] state.PartialState
|
||||
|
||||
## AcceleratorState
|
||||
|
||||
[[autodoc]] state.AcceleratorState
|
||||
|
||||
## GradientState
|
||||
|
||||
[[autodoc]] state.GradientState
|
||||
@ -13,25 +13,36 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Wrapper classes for torch Dataloaders, Optimizers, and Schedulers
|
||||
# DataLoaders, Optimizers, and Schedulers
|
||||
|
||||
The internal classes Accelerate uses to prepare objects for distributed training
|
||||
when calling [`~Accelerator.prepare`].
|
||||
|
||||
## Datasets and DataLoaders
|
||||
## DataLoader utilities
|
||||
|
||||
[[autodoc]] data_loader.prepare_data_loader
|
||||
[[autodoc]] data_loader.skip_first_batches
|
||||
|
||||
## BatchSamplerShard
|
||||
|
||||
[[autodoc]] data_loader.BatchSamplerShard
|
||||
|
||||
## IterableDatasetShard
|
||||
|
||||
[[autodoc]] data_loader.IterableDatasetShard
|
||||
|
||||
## DataLoaderShard
|
||||
|
||||
[[autodoc]] data_loader.DataLoaderShard
|
||||
|
||||
## DataLoaderDispatcher
|
||||
|
||||
[[autodoc]] data_loader.DataLoaderDispatcher
|
||||
|
||||
## Optimizers
|
||||
## AcceleratedOptimizer
|
||||
|
||||
[[autodoc]] optimizer.AcceleratedOptimizer
|
||||
|
||||
## Schedulers
|
||||
## AcceleratedScheduler
|
||||
|
||||
[[autodoc]] scheduler.AcceleratedScheduler
|
||||
@ -13,23 +13,48 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Experiment Tracking
|
||||
# Experiment Trackers
|
||||
|
||||
## The Base Tracker Class
|
||||
## GeneralTracker
|
||||
|
||||
[[autodoc]] tracking.GeneralTracker
|
||||
|
||||
## Integrated Trackers
|
||||
## TensorBoardTracker
|
||||
|
||||
[[autodoc]] tracking.TensorBoardTracker
|
||||
- __init__
|
||||
|
||||
## WandBTracker
|
||||
|
||||
[[autodoc]] tracking.WandBTracker
|
||||
- __init__
|
||||
|
||||
## Trackio
|
||||
|
||||
[[autodoc]] tracking.TrackioTracker
|
||||
- __init__
|
||||
|
||||
## CometMLTracker
|
||||
|
||||
[[autodoc]] tracking.CometMLTracker
|
||||
- __init__
|
||||
|
||||
## AimTracker
|
||||
|
||||
[[autodoc]] tracking.AimTracker
|
||||
- __init__
|
||||
|
||||
## MLflowTracker
|
||||
|
||||
[[autodoc]] tracking.MLflowTracker
|
||||
- __init__
|
||||
|
||||
## ClearMLTracker
|
||||
|
||||
[[autodoc]] tracking.ClearMLTracker
|
||||
- __init__
|
||||
|
||||
## SwanLabTracker
|
||||
|
||||
[[autodoc]] tracking.SwanLabTracker
|
||||
- __init__
|
||||
|
||||
@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Helpful Utilities
|
||||
# Utility functions and classes
|
||||
|
||||
Below are a variety of utility functions that 🤗 Accelerate provides, broken down by use-case.
|
||||
|
||||
@ -126,6 +126,10 @@ These include data operations that mimic the same `torch` ops but can be used on
|
||||
|
||||
[[autodoc]] utils.gather_object
|
||||
|
||||
[[autodoc]] utils.get_grad_scaler
|
||||
|
||||
[[autodoc]] utils.get_mixed_precision_context_manager
|
||||
|
||||
[[autodoc]] utils.listify
|
||||
|
||||
[[autodoc]] utils.pad_across_processes
|
||||
@ -170,6 +174,8 @@ When setting up 🤗 Accelerate for the first time, rather than running `acceler
|
||||
|
||||
[[autodoc]] utils.environment.override_numa_affinity
|
||||
|
||||
[[autodoc]] utils.purge_accelerate_environment
|
||||
|
||||
## Memory
|
||||
|
||||
[[autodoc]] utils.find_executable_batch_size
|
||||
@ -202,8 +208,7 @@ These utilities relate to interacting with PyTorch models
|
||||
|
||||
[[autodoc]] utils.set_module_tensor_to_device
|
||||
|
||||
[[autodoc]] utils.shard_checkpoint
|
||||
|
||||
[[autodoc]] utils.get_module_children_bottom_up
|
||||
|
||||
## Parallel
|
||||
|
||||
@ -213,6 +218,8 @@ These include general utilities that should be used when working in parallel.
|
||||
|
||||
[[autodoc]] utils.save
|
||||
|
||||
[[autodoc]] utils.load
|
||||
|
||||
[[autodoc]] utils.wait_for_everyone
|
||||
|
||||
|
||||
|
||||
@ -53,6 +53,8 @@ accelerate launch path_to_script.py --args_for_the_script
|
||||
|
||||
To learn more, check out the [Launch distributed code](basic_tutorials/launch) tutorial for more information about launching your scripts.
|
||||
|
||||
We also have a [configuration zoo](https://github.com/huggingface/accelerate/blob/main/examples/config_yaml_templates) which showcases a number of premade **minimal** example configurations for a variety of setups you can run.
|
||||
|
||||
## Adapt training code
|
||||
|
||||
The next main feature of Accelerate is the [`Accelerator`] class which adapts your PyTorch code to run on different distributed setups.
|
||||
@ -166,13 +168,14 @@ with init_empty_weights():
|
||||
|
||||
The [`~accelerate.load_checkpoint_and_dispatch`] function loads full or sharded checkpoints into the empty model, and automatically distribute weights across all available devices.
|
||||
|
||||
The `device_map` parameter determines where to place each model layer, and specifiying `"auto"` places them on the GPU first, then the CPU, and finally the hard drive as memory-mapped tensors if there's still not enough memory. Use the `no_split_module_classes` parameter to indicate which modules shouldn't be split across devices (typically those with a residual connection).
|
||||
The `device_map` parameter determines where to place each model layer, and specifying `"auto"` places them on the GPU first, then the CPU, and finally the hard drive as memory-mapped tensors if there's still not enough memory. Use the `no_split_module_classes` parameter to indicate which modules shouldn't be split across devices (typically those with a residual connection).
|
||||
|
||||
```py
|
||||
from accelerate import load_checkpoint_and_dispatch
|
||||
|
||||
model_checkpoint = "your-local-model-folder"
|
||||
model = load_checkpoint_and_dispatch(
|
||||
model, checkpoint="mistralai/Mixtral-8x7B-Instruct-v0.1", device_map="auto", no_split_module_classes=['Block']
|
||||
model, checkpoint=model_checkpoint, device_map="auto", no_split_module_classes=['Block']
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
@ -13,15 +13,15 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Handling big models for inference
|
||||
# Big Model Inference
|
||||
|
||||
One of the biggest advancements 🤗 Accelerate provides is the concept of [large model inference](../concept_guides/big_model_inference) wherein you can perform *inference* on models that cannot fully fit on your graphics card.
