mirror of
https://github.com/huggingface/accelerate.git
synced 2025-11-13 21:59:16 +08:00
Compare commits
242 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| ec88c8f54a | |||
| 7531e8c13e | |||
| 8e439de744 | |||
| d96a5aa730 | |||
| d7bcd85d4d | |||
| d927b8f3a2 | |||
| f579d9550d | |||
| bbecad4e8e | |||
| b82999a84b | |||
| 11568e562c | |||
| d9a1b8f975 | |||
| b634388ef1 | |||
| 4d415f2129 | |||
| 829171a9a4 | |||
| 5a232de2fa | |||
| 5f8048cd04 | |||
| 4378b560e8 | |||
| 8644e23b71 | |||
| b2fc3a3b0e | |||
| 290446d446 | |||
| 85a75d4c3d | |||
| f94f0ff912 | |||
| 1b2e634970 | |||
| dd62fc90ce | |||
| 10b418495e | |||
| c2f193a25c | |||
| 1812152392 | |||
| b8b353b7a7 | |||
| f2778d6502 | |||
| 2ad42e77c3 | |||
| e8aaee5d9b | |||
| 910c1b6a8f | |||
| 92d3240bb5 | |||
| 02a8a9a3a7 | |||
| ee163b66fb | |||
| 354db5b5f7 | |||
| 92b1ad01f3 | |||
| 60bfdaa934 | |||
| 16eb6d76bf | |||
| c8acfa700b | |||
| e70e3c87de | |||
| bc8dfe3caf | |||
| e3d324240f | |||
| 10882eeddd | |||
| 145a98fc12 | |||
| 64ae9ea3fe | |||
| 8aa72b9748 | |||
| 97d115a266 | |||
| 63cfd9efdc | |||
| 6cf8221a09 | |||
| 7a2feecad4 | |||
| ee004674b9 | |||
| 65544d8fe9 | |||
| 5fce525f90 | |||
| ca37b0e471 | |||
| 82a1258ffc | |||
| 21b225e8d5 | |||
| 25ee6ab3b7 | |||
| 2d3e822d11 | |||
| 811dc1e464 | |||
| c59c6c9bff | |||
| 422bd23f3f | |||
| c0b16b684f | |||
| 78b15561a1 | |||
| 8f9673f509 | |||
| 9c071103f0 | |||
| 1127e670ca | |||
| fa83efc33e | |||
| 4aa71049c3 | |||
| c0b441f6be | |||
| 34fdddd7df | |||
| 3fb9a3a231 | |||
| 065d88729b | |||
| 67e698cf4d | |||
| 46ac6c9bba | |||
| 9b24f56e42 | |||
| f20445d4ac | |||
| 97d2168e59 | |||
| 79016eb163 | |||
| 164193fa7e | |||
| 482a9f9fa4 | |||
| d7de8d1794 | |||
| b443be70fb | |||
| 613ad7089a | |||
| 13e79ccfab | |||
| aba3b8c72f | |||
| 70cdf5fe52 | |||
| b38590a28a | |||
| 5318bc7733 | |||
| ef68b4655c | |||
| ecebfa19c9 | |||
| 5a39359fb2 | |||
| b3d2111708 | |||
| f75c6245ba | |||
| 9c1d5bac15 | |||
| b0b867da85 | |||
| 433d693b70 | |||
| c3aec59b12 | |||
| 9467a62744 | |||
| 86228e321d | |||
| 06b138d845 | |||
| 0867c09318 | |||
| 0e1ee4b92d | |||
| d8a64cb79d | |||
| b703efdcc3 | |||
| 68f54720dc | |||
| 46f1391b79 | |||
| cd7ff5e137 | |||
| f4b411f84b | |||
| 7ba64e632c | |||
| 8b770a7dab | |||
| 3d8b998fbb | |||
| 03365a3d17 | |||
| 7aafa25673 | |||
| f88661b5d9 | |||
| 581fabba48 | |||
| e909eb34e2 | |||
| 7644a02e6b | |||
| 162a82164e | |||
| 0d6a5fa8ee | |||
| 53845d2596 | |||
| 5ec00da2be | |||
| 649e65b542 | |||
| 14d7c3fca6 | |||
| c7d11d7e40 | |||
| ec4f01a099 | |||
| f5c01eeb63 | |||
| 20ff458d80 | |||
| 6719cb6db3 | |||
| 31fd2b1ad6 | |||
| fce61a99ec | |||
| 6ec92cf06b | |||
| 2a4037322f | |||
| f823404f69 | |||
| ef2fe912c5 | |||
| e3e9b87592 | |||
| 456afd92ce | |||
| 0d2280dadc | |||
| 55d4a496dd | |||
| 2a8829d9a5 | |||
| 3969731ce8 | |||
| 411aa58a77 | |||
| 4420ec641d | |||
| 2241725ad6 | |||
| 5cac878984 | |||
| 5d31423308 | |||
| 2721387b98 | |||
| 2cfa88bdf1 | |||
| 102caf4fab | |||
| 07df5d268f | |||
| 68b3dbf666 | |||
| 403c0714d1 | |||
| 848ed800fa | |||
| ad957ce556 | |||
| 3db088f5d6 | |||
| d1abd59114 | |||
| ceb7c699bc | |||
| c5baa055c0 | |||
| 349be97ccb | |||
| b60061dfd2 | |||
| b565a6c58a | |||
| a03c361ffb | |||
| b0528392c8 | |||
| 060678415a | |||
| 6b2d968897 | |||
| ad3a5bc920 | |||
| eafcea07f6 | |||
| eff30e2130 | |||
| 694f2e2c12 | |||
| 9964f90fd7 | |||
| f86876d56d | |||
| 0a37e2042e | |||
| 54d670be41 | |||
| 339854a9a4 | |||
| 5296419df4 | |||
| 6a4857fec2 | |||
| 9569150174 | |||
| 8f871f41f1 | |||
| 47e6c36155 | |||
| 47c144570c | |||
| 6a54d0781b | |||
| 0482548363 | |||
| 0e48b2358d | |||
| 3499cf25aa | |||
| 68d63ee15f | |||
| 151637920d | |||
| 0ba3e9bb50 | |||
| b04d36c75f | |||
| 5fc1b230d3 | |||
| 244122c736 | |||
| d25efa71ce | |||
| 1aeb1e8997 | |||
| 0e51680994 | |||
| 7d430cf8de | |||
| b8ca803f98 | |||
| 1243191ecb | |||
| 2b25b8b3c5 | |||
| ca300c0a04 | |||
| 427ef8bd00 | |||
| 35b0206353 | |||
| fbe00d7897 | |||
| 62af737219 | |||
| cd51581248 | |||
| a5a7c039a0 | |||
| cf745c936d | |||
| 99877f56d6 | |||
| 0f2686c8d3 | |||
| a912b2ee09 | |||
| e9fd72a613 | |||
| 8dedb140ef | |||
| b55855a3d4 | |||
| 2b53a9089c | |||
| 39d255b3d0 | |||
| 99dff1a167 | |||
| a0a16e118a | |||
| 15458c5737 | |||
| fc0a43c3c1 | |||
| 8256a9c2d4 | |||
| 6727ac4394 | |||
| 9674b40580 | |||
| 0b0d9215a9 | |||
| e638b1e21a | |||
| 76de60dbdc | |||
| 217e1a248c | |||
| 5e0eb0d750 | |||
| 183c9dd3ce | |||
| 4f100318f4 | |||
| fa6f43033c | |||
| 820fc4ca7a | |||
| bd72a5f1a8 | |||
| 55088a2cf5 | |||
| c2d8e245e9 | |||
| d8e1285409 | |||
| 5b3f3b99d6 | |||
| 2935057606 | |||
| bb6759d634 | |||
| 55747318a0 | |||
| 217faafe08 | |||
| 5440387529 | |||
| e1fab05ce7 | |||
| c3ec7ff5a9 | |||
| d8535921ad |
@ -15,13 +15,13 @@ jobs:
|
||||
outputs:
|
||||
version: ${{ steps.step1.outputs.version }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- id: step1
|
||||
run: echo "version=$(python setup.py --version)" >> $GITHUB_OUTPUT
|
||||
|
||||
version-cpu:
|
||||
name: "Latest Accelerate CPU [version]"
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, intel-cpu, 8-cpu, ci]
|
||||
needs: get-version
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
@ -37,11 +37,11 @@ jobs:
|
||||
with:
|
||||
file: docker/accelerate-cpu/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/accelerate-cpu:${{needs.get-version.outputs.version}}
|
||||
tags: huggingface/accelerate:cpu-release-${{ needs.get-version.outputs.version }}
|
||||
|
||||
version-cuda:
|
||||
name: "Latest Accelerate GPU [version]"
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
needs: get-version
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
@ -57,4 +57,4 @@ jobs:
|
||||
with:
|
||||
file: docker/accelerate-gpu/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/accelerate-gpu:${{needs.get-version.outputs.version}}
|
||||
tags: huggingface/accelerate:gpu-release-${{needs.get-version.outputs.version}}
|
||||
|
||||
4
.github/workflows/build_and_run_tests.yml
vendored
4
.github/workflows/build_and_run_tests.yml
vendored
@ -22,7 +22,7 @@ jobs:
|
||||
|
||||
- name: Get changed files
|
||||
id: changed-files
|
||||
uses: tj-actions/changed-files@v22.2
|
||||
uses: tj-actions/changed-files@v41
|
||||
|
||||
- name: Was setup changed
|
||||
id: was_changed
|
||||
@ -45,6 +45,6 @@ jobs:
|
||||
uses: ./.github/workflows/run_merge_tests.yml
|
||||
|
||||
run-integration-tests:
|
||||
needs: run-merge-tests
|
||||
needs: build-docker-containers
|
||||
if: always()
|
||||
uses: ./.github/workflows/self_hosted_integration_tests.yml
|
||||
32
.github/workflows/build_docker_images.yml
vendored
32
.github/workflows/build_docker_images.yml
vendored
@ -11,19 +11,9 @@ concurrency:
|
||||
cancel-in-progress: false
|
||||
|
||||
jobs:
|
||||
clean-storage:
|
||||
name: "Clean docker image storage"
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
steps:
|
||||
- name: Clean storage
|
||||
run: |
|
||||
docker image prune --all -f --filter "until=48h"
|
||||
docker system prune --all -f --filter "until=48h"
|
||||
|
||||
latest-cpu:
|
||||
name: "Latest Accelerate CPU [dev]"
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
needs: clean-storage
|
||||
runs-on: [self-hosted, intel-cpu, 8-cpu, ci]
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
@ -32,17 +22,22 @@ jobs:
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
- name: Get current date
|
||||
id: date
|
||||
run: |
|
||||
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
|
||||
- name: Build and Push CPU
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
file: docker/accelerate-cpu/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/accelerate-cpu
|
||||
tags: |
|
||||
huggingface/accelerate:cpu-nightly
|
||||
huggingface/accelerate:cpu-nightly-${{ env.date }}
|
||||
|
||||
latest-cuda:
|
||||
name: "Latest Accelerate GPU [dev]"
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
needs: clean-storage
|
||||
runs-on: [self-hosted, nvidia-gpu, t4, ci]
|
||||
steps:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
@ -51,10 +46,15 @@ jobs:
|
||||
with:
|
||||
username: ${{ secrets.DOCKERHUB_USERNAME }}
|
||||
password: ${{ secrets.DOCKERHUB_PASSWORD }}
|
||||
|
||||
- name: Get current date
|
||||
id: date
|
||||
run: |
|
||||
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
|
||||
- name: Build and Push GPU
|
||||
uses: docker/build-push-action@v4
|
||||
with:
|
||||
file: docker/accelerate-gpu/Dockerfile
|
||||
push: true
|
||||
tags: huggingface/accelerate-gpu
|
||||
tags: |
|
||||
huggingface/accelerate:gpu-nightly
|
||||
huggingface/accelerate:gpu-nightly-${{ env.date }}
|
||||
14
.github/workflows/delete_doc_comment.yml
vendored
14
.github/workflows/delete_doc_comment.yml
vendored
@ -1,14 +0,0 @@
|
||||
name: Delete doc comment
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Delete doc comment trigger"]
|
||||
types:
|
||||
- completed
|
||||
|
||||
|
||||
jobs:
|
||||
delete:
|
||||
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
|
||||
secrets:
|
||||
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}
|
||||
12
.github/workflows/delete_doc_comment_trigger.yml
vendored
12
.github/workflows/delete_doc_comment_trigger.yml
vendored
@ -1,12 +0,0 @@
|
||||
name: Delete doc comment trigger
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [ closed ]
|
||||
|
||||
|
||||
jobs:
|
||||
delete:
|
||||
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
|
||||
with:
|
||||
pr_number: ${{ github.event.number }}
|
||||
8
.github/workflows/integration_tests.yml
vendored
8
.github/workflows/integration_tests.yml
vendored
@ -25,11 +25,6 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
transformers-version: [
|
||||
pypi,
|
||||
github
|
||||
]
|
||||
steps:
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- name: Set up python 3.8
|
||||
@ -47,9 +42,6 @@ jobs:
|
||||
cd ..