|
||||
One of the biggest advancements Accelerate provides is [Big Model Inference](../concept_guides/big_model_inference), which allows you to perform inference with models that don't fully fit on your graphics card.
|
||||
|
||||
This tutorial will be broken down into two parts showcasing how to use both 🤗 Accelerate and 🤗 Transformers (a higher API-level) to make use of this idea.
|
||||
This tutorial will show you how to use Big Model Inference in Accelerate and the Hugging Face ecosystem.
|
||||
|
||||
## Using 🤗 Accelerate
|
||||
## Accelerate
|
||||
|
||||
For these tutorials, we'll assume a typical workflow for loading your model in such that:
|
||||
A typical workflow for loading a PyTorch model is shown below. `ModelClass` is a model that exceeds the GPU memory of your device (mps or cuda or xpu).
|
||||
|
||||
```py
|
||||
import torch
|
||||
@ -31,9 +31,7 @@ state_dict = torch.load(checkpoint_file)
|
||||
my_model.load_state_dict(state_dict)
|
||||
```
|
||||
|
||||
Note that here we assume that `ModelClass` is a model that takes up more video-card memory than what can fit on your device (be it `mps` or `cuda`).
|
||||
|
||||
The first step is to init an empty skeleton of the model which won't take up any RAM using the [`init_empty_weights`] context manager:
|
||||
With Big Model Inference, the first step is to init an empty skeleton of the model with the `init_empty_weights` context manager. This doesn't require any memory because `my_model` is "parameterless".
|
||||
|
||||
```py
|
||||
from accelerate import init_empty_weights
|
||||
@ -41,22 +39,14 @@ with init_empty_weights():
|
||||
my_model = ModelClass(...)
|
||||
```
|
||||
|
||||
With this `my_model` currently is "parameterless", hence leaving the smaller footprint than what one would normally get loading this onto the CPU directly.
|
||||
Next, the weights are loaded into the model for inference.
|
||||
|
||||
Next we need to load in the weights to our model so we can perform inference.
|
||||
The [`load_checkpoint_and_dispatch`] method loads a checkpoint inside your empty model and dispatches the weights for each layer across all available devices, starting with the fastest devices (GPU, MPS, XPU, NPU, MLU, SDAA, MUSA) first before moving to the slower ones (CPU and hard drive).
|
||||
|
||||
For this we will use [`load_checkpoint_and_dispatch`], which as the name implies will load a checkpoint inside your empty model and dispatch the weights for each layer across all the devices you have available (GPU/MPS and CPU RAM).
|
||||
Setting `device_map="auto"` automatically fills all available space on the GPU(s) first, then the CPU, and finally, the hard drive (the absolute slowest option) if there is still not enough memory.
|
||||
|
||||
To determine how this `dispatch` can be performed, generally specifying `device_map="auto"` will be good enough as 🤗 Accelerate
|
||||
will attempt to fill all the space in your GPU(s), then loading them to the CPU, and finally if there is not enough RAM it will be loaded to the disk (the absolute slowest option).
|
||||
|
||||
<Tip>
|
||||
|
||||
For more details on designing your own device map, see this section of the [concept guide](../concept_guides/big_model_inference#designing-a-device-map)
|
||||
|
||||
</Tip>
|
||||
|
||||
See an example below:
|
||||
> [!TIP]
|
||||
> Refer to the [Designing a device map](../concept_guides/big_model_inference#designing-a-device-map) guide for more details on how to design your own device map.
|
||||
|
||||
```py
|
||||
from accelerate import load_checkpoint_and_dispatch
|
||||
@ -66,42 +56,29 @@ model = load_checkpoint_and_dispatch(
|
||||
)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
If there are certain “chunks” of layers that shouldn’t be split, pass them to `no_split_module_classes` (see [here](../concept_guides/big_model_inference#loading-weights) for more details).
|
||||
|
||||
If there are certain "chunks" of layers that shouldn't be split, you can pass them in as `no_split_module_classes`. Read more about it [here](../concept_guides/big_model_inference#loading-weights)
|
||||
A models weights can also be sharded into multiple checkpoints to save memory, such as when the `state_dict` doesn't fit in memory (see [here](../concept_guides/big_model_inference#sharded-checkpoints) for more details).
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip>
|
||||
|
||||
Also to save on memory (such as if the `state_dict` will not fit in RAM), a model's weights can be divided and split into multiple checkpoint files. Read more about it [here](../concept_guides/big_model_inference#sharded-checkpoints)
|
||||
|
||||
</Tip>
|
||||
|
||||
Now that the model is dispatched fully, you can perform inference as normal with the model:
|
||||
Now that the model is fully dispatched, you can perform inference.
|
||||
|
||||
```py
|
||||
input = torch.randn(2,3)
|
||||
input = input.to("cuda")
|
||||
device_type = next(iter(model.parameters())).device.type
|
||||
input = input.to(device_type)
|
||||
output = model(input)
|
||||
```
|
||||
|
||||
What will happen now is each time the input gets passed through a layer, it will be sent from the CPU to the GPU (or disk to CPU to GPU), the output is calculated, and then the layer is pulled back off the GPU going back down the line. While this adds some overhead to the inference being performed, through this method it is possible to run **any size model** on your system, as long as the largest layer is capable of fitting on your GPU.
|
||||
Each time an input is passed through a layer, it is sent from the CPU to the GPU (or disk to CPU to GPU), the output is calculated, and the layer is removed from the GPU going back down the line. While this adds some overhead to inference, it enables you to run any size model on your system, as long as the largest layer fits on your GPU.
|
||||
|
||||
<Tip>
|
||||
Multiple GPUs, or "model parallelism", can be utilized but only one GPU will be active at any given moment. This forces the GPU to wait for the previous GPU to send it the output. You should launch your script normally with Python instead of other tools like torchrun and accelerate launch.
|
||||
|
||||
Multiple GPUs can be utilized, however this is considered "model parallelism" and as a result only one GPU will be active at a given moment, waiting for the prior one to send it the output. You should launch your script normally with `python`
|
||||
and not need `torchrun`, `accelerate launch`, etc.
|
||||
> [!TIP]
|
||||
> You may also be interested in *pipeline parallelism* which utilizes all available GPUs at once, instead of only having one GPU active at a time. This approach is less flexbile though. For more details, refer to the [Memory-efficient pipeline parallelism](./distributed_inference#memory-efficient-pipeline-parallelism-experimental) guide.
|
||||
|
||||
</Tip>
|
||||
<Youtube id="MWCSGj9jEAo"/>
|
||||
|
||||
For a visual representation of this, check out the animation below:
|
||||
|
||||
<Youtube id="MWCSGj9jEAo" />
|
||||
|
||||
### Complete Example
|
||||
|
||||
Below is the full example showcasing what we performed above:
|
||||
Take a look at a full example of Big Model Inference below.
|
||||
|
||||
```py
|
||||
import torch
|
||||
@ -115,17 +92,18 @@ model = load_checkpoint_and_dispatch(
|
||||
)
|
||||
|
||||
input = torch.randn(2,3)
|
||||
input = input.to("cuda")
|
||||
device_type = next(iter(model.parameters())).device.type
|
||||
input = input.to(device_type)
|
||||
output = model(input)
|
||||
```
|
||||
|
||||
## Using 🤗 Transformers, 🤗 Diffusers, and other 🤗 Open Source Libraries
|
||||
## Hugging Face ecosystem
|
||||
|
||||
Libraries that support 🤗 Accelerate big model inference include all of the earlier logic in their `from_pretrained` constructors.
|
||||
Other libraries in the Hugging Face ecosystem, like Transformers or Diffusers, supports Big Model Inference in their [`~transformers.PreTrainedModel.from_pretrained`] constructors.
|
||||
|
||||
These operate by specifying a string representing the model to download from the [🤗 Hub](https://hf.co/models) and then denoting `device_map="auto"` along with a few extra parameters.
|
||||
You just need to add `device_map="auto"` in [`~transformers.PreTrainedModel.from_pretrained`] to enable Big Model Inference.
|
||||
|
||||
As a brief example, we will look at using `transformers` and loading in Big Science's T0pp model.
|
||||
For example, load Big Sciences T0pp 11 billion parameter model with Big Model Inference.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForSeq2SeqLM
|
||||
@ -133,9 +111,7 @@ from transformers import AutoModelForSeq2SeqLM
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", device_map="auto")
|
||||
```
|
||||
|
||||
After loading the model in, the initial steps from before to prepare a model have all been done and the model is fully
|
||||
ready to make use of all the resources in your machine. Through these constructors, you can also save *more* memory by
|
||||
specifying the precision the model is loaded into as well, through the `torch_dtype` parameter, such as:
|
||||
After loading the model, the empty init and smart dispatch steps from before are executed and the model is fully ready to make use of all the resources in your machine. Through these constructors, you can also save more memory by specifying the `torch_dtype` parameter to load a model in a lower precision.
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForSeq2SeqLM
|
||||
@ -143,8 +119,6 @@ from transformers import AutoModelForSeq2SeqLM
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0pp", device_map="auto", torch_dtype=torch.float16)
|
||||
```
|
||||
|
||||
To learn more about this, check out the 🤗 Transformers documentation available [here](https://huggingface.co/docs/transformers/main/en/main_classes/model#large-model-loading).
|
||||
## Next steps
|
||||
|
||||
## Where to go from here
|
||||
|
||||
For a much more detailed look at big model inference, be sure to check out the [Conceptual Guide on it](../concept_guides/big_model_inference)
|
||||
For a more detailed explanation of Big Model Inference, make sure to check out the [conceptual guide](../concept_guides/big_model_inference)!
|
||||
|
||||
@ -15,8 +15,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Checkpointing
|
||||
|
||||
When training a PyTorch model with 🤗 Accelerate, you may often want to save and continue a state of training. Doing so requires
|
||||
saving and loading the model, optimizer, RNG generators, and the GradScaler. Inside 🤗 Accelerate are two convenience functions to achieve this quickly:
|
||||
When training a PyTorch model with Accelerate, you may often want to save and continue a state of training. Doing so requires
|
||||
saving and loading the model, optimizer, RNG generators, and the GradScaler. Inside Accelerate are two convenience functions to achieve this quickly:
|
||||
- Use [`~Accelerator.save_state`] for saving everything mentioned above to a folder location
|
||||
- Use [`~Accelerator.load_state`] for loading everything stored from an earlier `save_state`
|
||||
|
||||
|
||||
76
docs/source/usage_guides/compilation.md
Normal file
76
docs/source/usage_guides/compilation.md
Normal file
@ -0,0 +1,76 @@
|
||||
# Compilation
|
||||
|
||||
## Overview
|
||||
|
||||
Pytorch 2.0 introduced `torch.compile`, a powerful feature that makes PyTorch code run faster by JIT-compiling PyTorch code into optimized kernels. Key features of `torch.compile` include:
|
||||
|
||||
- **Performance Improvement**: Significantly speeds up model execution by optimizing the computation graph.
|
||||
- **Ease of Use**: Requires minimal code changes to implement, making it highly accessible.
|
||||
- **Compatibility**: Works seamlessly with existing PyTorch code and models.
|
||||
|
||||
When used with Accelerate, `torch.compile` integrates smoothly into distributed training workflows, allowing you to benefit from both distributed execution and compilation optimizations simultaneously.
|
||||
|
||||
The first execution of compiled code typically takes longer as it includes the compilation time, but subsequent runs are significantly faster. For optimal performance in different scenarios, `torch.compile` offers various modes like `"default"`, `"reduce-overhead"` (which uses CUDA graphs to further reduce overhead), and `"max-autotune"` (which performs extensive autotuning to find the best kernels for your model).
|
||||
|
||||
## Using `torch.compile` with Accelerate
|
||||
|
||||
Accelerate provides `TorchDynamoPlugin` for easy and seemless integration of `torch.compile` into your training scripts.
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import TorchDynamoPlugin
|
||||
|
||||
# Configure the compilation backend
|
||||
dynamo_plugin = TorchDynamoPlugin(
|
||||
backend="inductor", # Options: "inductor", "aot_eager", "aot_nvfuser", etc.
|
||||
mode="default", # Options: "default", "reduce-overhead", "max-autotune"
|
||||
fullgraph=True,
|
||||
dynamic=False
|
||||
)
|
||||
|
||||
# Initialize accelerator with the plugin
|
||||
accelerator = Accelerator(dynamo_plugin=dynamo_plugin)
|
||||
# This will apply torch.compile to your model
|
||||
model = accelerator.prepare(model)
|
||||
```
|
||||
|
||||
It is compatible with all other features and plugins of Accelerate, including mixed precision, distributed training (DDP, FSDP, Deepspeed), etc.
|
||||
|
||||
## Regional Compilation
|
||||
|
||||
Instead of trying to compile the whole model, which usually has a big problem space for optimization. Regional compilation targets repeated blocks of the same class and compiles them sequentially to hit the compiler's cache. For example, in `GPT2LMHeadModel`, the repeated block/class is `GPT2Block`, and can be accessed as `model.transformer.h[0]`. The rest of the model (e.g model.lm_head) is compiled separately.
|
||||
|
||||
This allows us to speed up the compilation overhead / cold start of models like LLMs and Transformers in general.
|
||||
See <https://pytorch.org/tutorials/recipes/regional_compilation.html> for more details.
|
||||
|
||||
### How to Use Regional Compilation
|
||||
|
||||
It can be enabled by setting `use_regional_compilation=True` in the `TorchDynamoPlugin` configuration:
|
||||
|
||||
```python
|
||||
# Configure the compilation backend
|
||||
dynamo_plugin = TorchDynamoPlugin(
|
||||
use_regional_compilation=True,
|
||||
... # other parameters
|
||||
)
|
||||
# Initialize accelerator with the plugin
|
||||
accelerator = Accelerator(dynamo_plugin=dynamo_plugin)
|
||||
# This will apply compile_regions to your model
|
||||
model = accelerator.prepare(model)
|
||||
```
|
||||
|
||||
You could also use the `accelerate.utils.compile_regions` utility directly the same way you would use `torch.compile`.