|
||||
git clone https://github.com/huggingface/transformers
|
||||
cd transformers
|
||||
if [[ ${{ matrix.transformers-version }} = pypi ]]; then
|
||||
git checkout $(git describe --tags `git rev-list --tags --max-count=1`)
|
||||
fi
|
||||
pip install .[torch,testing]
|
||||
|
||||
- name: Show installed libraries
|
||||
|
||||
24
.github/workflows/nightly.yml
vendored
24
.github/workflows/nightly.yml
vendored
@ -13,7 +13,7 @@ env:
|
||||
|
||||
jobs:
|
||||
run_all_tests_single_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
TEST_TYPE: "single_gpu"
|
||||
@ -22,23 +22,25 @@ jobs:
|
||||
options: --gpus all --shm-size "16gb"
|
||||
defaults:
|
||||
run:
|
||||
working-directory: accelerate/
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Update clone & pip install
|
||||
run: |
|
||||
source activate accelerate
|
||||
git config --global --add safe.directory '*'
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
git clone https://github.com/huggingface/accelerate;
|
||||
cd accelerate;
|
||||
git checkout ${{ github.sha }};
|
||||
pip install -e . --no-deps
|
||||
pip install pytest-reportlog tabulate
|
||||
|
||||
- name: Run test on GPUs
|
||||
working-directory: accelerate
|
||||
run: |
|
||||
source activate accelerate
|
||||
make test
|
||||
|
||||
- name: Run examples on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
source activate accelerate
|
||||
@ -46,13 +48,14 @@ jobs:
|
||||
make test_examples
|
||||
|
||||
- name: Generate Report
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
pip install slack_sdk tabulate
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_all_tests_multi_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0,1"
|
||||
TEST_TYPE: "multi_gpu"
|
||||
@ -61,18 +64,19 @@ jobs:
|
||||
options: --gpus all --shm-size "16gb"
|
||||
defaults:
|
||||
run:
|
||||
working-directory: accelerate/
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Update clone
|
||||
run: |
|
||||
source activate accelerate
|
||||
git config --global --add safe.directory '*'
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
git clone https://github.com/huggingface/accelerate;
|
||||
cd accelerate;
|
||||
git checkout ${{ github.sha }};
|
||||
pip install -e . --no-deps
|
||||
pip install pytest-reportlog tabulate
|
||||
|
||||
- name: Run core and big modeling tests on GPUs
|
||||
working-directory: accelerate
|
||||
run: |
|
||||
source activate accelerate
|
||||
make test_core
|
||||
@ -80,12 +84,14 @@ jobs:
|
||||
make test_cli
|
||||
|
||||
- name: Run Integration tests on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
source activate accelerate
|
||||
make test_integrations
|
||||
|
||||
- name: Run examples on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
source activate accelerate
|
||||
@ -93,6 +99,7 @@ jobs:
|
||||
make test_examples
|
||||
|
||||
- name: Generate Report
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
pip install slack_sdk tabulate
|
||||
@ -100,6 +107,5 @@ jobs:
|
||||
|
||||
|
||||
run-integration-tests:
|
||||
needs: [run_all_tests_single_gpu, run_all_tests_multi_gpu]
|
||||
if: always()
|
||||
uses: ./.github/workflows/self_hosted_integration_tests.yml
|
||||
2
.github/workflows/quality.yml
vendored
2
.github/workflows/quality.yml
vendored
@ -6,7 +6,7 @@ jobs:
|
||||
quality:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v3.1.0
|
||||
- name: Set up Python 3.8
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
|
||||
63
.github/workflows/run_merge_tests.yml
vendored
63
.github/workflows/run_merge_tests.yml
vendored
@ -10,80 +10,89 @@ env:
|
||||
|
||||
jobs:
|
||||
run_all_tests_single_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
container:
|
||||
image: huggingface/accelerate-gpu:latest
|
||||
image: huggingface/accelerate:gpu-nightly
|
||||
options: --gpus all --shm-size "16gb"
|
||||
defaults:
|
||||
run:
|
||||
working-directory: accelerate/
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Update clone & pip install
|
||||
- name: Install accelerate
|
||||
run: |
|
||||
source activate accelerate
|
||||
git config --global --add safe.directory '*'
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
pip install -e .[testing,test_trackers] -U
|
||||
pip install pytest-reportlog tabulate
|
||||
source activate accelerate;
|
||||
git clone https://github.com/huggingface/accelerate;
|
||||
cd accelerate;
|
||||
git checkout ${{ github.sha }};
|
||||
pip install -e .[testing,test_trackers] -U;
|
||||
pip install pytest-reportlog tabulate ;
|
||||
|
||||
- name: Run CLI tests
|
||||
- name: Run CLI tests (use make cli)
|
||||
working-directory: accelerate
|
||||
run: |
|
||||
source activate accelerate
|
||||
source activate accelerate;
|
||||
make test_cli
|
||||
|
||||
- name: Run test on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
source activate accelerate
|
||||
source activate accelerate;
|
||||
make test
|
||||
- name: Run examples on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
source activate accelerate
|
||||
pip uninstall comet_ml -y
|
||||
source activate accelerate;
|
||||
pip uninstall comet_ml -y;
|
||||
make test_examples
|
||||
|
||||
- name: Generate Report
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
pip install tabulate
|
||||
pip install tabulate;
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
run_all_tests_multi_gpu:
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: 0,1
|
||||
container:
|
||||
image: huggingface/accelerate-gpu:latest
|
||||
image: huggingface/accelerate:gpu-nightly
|
||||
options: --gpus all --shm-size "16gb"
|
||||
defaults:
|
||||
run:
|
||||
working-directory: accelerate/
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Update clone
|
||||
run: |
|
||||
source activate accelerate
|
||||
git config --global --add safe.directory '*'
|
||||
git fetch && git checkout ${{ github.sha }}
|
||||
pip install -e .[testing,test_trackers] -U
|
||||
source activate accelerate;
|
||||
git clone https://github.com/huggingface/accelerate;
|
||||
cd accelerate;
|
||||
git checkout ${{ github.sha }};
|
||||
pip install -e .[testing,test_trackers] -U;
|
||||
pip install pytest-reportlog tabulate
|
||||
|
||||
- name: Run test on GPUs
|
||||
working-directory: accelerate
|
||||
run: |
|
||||
source activate accelerate
|
||||
source activate accelerate;
|
||||
make test
|
||||
|
||||
- name: Run examples on GPUs
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
source activate accelerate
|
||||
pip uninstall comet_ml -y
|
||||
source activate accelerate;
|
||||
pip uninstall comet_ml -y;
|
||||
make test_examples
|
||||
|
||||
- name: Generate Report
|
||||
working-directory: accelerate
|
||||
if: always()
|
||||
run: |
|
||||
pip install tabulate
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
source activate accelerate;
|
||||
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
|
||||
|
||||
@ -23,39 +23,34 @@ defaults:
|
||||
jobs:
|
||||
run-trainer-tests:
|
||||
container:
|
||||
image: huggingface/accelerate-gpu:latest
|
||||
image: huggingface/accelerate:gpu-nightly
|
||||
options: --gpus all --shm-size "16gb"
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
transformers-version: [
|
||||
pypi,
|
||||
github
|
||||
]
|
||||
cuda_visible_devices: [
|
||||
"0",
|
||||
"0,1"
|
||||
]
|
||||
steps:
|
||||
- name: Update accelerate clone and pip install
|
||||
working-directory: accelerate/
|
||||
run:
|
||||
source activate accelerate;
|
||||
git config --global --add safe.directory '*';
|
||||
git checkout main && git fetch && git checkout ${{ github.sha }};
|
||||
pip install -e .;
|
||||
|
||||
- name: Update transformers clone & pip install
|
||||
working-directory: transformers/
|
||||
- name: Install transformers
|
||||
run: |
|
||||
source activate accelerate
|
||||
git config --global --add safe.directory '*'
|
||||
git checkout main && git pull && git fetch --tags
|
||||
if [[ ${{ matrix.transformers-version }} = pypi ]]; then
|
||||
git checkout $(git tag --sort=taggerdate | tail -1)
|
||||
fi
|
||||
pip install .[torch,deepspeed-testing]
|
||||
source activate accelerate;
|
||||
git clone https://github.com/huggingface/transformers --depth 1;
|
||||
cd transformers;
|
||||
pip install .[torch,deepspeed-testing];
|
||||
cd ..;
|
||||
|
||||
- name: Install accelerate
|
||||
run: |
|
||||
source activate accelerate;
|
||||
git clone https://github.com/huggingface/accelerate;
|
||||
cd accelerate;
|
||||
git checkout ${{ github.sha }} ;
|
||||
pip install -e .[testing];
|
||||
pip uninstall comet_ml wandb dvclive -y
|
||||
cd ..;
|
||||
|
||||
- name: Show installed libraries
|
||||
run: |
|
||||
@ -81,36 +76,40 @@ jobs:
|
||||
source activate accelerate;
|
||||
pytest -sv tests/deepspeed
|
||||
|
||||
run-skorch-tests:
|
||||
container:
|
||||
image: huggingface/accelerate-gpu:latest
|
||||
options: --gpus all --shm-size "16gb"
|
||||
runs-on: [self-hosted, docker-gpu, multi-gpu]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
skorch-version: [
|
||||
pypi,
|
||||
github
|
||||
]
|
||||
steps:
|
||||
- name: Update accelerate clone and pip install
|
||||
working-directory: accelerate/
|
||||
run:
|
||||
source activate accelerate;
|
||||
git config --global --add safe.directory '*';
|
||||
git checkout main && git fetch && git checkout ${{ github.sha }};
|
||||
pip install -e .;
|
||||
|
||||
- name: Update skorch clone & pip install
|
||||
working-directory: skorch/
|
||||
- name: Run transformers examples tests
|
||||
working-directory: transformers/
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: ${{ matrix.cuda_visible_devices }}
|
||||
WANDB_DISABLED: true
|
||||
run: |
|
||||
source activate accelerate
|
||||
pip install -r examples/pytorch/_tests_requirements.txt
|
||||
pytest -sv examples/pytorch/test_accelerate_examples.py examples/pytorch/test_pytorch_examples.py
|
||||
|
||||
run-skorch-tests:
|
||||
container:
|
||||
image: huggingface/accelerate:gpu-nightly
|
||||
options: --gpus all --shm-size "16gb"
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
strategy:
|
||||
fail-fast: false
|
||||
steps:
|
||||
- name: Install accelerate
|
||||
run:
|
||||
source activate accelerate;
|
||||
git clone https://github.com/huggingface/accelerate;
|
||||
cd accelerate;
|
||||
git checkout ${{ github.sha }};
|
||||
pip install -e .[testing];
|
||||
cd ..
|
||||
|
||||
- name: Install skorch
|
||||
run: |
|
||||
source activate accelerate
|
||||
git clone https://github.com/skorch-dev/skorch;
|
||||
cd skorch;
|
||||
git config --global --add safe.directory '*'
|
||||
git checkout master && git pull
|
||||
if [[ ${{ matrix.skorch-version }} = pypi ]]; then
|
||||
git checkout $(git describe --tags `git rev-list --tags --max-count=1`)
|
||||
fi
|
||||
pip install .[testing]
|
||||
pip install flaky
|
||||
|
||||
|
||||
4
.github/workflows/stale.yml
vendored
4
.github/workflows/stale.yml
vendored
@ -13,10 +13,10 @@ jobs:
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v3.1.0
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v1
|
||||
uses: actions/setup-python@v3
|
||||
with:
|
||||
python-version: 3.8
|
||||
|
||||
|
||||
11
.github/workflows/test.yml
vendored
11
.github/workflows/test.yml
vendored
@ -44,22 +44,13 @@ jobs:
|
||||
with:
|
||||
python-version: 3.8
|
||||
|
||||
- name: Activate python cache
|
||||
uses: actions/cache@v3
|
||||
with:
|
||||
path: |
|
||||
${{ env.pythonLocation }}
|
||||
${{ env.HF_HOME }}
|
||||
key: ${{ env.pythonLocation }}-${{ matrix.pytorch-version }}-${{ matrix.test-kind }}-${{ hashFiles('setup.py') }}
|
||||
|
||||
- name: Install the library
|
||||
run: |
|
||||
pip install --upgrade pip
|
||||
if [[ ${{ matrix.test-kind }} = test_prod ]]; then pip install -e .[test_prod]; fi
|
||||
if [[ ${{ matrix.test-kind }} != test_prod ]]; then pip install -e .[testing,test_trackers]; fi
|
||||
if [[ ${{ matrix.test-kind }} = test_rest ]]; then pip uninstall comet_ml -y; fi
|
||||
if [[ ${{ matrix.test-kind }} = minimum ]]; then pip install torch==1.10.0; fi
|
||||
pip install pytest-reportlog tabulate
|
||||
pip install pytest-reportlog tabulate setuptools
|
||||
|
||||
- name: Run Tests
|
||||
env:
|
||||
|
||||
13
.pre-commit-config.yaml
Normal file
13
.pre-commit-config.yaml
Normal file
@ -0,0 +1,13 @@
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.1
|
||||
hooks:
|
||||
- id: ruff
|
||||
args:
|
||||
- --fix
|
||||
- id: ruff-format
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v4.5.0
|
||||
hooks:
|
||||
- id: check-merge-conflict
|
||||
- id: check-yaml
|
||||
@ -152,7 +152,7 @@ Follow these steps to start contributing:
|
||||
$ make test
|
||||
```
|
||||
|
||||
`accelerate` relies on `black` and `ruff` to format its source code
|
||||
`accelerate` relies on `ruff` to format its source code
|
||||
consistently. After you make changes, apply automatic style corrections and code verifications
|
||||
that can't be automated in one go with:
|
||||
|
||||
@ -172,6 +172,14 @@ Follow these steps to start contributing:
|
||||
$ make quality
|
||||
```
|
||||
|
||||
You can also set up [`pre-commit`](https://pre-commit.com/) to run these checks
|
||||
automatically as Git commit hooks.
|
||||
|
||||
```bash
|
||||
$ pip install pre-commit
|
||||
$ pre-commit install
|
||||
```
|
||||
|
||||
Once you're happy with your changes, add changed files using `git add` and
|
||||
make a commit with `git commit` to record your changes locally:
|
||||
|
||||
@ -235,4 +243,4 @@ $ python -m pytest -sv ./tests
|
||||
In fact, that's how `make test` is implemented (sans the `pip install` line)!
|
||||
|
||||
You can specify a smaller set of tests in order to test only the feature
|
||||
you're working on.
|
||||
you're working on.
|
||||
|
||||
22
Makefile
22
Makefile
@ -1,6 +1,6 @@
|
||||
.PHONY: quality style test docs utils
|
||||
|
||||
check_dirs := tests src examples benchmarks utils
|
||||
check_dirs := .
|
||||
|
||||
# Check that source code meets quality standards
|
||||
|
||||
@ -12,20 +12,17 @@ extra_quality_checks:
|
||||
|
||||
# this target runs checks on all files
|
||||
quality:
|
||||
black --required-version 23 --check $(check_dirs)
|
||||
ruff $(check_dirs)
|
||||
ruff check $(check_dirs)
|
||||
ruff format --check $(check_dirs)
|
||||
doc-builder style src/accelerate docs/source --max_len 119 --check_only
|
||||
|
||||
# Format source code automatically and check is there are any problems left that need manual fixing
|
||||
style:
|
||||
black --required-version 23 $(check_dirs)
|
||||
ruff $(check_dirs) --fix
|
||||
ruff check $(check_dirs) --fix
|
||||
ruff format $(check_dirs)
|
||||
doc-builder style src/accelerate docs/source --max_len 119
|
||||
|
||||
# Run tests for the library
|
||||
test:
|
||||
python -m pytest -s -v ./tests/ --ignore=./tests/test_examples.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_all.log",)
|
||||
|
||||
test_big_modeling:
|
||||
python -m pytest -s -v ./tests/test_big_modeling.py ./tests/test_modeling_utils.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_big_modeling.log",)
|
||||
|
||||
@ -42,6 +39,15 @@ test_deepspeed:
|
||||
test_fsdp:
|
||||
python -m pytest -s -v ./tests/fsdp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_fsdp.log",)
|
||||
|
||||
# Since the new version of pytest will *change* how things are collected, we need `deepspeed` to
|
||||
# run after test_core and test_cli
|
||||
test:
|
||||
$(MAKE) test_core
|
||||
$(MAKE) test_cli
|
||||
$(MAKE) test_big_modeling
|
||||
$(MAKE) test_deepspeed
|
||||
$(MAKE) test_fsdp
|
||||
|
||||
test_examples:
|
||||
python -m pytest -s -v ./tests/test_examples.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_examples.log",)
|
||||
|
||||
|
||||
13
README.md
13
README.md
@ -171,7 +171,15 @@ To learn more, check the CLI documentation available [here](https://huggingface.
|
||||
|
||||
🤗 Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on [this page](https://www.open-mpi.org/faq/?category=building#easy-build). You can use Intel MPI or MVAPICH as well.
|
||||
Once you have MPI setup on your cluster, just run:
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
Answer the questions that are asked, selecting to run using multi-CPU, and answer "yes" when asked if you want accelerate to launch mpirun.
|
||||
Then, use `accelerate launch` with your script like:
|
||||
```bash
|
||||
accelerate launch examples/nlp_example.py
|
||||
```
|
||||
Alternatively, you can use mpirun directly, without using the CLI like:
|
||||
```bash
|
||||
mpirun -np 2 python examples/nlp_example.py
|
||||
```
|
||||
@ -220,6 +228,7 @@ You shouldn't use 🤗 Accelerate if you don't want to write a training loop you
|
||||
|
||||
If you like the simplicity of 🤗 Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of 🤗 Accelerate are listed below:
|
||||
|
||||
* [Amphion](https://github.com/open-mmlab/Amphion) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.
|
||||
* [Animus](https://github.com/Scitator/animus) is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within [IExperiment](https://github.com/Scitator/animus/blob/main/animus/core.py#L76).
|
||||
* [Catalyst](https://github.com/catalyst-team/catalyst#getting-started) is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a [Runner](https://catalyst-team.github.io/catalyst/api/core.html#runner) to connect all parts of the experiment: hardware backend, data transformations, model training, and inference logic.
|
||||
* [fastai](https://github.com/fastai/fastai#installing) is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a [Learner](https://docs.fast.ai/learner.html#Learner) to handle the training, fine-tuning, and inference of deep learning algorithms.