|
||||
|
||||
### Benefits of Regional Compilation
|
||||
|
||||
We have conducted extensive benchmarks comparing full compilation and regional compilation using the `torch.compile` feature in PyTorch. The full results are available in the [accelerate repository](https://github.com/huggingface/accelerate/tree/main/benchmarks/torch.compile/regional_compilation). The key findings from our benchmarks are:
|
||||
|
||||
1. **Comparable Performance**: Regional compilation delivers performance speedups similar to full compilation, especially for larger models.
|
||||
2. **Faster Compilation**: Regional compilation significantly reduces the time taken to compile models, making it a more efficient choice for deployment.
|
||||
3. **Batch Size Impact**: The performance difference between compilation strategies diminishes with larger batch sizes, indicating that the overhead of compilation is less impactful in those scenarios.
|
||||
4. **Model Size Consideration**: The benefits of regional compilation are more pronounced in larger models, where the compilation time savings can be substantial.
|
||||
5. **Practical Application**: For real-world applications, regional compilation is a practical choice for optimizing training cold start times, especially when working with large models.
|
||||
|
||||
## Conclusion
|
||||
|
||||
Both full and regional compilation can significantly speed up your models. Regional compilation offers a practical balance between compilation time and runtime performance, especially for training large models with substantial batch sizes.
|
||||
337
docs/source/usage_guides/ddp_comm_hook.md
Normal file
337
docs/source/usage_guides/ddp_comm_hook.md
Normal file
@ -0,0 +1,337 @@
|
||||
<!--
|
||||
Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# DDP Communication Hooks
|
||||
|
||||
Distributed Data Parallel (DDP) communication hooks provide a generic interface to control how gradients are communicated across workers by overriding the vanilla allreduce in `DistributedDataParallel`. A few built-in communication hooks are provided, and users can easily apply any of these hooks to optimize communication.
|
||||
|
||||
|
||||
- **FP16 Compression Hook**: Compresses gradients by casting them to half-precision floating-point format (`torch.float16`), reducing communication overhead.
|
||||
- **BF16 Compression Hook**: Similar to FP16, but uses the Brain Floating Point format (`torch.bfloat16`), which can be more efficient on certain hardware.
|
||||
- **PowerSGD Hook**: An advanced gradient compression algorithm that provides high compression rates and can accelerate bandwidth-bound distributed training.
|
||||
|
||||
In this tutorial, you will see how to quickly set up DDP communication hooks and perform training with the utilities provided in Accelerate, which can be as simple as adding just one new line of code! This demonstrates how to use DDP communication hooks to optimize gradient communication in distributed training with the Accelerate library.
|
||||
|
||||
## FP16 Compression Hook
|
||||
|
||||
<hfoptions id="fp16">
|
||||
<hfoption id="PyTorch">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks
|
||||
from accelerate.test_utils.testing import get_backend
|
||||
|
||||
device_type, _, _ = get_backend()
|
||||
device_id = getattr(torch, device_type, torch.cuda).current_device()
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
model = MyModel()
|
||||
model = DDP(model, device_ids=[device_id])
|
||||
model.register_comm_hook(state=None, hook=default_hooks.fp16_compress_hook)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Accelerate">
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
|
||||
import torch
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
# DDP Communication Hook setup
|
||||
ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.FP16)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
|
||||
model = MyModel()
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
data_loader = DataLoader(dataset, batch_size=16)
|
||||
|
||||
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### BF16 Compression Hook
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
BF16 Compression Hook API is experimental, and it requires NCCL version later than 2.9.6.
|
||||
|
||||
</Tip>
|
||||
|
||||
<hfoptions id="bf16">
|
||||
<hfoption id="PyTorch">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks
|
||||
from accelerate.test_utils.testing import get_backend
|
||||
|
||||
device_type, _, _ = get_backend()
|
||||
device_id = getattr(torch, device_type, torch.cuda).current_device()
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
model = MyModel()
|
||||
model = DDP(model, device_ids=[device_id])
|
||||
model.register_comm_hook(state=None, hook=default_hooks.bf16_compress_hook)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Accelerate">
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
|
||||
import torch
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
# DDP Communication Hook setup
|
||||
ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.BF16)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
|
||||
model = MyModel()
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
data_loader = DataLoader(dataset, batch_size=16)
|
||||
|
||||
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### PowerSGD Hook
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
PowerSGD typically requires extra memory of the same size as the model’s gradients to enable error feedback, which can compensate for biased compressed communication and improve accuracy.
|
||||
|
||||
</Tip>
|
||||
|
||||
<hfoptions id="powerSGD">
|
||||
<hfoption id="PyTorch">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook
|
||||
from accelerate.test_utils.testing import get_backend
|
||||
|
||||
device_type, _, _ = get_backend()
|
||||
device_id = getattr(torch, device_type, torch.cuda).current_device()
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
model = MyModel()
|
||||
model = DDP(model, device_ids=[device_id])
|
||||
state = powerSGD_hook.PowerSGDState(process_group=None)
|
||||
model.register_comm_hook(state=state, hook=powerSGD_hook.powerSGD_hook)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Accelerate">
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
|
||||
import torch
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
# DDP Communication Hook setup
|
||||
ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.POWER_SGD)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
|
||||
model = MyModel()
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
data_loader = DataLoader(dataset, batch_size=16)
|
||||
|
||||
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## DDP Communication Hooks utilities
|
||||
|
||||
There are two additional utilities for supporting optional functionalities with the communication hooks.
|
||||
|
||||
### comm_wrapper
|
||||
|
||||
`comm_wrapper` is an option to wrap a communication hook with additional functionality. For example, it can be used to combine FP16 compression with other communication strategies. Currently supported wrappers are `no`, `fp16`, and `bf16`.
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
|
||||
import torch
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
# DDP Communication Hook setup
|
||||
ddp_kwargs = DistributedDataParallelKwargs(
|
||||
comm_hook=DDPCommunicationHookType.POWER_SGD,
|
||||
comm_wrapper=DDPCommunicationHookType.FP16
|
||||
)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
|
||||
model = MyModel()
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
data_loader = DataLoader(dataset, batch_size=16)
|
||||
|
||||
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
### comm_state_option
|
||||
|
||||
`comm_state_option` allows you to pass additional state information required by certain communication hooks. This is particularly useful for stateful hooks like `PowerSGD`, which require maintaining hyperparameters and internal states across training steps. Below is an example showcasing the use of `comm_state_option` with the `PowerSGD` hook.
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
|
||||
import torch
|
||||
|
||||
class MyModel(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.Linear(10, 10)
|
||||
|
||||
def forward(self, x):
|
||||
return self.layer(x)
|
||||
|
||||
# DDP Communication Hook setup
|
||||
ddp_kwargs = DistributedDataParallelKwargs(
|
||||
comm_hook=DDPCommunicationHookType.POWER_SGD,
|
||||
comm_state_option={"matrix_approximation_rank": 2}
|
||||
)
|
||||
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
|
||||
|
||||
model = MyModel()
|
||||
optimizer = torch.optim.Adam(model.parameters())
|
||||
data_loader = DataLoader(dataset, batch_size=16)
|
||||
|
||||
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
|
||||
|
||||
# Training loop
|
||||
for data, targets in data_loader:
|
||||
outputs = model(data)
|
||||
loss = criterion(outputs, targets)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
For more advanced usage and additional hooks, refer to the [PyTorch DDP Communication Hooks documentation](https://pytorch.org/docs/stable/ddp_comm_hooks.html).
|
||||
@ -15,7 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# DeepSpeed
|
||||
|
||||
[DeepSpeed](https://github.com/microsoft/DeepSpeed) implements everything described in the [ZeRO paper](https://arxiv.org/abs/1910.02054). Some of the salient optimizations are:
|
||||
[DeepSpeed](https://github.com/deepspeedai/DeepSpeed) implements everything described in the [ZeRO paper](https://arxiv.org/abs/1910.02054). Some of the salient optimizations are:
|
||||
|
||||
1. Optimizer state partitioning (ZeRO stage 1)
|
||||
2. Gradient partitioning (ZeRO stage 2)
|
||||
@ -33,7 +33,7 @@ DeepSpeed ZeRO-2 is primarily used only for training, as its features are of no
|
||||
DeepSpeed ZeRO-3 can be used for inference as well since it allows huge models to be loaded on multiple GPUs, which
|
||||
won't be possible on a single GPU.
|
||||
|
||||
🤗 Accelerate integrates [DeepSpeed](https://github.com/microsoft/DeepSpeed) via 2 options:
|
||||
Accelerate integrates [DeepSpeed](https://github.com/deepspeedai/DeepSpeed) via 2 options:
|
||||
|
||||
1. Integration of the DeepSpeed features via `deepspeed config file` specification in `accelerate config` . You just supply your custom config file or use our template. Most of
|
||||
this document is focused on this feature. This supports all the core features of DeepSpeed and gives user a lot of flexibility.
|
||||
@ -45,7 +45,7 @@ won't be possible on a single GPU.
|
||||
|
||||
Training:
|
||||
|
||||
1. 🤗 Accelerate integrates all features of DeepSpeed ZeRO. This includes all the ZeRO stages 1, 2 and 3 as well as ZeRO-Offload, ZeRO-Infinity (which can offload to disk/NVMe) and ZeRO++.
|
||||
1. Accelerate integrates all features of DeepSpeed ZeRO. This includes all the ZeRO stages 1, 2 and 3 as well as ZeRO-Offload, ZeRO-Infinity (which can offload to disk/NVMe) and ZeRO++.
|
||||
Below is a short description of Data Parallelism using ZeRO - Zero Redundancy Optimizer along with diagram from this [blog post](https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/)
|
||||

|
||||
|
||||
@ -74,7 +74,7 @@ Inference:
|
||||
|
||||
## How it works?
|
||||
|
||||
**Pre-Requisites**: Install DeepSpeed version >=0.6.5. Please refer to the [DeepSpeed Installation details](https://github.com/microsoft/DeepSpeed#installation)
|
||||
**Pre-Requisites**: Install DeepSpeed version >=0.6.5. Please refer to the [DeepSpeed Installation details](https://github.com/deepspeedai/DeepSpeed#installation)
|
||||
for more information.
|
||||
|
||||
We will first look at easy to use integration via `accelerate config`.
|
||||
@ -167,7 +167,7 @@ Currently, `Accelerate` supports following config through the CLI:
|
||||
`deepspeed_hostfile`: DeepSpeed hostfile for configuring multi-node compute resources.
|
||||
`deepspeed_exclusion_filter`: DeepSpeed exclusion filter string when using mutli-node setup.
|
||||
`deepspeed_inclusion_filter`: DeepSpeed inclusion filter string when using mutli-node setup.
|
||||
`deepspeed_multinode_launcher`: DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.
|
||||
`deepspeed_multinode_launcher`: DeepSpeed multi-node launcher to use, e.g. `pdsh`, `standard`, `openmpi`, `mvapich`, `mpich`, `slurm`, `nossh` (requires DeepSpeed >= 0.14.5). If unspecified, will default to `pdsh`.
|
||||
`deepspeed_config_file`: path to the DeepSpeed config file in `json` format. See the next section for more details on this.
|
||||
```
|
||||
To be able to tweak more options, you will need to use a DeepSpeed config file.
|
||||
@ -194,7 +194,7 @@ For instance, here is how you would run the NLP example `examples/by_feature/dee
|
||||
```bash
|
||||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
deepspeed_config_file: /home/ubuntu/accelerate/examples/configs/deepspeed_config_templates/zero_stage2_config.json
|
||||
deepspeed_config_file: /home/ubuntu/accelerate/examples/deepspeed_config_templates/zero_stage2_config.json
|
||||
zero3_init_flag: true
|
||||
distributed_type: DEEPSPEED
|
||||
fsdp_config: {}
|
||||
@ -275,7 +275,7 @@ accelerate launch examples/by_feature/deepspeed_with_config_support.py \
|
||||
```bash
|
||||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config:
|
||||
deepspeed_config_file: /home/ubuntu/accelerate/examples/configs/deepspeed_config_templates/zero_stage3_offload_config.json
|
||||
deepspeed_config_file: /home/ubuntu/accelerate/examples/deepspeed_config_templates/zero_stage3_offload_config.json
|
||||
zero3_init_flag: true
|
||||
distributed_type: DEEPSPEED
|
||||
fsdp_config: {}
|
||||
@ -710,11 +710,18 @@ model, eval_dataloader = accelerator.prepare(model, eval_dataloader)
|
||||
2. Current integration doesn’t support `mpu`, limiting the tensor parallelism which is supported in Megatron-LM.
|
||||
3. Current integration doesn’t support multiple models.
|
||||
|
||||
## Multi-node DeepSpeed
|
||||
DeepSpeed supports multi-node inference and training over a variety of different launchers. You can specify a different launcher by setting the `deepspeed_multinode_launcher` config in the CLI or in the DeepSpeed config file.
|
||||
|
||||
Currently, accelerate supports passing configuration for the following DeepSpeed multi-node launchers: `pdsh` (default), `standard`, `openmpi`, `mvapich`, `mpich`, `slurm`, `nossh` (requires DeepSpeed >= 0.14.5).
|
||||
|
||||
Please read the [DeepSpeed documentation](https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node) for more information on the different launchers. By default, DeepSpeed will attempt to use passwordless SSH from the main machine node to the other nodes to perform the launcher command. In this configuration, the accelerate launch command only needs to be run on the main node. If using the `nossh` launcher, you will need to run the accelerate launch command on every node using copied configuration.
|
||||
|
||||
## DeepSpeed Resources
|
||||
|
||||
The documentation for the internals related to deepspeed can be found [here](../package_reference/deepspeed).