|
||||
@ -269,7 +278,7 @@ If you use 🤗 Accelerate in your publication, please cite it by using the foll
|
||||
```bibtex
|
||||
@Misc{accelerate,
|
||||
title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
|
||||
author = {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar, Marc Sun, Benjamin Bossan},
|
||||
author = {Sylvain Gugger and Lysandre Debut and Thomas Wolf and Philipp Schmid and Zachary Mueller and Sourab Mangrulkar and Marc Sun and Benjamin Bossan},
|
||||
howpublished = {\url{https://github.com/huggingface/accelerate}},
|
||||
year = {2022}
|
||||
}
|
||||
|
||||
@ -1,3 +1,16 @@
|
||||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import gc
|
||||
import threading
|
||||
import time
|
||||
|
||||
72
docker/README.md
Normal file
72
docker/README.md
Normal file
@ -0,0 +1,72 @@
|
||||
<!---
|
||||
Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
# Official Hugging Face Accelerate Docker Images
|
||||
|
||||
Accelerate publishes a variety of docker versions as part of our CI that users can also use. These are stable images that Accelerate can run off of which comes with a variety of different setup configurations, all of which are officially hosted on [Docker Hub](https://hub.docker.com/r/huggingface/accelerate).
|
||||
|
||||
A breakdown of each are given below
|
||||
|
||||
## Naming Conventions
|
||||
|
||||
Accelerate docker images follow a tagging convention of:
|
||||
|
||||
```bash
|
||||
huggingface/accelerate:{accelerator}-{nightly,release}
|
||||
```
|
||||
|
||||
`accelerator` in this instance is one of many applical pre-configured backend supports:
|
||||
* `gpu`: Comes compiled off of the `nvidia/cuda` image and includes everything such as `deepspeed`, `bitsandbytes`, etc.
|
||||
* `cpu`: Comes compiled off of `python:3.8-slim` and is designed for non-CUDA based workloads.
|
||||
* More to come soon
|
||||
|
||||
## Nightlies vs Releases
|
||||
|
||||
Each release a new build is pushed with a version number included in the name. For a GPU-supported image of version 0.28.0 for instance, it would look like the following:
|
||||
|
||||
```bash
|
||||
huggingface/accelerate:gpu-release-0.28.0
|
||||
```
|
||||
|
||||
Nightlies contain two different image tags. There is a general `nightly` tag which is built each night, and a `nightly-YYYY-MM-DD` which corresponds to a build from a particular date.
|
||||
|
||||
For instance, here is an example nightly CPU image from 3/14/2024
|
||||
|
||||
```bash
|
||||
huggingface/accelerate:cpu-nightly-2024-03-14
|
||||
```
|
||||
|
||||
## Running the images
|
||||
|
||||
Each image comes compiled with `conda` and an `accelerate` environment contains all of the installed dependencies.
|
||||
|
||||
To pull down the latest nightly run:
|
||||
|
||||
```bash
|
||||
docker pull huggingface/accelerate:gpu-nightly
|
||||
```
|
||||
|
||||
To then run it in interactive mode with GPU-memory available, run:
|
||||
|
||||
```bash
|
||||
docker container run --gpus all -it huggingface/accelerate:gpu-nightly
|
||||
```
|
||||
|
||||
## DEPRECATED IMAGES
|
||||
|
||||
CPU and GPU docker images were hosted at `huggingface/accelerate-gpu` and `huggingface/accelerate-cpu`. These builds are now outdated and will not receive updates.
|
||||
|
||||
The builds at the corresponding `huggingface/accelerate:{gpu,cpu}` contain the same `Dockerfile`, so it's as simple as changing the docker image to the desired ones from above. We will not be deleting these images for posterity, but they will not be receiving updates going forward.
|
||||
@ -1,10 +1,10 @@
|
||||
# Builds GPU docker image of PyTorch
|
||||
# Builds GPU docker image of PyTorch specifically
|
||||
# Uses multi-staged approach to reduce size
|
||||
# Stage 1
|
||||
# Use base conda image to reduce time
|
||||
FROM continuumio/miniconda3:latest AS compile-image
|
||||
# Specify py version
|
||||
ENV PYTHON_VERSION=3.8
|
||||
ENV PYTHON_VERSION=3.9
|
||||
# Install apt libs
|
||||
RUN apt-get update && \
|
||||
apt-get install -y curl git wget && \
|
||||
@ -19,7 +19,8 @@ ENV PATH /opt/conda/envs/accelerate/bin:$PATH
|
||||
# Activate our bash shell
|
||||
RUN chsh -s /bin/bash
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
# Activate the conda env and install torch + accelerate
|
||||
# Activate the conda env, install mpy4pi, and install torch + accelerate
|
||||
RUN source activate accelerate && conda install -c conda-forge mpi4py
|
||||
RUN source activate accelerate && \
|
||||
python3 -m pip install --no-cache-dir \
|
||||
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers] \
|
||||
@ -28,7 +29,7 @@ RUN source activate accelerate && \
|
||||
RUN python3 -m pip install --no-cache-dir bitsandbytes
|
||||
|
||||
# Stage 2
|
||||
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04 AS build-image
|
||||
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 AS build-image
|
||||
COPY --from=compile-image /opt/conda /opt/conda
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
|
||||
|
||||
@ -10,50 +10,63 @@
|
||||
- local: basic_tutorials/overview
|
||||
title: Overview
|
||||
- local: basic_tutorials/migration
|
||||
title: Migrating to 🤗 Accelerate
|
||||
title: Add Accelerate to your code
|
||||
- local: basic_tutorials/execution
|
||||
title: Execution process
|
||||
- local: basic_tutorials/tpu
|
||||
title: TPU training
|
||||
- local: basic_tutorials/launch
|
||||
title: Launching distributed code
|
||||
- local: basic_tutorials/notebook
|
||||
title: Launching distributed training from Jupyter Notebooks
|
||||
title: Tutorials
|
||||
- sections:
|
||||
- local: usage_guides/explore
|
||||
title: Start Here!
|
||||
- local: usage_guides/training_zoo
|
||||
title: Example Zoo
|
||||
- local: usage_guides/big_modeling
|
||||
title: How to perform inference on large models with small resources
|
||||
- local: usage_guides/model_size_estimator
|
||||
title: Knowing how big of a model you can fit into memory
|
||||
- local: usage_guides/quantization
|
||||
title: How to quantize model
|
||||
- local: usage_guides/distributed_inference
|
||||
title: How to perform distributed inference with normal resources
|
||||
- local: usage_guides/gradient_accumulation
|
||||
title: Performing gradient accumulation
|
||||
- local: usage_guides/local_sgd
|
||||
title: Accelerating training with local SGD
|
||||
- local: usage_guides/checkpoint
|
||||
title: Saving and loading training states
|
||||
- local: usage_guides/tracking
|
||||
title: Using experiment trackers
|
||||
- local: usage_guides/debug
|
||||
title: Debugging timeout errors
|
||||
- local: usage_guides/memory
|
||||
title: How to avoid CUDA Out-of-Memory
|
||||
- local: usage_guides/mps
|
||||
title: How to use Apple Silicon M1 GPUs
|
||||
- local: usage_guides/deepspeed
|
||||
title: How to use DeepSpeed
|
||||
- local: usage_guides/fsdp
|
||||
title: How to use Fully Sharded Data Parallelism
|
||||
- local: usage_guides/megatron_lm
|
||||
title: How to use Megatron-LM
|
||||
- local: usage_guides/sagemaker
|
||||
title: How to use 🤗 Accelerate with SageMaker
|
||||
- local: usage_guides/ipex
|
||||
title: How to use 🤗 Accelerate with Intel® Extension for PyTorch for cpu
|
||||
title: How-To Guides
|
||||
- isExpanded: true
|
||||
sections:
|
||||
- local: usage_guides/explore
|
||||
title: Start Here!
|
||||
- local: usage_guides/model_size_estimator
|
||||
title: Model memory estimator
|
||||
- local: usage_guides/quantization
|
||||
title: Model quantization
|
||||
- local: usage_guides/tracking
|
||||
title: Experiment trackers
|
||||
- local: usage_guides/checkpoint
|
||||
title: Save and load training states
|
||||
- local: basic_tutorials/troubleshooting
|
||||
title: Troubleshoot
|
||||
- local: usage_guides/training_zoo
|
||||
title: Example Zoo
|
||||
title: Accelerate
|
||||
- isExpanded: true
|
||||
sections:
|
||||
- local: usage_guides/gradient_accumulation
|
||||
title: Gradient accumulation
|
||||
- local: usage_guides/local_sgd
|
||||
title: Local SGD
|
||||
- local: usage_guides/low_precision_training
|
||||
title: Low precision (FP8) training
|
||||
- local: usage_guides/deepspeed
|
||||
title: DeepSpeed
|
||||
- local: usage_guides/fsdp
|
||||
title: Fully Sharded Data Parallelism
|
||||
- local: usage_guides/megatron_lm
|
||||
title: Megatron-LM
|
||||
- local: usage_guides/sagemaker
|
||||
title: Amazon SageMaker
|
||||
- local: usage_guides/mps
|
||||
title: Apple M1 GPUs
|
||||
- local: usage_guides/ipex
|
||||
title: IPEX training with CPU
|
||||
title: Training
|
||||
- isExpanded: true
|
||||
sections:
|
||||
- local: usage_guides/big_modeling
|
||||
title: Big Model Inference
|
||||
- local: usage_guides/distributed_inference
|
||||
title: Distributed inference
|
||||
title: Inference
|
||||
title: How to guides
|
||||
- sections:
|
||||
- local: concept_guides/internal_mechanism
|
||||
title: 🤗 Accelerate's internal mechanism
|
||||
@ -65,12 +78,14 @@
|
||||
title: Executing and deferring jobs
|
||||
- local: concept_guides/gradient_synchronization
|
||||
title: Gradient synchronization
|
||||
- local: concept_guides/low_precision_training
|
||||
title: How training in low-precision environments is possible (FP8)
|
||||
- local: concept_guides/training_tpu
|
||||
title: TPU best practices
|
||||
title: Concepts and fundamentals
|
||||
- sections:
|
||||
- local: package_reference/accelerator
|
||||
title: Main Accelerator class
|
||||
title: Accelerator
|
||||
- local: package_reference/state
|
||||
title: Stateful configuration classes
|
||||
- local: package_reference/cli
|
||||
@ -87,6 +102,8 @@
|
||||
title: Logging
|
||||
- local: package_reference/big_modeling
|
||||
title: Working with large models
|
||||
- local: package_reference/inference
|
||||
title: Distributed inference with big models
|
||||
- local: package_reference/kwargs
|
||||
title: Kwargs handlers
|
||||
- local: package_reference/utilities
|
||||
|
||||
128
docs/source/basic_tutorials/execution.md
Normal file
128
docs/source/basic_tutorials/execution.md
Normal file
@ -0,0 +1,128 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Execution process
|
||||
|
||||
When working with distributed training systems, it is important to manage how and when processes are executed across GPUs. Some processes are completed faster than others, and some processes shouldn't begin if others haven't finished yet. Accelerate provides tools for orchestrating when processes are executed to ensure everything remains synchronized across all devices.
|
||||
|
||||
This tutorial will teach you how to execute a process on only one machine and how to delay execution until all processes have reached a certain point.
|
||||
|
||||
## Execute on one process
|
||||
|
||||
Certain code only needs to be run once on a given machine, such as printing a log statement or only displaying one progress bar on the local main process.
|
||||
|
||||
<hfoptions id="local-execution">
|
||||
<hfoption id="statements">
|
||||
|
||||
You should use `accelerator.is_local_main_process` to indicate code that should only be executed once.
|
||||
|
||||
```py
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
||||
```
|
||||
|
||||
You could also wrap a statement with `accelerator.is_local_main_process`.
|
||||
|
||||
> [!TIP]
|
||||
> For standalone `print` statements that aren't wrapped in `accelerator.is_local_main_process`, replace `print` with Accelerate's [`~Accelerator.print`] method to only print once per process.
|
||||
|
||||
```py
|
||||
if accelerator.is_local_main_process:
|
||||
print("Accelerate is the best")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="function">
|
||||
|
||||
For a function that should only be executed once, use [`~Accelerator.on_local_main_process`].
|
||||
|
||||
```py
|
||||
@accelerator.on_local_main_process
|
||||
def do_my_thing():
|
||||
"Something done once per server"
|
||||
do_thing_once_per_server()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
You could also direct Accelerate to execute code once across *all processes* regardless of the number of machines. This is useful if you're uploading a final model to the Hub.
|
||||
|
||||
<hfoptions id="main-execution">
|
||||
<hfoption id="statement">
|
||||
|
||||
You should use `accelerator.is_main_process` to indicate code that should only be executed once across all processes.
|
||||
|
||||
```py
|
||||
if accelerator.is_main_process:
|
||||
repo.push_to_hub()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="function">
|
||||
|
||||
For a function that should only be executed once across all processes, use [`~Accelerator.on_main_process`].
|
||||
|
||||
```py
|
||||
@accelerator.on_main_process
|
||||
def do_my_thing():
|
||||
"Something done once per server"
|
||||
do_thing_once()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Execute on a specific process
|
||||
|
||||
Accelerate can also help you execute functions that should only be executed on a specific process or a local process index.
|
||||
|
||||
<hfoptions id="specific-execution">
|
||||
<hfoption id="specific process">
|
||||
|
||||
Use the [`~Accelerator.on_process`] method and specify the process index to execute a function on.
|
||||
|
||||
```py
|
||||
@accelerator.on_process(process_index=0)
|
||||
def do_my_thing():
|
||||
"Something done on process index 0"
|
||||
do_thing_on_index_zero()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="local process">
|
||||
|
||||
Use the [`~Accelerator.on_local_process`] method and specify the local process index to execute a function on.
|
||||
|
||||
```py
|
||||
@accelerator.on_local_process(local_process_idx=0)
|
||||
def do_my_thing():
|
||||
"Something done on process index 0 on each server"
|
||||
do_thing_on_index_zero_on_each_server()
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Defer execution
|
||||
|
||||
When you run your script on several GPUs at the same time, some code may be executed faster than others. You might need to wait for all processes to reach a certain point before executing the next set of instructions. For instance, you shouldn’t save a model before making sure every process is done with training.
|
||||
|
||||
To do this, add [`~Accelerator.wait_for_everyone`] in your code. This blocks all processes that have finished first from continuing until all remaining processes have reached the same point (this has no effect if you're running on a single GPU or CPU).
|
||||
|
||||
```py
|
||||
accelerator.wait_for_everyone()
|
||||
```
|
||||
@ -13,21 +13,11 @@ specific language governing permissions and limitations under the License.
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Migrating your code to 🤗 Accelerate
|
||||
# Add Accelerate to your code
|
||||
|
||||
This tutorial will detail how to easily convert existing PyTorch code to use 🤗 Accelerate!
|
||||
You'll see that by just changing a few lines of code, 🤗 Accelerate can perform its magic and get you on
|
||||
your way toward running your code on distributed systems with ease!
|
||||
Each distributed training framework has their own way of doing things which can require writing a lot of custom code to adapt it to your PyTorch training code and training environment. Accelerate offers a friendly way to interface with these distributed training frameworks without having to learn the specific details of each one. Accelerate takes care of those details for you, so you can focus on the training code and scale it to any distributed training environment.
|
||||
|
||||
## The base training loop
|
||||
|
||||
To begin, write out a very basic PyTorch training loop.
|
||||
|
||||
<Tip>
|
||||
|
||||
We are under the presumption that `training_dataloader`, `model`, `optimizer`, `scheduler`, and `loss_function` have been defined beforehand.
|
||||
|
||||
</Tip>
|
||||
In this tutorial, you'll learn how to adapt your existing PyTorch code with Accelerate and get you on your way toward training on distributed systems with ease! You'll start with a basic PyTorch training loop (it assumes all the training objects like `model` and `optimizer` have been setup already) and progressively integrate Accelerate into it.
|
||||
|
||||
```python
|
||||
device = "cuda"
|
||||
@ -45,50 +35,44 @@ for batch in training_dataloader:
|
||||
scheduler.step()
|
||||
```
|
||||
|
||||
## Add in 🤗 Accelerate
|
||||
## Accelerator
|
||||
|
||||
The [`Accelerator`] is the main class for adapting your code to work with Accelerate. It knows about the distributed setup you're using such as the number of different processes and your hardware type. This class also provides access to many of the necessary methods for enabling your PyTorch code to work in any distributed training environment and for managing and executing processes across devices.
|
||||
|
||||
That's why you should always start by importing and creating an [`Accelerator`] instance in your script.
|
||||
|
||||
To start using 🤗 Accelerate, first import and create an [`Accelerator`] instance:
|
||||
```python
|
||||
from accelerate import Accelerator
|
||||
|
||||
accelerator = Accelerator()
|
||||
```
|
||||
[`Accelerator`] is the main force behind utilizing all the possible options for distributed training!
|
||||
|
||||
### Setting the right device
|
||||
|
||||
The [`Accelerator`] class knows the right device to move any PyTorch object to at any time, so you should
|
||||
change the definition of `device` to come from [`Accelerator`]:
|
||||
The [`Accelerator`] also knows which device to move your PyTorch objects to, so it is recommended to let Accelerate handle this for you.
|
||||
|
||||
```diff
|
||||
- device = 'cuda'
|
||||
- device = "cuda"
|
||||
+ device = accelerator.device
|
||||
model.to(device)
|
||||
```
|
||||
|
||||
### Preparing your objects
|
||||
## Prepare PyTorch objects
|
||||
|
||||
Next, you need to pass all of the important objects related to training into [`~Accelerator.prepare`]. 🤗 Accelerate will
|
||||
make sure everything is setup in the current environment for you to start training:
|
||||
Next, you need to prepare your PyTorch objects (model, optimizer, scheduler, etc.) for distributed training. The [`~Accelerator.prepare`] method takes care of placing your model in the appropriate container (like single GPU or multi-GPU) for your training setup, adapting the optimizer and scheduler to use Accelerate's [`~optimizer.AcceleratedOptimizer`] and [`~scheduler.AcceleratedScheduler`], and creating a new dataloader that can be sharded across processes.
|
||||
|
||||
```
|
||||
> [!TIP]
|
||||
> Accelerate only prepares objects that inherit from their respective PyTorch classes such as `torch.optim.Optimizer`.
|
||||
|
||||
The PyTorch objects are returned in the same order they're sent.
|
||||
|
||||
```py
|
||||
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
|
||||
model, optimizer, training_dataloader, scheduler
|
||||
)
|
||||
```
|
||||
These objects are returned in the same order they were sent in. By default when using `device_placement=True`, all of the objects that can be sent to the right device will be.
|
||||
If you need to work with data that isn't passed to [~Accelerator.prepare] but should be on the active device, you should pass in the `device` you made earlier.
|
||||
|
||||
<Tip warning={true}>
|
||||
## Training loop
|
||||
|
||||
Accelerate will only prepare objects that inherit from their respective PyTorch classes (such as `torch.optim.Optimizer`).
|
||||
|
||||
</Tip>
|
||||
|
||||
### Modifying the training loop
|
||||
|
||||
Finally, three lines of code need to be changed in the training loop. 🤗 Accelerate's DataLoader classes will automatically handle the device placement by default,
|
||||
and [`~Accelerator.backward`] should be used for performing the backward pass:
|
||||
Finally, remove the `to(device)` calls to the inputs and targets in the training loop because Accelerate's DataLoader classes automatically places them on the right device. You should also replace the usual `backward()` pass with Accelerate's [`~Accelerator.backward`] method which scales the gradients for you and uses the appropriate `backward()` method depending on your distributed setup (for example, DeepSpeed or Megatron).
|
||||
|
||||
```diff
|
||||
- inputs = inputs.to(device)
|
||||
@ -99,17 +83,13 @@ and [`~Accelerator.backward`] should be used for performing the backward pass:
|
||||
+ accelerator.backward(loss)
|
||||
```
|
||||
|
||||
With that, your training loop is now ready to use 🤗 Accelerate!
|
||||
|
||||
## The finished code
|
||||
|
||||
Below is the final version of the converted code:
|
||||
Put everything together and your new Accelerate training loop should now look like this!
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator
|
||||
|
||||
accelerator = Accelerator()
|
||||
|
||||
device = accelerator.device
|
||||
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
|
||||
model, optimizer, training_dataloader, scheduler
|
||||
)
|
||||
@ -124,6 +104,118 @@ for batch in training_dataloader:
|
||||
scheduler.step()
|
||||
```
|
||||
|
||||
## More Resources
|
||||
## Training features
|
||||
|
||||
To check out more ways on how to migrate to 🤗 Accelerate, check out our [interactive migration tutorial](https://huggingface.co/docs/accelerate/usage_guides/explore) which showcases other items that need to be watched for when using Accelerate and how to do so quickly.
|
||||
Accelerate offers additional features - like gradient accumulation, gradient clipping, mixed precision training and more - you can add to your script to improve your training run. Let's explore these three features.
|
||||
|
||||
### Gradient accumulation
|
||||
|
||||
Gradient accumulation enables you to train on larger batch sizes by accumulating the gradients over multiple batches before updating the weights. This can be useful for getting around memory limitations. To enable this feature in Accelerate, specify the `gradient_accumulation_steps` parameter in the [`Accelerator`] class and add the [`~Accelerator.accumulate`] context manager to your script.
|
||||
|
||||
```diff
|
||||
+ accelerator = Accelerator(gradient_accumulation_steps=2)
|
||||
model, optimizer, training_dataloader = accelerator.prepare(model, optimizer, training_dataloader)
|
||||
|
||||
for input, label in training_dataloader:
|
||||
+ with accelerator.accumulate(model):
|
||||
predictions = model(input)
|
||||
loss = loss_function(predictions, label)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
|
||||
### Gradient clipping
|
||||
|
||||
Gradient clipping is a technique to prevent "exploding gradients", and Accelerate offers:
|
||||
|
||||
* [`~Accelerator.clip_grad_value_`] to clip gradients to a minimum and maximum value
|
||||
* [`~Accelerator.clip_grad_norm_`] for normalizing gradients to a certain value
|
||||
|
||||
### Mixed precision
|
||||
|
||||
Mixed precision accelerates training by using a lower precision data type like fp16 (half-precision) to calculate the gradients. For the best performance with Accelerate, the loss should be computed inside your model (like in Transformers models) because computations outside of the model are computed in full precision.
|
||||
|
||||
Set the mixed precision type to use in the [`Accelerator`], and then use the [`~Accelerator.autocast`] context manager to automatically cast the values to the specified data type.
|
||||
|
||||
> [!WARNING]
|
||||
> Accelerate enables automatic mixed precision, so [`~Accelerator.autocast`] is only needed if there are other mixed precision operations besides those performed on loss by [`~Accelerator.backward`] which already handles the scaling.
|
||||
|
||||
```diff
|
||||
+ accelerator = Accelerator(mixed_precision="fp16")
|
||||
+ with accelerator.autocast():
|
||||
loss = complex_loss_function(outputs, target):
|
||||
```
|
||||
|
||||
## Save and load
|
||||
|
||||
Accelerate can also save and load a *model* once training is complete or you can also save the model and optimizer *state* which could be useful for resuming training.
|
||||
|
||||
### Model
|
||||
|
||||
Once all processes are complete, unwrap the model with the [`~Accelerator.unwrap_model`] method before saving it because the [`~Accelerator.prepare`] method wrapped your model into the proper interface for distributed training. If you don't unwrap the model, saving the model state dictionary also saves any potential extra layers from the larger model and you won't be able to load the weights back into your base model.
|
||||
|
||||
You should use the [`~Accelerator.save_model`] method to unwrap and save the model state dictionary. This method can also save a model into sharded checkpoints or into the [safetensors](https://hf.co/docs/safetensors/index) format.
|
||||
|
||||
<hfoptions id="save">
|
||||
<hfoption id="single checkpoint">
|
||||
|
||||
```py
|
||||
accelerator.wait_for_everyone()
|
||||
accelerator.save_model(model, save_directory)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
For models from the [Transformers](https://hf.co/docs/transformers/index) library, save the model with the [`~transformers.PreTrainedModel.save_pretrained`] method so that it can be reloaded with the [`~transformers.PreTrainedModel.from_pretrained`] method.
|
||||
|
||||
```py
|
||||
from transformers import AutoModel
|
||||
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(
|
||||
"path/to/my_model_directory",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
)
|
||||
|
||||
model = AutoModel.from_pretrained("path/to/my_model_directory")
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
To load your weights, use the [`~Accelerator.unwrap_model`] method to unwrap the model first before loading the weights. All model parameters are references to tensors, so this loads your weights inside `model`.
|
||||
|
||||
```py
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
path_to_checkpoint = os.path.join(save_directory,"pytorch_model.bin")
|
||||
unwrapped_model.load_state_dict(torch.load(path_to_checkpoint))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="sharded checkpoint">
|
||||
|
||||
Set `safe_serialization=True` to save the model in the safetensor format.
|
||||
|
||||
```py
|
||||
accelerator.wait_for_everyone()
|
||||
accelerator.save_model(model, save_directory, max_shard_size="1GB", safe_serialization=True)
|
||||
```
|
||||
|
||||
To load a sharded checkpoint or a safetensor formatted checkpoint, use the [`~accelerate.load_checkpoint_in_model`] method. This method allows you to load a checkpoint onto a specific device.
|
||||
|
||||
```py
|
||||
load_checkpoint_in_model(unwrapped_model, save_directory, device_map={"":device})
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### State
|
||||
|
||||
During training, you may want to save the current state of the model, optimizer, random generators, and potentially learning rate schedulers so they can be restored in the *same script*. You should add the [`~Accelerator.save_state`] and [`~Accelerator.load_state`] methods to your script to save and load states.
|
||||
|
||||
To further customize where and how states are saved through [`~Accelerator.save_state`], use the [`~utils.ProjectConfiguration`] class. For example, if `automatic_checkpoint_naming` is enabled, each saved checkpoint is stored at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`.
|
||||
|
||||
Any other stateful items to be stored should be registered with the [`~Accelerator.register_for_checkpointing`] method so they can be saved and loaded. Every object passed to this method to be stored must have a `load_state_dict` and `state_dict` function.
|
||||
|
||||
@ -186,7 +186,7 @@ Here is a basic training loop for the animal classification problem:
|
||||
|
||||
<Tip>
|
||||
|
||||
The code has been split up to allow for explainations on each section. A full version that can be copy and pasted will be available at the end
|
||||
The code has been split up to allow for explanations on each section. A full version that can be copy and pasted will be available at the end
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -344,7 +344,7 @@ def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64):
|
||||
mean = mean.to(accelerator.device)
|
||||
std = std.to(accelerator.device)
|
||||
|
||||
# Intantiate the optimizer
|
||||
# Instantiate the optimizer
|
||||
optimizer = torch.optim.Adam(params=model.parameters(), lr=3e-2 / 25)
|
||||
|
||||
# Instantiate the learning rate scheduler
|
||||
@ -443,6 +443,12 @@ epoch 4: 94.71
|
||||
|
||||
And that's it!
|
||||
|
||||
Please note that [`notebook_launcher`] ignores the 🤗 Accelerate config file, to launch based on the config use:
|
||||
|
||||
```bash
|
||||
accelerate launch
|
||||
```
|
||||
|
||||
## Debugging
|
||||
|
||||
A common issue when running the `notebook_launcher` is receiving a CUDA has already been initialized issue. This usually stems
|
||||
|
||||
38
docs/source/basic_tutorials/tpu.md
Normal file
38
docs/source/basic_tutorials/tpu.md
Normal file
@ -0,0 +1,38 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# TPU training
|
||||
|
||||
A [TPU (Tensor Processing Unit)](https://cloud.google.com/tpu/docs/intro-to-tpu) is a type of hardware specifically designed for training models efficiently. Accelerate supports TPU training, but there are a few things you should be aware of, namely graph compilation. This tutorial briefly discusses compilation, and for more details, take a look at the [Training on TPUs with Accelerate](../concept_guides/training_tpu) guide.
|
||||
|
||||
## Compilation
|
||||
|
||||
A TPU creates a graph of all the operations in the training step such as the forward pass, backward pass and optimizer step. This is why the first training step always takes a while because building and compiling this graph takes time. But once compilation is complete, it is cached and all subsequent steps are much faster.
|
||||
|
||||
The key is to avoid compiling your code again or else training is super slow. This means all your operations must be exactly the same:
|
||||
|
||||
* all tensors in your batches must have the same length (for example, no dynamic padding for NLP tasks)
|
||||
* your code must be static (for example, no layers with for loops that have different lengths depending on the input such as a LSTM)
|
||||
|
||||
## Weight tying
|
||||
|
||||
A common language model design is to tie the weights of the embedding and softmax layers. However, moving the model to a TPU (either yourself or passing it to the [`~Accelerator.prepare`] method) breaks the weight tying and you'll need to retie the weights.
|
||||
|
||||
To add special behavior (like weight tying) in your script for TPUs, set [`~Accelerator.distributed_type`] to `DistributedType.TPU` first. Then you can use the [`~transformers.PreTrainedModel.tie_weights`] method to tie the weights.
|
||||
|
||||
```py
|
||||
if accelerator.distributed_type == DistributedType.TPU:
|
||||
model.tie_weights()
|
||||
```
|
||||
211
docs/source/basic_tutorials/troubleshooting.md
Normal file
211
docs/source/basic_tutorials/troubleshooting.md
Normal file
@ -0,0 +1,211 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Troubleshoot
|
||||
|
||||
This guide provides solutions to some issues you might encounter when using Accelerate. Not all errors are covered because Accelerate is an active library that is continuously evolving and there are many different use cases and distributed training setups. If the solutions described here don't help with your specific error, please take a look at the [Ask for help](#ask-for-help) section to learn where and how to get help.
|
||||
|
||||
## Logging
|
||||
|
||||
Logging can help you identify where an error is coming from. In a distributed setup with multiple processes, logging can be a challenge, but Accelerate provides the [`~accelerate.logging`] utility to ensure logs are synchronized.
|
||||
|
||||
To troubleshoot an issue, use [`~accelerate.logging`] instead of the standard Python [`logging`](https://docs.python.org/3/library/logging.html#module-logging) module. Set the verbosity level (`INFO`, `DEBUG`, `WARNING`, `ERROR`, `CRITICAL`) with the `log_level` parameter, and then you can either:
|
||||
|
||||
1. Export the `log_level` as the `ACCELERATE_LOG_LEVEL` environment variable.
|
||||
2. Pass the `log_level` directly to `get_logger`.
|
||||
|
||||
For example, to set `log_level="INFO"`:
|
||||
|
||||
```py
|
||||
from accelerate.logging import get_logger
|
||||
|
||||
logger = get_logger(__name__, log_level="DEBUG")
|
||||
```
|
||||
|
||||
By default, the log is called on main processes only. To call it on all processes, pass `main_process_only=False`.
|
||||
If a log should be called on all processes and in order, also pass `in_order=True`.
|
||||
|
||||
```py
|
||||
from accelerate.logging import get_logger
|
||||
|
||||
logger = get_logger(__name__, log_level="DEBUG")
|
||||
# log all processes
|
||||
logger.debug("thing_to_log", main_process_only=False)
|
||||
# log all processes in order
|
||||
logger.debug("thing_to_log", main_process_only=False, in_order=True)
|
||||
```
|
||||
|
||||
## Hanging code and timeout errors
|
||||
|
||||
There can be many reasons why your code is hanging. Let's take a look at how to solve some of the most common issues that can cause your code to hang.