|
||||
|
||||
- [Project's github](https://github.com/microsoft/deepspeed)
|
||||
- [Project's github](https://github.com/deepspeedai/DeepSpeed)
|
||||
- [Usage docs](https://www.deepspeed.ai/getting-started/)
|
||||
- [API docs](https://deepspeed.readthedocs.io/en/latest/index.html)
|
||||
- [Blog posts](https://www.microsoft.com/en-us/research/search/?q=deepspeed)
|
||||
@ -727,12 +734,12 @@ Papers:
|
||||
- [ZeRO++: Extremely Efficient Collective Communication for Giant Model Training](https://arxiv.org/abs/2306.10209)
|
||||
|
||||
|
||||
Finally, please, remember that 🤗 `Accelerate` only integrates DeepSpeed, therefore if you
|
||||
have any problems or questions with regards to DeepSpeed usage, please, file an issue with [DeepSpeed GitHub](https://github.com/microsoft/DeepSpeed/issues).
|
||||
Finally, please, remember that `Accelerate` only integrates DeepSpeed, therefore if you
|
||||
have any problems or questions with regards to DeepSpeed usage, please, file an issue with [DeepSpeed GitHub](https://github.com/deepspeedai/DeepSpeed/issues).
|
||||
|
||||
|
||||
<Tip>
|
||||
|
||||
For those interested in the similarities and differences between FSDP and DeepSpeed, please check out the [concept guide here](../concept_guides/fsdp_and_deepspeed.md)!
|
||||
For those interested in the similarities and differences between FSDP and DeepSpeed, please check out the [concept guide here](../concept_guides/fsdp_and_deepspeed)!
|
||||
|
||||
</Tip>
|
||||
246
docs/source/usage_guides/deepspeed_multiple_model.md
Normal file
246
docs/source/usage_guides/deepspeed_multiple_model.md
Normal file
@ -0,0 +1,246 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Using multiple models with DeepSpeed
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This guide assumes that you have read and understood the [DeepSpeed usage guide](./deepspeed.md).
|
||||
|
||||
</Tip>
|
||||
|
||||
Running multiple models with Accelerate and DeepSpeed is useful for:
|
||||
|
||||
* Knowledge distillation
|
||||
* Post-training techniques like RLHF (see the [TRL](https://github.com/huggingface/trl) library for more examples)
|
||||
* Training multiple models at once
|
||||
|
||||
Currently, Accelerate has a **very experimental API** to help you use multiple models.
|
||||
|
||||
This tutorial will focus on two common use cases:
|
||||
|
||||
1. Knowledge distillation, where a smaller student model is trained to mimic a larger, better-performing teacher. If the student model fits on a single GPU, we can use ZeRO-2 for training and ZeRO-3 to shard the teacher for inference. This is significantly faster than using ZeRO-3 for both models.
|
||||
2. Training multiple *disjoint* models at once.
|
||||
|
||||
## Knowledge distillation
|
||||
|
||||
Knowledge distillation is a good example of using multiple models, but only training one of them.
|
||||
|
||||
Normally, you would use a single [`utils.DeepSpeedPlugin`] for both models. However, in this case, there are two separate configurations. Accelerate allows you to create and use multiple plugins **if and only if** they are in a `dict` so that you can reference and enable the proper plugin when needed.
|
||||
|
||||
```python
|
||||
from accelerate.utils import DeepSpeedPlugin
|
||||
|
||||
zero2_plugin = DeepSpeedPlugin(hf_ds_config="zero2_config.json")
|
||||
zero3_plugin = DeepSpeedPlugin(hf_ds_config="zero3_config.json")
|
||||
|
||||
deepspeed_plugins = {"student": zero2_plugin, "teacher": zero3_plugin}
|
||||
```
|
||||
|
||||
The `zero2_config.json` should be configured for full training (so specify `scheduler` and `optimizer` if you are not utilizing your own), while `zero3_config.json` should only be configured for the inference model, as shown in the example below.
|
||||
|
||||
```json
|
||||
{
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 3,
|
||||
"overlap_comm": true,
|
||||
"reduce_bucket_size": "auto",
|
||||
"stage3_prefetch_bucket_size": "auto",
|
||||
"stage3_param_persistence_threshold": "auto",
|
||||
"stage3_max_live_parameters": "auto",
|
||||
"stage3_max_reuse_distance": "auto",
|
||||
},
|
||||
"train_micro_batch_size_per_gpu": 1
|
||||
}
|
||||
```
|
||||
|
||||
An example `zero2_config.json` configuration is shown below.
|
||||
|
||||
```json
|
||||
{
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"weight_decay": "auto",
|
||||
"torch_adam": true,
|
||||
"adam_w_mode": true
|
||||
}
|
||||
},
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": "auto",
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto"
|
||||
}
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"offload_optimizer": {
|
||||
"device": "cpu",
|
||||
"pin_memory": true
|
||||
},
|
||||
},
|
||||
"gradient_accumulation_steps": 1,
|
||||
"gradient_clipping": "auto",
|
||||
"train_batch_size": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
}
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
DeepSpeed will raise an error if `train_micro_batch_size_per_gpu` isn't specified, even if this particular model isn't being trained.
|
||||
|
||||
</Tip>
|
||||
|
||||
From here, create a single [`Accelerator`] and pass in both configurations.
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator
|
||||
|
||||
accelerator = Accelerator(deepspeed_plugins=deepspeed_plugins)
|
||||
```
|
||||
|
||||
Now let's see how to use them.
|
||||
|
||||
### Student model
|
||||
|
||||
By default, Accelerate sets the first item in the `dict` as the default or enabled plugin (`"student"` plugin). Verify this by using the [`utils.deepspeed.get_active_deepspeed_plugin`] function to see which plugin is enabled.
|
||||
|
||||
```python
|
||||
active_plugin = get_active_deepspeed_plugin(accelerator.state)
|
||||
assert active_plugin is deepspeed_plugins["student"]
|
||||
```
|
||||
|
||||
[`AcceleratorState`] also keeps the active DeepSpeed plugin saved in `state.deepspeed_plugin`.
|
||||
```python
|
||||
assert active_plugin is accelerator.deepspeed_plugin
|
||||
```
|
||||
|
||||
Since `student` is the currently active plugin, let's go ahead and prepare the model, optimizer, and scheduler.
|
||||
|
||||
```python
|
||||
student_model, optimizer, scheduler = ...
|
||||
student_model, optimizer, scheduler, train_dataloader = accelerator.prepare(student_model, optimizer, scheduler, train_dataloader)
|
||||
```
|
||||
|
||||
Now it's time to deal with the teacher model.
|
||||
|
||||
### Teacher model
|
||||
|
||||
First, you need to specify in [`Accelerator`] that the `zero3_config.json` configuration should be used.
|
||||
|
||||
```python
|
||||
accelerator.state.select_deepspeed_plugin("teacher")
|
||||
```
|
||||
|
||||
This disables the `"student"` plugin and enables the `"teacher"` plugin instead. The
|
||||
DeepSpeed stateful config inside of Transformers is updated, and it changes which plugin configuration gets called when using
|
||||
`deepspeed.initialize()`. This allows you to use the automatic `deepspeed.zero.Init` context manager integration Transformers provides.
|
||||
|
||||
```python
|
||||
teacher_model = AutoModel.from_pretrained(...)