|
||||
|
||||
### Mismatched tensor shapes
|
||||
|
||||
Mismatched tensor shapes is a common issue that can cause your code to hang for a significant amount of time on a distributed setup.
|
||||
|
||||
When running scripts in a distributed setup, functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] are necessary to grab tensors across devices to collectively perform operations on them. These (and other) functions rely on `torch.distributed` to perform a `gather` operation, which requires tensors to have the **exact same shape** across all processes. When the tensor shapes don't match, your code hangs and you'll eventually hit a timeout exception.
|
||||
|
||||
You can use Accelerate's operational debug mode to immediately catch this issue. We recommend enabling this mode during the `accelerate config` setup, but you can also enable it from the CLI, as an environment variable, or by manually editing the `config.yaml` file.
|
||||
|
||||
<hfoptions id="mismatch">
|
||||
<hfoption id="CLI">
|
||||
|
||||
```bash
|
||||
accelerate launch --debug {my_script.py} --arg1 --arg2
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="environment variable">
|
||||
|
||||
If enabling debug mode as an environment variable, you don't need to call `accelerate launch`.
|
||||
|
||||
```bash
|
||||
ACCELERATE_DEBUG_MODE="1" torchrun {my_script.py} --arg1 --arg2
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="config.yaml">
|
||||
|
||||
Add `debug: true` to your `config.yaml` file.
|
||||
|
||||
```yaml
|
||||
compute_environment: LOCAL_MACHINE
|
||||
debug: true
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Once you enable debug mode, you should get a traceback that points to the tensor shape mismatch issue.
|
||||
|
||||
```py
|
||||
Traceback (most recent call last):
|
||||
File "/home/zach_mueller_huggingface_co/test.py", line 18, in <module>
|
||||
main()
|
||||
File "/home/zach_mueller_huggingface_co/test.py", line 15, in main
|
||||
broadcast_tensor = broadcast(tensor)
|
||||
File "/home/zach_mueller_huggingface_co/accelerate/src/accelerate/utils/operations.py", line 303, in wrapper
|
||||
accelerate.utils.operations.DistributedOperationException:
|
||||
|
||||
Cannot apply desired operation due to shape mismatches. All shapes across devices must be valid.
|
||||
|
||||
Operation: `accelerate.utils.operations.broadcast`
|
||||
Input shapes:
|
||||
- Process 0: [1, 5]
|
||||
- Process 1: [1, 2, 5]
|
||||
```
|
||||
|
||||
### Early stopping
|
||||
|
||||
For early stopping in distributed training, if each process has a specific stopping condition (e.g. validation loss), it may not be synchronized across all processes. As a result, a break can happen on process 0 but not on process 1 which will cause your code to hang indefinitely until a timeout occurs.
|
||||
|
||||
If you have early stopping conditionals, use the `set_breakpoint` and `check_breakpoint` methods to make sure all the processes
|
||||
are ended correctly.
|
||||
|
||||
```py
|
||||
# Assume `should_do_breakpoint` is a custom defined function that returns a conditional,
|
||||
# and that conditional might be true only on process 1
|
||||
if should_do_breakpoint(loss):
|
||||
accelerator.set_breakpoint()
|
||||
|
||||
# Later in the training script when we need to check for the breakpoint
|
||||
if accelerator.check_breakpoint():
|
||||
break
|
||||
```
|
||||
|
||||
### Low kernel versions on Linux
|
||||
|
||||
On Linux with kernel version < 5.5, hanging processes have been reported. To avoid this problem, upgrade your system to a later kernel version.
|
||||
|
||||
### MPI
|
||||
|
||||
If your distributed CPU training job using MPI is hanging, ensure that you have
|
||||
[passwordless SSH](https://www.open-mpi.org/faq/?category=rsh#ssh-keys) setup (using keys) between the nodes. This means
|
||||
that for all nodes in your hostfile, you should to be able to SSH from one node to another without being prompted for a password.
|
||||
|
||||
Next, try to run the `mpirun` command as a sanity check. For example, the command below should print out the
|
||||
hostnames for each of the nodes.
|
||||
|
||||
```bash
|
||||
mpirun -f hostfile -n {number of nodes} -ppn 1 hostname
|
||||
```
|
||||
|
||||
## CUDA Out-of-Memory
|
||||
|
||||
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory". The entire script needs to be restarted and any progress is lost.
|
||||
|
||||
To address this problem, Accelerate provides the [`find_executable_batch_size`] utility that is heavily based on [toma](https://github.com/BlackHC/toma).
|
||||
This utility retries code that fails due to OOM (out-of-memory) conditions and automatically lowers batch sizes. For each OOM condition, the algorithm decreases the batch size by half and retries the code until it succeeds.
|
||||
|
||||
To use [`find_executable_batch_size`], restructure your training function to include an inner function with `find_executable_batch_size` and build your dataloaders inside it. At a minimum, this only takes 4 new lines of code.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
The inner function **must** take batch size as the first parameter, but we do not pass one to it when called. The wrapper will handles this for you. Any object (models, optimizers) that consumes CUDA memory and is passed to the [`Accelerator`] also **must** be declared inside the inner function.
|
||||
|
||||
</Tip>
|
||||
|
||||
```diff
|
||||
def training_function(args):
|
||||
accelerator = Accelerator()
|
||||
|
||||
+ @find_executable_batch_size(starting_batch_size=args.batch_size)
|
||||
+ def inner_training_loop(batch_size):
|
||||
+ nonlocal accelerator # Ensure they can be used in our context
|
||||
+ accelerator.free_memory() # Free all lingering references
|
||||
model = get_model()
|
||||
model.to(accelerator.device)
|
||||
optimizer = get_optimizer()
|
||||
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
|
||||
lr_scheduler = get_scheduler(
|
||||
optimizer,
|
||||
num_training_steps=len(train_dataloader)*num_epochs
|
||||
)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
)
|
||||
train(model, optimizer, train_dataloader, lr_scheduler)
|
||||
validate(model, eval_dataloader)
|
||||
+ inner_training_loop()
|
||||
```
|
||||
|
||||
## Non-reproducible results between device setups
|
||||
|
||||
If you changed the device setup and observe different model performance, it is likely you didn't update your script when moving from one setup to another. Even if you're using the same script with the same batch size, the results will still be different on a TPU, multi-GPU, and single GPU.
|
||||
|
||||
For example, if you were training on a single GPU with a batch size of 16 and you move to a dual GPU setup, you need to change the batch size to 8 to have the same effective batch size. This is because when training with Accelerate, the batch size passed to the dataloader is the **batch size per GPU**.
|
||||
|
||||
To make sure you can reproduce the results between the setups, make sure to use the same seed, adjust the batch size accordingly, and consider scaling the learning rate.
|
||||
|
||||
For more details and a quick reference for batch sizes, check out the [Comparing performance between different device setups](../concept_guides/performance) guide.
|
||||
|
||||
## Performance issues on different GPUs
|
||||
|
||||
If your multi-GPU setup consists of different GPUs, you may encounter some performance issues:
|
||||
|
||||
- There may be an imbalance in GPU memory between the GPUs. In this case, the GPU with the smaller memory will limit the batch size or the size of the model that can be loaded onto the GPUs.
|
||||
- If you are using GPUs with different performance profiles, the performance will be driven by the slowest GPU you are using because the other GPUs will have to wait for it to complete its workload.
|
||||
|
||||
Vastly different GPUs within the same setup can lead to performance bottlenecks.
|
||||
|
||||
## Ask for help
|
||||
|
||||
If none of the solutions and advice here helped resolve your issue, you can always reach out to the community and Accelerate team for help.
|
||||
|
||||
- Ask for help on the Hugging Face forums by posting your question in the [🤗 Accelerate category](https://discuss.huggingface.co/c/accelerate/18). Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
|
||||
|
||||
- Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you.
|
||||
|
||||
- Create an Issue on the 🤗 Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you think you've found a bug related to the library. Include context regarding the bug and details about your distributed setup to help us better figure out what's wrong and how we can fix it.
|
||||
@ -154,7 +154,7 @@ By passing `device_map="auto"`, we tell 🤗 Accelerate to determine automatical
|
||||
#### `no_split_module_classes`
|
||||
|
||||
This parameter will indicate that some of the modules with the name `"Block"` should not be split across different devices. You should set here all blocks that
|
||||
include a residutal connection of some kind.
|
||||
include a residual connection of some kind.
|
||||
|
||||
|
||||
#### The `device_map`
|
||||
@ -295,11 +295,44 @@ device_map = {"block1": 0, "block2.linear1": 1, "block2.linear2": 1}
|
||||
|
||||
</Tip>
|
||||
|
||||
## CPU offload only
|
||||
|
||||
If you want to offload your model on CPU, you can use [`cpu_offload`]. As a result, all parameters of the model will be offloaded and only one copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that state dict and put on the execution device and passed as they are needed, then offloaded again.
|
||||
|
||||
```python
|
||||
cpu_offload(model, execution_device)
|
||||
```
|
||||
|
||||
You can also use [`cpu_offload_with_hook`]. This function will offloads a model on the CPU and puts it back to an execution device when executed. The difference with [`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when the `offload` method of the returned `hook` is called. Furthermore, [`cpu_offload_with_hook`] is more performant but less memory saving. It is useful for pipelines running a model in a loop:
|
||||
|
||||
```python
|
||||
model_1, hook_1 = cpu_offload_with_hook(model_1, execution_device)
|
||||
model_2, hook_2 = cpu_offload_with_hook(model_2, execution_device, prev_module_hook=hook_1)
|
||||
model_3, hook_3 = cpu_offload_with_hook(model_3, execution_device, prev_module_hook=hook_2)
|
||||
|
||||
hid_1 = model_1(input)
|
||||
for i in range(50):
|
||||
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
|
||||
hid_2 = model_2(hid_1)
|
||||
# model2 is offloaded to the CPU just before this forward.
|
||||
hid_3 = model_3(hid_3)
|
||||
|
||||
# For model3, you need to manually call the hook offload method.
|
||||
hook_3.offload()
|
||||
```
|
||||
|
||||
## Disk offload only
|
||||
|
||||
To perform disk offload, you can use [`disk_offload`]. As a result, all parameters of the model will be offloaded as memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and put on the execution device passed as they are needed, then offloaded again.
|
||||
|
||||
```python
|
||||
disk_offload(model, offload_dir, execution_device)
|
||||
```
|
||||
|
||||
## Limits and further development
|
||||
|
||||
We are aware of the current limitations in the API:
|
||||
|
||||
- While this could theoretically work on just one CPU with potential disk offload, you need at least one GPU to run this API. This will be fixed in further development.
|
||||
- [`infer_auto_device_map`] (or `device_map="auto"` in [`load_checkpoint_and_dispatch`]) tries to maximize GPU and CPU RAM it sees available when you execute it. While PyTorch is very good at managing GPU RAM efficiently (and giving it back when not needed), it's not entirely true with Python and CPU RAM. Therefore, an automatically computed device map might be too intense on the CPU. Move a few modules to the disk device if you get crashes due to a lack of RAM.
|
||||
- [`infer_auto_device_map`] (or `device_map="auto"` in [`load_checkpoint_and_dispatch`]) attributes devices sequentially (to avoid moving things back and forth) so if your first layer is bigger than the size of the GPU you have, it will end up with everything on the CPU/Disk.
|
||||
- [`load_checkpoint_and_dispatch`] and [`load_checkpoint_in_model`] do not perform any check on the correctness of your state dict compared to your model at the moment (this will be fixed in a future version), so you may get some weird errors if trying to load a checkpoint with mismatched or missing keys.
|
||||
|
||||
@ -55,8 +55,8 @@ their gradients computed, collated, and updated before moving on to the next
|
||||
batch of data.
|
||||
When performing gradient accumulation, you accumulate `n` loss gradients and
|
||||
skip `optimizer.step()` until `n` batches have been reached. As all training
|
||||
processes only need to sychronize by the time `optimizer.step()` is called,
|
||||
without any modification to your training step, this neededless inter-process
|
||||
processes only need to synchronize by the time `optimizer.step()` is called,
|
||||
without any modification to your training step, this needless inter-process
|
||||
communication can cause a significant slowdown.
|
||||
|
||||
How can you avoid this overhead?
|
||||
@ -167,3 +167,18 @@ As you can see, if you are not careful about how you set up your gradient synchr
|
||||
|
||||
If you are worried about making sure everything is done properly, we highly recommend utilizing the [`~Accelerator.accumulate`] function and passing in
|
||||
`gradient_accumulation_steps` or `gradient_accumulation_plugin` to the [`Accelerator`] object so Accelerate can handle this for you.
|
||||
|
||||
### `no_sync` requires additional GPU memory when using FSDP
|
||||
|
||||
Be aware that not syncing gradients can have adverse effects while performing FSDP training. As it has been warned in `torch`, the [`no_sync` context manager for FSDP](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.FullyShardedDataParallel.no_sync) will require additional memory.
|
||||
|
||||
Therefore in memory intensive situations while using FSDP, we recommend to set `sync_each_batch` to `True` in the [`~utils.GradientAccumulationPlugin`] to disable `no_sync`.
|
||||
|
||||
See the example below where we fine-tune Mixtral (47B parameters) on 8 A100-80GB GPUs. We see that even for a modest `gradient_accumulation_steps=2` we quickly go out-of-memory (OOM) if `no_sync` is enabled. Again, this is due to additional memory overheads due to FSDP's `no_sync`. However, if `no_sync` is disabled via `sync_each_batch=True`, then the memory consumption for `gradient_accumulation_steps=16` reverts to that of `gradient_accumulation_steps=1`.
|
||||
|
||||
| Model | `no_sync` (accum=1) | `no_sync` (accum=2) | `no_sync` disabled (accum=16)
|
||||
| :-------------: | :-----------------: | :-----------------: | :-----------------:
|
||||
mixtral 8x7B | 69G | OOM | 69G
|
||||
|
||||
> [!WARNING]
|
||||
> Disabling `no_sync` means there _will be slowdown_ due the extra data syncs, as explained by the earlier sections of this guide.
|
||||
74
docs/source/concept_guides/low_precision_training.md
Normal file
74
docs/source/concept_guides/low_precision_training.md
Normal file
@ -0,0 +1,74 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Low Precision Training Methods
|
||||
|
||||
The release of new kinds of hardware led to the emergence of new training paradigms that better utilize them. Currently, this is in the form of training
|
||||
in 8-bit precision using packages such as [TransformersEngine](https://github.com/NVIDIA/TransformerEngine) (TE) or [MS-AMP](https://github.com/Azure/MS-AMP/tree/main).
|
||||
|
||||
For an introduction to the topics discussed today, we recommend reviewing the [low-precision usage guide](../usage_guides/low_precision_training.md) as this documentation will reference it regularly.
|
||||
|
||||
## A Quick Chart
|
||||
|
||||
Below is a quick chart from the MS-AMP documentation showing the different bit-precisions for each solution during training:
|
||||
|
||||
Optimization Level | Computation(GEMM) | Comm | Weight | Master Weight | Weight Gradient | Optimizer States
|
||||
-- | -- | -- | -- | -- | -- | --
|
||||
FP16 AMP | FP16 | FP32 | FP32 | N/A | FP32 | FP32+FP32
|
||||
Nvidia TE | FP8 | FP32 | FP32 | N/A | FP32 | FP32+FP32
|
||||
MS-AMP O1 | FP8 | FP8 | FP16 | N/A | FP8 | FP32+FP32
|
||||
MS-AMP O2 | FP8 | FP8 | FP16 | N/A | FP8 | FP8+FP16
|
||||
MS-AMP O3 | FP8 | FP8 | FP8 | FP16 | FP8 | FP8+FP16
|
||||
|
||||
## `TransformersEngine`
|
||||
|
||||
`TransformersEngine` is the first solution to trying to train in 8-bit floating point. It works by using drop-in replacement layers for certain ones in a model that utilizes their FP8-engine to reduce the number of bits (such as 32 to 8) without degrading the final accuracy of the model.
|
||||
|
||||
Specifically, 🤗 Accelerate will find and replace the following layers with `TransformersEngine` versions:
|
||||
|
||||
* `nn.LayerNorm` for `te.LayerNorm`
|
||||
* `nn.Linear` for `te.Linear`
|
||||
|
||||
As a result we wind up with a model that has most of its layers in BF16, while some layers are in FP8 reducing some of the memory.
|
||||
|
||||
Anecdotally, we have noticed that performance gains don't really start showing when using `TransformerEngine` until a large majority of the layers
|
||||
in the model are made up of those two layers to replace. As a result, only larger models have shown performance improvements when the number of parameters is around and upwards of a few billion.
|
||||
|
||||
The `TransformerEngine` can receive many different arguments that customize how it performs FP8 calculations and what they do. A full list of the arguments is available below:
|
||||
|
||||
* `margin`: The margin to use for the gradient scaling.
|
||||
* `interval`: The interval to use for how often the scaling factor is recomputed.
|
||||
* `fp8_format``: The format to use for the FP8 recipe. Must be one of `E4M3` or `HYBRID`.
|
||||
* `amax_history_len`: The length of the history to use for the scaling factor computation
|
||||
* `amax_compute_algo`: The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`.
|
||||
* `override_linear_precision`: Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
|
||||
|
||||
You can customize each of these as part of [`utils.FP8RecipeKwargs`] to help optimize performance of your models.
|
||||
|
||||
If we notice in the chart mentioned earlier, TE simply casts the computation layers into FP8, while everything else is in FP32. As a result this winds up utilizing the most memory but does so with the benefit of guaranteeing the least amount of loss in end accuracy during training.
|
||||
|
||||
## `MS-AMP`
|
||||
|
||||
MS-AMP takes a different approach to `TransformersEngine` by providing three different optimization levels to convert more operations in FP8 or FP16.
|
||||
|
||||
* The base optimization level (`O1`), passes communications of the weights (such as in DDP) in FP8, stores the weights of the model in FP16, and leaves the optimizer states in FP32. The main benefit of this optimization level is that we can reduce the communication bandwidth by essentially half. Additionally, more GPU memory is saved due to 1/2 of everything being cast in FP8, and the weights being cast to FP16. Notably, both the optimizer states remain in FP32.
|
||||
|
||||
* The second optimization level (`O2`) improves upon this by also reducing the precision of the optimizer states. One is in FP8 while the other is in FP16. Generally it's been shown that this will only provide a net-gain of no degraded end accuracy, increased training speed, and reduced memory as now every state is either in FP16 or FP8.
|
||||
|
||||
* Finally, MS-AMP has a third optimization level (`O3`) which helps during DDP scenarios such as DeepSpeed. The weights of the model in memory are fully cast to FP8, and the master weights are now stored in FP16. This fully reduces memory by the highest factor as now not only is almost everything in FP8, only two states are left in FP16. Currently, only DeepSpeed versions up through 0.9.2 are supported, so this capability is not included in the 🤗 Accelerate integration
|
||||
|
||||
## Combining the two
|
||||
|
||||
More experiments need to be performed but it's been noted that combining both MS-AMP and TransformersEngine can lead to the highest throughput by relying on NVIDIA's optimized FP8 operators and utilizing how MS-AMP reduces the memory overhead.
|
||||
@ -45,7 +45,7 @@ Why is this important? Under the hood this will set **5** different seed setting
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
# ^^ safe to call this function even if cuda is not available
|
||||
if is_tpu_available():
|
||||
if is_torch_xla_available():
|
||||
xm.set_rng_state(seed)
|
||||
```
|
||||
|
||||
@ -74,7 +74,7 @@ In this example, there are two GPUs for "Multi-GPU" and a TPU pod with 8 workers
|
||||
|
||||
## Learning Rates
|
||||
|
||||
As noted in multiple sources[[1](https://aws.amazon.com/blogs/machine-learning/scalable-multi-node-deep-learning-training-using-gpus-in-the-aws-cloud/)][[2](https://docs.nvidia.com/clara/tlt-mi_archive/clara-train-sdk-v2.0/nvmidl/appendix/training_with_multiple_gpus.html)], the learning rate should be scaled *linearly* based on the number of devices present. The below
|
||||
As noted in multiple sources[[1](https://aws.amazon.com/blogs/machine-learning/scalable-multi-node-deep-learning-training-using-gpus-in-the-aws-cloud/)][[2](https://docs.nvidia.com/clara/clara-train-sdk/pt/model.html#classification-models-multi-gpu-training)], the learning rate should be scaled *linearly* based on the number of devices present. The below
|
||||
snippet shows doing so with Accelerate:
|
||||
|
||||
<Tip>
|
||||
|
||||
@ -36,7 +36,7 @@ Below is an example of a training function passed to the [`notebook_launcher`] i
|
||||
|
||||
<Tip>
|
||||
|
||||
This code snippet is based off the one from the `simple_nlp_example` notebook found [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate/simple_nlp_example.ipynb) with slight
|
||||
This code snippet is based off the one from the `simple_nlp_example` notebook found [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb) with slight
|
||||
modifications for the sake of simplicity
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -15,197 +15,12 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Accelerator
|
||||
|
||||
The [`Accelerator`] is the main class provided by 🤗 Accelerate.
|
||||
It serves at the main entry point for the API.
|
||||
The [`Accelerator`] is the main class for enabling distributed training on any type of training setup. Read the [Add Accelerator to your code](../basic_tutorials/migration) tutorial to learn more about how to add the [`Accelerator`] to your script.
|
||||
|
||||
## Quick adaptation of your code
|
||||
|
||||
To quickly adapt your script to work on any kind of setup with 🤗 Accelerate just:
|
||||
|
||||
1. Initialize an [`Accelerator`] object (that we will call `accelerator` throughout this page) as early as possible in your script.
|
||||
2. Pass your dataloader(s), model(s), optimizer(s), and scheduler(s) to the [`~Accelerator.prepare`] method.
|
||||
3. Remove all the `.cuda()` or `.to(device)` from your code and let the `accelerator` handle the device placement for you.
|
||||
|
||||
<Tip>
|
||||
|
||||
Step three is optional, but considered a best practice.
|
||||
|
||||
</Tip>
|
||||
|
||||
4. Replace `loss.backward()` in your code with `accelerator.backward(loss)`
|
||||
5. Gather your predictions and labels before storing them or using them for metric computation using [`~Accelerator.gather`]
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Step five is mandatory when using distributed evaluation
|
||||
|
||||
</Tip>
|
||||
|
||||
In most cases this is all that is needed. The next section lists a few more advanced use cases and nice features
|
||||
you should search for and replace by the corresponding methods of your `accelerator`:
|
||||
|
||||
## Advanced recommendations
|
||||
|
||||
### Printing
|
||||
|
||||
`print` statements should be replaced by [`~Accelerator.print`] to be printed once per process:
|
||||
|
||||
```diff
|
||||
- print("My thing I want to print!")
|
||||
+ accelerator.print("My thing I want to print!")
|
||||
```
|
||||
|
||||
### Executing processes
|
||||
|
||||
#### Once on a single server
|
||||
|
||||
For statements that should be executed once per server, use [`~Accelerator.is_local_main_process`]:
|
||||
|
||||
```python
|
||||
if accelerator.is_local_main_process:
|
||||
do_thing_once_per_server()
|
||||
```
|
||||
|
||||
A function can be wrapped using the [`~Accelerator.on_local_main_process`] function to achieve the same
|
||||
behavior on a function's execution:
|
||||
|
||||
```python
|
||||
@accelerator.on_local_main_process
|
||||
def do_my_thing():
|
||||
"Something done once per server"
|
||||
do_thing_once_per_server()
|
||||
```
|
||||
|
||||
#### Only ever once across all servers
|
||||
|
||||
For statements that should only ever be executed once, use [`~Accelerator.is_main_process`]:
|
||||
|
||||
```python
|
||||
if accelerator.is_main_process:
|
||||
do_thing_once()
|
||||
```
|
||||
|
||||
A function can be wrapped using the [`~Accelerator.on_main_process`] function to achieve the same
|
||||
behavior on a function's execution:
|
||||
|
||||
```python
|
||||
@accelerator.on_main_process
|
||||
def do_my_thing():
|
||||
"Something done once per server"
|
||||
do_thing_once()
|
||||
```
|
||||
|
||||
#### On specific processes
|
||||
|
||||
If a function should be ran on a specific overall or local process index, there are similar decorators
|
||||
to achieve this:
|
||||
|
||||
```python
|
||||
@accelerator.on_local_process(local_process_idx=0)
|
||||
def do_my_thing():
|
||||
"Something done on process index 0 on each server"
|
||||
do_thing_on_index_zero_on_each_server()
|
||||
```
|
||||
|
||||
```python
|
||||
@accelerator.on_process(process_index=0)
|
||||
def do_my_thing():
|
||||
"Something done on process index 0"
|
||||
do_thing_on_index_zero()
|
||||
```
|
||||
|
||||
### Synchronicity control
|
||||
|
||||
Use [`~Accelerator.wait_for_everyone`] to make sure all processes join that point before continuing. (Useful before a model save for instance).
|
||||
|
||||
### Saving and loading
|
||||
|
||||
```python
|
||||
model = MyModel()
|
||||
model = accelerator.prepare(model)
|
||||
```
|
||||
|
||||
Use [`~Accelerator.save_model`] instead of `torch.save` to save a model. It will remove all model wrappers added during the distributed process, get the state_dict of the model and save it. The state_dict will be in the same precision as the model being trained.
|
||||
|
||||
```diff
|
||||
- torch.save(state_dict, "my_state.pkl")
|
||||
+ accelerator.save_model(model, save_directory)
|
||||
```
|
||||
|
||||
[`~Accelerator.save_model`] can also save a model into sharded checkpoints or with safetensors format.
|
||||
Here is an example:
|
||||
|
||||
```python
|
||||
accelerator.save_model(model, save_directory, max_shard_size="1GB", safe_serialization=True)
|
||||
```
|
||||
|
||||
#### 🤗 Transformers models
|
||||
|
||||
If you are using models from the [🤗 Transformers](https://huggingface.co/docs/transformers/) library, you can use the `.save_pretrained()` method.
|
||||
|
||||
```python
|
||||
from transformers import AutoModel
|
||||
|
||||
model = AutoModel.from_pretrained("bert-base-cased")
|
||||
model = accelerator.prepare(model)
|
||||
|
||||
# ...fine-tune with PyTorch...
|
||||
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(
|
||||
"path/to/my_model_directory",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
)
|
||||
```
|
||||
|
||||
This will ensure your model stays compatible with other 🤗 Transformers functionality like the `.from_pretrained()` method.
|
||||
|
||||
```python
|
||||
from transformers import AutoModel
|
||||
|
||||
model = AutoModel.from_pretrained("path/to/my_model_directory")
|
||||
```
|
||||
|
||||
### Operations
|
||||
|
||||
Use [`~Accelerator.clip_grad_norm_`] instead of ``torch.nn.utils.clip_grad_norm_`` and [`~Accelerator.clip_grad_value_`] instead of ``torch.nn.utils.clip_grad_value``
|
||||
|
||||
### Gradient Accumulation
|
||||
|
||||
To perform gradient accumulation use [`~Accelerator.accumulate`] and specify a gradient_accumulation_steps.
|
||||
This will also automatically ensure the gradients are synced or unsynced when on
|
||||
multi-device training, check if the step should actually be performed, and auto-scale the loss:
|
||||
|
||||
```diff
|
||||
- accelerator = Accelerator()
|
||||
+ accelerator = Accelerator(gradient_accumulation_steps=2)
|
||||
|
||||
for (input, label) in training_dataloader:
|
||||
+ with accelerator.accumulate(model):
|
||||
predictions = model(input)
|
||||
loss = loss_function(predictions, labels)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
#### GradientAccumulationPlugin
|
||||
[[autodoc]] utils.GradientAccumulationPlugin
|
||||
|
||||
|
||||
Instead of passing `gradient_accumulation_steps` you can instantiate a GradientAccumulationPlugin and pass it to the [`Accelerator`]'s `__init__`
|
||||
as `gradient_accumulation_plugin`. You can only pass either one of `gradient_accumulation_plugin` or `gradient_accumulation_steps` passing both will raise an error.
|
||||
```diff
|
||||
from accelerate.utils import GradientAccumulationPlugin
|
||||
|
||||
gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2)
|
||||
- accelerator = Accelerator()
|
||||
+ accelerator = Accelerator(gradient_accumulation_plugin=gradient_accumulation_plugin)
|
||||
```
|
||||
|
||||
In addition to the number of steps, this also lets you configure whether or not you adjust your learning rate scheduler to account for the change in steps due to accumulation.
|
||||
|
||||
## Overall API documentation:
|
||||
## Accelerator[[api]]
|
||||
|
||||
[[autodoc]] Accelerator
|
||||
|
||||
## Utilities
|
||||
|
||||
[[autodoc]] accelerate.utils.gather_object
|
||||
|
||||
@ -19,6 +19,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
[[autodoc]] big_modeling.init_empty_weights
|
||||
[[autodoc]] big_modeling.cpu_offload
|
||||
[[autodoc]] big_modeling.cpu_offload_with_hook
|
||||
[[autodoc]] big_modeling.disk_offload
|
||||
[[autodoc]] big_modeling.dispatch_model
|
||||
[[autodoc]] big_modeling.load_checkpoint_and_dispatch
|
||||
|
||||
@ -199,7 +199,7 @@ The following arguments are only useful when `use_deepspeed` is passed or `deeps
|
||||
|
||||
**Fully Sharded Data Parallelism Arguments**:
|
||||
|
||||
The following arguments are only useful when `use_fdsp` is passed or Fully Sharded Data Parallelism is configured through `accelerate config`:
|
||||
The following arguments are only useful when `use_fsdp` is passed or Fully Sharded Data Parallelism is configured through `accelerate config`:
|
||||
|
||||
* `--fsdp_offload_params` (`str`) -- Decides Whether (true|false) to offload parameters and gradients to CPU.
|
||||
* `--fsdp_min_num_params` (`int`) -- FSDP's minimum number of parameters for Default Auto Wrapping.
|
||||
@ -218,7 +218,7 @@ The following arguments are only useful when `use_megatron_lm` is passed or Mega
|
||||
* `--megatron_lm_num_micro_batches` (``) -- Megatron-LM's number of micro batches when PP degree > 1.
|
||||
* `--megatron_lm_sequence_parallelism` (``) -- Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1.
|
||||
* `--megatron_lm_recompute_activations` (``) -- Decides Whether (true|false) to enable Selective Activation Recomputation.
|
||||
* `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Pralellel (DP) ranks.
|
||||
* `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Parallel (DP) ranks.
|
||||
* `--megatron_lm_gradient_clipping` (``) -- Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable).
|
||||
|
||||
**AWS SageMaker Arguments**:
|
||||
|
||||
20
docs/source/package_reference/inference.md
Normal file
20
docs/source/package_reference/inference.md
Normal file
@ -0,0 +1,20 @@
|
||||
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# The inference API
|
||||
|
||||
These docs refer to the [PiPPy](https://github.com/PyTorch/PiPPy) integration.
|
||||
|
||||
[[autodoc]] inference.prepare_pippy
|
||||
@ -37,3 +37,7 @@ related to distributed training or mixed precision are created.