|
||||
teacher_model = accelerator.prepare(teacher_model)
|
||||
```
|
||||
|
||||
Otherwise, you should manually initialize the model with `deepspeed.zero.Init`.
|
||||
```python
|
||||
with deepspeed.zero.Init(accelerator.deepspeed_plugin.config):
|
||||
model = MyModel(...)
|
||||
```
|
||||
|
||||
### Training
|
||||
|
||||
From here, your training loop can be whatever you like, as long as `teacher_model` is never being trained on.
|
||||
|
||||
```python
|
||||
teacher_model.eval()
|
||||
student_model.train()
|
||||
for batch in train_dataloader:
|
||||
with torch.no_grad():
|
||||
output_teacher = teacher_model(**batch)
|
||||
output_student = student_model(**batch)
|
||||
# Combine the losses or modify it in some way
|
||||
loss = output_teacher.loss + output_student.loss
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
## Train multiple disjoint models
|
||||
|
||||
Training multiple models is a more complicated scenario.
|
||||
In its current state, we assume each model is **completely disjointed** from the other during training.
|
||||
|
||||
This scenario still requires two [`utils.DeepSpeedPlugin`]'s to be made. However, you also need a second [`Accelerator`], since different `deepspeed` engines are being called at different times. A single [`Accelerator`] can only carry one instance at a time.
|
||||
|
||||
Since the [`state.AcceleratorState`] is a stateful object though, it is already aware of both [`utils.DeepSpeedPlugin`]'s available. You can just instantiate a second [`Accelerator`] with no extra arguments.
|
||||
|
||||
```python
|
||||
first_accelerator = Accelerator(deepspeed_plugins=deepspeed_plugins)
|
||||
second_accelerator = Accelerator()
|
||||
```
|
||||
|
||||
You can call either `first_accelerator.state.select_deepspeed_plugin()` to enable or disable
|
||||
a particular plugin, and then call [`prepare`].
|
||||
|
||||
```python
|
||||
# can be `accelerator_0`, `accelerator_1`, or by calling `AcceleratorState().select_deepspeed_plugin(...)`
|
||||
first_accelerator.state.select_deepspeed_plugin("first_model")
|
||||
first_model = AutoModel.from_pretrained(...)
|
||||
# For this example, `get_training_items` is a nonexistent function that gets the setup we need for training
|
||||
first_optimizer, first_scheduler, train_dl, eval_dl = get_training_items(model1)
|
||||
first_model, first_optimizer, first_scheduler, train_dl, eval_dl = accelerator.prepare(
|
||||
first_model, first_optimizer, first_scheduler, train_dl, eval_dl
|
||||
)
|
||||
|
||||
second_accelerator.state.select_deepspeed_plugin("second_model")
|
||||
second_model = AutoModel.from_pretrained(...)
|
||||
# For this example, `get_training_items` is a nonexistent function that gets the setup we need for training
|
||||
second_optimizer, second_scheduler, _, _ = get_training_items(model2)
|
||||
second_model, second_optimizer, second_scheduler = accelerator.prepare(
|
||||
second_model, second_optimizer, second_scheduler
|
||||
)
|
||||
```
|
||||
|
||||
And now you can train:
|
||||
|
||||
```python
|
||||
for batch in dl:
|
||||
outputs1 = first_model(**batch)
|
||||
first_accelerator.backward(outputs1.loss)
|
||||
first_optimizer.step()
|
||||
first_scheduler.step()
|
||||
first_optimizer.zero_grad()
|
||||
|
||||
outputs2 = model2(**batch)
|
||||
second_accelerator.backward(outputs2.loss)
|
||||
second_optimizer.step()
|
||||
second_scheduler.step()
|
||||
second_optimizer.zero_grad()
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
To see more examples, please check out the [related tests](https://github.com/huggingface/accelerate/blob/main/src/accelerate/test_utils/scripts/external_deps/test_ds_multiple_model.py) currently in [Accelerate].
|
||||
@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Distributed Inference with 🤗 Accelerate
|
||||
# Distributed inference
|
||||
|
||||
Distributed inference can fall into three brackets:
|
||||
|
||||
@ -56,19 +56,20 @@ def run_inference(rank, world_size):
|
||||
```
|
||||
One will notice how we have to check the rank to know what prompt to send, which can be a bit tedious.
|
||||
|
||||
A user might then also think that with 🤗 Accelerate, using the `Accelerator` to prepare a dataloader for such a task might also be
|
||||
A user might then also think that with Accelerate, using the `Accelerator` to prepare a dataloader for such a task might also be
|
||||
a simple way to manage this. (To learn more, check out the relevant section in the [Quick Tour](../quicktour#distributed-evaluation))
|
||||
|
||||
Can it manage it? Yes. Does it add unneeded extra code however: also yes.
|
||||
|
||||
|
||||
With 🤗 Accelerate, we can simplify this process by using the [`Accelerator.split_between_processes`] context manager (which also exists in `PartialState` and `AcceleratorState`).
|
||||
With Accelerate, we can simplify this process by using the [`Accelerator.split_between_processes`] context manager (which also exists in `PartialState` and `AcceleratorState`).
|
||||
This function will automatically split whatever data you pass to it (be it a prompt, a set of tensors, a dictionary of the prior data, etc.) across all the processes (with a potential
|
||||
to be padded) for you to use right away.
|
||||
|
||||
Let's rewrite the above example using this context manager:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from accelerate import PartialState # Can also be Accelerator or AcceleratorState
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
@ -82,7 +83,7 @@ with distributed_state.split_between_processes(["a dog", "a cat"]) as prompt:
|
||||
result.save(f"result_{distributed_state.process_index}.png")
|
||||
```
|
||||
|
||||
And then to launch the code, we can use the 🤗 Accelerate:
|
||||
And then to launch the code, we can use the Accelerate:
|
||||
|
||||
If you have generated a config file to be used using `accelerate config`:
|
||||
|
||||
@ -125,6 +126,7 @@ needs to be the same length. Basic inference does not require this.
|
||||
For instance:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from accelerate import PartialState # Can also be Accelerator or AcceleratorState
|
||||
from diffusers import DiffusionPipeline
|
||||
|
||||
@ -144,22 +146,20 @@ You can find more complex examples [here](https://github.com/huggingface/acceler
|
||||
|
||||
## Memory-efficient pipeline parallelism (experimental)
|
||||
|
||||
This next part will discuss using *pipeline parallelism*. This is an **experimental** API utilizing the [PiPPy library by PyTorch](https://github.com/pytorch/PiPPy/) as a native solution.
|
||||
This next part will discuss using *pipeline parallelism*. This is an **experimental** API that utilizes [torch.distributed.pipelining](https://pytorch.org/docs/stable/distributed.pipelining.html#) as a native solution.
|
||||
|
||||
The general idea with pipeline parallelism is: say you have 4 GPUs and a model big enough it can be *split* on four GPUs using `device_map="auto"`. With this method you can send in 4 inputs at a time (for example here, any amount works) and each model chunk will work on an input, then receive the next input once the prior chunk finished, making it *much* more efficient **and faster** than the method described earlier. Here's a visual taken from the PyTorch repository:
|
||||
|
||||

|
||||

|
||||
|
||||
To illustrate how you can use this with Accelerate, we have created an [example zoo](https://github.com/huggingface/accelerate/tree/main/examples/inference) showcasing a number of different models and situations. In this tutorial, we'll show this method for GPT2 across two GPUs.
|
||||
|
||||
Before you proceed, please make sure you have the latest pippy installed by running the following:
|
||||
Before you proceed, please make sure you have the latest PyTorch version installed by running the following:
|
||||
|
||||
```bash
|
||||
pip install torchpippy
|
||||
pip install torch
|
||||
```
|
||||
|
||||
We require at least version 0.2.0. To confirm that you have the correct version, run `pip show torchpippy`.
|
||||
|
||||
Start by creating the model on the CPU:
|
||||
|
||||
```{python}
|
||||
@ -170,7 +170,7 @@ model = GPT2ForSequenceClassification(config)
|
||||
model.eval()
|
||||
```
|
||||
|
||||
Next you'll need to create some example inputs to use. These help PiPPy trace the model.
|
||||
Next you'll need to create some example inputs to use. These help `torch.distributed.pipelining` trace the model.
|
||||
|
||||
<Tip warning={true}>
|
||||
However you make this example will determine the relative batch size that will be used/passed
|
||||
|
||||
@ -13,14 +13,14 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Learning how to incorporate 🤗 Accelerate features quickly!
|
||||
# Start Here!
|
||||
|
||||
Please use the interactive tool below to help you get started with learning about a particular
|
||||
feature of 🤗 Accelerate and how to utilize it! It will provide you with a code diff, an explanation
|
||||
feature of Accelerate and how to utilize it! It will provide you with a code diff, an explanation
|
||||
towards what is going on, as well as provide you with some useful links to explore more within
|
||||
the documentation!
|
||||
|
||||
Most code examples start from the following python code before integrating 🤗 Accelerate in some way:
|
||||
Most code examples start from the following python code before integrating Accelerate in some way:
|
||||
|
||||
```python
|
||||
for batch in dataloader:
|
||||
|
||||
@ -79,7 +79,7 @@ Currently, `Accelerate` supports the following config through the CLI:
|
||||
|
||||
`fsdp_auto_wrap_policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP
|
||||
|
||||
`fsdp_transformer_layer_cls_to_wrap`: Only applicable for 🤗 Transformers. When using `fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP`, a user may provide a comma-separated string of transformer layer class names (case-sensitive) to wrap, e.g., `BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`. This is important because submodules that share weights (e.g., embedding layers) should not end up in different FSDP wrapped units. Using this policy, wrapping happens for each block containing Multi-Head Attention followed by a couple of MLP layers. Remaining layers including the shared embeddings are conveniently wrapped in same outermost FSDP unit. Therefore, use this for transformer-based models. You can use the `model._no_split_modules` for 🤗 Transformer models by answering `yes` to `Do you want to use the model's `_no_split_modules` to wrap. It will try to use `model._no_split_modules` when possible.
|
||||
`fsdp_transformer_layer_cls_to_wrap`: Only applicable for Transformers. When using `fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP`, a user may provide a comma-separated string of transformer layer class names (case-sensitive) to wrap, e.g., `BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`. This is important because submodules that share weights (e.g., embedding layers) should not end up in different FSDP wrapped units. Using this policy, wrapping happens for each block containing Multi-Head Attention followed by a couple of MLP layers. Remaining layers including the shared embeddings are conveniently wrapped in same outermost FSDP unit. Therefore, use this for transformer-based models. You can use the `model._no_split_modules` for Transformer models by answering `yes` to `Do you want to use the model's `_no_split_modules` to wrap. It will try to use `model._no_split_modules` when possible.
|
||||
|
||||
`fsdp_min_num_params`: minimum number of parameters when using `fsdp_auto_wrap_policy=SIZE_BASED_WRAP`.
|
||||
|
||||
@ -91,7 +91,7 @@ Currently, `Accelerate` supports the following config through the CLI:
|
||||
|
||||
`fsdp_use_orig_params`: If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. This setting is useful in cases such as parameter-efficient fine-tuning as discussed in [this post](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). This option also allows one to have multiple optimizer param groups. This should be `True` when creating an optimizer before preparing/wrapping the model with FSDP.
|
||||
|
||||
`fsdp_cpu_ram_efficient_loading`: Only applicable for 🤗 Transformers models. If True, only the first process loads the pretrained model checkpoint while all other processes have empty weights. This should be set to False if you experience errors when loading the pretrained 🤗 Transformers model via `from_pretrained` method. When this setting is True `fsdp_sync_module_states` also must to be True, otherwise all the processes except the main process would have random weights leading to unexpected behaviour during training. For this to work, make sure the distributed process group is initialized before calling Transformers `from_pretrained` method. When using 🤗 Trainer API, the distributed process group is initialized when you create an instance of `TrainingArguments` class.
|
||||
`fsdp_cpu_ram_efficient_loading`: Only applicable for Transformers models. If True, only the first process loads the pretrained model checkpoint while all other processes have empty weights. This should be set to False if you experience errors when loading the pretrained Transformers model via `from_pretrained` method. When this setting is True `fsdp_sync_module_states` also must to be True, otherwise all the processes except the main process would have random weights leading to unexpected behaviour during training. For this to work, make sure the distributed process group is initialized before calling Transformers `from_pretrained` method. When using Trainer API, the distributed process group is initialized when you create an instance of `TrainingArguments` class.
|
||||
|
||||
`fsdp_sync_module_states`: If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0.
|
||||
|
||||
@ -187,7 +187,7 @@ accelerate merge-weights pytorch_model_fsdp_0/ output_path
|
||||
## A few caveats to be aware of
|
||||
|
||||
- In case of multiple models, pass the optimizers to the prepare call in the same order as corresponding models else `accelerator.save_state()` and `accelerator.load_state()` will result in wrong/unexpected behaviour.
|
||||
- This feature is incompatible with `--predict_with_generate` in the `run_translation.py` script of 🤗 `Transformers` library.
|
||||
- This feature is incompatible with `--predict_with_generate` in the `run_translation.py` script of `Transformers` library.
|
||||
|
||||
For more control, users can leverage the `FullyShardedDataParallelPlugin`. After creating an instance of this class, users can pass it to the Accelerator class instantiation.
|
||||
For more information on these options, please refer to the PyTorch [FullyShardedDataParallel](https://github.com/pytorch/pytorch/blob/0df2e863fbd5993a7b9e652910792bd21a516ff3/torch/distributed/fsdp/fully_sharded_data_parallel.py#L236) code.
|
||||
@ -195,6 +195,6 @@ For more information on these options, please refer to the PyTorch [FullySharded
|
||||
|
||||
<Tip>
|
||||
|
||||
For those interested in the similarities and differences between FSDP and DeepSpeed, please check out the [concept guide here](../concept_guides/fsdp_and_deepspeed.md)!
|
||||
For those interested in the similarities and differences between FSDP and DeepSpeed, please check out the [concept guide here](../concept_guides/fsdp_and_deepspeed)!
|
||||
|
||||
</Tip>
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user