|
||||
## InitProcessGroupKwargs
|
||||
|
||||
[[autodoc]] InitProcessGroupKwargs
|
||||
|
||||
## KwargsHandler
|
||||
|
||||
[[autodoc]] utils.KwargsHandler
|
||||
|
||||
@ -15,23 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Logging with Accelerate
|
||||
|
||||
Accelerate has its own logging utility to handle logging while in a distributed system.
|
||||
To utilize this replace cases of `logging` with `accelerate.logging`:
|
||||
```diff
|
||||
- import logging
|
||||
+ from accelerate.logging import get_logger
|
||||
- logger = logging.getLogger(__name__)
|
||||
+ logger = get_logger(__name__)
|
||||
```
|
||||
|
||||
## Setting the log level
|
||||
|
||||
The log level can be set with the `ACCELERATE_LOG_LEVEL` environment variable or by passing
|
||||
`log_level` to `get_logger`:
|
||||
```python
|
||||
from accelerate.logging import get_logger
|
||||
|
||||
logger = get_logger(__name__, log_level="INFO")
|
||||
```
|
||||
Refer to the [Troubleshooting guide](../usage_guides/troubleshooting#logging) or to the example below to learn
|
||||
how to use 🤗 Accelerate's logger.
|
||||
|
||||
[[autodoc]] logging.get_logger
|
||||
@ -31,3 +31,5 @@ rendered properly in your Markdown viewer.
|
||||
- __init__
|
||||
[[autodoc]] tracking.MLflowTracker
|
||||
- __init__
|
||||
[[autodoc]] tracking.ClearMLTracker
|
||||
- __init__
|
||||
|
||||
@ -40,6 +40,12 @@ The following are constants used when utilizing [`Accelerator.save_model`]
|
||||
|
||||
These are basic dataclasses used throughout 🤗 Accelerate and they can be passed in as parameters.
|
||||
|
||||
### Standalone
|
||||
|
||||
These are standalone dataclasses used for checks, such as the type of distributed system being used
|
||||
|
||||
[[autodoc]] utils.ComputeEnvironment
|
||||
|
||||
[[autodoc]] utils.DistributedType
|
||||
|
||||
[[autodoc]] utils.DynamoBackend
|
||||
@ -48,12 +54,30 @@ These are basic dataclasses used throughout 🤗 Accelerate and they can be pass
|
||||
|
||||
[[autodoc]] utils.PrecisionType
|
||||
|
||||
[[autodoc]] utils.ProjectConfiguration
|
||||
[[autodoc]] utils.RNGType
|
||||
|
||||
[[autodoc]] utils.SageMakerDistributedType
|
||||
|
||||
### Kwargs
|
||||
|
||||
These are configurable arguments for specific interactions throughout the PyTorch ecosystem that Accelerate handles under the hood.
|
||||
|
||||
[[autodoc]] utils.AutocastKwargs
|
||||
|
||||
[[autodoc]] utils.DistributedDataParallelKwargs
|
||||
|
||||
[[autodoc]] utils.FP8RecipeKwargs
|
||||
|
||||
[[autodoc]] utils.GradScalerKwargs
|
||||
|
||||
[[autodoc]] utils.InitProcessGroupKwargs
|
||||
|
||||
[[autodoc]] utils.KwargsHandler
|
||||
|
||||
## Plugins
|
||||
|
||||
These are plugins that can be passed to the [`Accelerator`] object. While they are defined elsewhere in the documentation,
|
||||
for convience all of them are available to see here:
|
||||
for convenience all of them are available to see here:
|
||||
|
||||
[[autodoc]] utils.DeepSpeedPlugin
|
||||
|
||||
@ -65,6 +89,24 @@ for convience all of them are available to see here:
|
||||
|
||||
[[autodoc]] utils.TorchDynamoPlugin
|
||||
|
||||
## Configurations
|
||||
|
||||
These are classes which can be configured and passed through to the appropriate integration
|
||||
|
||||
[[autodoc]] utils.BnbQuantizationConfig
|
||||
|
||||
[[autodoc]] utils.DataLoaderConfiguration
|
||||
|
||||
[[autodoc]] utils.ProjectConfiguration
|
||||
|
||||
## Environmental Variables
|
||||
|
||||
These are environmental variables that can be enabled for different use cases
|
||||
|
||||
* `ACCELERATE_DEBUG_MODE` (`str`): Whether to run accelerate in debug mode. More info available [here](../usage_guides/debug.md).
|
||||
|
||||
|
||||
|
||||
|
||||
## Data Manipulation and Operations
|
||||
|
||||
@ -72,16 +114,30 @@ These include data operations that mimic the same `torch` ops but can be used on
|
||||
|
||||
[[autodoc]] utils.broadcast
|
||||
|
||||
[[autodoc]] utils.broadcast_object_list
|
||||
|
||||
[[autodoc]] utils.concatenate
|
||||
|
||||
[[autodoc]] utils.convert_outputs_to_fp32
|
||||
|
||||
[[autodoc]] utils.convert_to_fp32
|
||||
|
||||
[[autodoc]] utils.gather
|
||||
|
||||
[[autodoc]] utils.gather_object
|
||||
|
||||
[[autodoc]] utils.listify
|
||||
|
||||
[[autodoc]] utils.pad_across_processes
|
||||
|
||||
[[autodoc]] utils.recursively_apply
|
||||
|
||||
[[autodoc]] utils.reduce
|
||||
|
||||
[[autodoc]] utils.send_to_device
|
||||
|
||||
[[autodoc]] utils.slice_tensors
|
||||
|
||||
## Environment Checks
|
||||
|
||||
These functionalities check the state of the current working environment including information about the operating system itself, what it can support, and if particular dependencies are installed.
|
||||
@ -96,7 +152,7 @@ These functionalities check the state of the current working environment includi
|
||||
|
||||
[[autodoc]] utils.is_torch_version
|
||||
|
||||
[[autodoc]] utils.is_tpu_available
|
||||
[[autodoc]] utils.is_torch_xla_available
|
||||
|
||||
[[autodoc]] utils.is_xpu_available
|
||||
|
||||
@ -110,9 +166,11 @@ These functionalities check the state of the current working environment includi
|
||||
|
||||
When setting up 🤗 Accelerate for the first time, rather than running `accelerate config` [~utils.write_basic_config] can be used as an alternative for quick configuration.
|
||||
|
||||
## Memory
|
||||
[[autodoc]] utils.set_numa_affinity
|
||||
|
||||
[[autodoc]] utils.get_max_memory
|
||||
[[autodoc]] utils.environment.override_numa_affinity
|
||||
|
||||
## Memory
|
||||
|
||||
[[autodoc]] utils.find_executable_batch_size
|
||||
|
||||
@ -120,12 +178,32 @@ When setting up 🤗 Accelerate for the first time, rather than running `acceler
|
||||
|
||||
These utilities relate to interacting with PyTorch models
|
||||
|
||||
[[autodoc]] utils.calculate_maximum_sizes
|
||||
|
||||
[[autodoc]] utils.compute_module_sizes
|
||||
|
||||
[[autodoc]] utils.extract_model_from_parallel
|
||||
|
||||
[[autodoc]] utils.get_balanced_memory
|
||||
|
||||
[[autodoc]] utils.get_max_layer_size
|
||||
|
||||
[[autodoc]] utils.infer_auto_device_map
|
||||
|
||||
[[autodoc]] utils.load_checkpoint_in_model
|
||||
|
||||
[[autodoc]] utils.load_offloaded_weights
|
||||
|
||||
[[autodoc]] utils.load_state_dict
|
||||
|
||||
[[autodoc]] utils.offload_state_dict
|
||||
|
||||
[[autodoc]] utils.retie_parameters
|
||||
|
||||
[[autodoc]] utils.set_module_tensor_to_device
|
||||
|
||||
[[autodoc]] utils.shard_checkpoint
|
||||
|
||||
|
||||
## Parallel
|
||||
|
||||
@ -166,5 +244,3 @@ These include utilities that are useful to load checkpoints.
|
||||
These include utilities that are useful to quantize model.
|
||||
|
||||
[[autodoc]] utils.load_and_quantize_model
|
||||
|
||||
[[autodoc]] utils.BnbQuantizationConfig
|
||||
@ -9,26 +9,78 @@ Unless required by applicable law or agreed to in writing, software distributed
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Quick tour
|
||||
# Quicktour
|
||||
|
||||
This guide aims to help you get started with 🤗 Accelerate quickly. It covers the essential steps you need to take to
|
||||
enable distributed training, as well as the adjustments that you need to make in some common scenarios.
|
||||
There are many ways to launch and run your code depending on your training environment ([torchrun](https://pytorch.org/docs/stable/elastic/run.html), [DeepSpeed](https://www.deepspeed.ai/), etc.) and available hardware. Accelerate offers a unified interface for launching and training on different distributed setups, allowing you to focus on your PyTorch training code instead of the intricacies of adapting your code to these different setups. This allows you to easily scale your PyTorch code for training and inference on distributed setups with hardware like GPUs and TPUs. Accelerate also provides Big Model Inference to make loading and running inference with really large models that usually don't fit in memory more accessible.
|
||||
|
||||
To help you navigate, the guide is split into two sections:
|
||||
* [Getting Started with 🤗 Accelerate](#getting-started-with--accelerate): start here to learn how to modify your script to enable distributed training with 🤗 Accelerate
|
||||
* [Common adaptations to the base case](#common-adaptations-to-the-base-case): check out this section for common deviations from the baseline scenario and what adjustments may need to be made to support them.
|
||||
This quicktour introduces the three main features of Accelerate:
|
||||
|
||||
## Getting started with 🤗 Accelerate
|
||||
* a unified command line launching interface for distributed training scripts
|
||||
* a training library for adapting PyTorch training code to run on different distributed setups
|
||||
* Big Model Inference
|
||||
|
||||
### Enable distributed training in your script
|
||||
## Unified launch interface
|
||||
|
||||
To use 🤗 Accelerate in your own training script, you have to modify four things:
|
||||
Accelerate automatically selects the appropriate configuration values for any given distributed training framework (DeepSpeed, FSDP, etc.) through a unified configuration file generated from the [`accelerate config`](package_reference/cli#accelerate-config) command. You could also pass the configuration values explicitly to the command line which is helpful in certain situations like if you're using SLURM.
|
||||
|
||||
1. Import the [`Accelerator`] main class and instantiate one in an `accelerator` object.
|
||||
|
||||
But in most cases, you should always run [`accelerate config`](package_reference/cli#accelerate-config) first to help Accelerate learn about your training setup.
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
The [`accelerate config`](package_reference/cli#accelerate-config) command creates and saves a default_config.yaml file in Accelerates cache folder. This file stores the configuration for your training environment, which helps Accelerate correctly launch your training script based on your machine.
|
||||
|
||||
After you've configured your environment, you can test your setup with [`accelerate test`](package_reference/cli#accelerate-test), which launches a short script to test the distributed environment.
|
||||
|
||||
```bash
|
||||
accelerate test
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Add `--config_file` to the `accelerate test` or `accelerate launch` command to specify the location of the configuration file if it is saved in a non-default location like the cache.
|
||||
|
||||
Once your environment is setup, launch your training script with [`accelerate launch`](package_reference/cli#accelerate-launch)!
|
||||
|
||||
```bash
|
||||
accelerate launch path_to_script.py --args_for_the_script
|
||||
```
|
||||
|
||||
To learn more, check out the [Launch distributed code](basic_tutorials/launch) tutorial for more information about launching your scripts.
|
||||
|
||||
## Adapt training code
|
||||
|
||||
The next main feature of Accelerate is the [`Accelerator`] class which adapts your PyTorch code to run on different distributed setups.
|
||||
|
||||
You only need to add a few lines of code to your training script to enable it to run on multiple GPUs or TPUs.
|
||||
|
||||
```diff
|
||||
+ from accelerate import Accelerator
|
||||
+ accelerator = Accelerator()
|
||||
|
||||
+ device = accelerator.device
|
||||
+ model, optimizer, training_dataloader, scheduler = accelerator.prepare(
|
||||
+ model, optimizer, training_dataloader, scheduler
|
||||
+ )
|
||||
|
||||
for batch in training_dataloader:
|
||||
optimizer.zero_grad()
|
||||
inputs, targets = batch
|
||||
- inputs = inputs.to(device)
|
||||
- targets = targets.to(device)
|
||||
outputs = model(inputs)
|
||||
loss = loss_function(outputs, targets)
|
||||
+ accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
```
|
||||
|
||||
1. Import and instantiate the [`Accelerator`] class at the beginning of your training script. The [`Accelerator`] class initializes everything necessary for distributed training, and it automatically detects your training environment (a single machine with a GPU, a machine with several GPUs, several machines with multiple GPUs or a TPU, etc.) based on how the code was launched.
|
||||
|
||||
```python
|
||||
from accelerate import Accelerator
|
||||
@ -36,27 +88,16 @@ from accelerate import Accelerator
|
||||
accelerator = Accelerator()
|
||||
```
|
||||
|
||||
Add this at the beginning of your training script as it will initialize everything necessary for distributed training.
|
||||
You don't need to indicate the kind of environment you are in (a single machine with a GPU, a machine with several GPUs,
|
||||
or several machines with multiple GPUs or a TPU), the library will detect this automatically.
|
||||
2. Remove calls like `.cuda()` on your model and input data. The [`Accelerator`] class automatically places these objects on the appropriate device for you.
|
||||
|
||||
2. Remove the `.to(device)` or `.cuda()` calls for your model and input data.
|
||||
> [!WARNING]
|
||||
> This step is *optional* but it is considered best practice to allow Accelerate to handle device placement. You could also deactivate automatic device placement by passing `device_placement=False` when initializing the [`Accelerator`]. If you want to explicitly place objects on a device with `.to(device)`, make sure you use `accelerator.device` instead. For example, if you create an optimizer before placing a model on `accelerator.device`, training fails on a TPU.
|
||||
|
||||
The `accelerator` object will handle placing these objects on the right device for you.
|
||||
If you choose to leave those `.to(device)` calls, make sure to use the device provided by the `accelerator` object: `accelerator.device`.
|
||||
```py
|
||||
device = accelerator.device
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
You can fully deactivate the automatic device placement by passing along `device_placement=False` when
|
||||
initializing the [`Accelerator`].
|
||||
However, if you place your objects manually on the proper device, be careful to create your optimizer after putting your
|
||||
model on `accelerator.device` or your training will fail on TPU.
|
||||
|
||||
</Tip>
|
||||
|
||||
3. Pass all PyTorch objects relevant to training (optimizer, model, dataloader(s), learning rate scheduler) to the
|
||||
[`~Accelerator.prepare`] method as soon as these objects are created, before starting your actual
|
||||
training loop:
|
||||
3. Pass all relevant PyTorch objects for training (optimizer, model, dataloader(s), learning rate scheduler) to the [`~Accelerator.prepare`] method as soon as they're created. This method wraps the model in a container optimized for your distributed setup, uses Accelerates version of the optimizer and scheduler, and creates a sharded version of your dataloader for distribution across GPUs or TPUs.
|
||||
|
||||
```python
|
||||
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
@ -64,55 +105,23 @@ model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
)
|
||||
```
|
||||
|
||||
**Important notes**:
|
||||
4. Replace `loss.backward()` with [`~Accelerator.backward`] to use the correct `backward()` method for your training setup.
|
||||
|
||||
* You should always pass the the learning rate scheduler to [`~Accelerator.prepare`], however if the scheduler should *not* be stepped at each optimization step, pass `step_with_optimizer=False` to the [`Accelerator`] init.
|
||||
* While you can send your dataloader to [`~Accelerator.prepare`] on its own (and there are cases for doing so, such as distributed inference), it's best to send it to [`~Accelerator.prepare`] together with the model and optimizer.
|
||||
* If you wish to run distributed evaluation, send your validation dataloader to [`~Accelerator.prepare`] as well. There are some nuances to distributed validation, check the [Distributed evaluation](#add-distributed-evaluation) section of the guide.
|
||||
* Any instruction using your training dataloader length (for instance if you want to log the number of total training
|
||||
steps) should go after the call to [`~Accelerator.prepare`].
|
||||
```py
|
||||
accelerator.backward(loss)
|
||||
```
|
||||
|
||||
Passing `DataLoader` objects to the [`~Accelerator.prepare`] method ensures that your dataloader will be sharded across
|
||||
all GPUs/TPU cores available so that each one sees a different portion of the training dataset. In other words, if there are 8 processes and a dataset of 64 items, each process will see 8 of these items per iteration. Also, the random states
|
||||
of all processes will be synchronized at the beginning of each iteration through your dataloader, to make sure the data
|
||||
is shuffled the same way (if you decided to use `shuffle=True` or any kind of random sampler).
|
||||
Read [Accelerate’s internal mechanisms](concept_guides/internal_mechanism) guide to learn more details about how Accelerate adapts your code.
|
||||
|
||||
<Tip>
|
||||
### Distributed evaluation
|
||||
|
||||
The actual batch size for your training will be the number of devices used multiplied by the batch size you set in
|
||||
your script. For instance, training on 4 GPUs with a batch size of 16 set when creating the training dataloader will
|
||||
train at an actual batch size of 64 (4 * 16).
|
||||
If you want the batch size remain the same regardless of how many GPUs the script is run on, you can use the
|
||||
option `split_batches=True` when creating and initializing [`Accelerator`].
|
||||
Your training dataloader may change length when going through this method: if you run on X GPUs, it will have its
|
||||
length divided by X (since your actual batch size will be multiplied by X), unless you set
|
||||
`split_batches=True`.
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
4. Replace the `loss.backward()` line with `accelerator.backward(loss)`.
|
||||
|
||||
And you're all set! With all these changes, your script will run on your local machine as well as on multiple GPUs or a
|
||||
TPU! You can either use your favorite tool to launch the distributed training, or you can use the 🤗 Accelerate
|
||||
launcher.
|
||||
|
||||
### Add distributed evaluation
|
||||
|
||||
You can perform regular evaluation in your training script if you leave your validation dataloader out of the
|
||||
[`~Accelerator.prepare`] method. In this case, you will need to put the input data on the
|
||||
`accelerator.device` manually.
|
||||
|
||||
To perform distributed evaluation, send along your validation dataloader to the [`~Accelerator.prepare`]
|
||||
method:
|
||||
To perform distributed evaluation, pass your validation dataloader to the [`~Accelerator.prepare`] method:
|
||||
|
||||
```python
|
||||
validation_dataloader = accelerator.prepare(validation_dataloader)
|
||||
```
|
||||
|
||||
Same as with your training dataloader, each device will only see part of the evaluation data should you run your script
|
||||
on multiple devices. This means you will need to group your predictions together which you can do with
|
||||
the [`~Accelerator.gather_for_metrics`] method.
|
||||
Each device in your distributed setup only receives a part of the evaluation data, which means you should group your predictions together with the [`~Accelerator.gather_for_metrics`] method. This method requires all tensors to be the same size on each process, so if your tensors have different sizes on each process (for instance when dynamically padding to the maximum length in a batch), you should use the [`~Accelerator.pad_across_processes`] method to pad you tensor to the largest size across processes.
|
||||
|
||||
```python
|
||||
for inputs, targets in validation_dataloader:
|
||||
@ -123,319 +132,50 @@ for inputs, targets in validation_dataloader:
|
||||
metric.add_batch(all_predictions, all_targets)
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
> [!TIP]
|
||||
> Data at the end of a dataset may be duplicated so the batch can be equally divided among all workers. The [`~Accelerator.gather_for_metrics`] method automatically removes the duplicated data to calculate a more accurate metric.
|
||||
|
||||
Similar to the training dataloader, passing your validation dataloader through
|
||||
[`~Accelerator.prepare`] may change it: if you run on X GPUs, it will have its length divided by X
|
||||
(since your actual batch size will be multiplied by X), unless you set `split_batches=True`.
|
||||
## Big Model Inference
|
||||
|
||||
</Tip>
|
||||
Accelerate's Big Model Inference has two main features, [`~accelerate.init_empty_weights`] and [`~accelerate.load_checkpoint_and_dispatch`], to load large models for inference that typically don't fit into memory.
|
||||
|
||||
Some data at the end of the dataset may be duplicated so the batch can be divided equally among all workers. As a result,
|
||||
metrics should be calculated through the [`~Accelerator.gather_for_metrics`] method to automatically remove the duplicated
|
||||
data while gathering and provide a more accurate metric.
|
||||
> [!TIP]
|
||||
> Take a look at the [Handling big models for inference](concept_guides/big_model_inference) guide for a better understanding of how Big Model Inference works under the hood.
|
||||
|
||||
<Tip>
|
||||
### Empty weights initialization
|
||||
|
||||
If for some reason you don't wish to have this automatically done, [`~Accelerator.gather`] can be used instead to gather
|
||||
the data across all processes and this can manually be done instead.
|
||||
The [`~accelerate.init_empty_weights`] context manager initializes models of any size by creating a *model skeleton* and moving and placing parameters each time they're created to PyTorch's [**meta**](https://pytorch.org/docs/main/meta.html) device. This way, not all weights are immediately loaded and only a small part of the model is loaded into memory at a time.
|
||||
|
||||
</Tip>
|
||||
For example, loading an empty [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model takes significantly less memory than fully loading the models and weights on the CPU.
|
||||
|
||||
```py
|
||||
from accelerate import init_empty_weights
|
||||
from transformers import AutoConfig, AutoModelForCausalLM
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
The [`~Accelerator.gather`] and [`~Accelerator.gather_for_metrics`] methods require the tensors to be all the same size on each process. If
|
||||
you have tensors of different sizes on each process (for instance when dynamically padding to the maximum length in
|
||||
a batch), you should use the [`~Accelerator.pad_across_processes`] method to pad you tensor to the
|
||||
biggest size across processes.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Launch your distributed script
|
||||
|
||||
You can use the regular commands to launch your distributed training (like `torch.distributed.run` for
|
||||
PyTorch) - they are fully compatible with 🤗 Accelerate.
|
||||
|
||||
Alternatively, 🤗 Accelerate provides a CLI tool that unifies all launchers, so you only have to remember one command. \
|
||||
To use it, run a quick configuration setup first on your machine and answer the questions:
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
config = AutoConfig.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
```
|
||||
|
||||
At the end of the setup, a *default_config.yaml* file will be saved in your cache folder for 🤗 Accelerate. That cache
|
||||
folder is (with decreasing order of priority):
|
||||
### Load and dispatch weights
|
||||
|
||||
- The content of your environment variable `HF_HOME` suffixed with *accelerate*.
|
||||
- If it does not exist, the content of your environment variable `XDG_CACHE_HOME` suffixed with
|
||||
*huggingface/accelerate*.
|
||||
- If this does not exist either, the folder *~/.cache/huggingface/accelerate*.
|
||||
The [`~accelerate.load_checkpoint_and_dispatch`] function loads full or sharded checkpoints into the empty model, and automatically distribute weights across all available devices.
|
||||
|
||||
By specifying the `--config_file` flag you can specify an alternative location of the configuration file.
|
||||
Once the configuration setup is complete, you can test your setup by running:
|
||||
The `device_map` parameter determines where to place each model layer, and specifiying `"auto"` places them on the GPU first, then the CPU, and finally the hard drive as memory-mapped tensors if there's still not enough memory. Use the `no_split_module_classes` parameter to indicate which modules shouldn't be split across devices (typically those with a residual connection).
|
||||
|
||||
```bash
|
||||
accelerate test
|
||||
```py
|
||||
from accelerate import load_checkpoint_and_dispatch
|
||||
|
||||
model = load_checkpoint_and_dispatch(
|
||||
model, checkpoint="mistralai/Mixtral-8x7B-Instruct-v0.1", device_map="auto", no_split_module_classes=['Block']
|
||||
)
|
||||
```
|
||||
|
||||
This will launch a short script that will test the distributed environment. If it runs without issues, you are ready for
|
||||
the next step!
|
||||
## Next steps
|
||||
|
||||
Note that if you specified a location for the config file in the previous step, you need to pass it here as well:
|
||||
Now that you've been introduced to the main Accelerate features, your next steps could include:
|
||||
|
||||
```bash
|
||||
accelerate test --config_file path_to_config.yaml
|
||||
```
|
||||
|
||||
Now that this is done, you can run your script with the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch path_to_script.py --args_for_the_script
|
||||
```
|
||||
|
||||
If you stored the config file in a non-default location, you can indicate it to the launcher like this:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file path_to_config.yaml path_to_script.py --args_for_the_script
|
||||
```
|
||||
|
||||
You can override any of the arguments determined by your config file. To see the complete list of parameters that you
|
||||
can pass in, run `accelerate launch -h`. (And further niche argument help by passing in partial commands, such as `accelerate launch --multi_gpu -h` for all `multi_gpu` args)
|
||||
|
||||
Check out the [Launch tutorial](basic_tutorials/launch) for more information about launching your scripts.
|
||||
|
||||
## Common modifications of the base case
|
||||
|
||||
The previous section covers the minimal essential steps to move a training script into a distributed setup with 🤗 Accelerate.
|
||||
Here we describe common modifications/deviations from the base case scenario and the adjustments you need to make to accommodate for them.
|
||||
|
||||
### Launch distributed training from a notebook
|
||||
|
||||
Accelerate has a [`notebook_launcher`] to help you launch your training function from a
|
||||
notebook. This launcher supports launching a training with TPUs on Colab or Kaggle, as well as training on several GPUs and machines
|
||||
(if the machine on which you are running your notebook has them).
|
||||
|
||||
Define a function responsible for your whole training and/or evaluation in a cell of the notebook, then execute a
|
||||
cell with the following code:
|
||||
|
||||
```python
|
||||
from accelerate import notebook_launcher
|
||||
|
||||
notebook_launcher(training_function)
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Your [`Accelerator`] object should only be defined inside the training function. This is because the
|
||||
initialization should be done inside the launcher only.
|
||||
|
||||
</Tip>
|
||||
|
||||
Check out the [Notebook Launcher tutorial](basic_tutorials/notebook) for more information about training on TPUs.
|
||||
|
||||
### Specifics of training on TPU
|
||||
|
||||
If you want to launch your script on TPUs, there are a few caveats you should be aware of. Behind the scenes, the TPUs
|
||||
will create a graph of all the operations happening in your training step (forward pass, backward pass and optimizer
|
||||
step). This is why your first step of training will always be very long as building and compiling this graph for
|
||||
optimizations takes some time.
|
||||
|
||||
The good news is that this compilation will be cached so the second step and all the following will be much faster. The
|
||||
bad news is that it only applies if all of your steps do exactly the same operations, which implies:
|
||||
|
||||
- having all tensors of the same length in all your batches
|
||||
- having static code (i.e., not a for loop of length that could change from step to step)
|
||||
|
||||
Having any of the things above change between two steps will trigger a new compilation which will, once again, take a
|
||||
lot of time. In practice, that means you must take special care to have all your tensors in your inputs of the same
|
||||
shape (so no dynamic padding for instance if you are in an NLP problem) and should not use layers with for loops that
|
||||
have different lengths depending on the inputs (such as an LSTM) or the training will be excruciatingly slow.
|
||||
|
||||
To introduce special behavior in your script for TPUs you can check the `distributed_type` of your
|
||||
`accelerator`:
|
||||
|
||||
```python docstyle-ignore
|
||||
from accelerate import DistributedType
|
||||
|
||||
if accelerator.distributed_type == DistributedType.TPU:
|
||||
# do something of static shape
|
||||
else:
|
||||
# go crazy and be dynamic
|
||||
```
|
||||
|
||||
The [NLP example](https://github.com/huggingface/accelerate/blob/main/examples/nlp_example.py) shows an example in a
|
||||
situation with dynamic padding.
|
||||
|
||||
One last thing to pay close attention to: if your model has tied weights (such as language models which tie the weights
|
||||
of the embedding matrix with the weights of the decoder), moving this model to the TPU (either yourself or after you
|
||||
passed your model to [`~Accelerator.prepare`]) will break the tying. You will need to retie the weights
|
||||
after. You can find an example of this in the [run_clm_no_trainer](https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_clm.py) script in
|
||||
the Transformers repository.
|
||||
|
||||
Check out the [TPU tutorial](concept_guides/training_tpu) for more information about training on TPUs.
|
||||
|
||||
### Execute a statement only on one processes
|
||||
|
||||
Some of your instructions only need to run for one process on a given server: for instance a data download or a log
|
||||
statement. To do this, wrap the statement in a test like this:
|
||||
|
||||
```python docstyle-ignore
|
||||
if accelerator.is_local_main_process:
|
||||
# Is executed once per server
|
||||
```
|
||||
|
||||
Another example is progress bars: to avoid having multiple progress bars in your output, you should only display one on
|
||||
the local main process:
|
||||
|
||||
```python
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
|
||||
```
|
||||
|
||||
The *local* means per machine: if you are running your training on two servers with several GPUs, the instruction will
|
||||
be executed once on each of those servers. If you need to execute something only once for all processes (and not per
|
||||
machine) for instance, uploading the final model to the 🤗 model hub, wrap it in a test like this:
|
||||
|
||||
```python docstyle-ignore
|
||||
if accelerator.is_main_process:
|
||||
# Is executed once only
|
||||
```
|
||||
|
||||
For printing statements you only want executed once per machine, you can just replace the `print` function by
|
||||
`accelerator.print`.
|
||||
|
||||
|
||||
### Defer execution on multiple GPUs
|
||||
|
||||
When you run your usual script, instructions are executed in order. Using 🤗 Accelerate to deploy your script on several
|
||||
GPUs at the same time introduces a complication: while each process executes all instructions in order, some may be
|
||||
faster than others.
|
||||
|
||||
You might need to wait for all processes to have reached a certain point before executing a given instruction. For
|
||||
instance, you shouldn't save a model before making sure every process is done with training. To do this, add the
|
||||
following line in your code:
|
||||
|
||||
```
|
||||
accelerator.wait_for_everyone()
|
||||
```
|
||||
|
||||
This instruction will block all the processes that arrive first until all the other processes have reached that
|
||||
point (if you run your script on just one GPU or CPU, this won't do anything).
|
||||
|
||||
|
||||
### Save/load a model in a distributed setup
|
||||
|
||||
Saving the model you trained might need a bit of adjustment: first you should wait for all processes to reach that
|
||||
point in the script as shown above, and then, you should unwrap your model before saving it. This is because when going
|
||||
through the [`~Accelerator.prepare`] method, your model may have been placed inside a bigger model,
|
||||
which deals with the distributed training. This in turn means that saving your model state dictionary without taking
|
||||
any precaution will take that potential extra layer into account, and you will end up with weights you can't load back
|
||||
in your base model. The [`~Accelerator.save_model`] method will help you to achieve that. It will unwrap your model and save
|
||||
the model state dictionary.
|
||||
|
||||
Here is an example:
|
||||
|
||||
```
|
||||
accelerator.wait_for_everyone()
|
||||
accelerator.save_model(model, save_directory)
|
||||
```
|
||||
|
||||
The [`~Accelerator.save_model`] method can also save a model into sharded checkpoints or with safetensors format:
|
||||
|
||||
```python
|
||||
accelerator.wait_for_everyone()
|
||||
accelerator.save_model(model, save_directory, max_shard_size="1GB", safe_serialization=True)
|
||||
```
|
||||
|
||||
If your script contains logic to load a checkpoint, we also recommend you load your weights in the unwrapped model
|
||||
(this is only useful if you use the load function after making your model go through
|
||||
[`~Accelerator.prepare`]). Here is an example:
|
||||
|
||||
```python
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
path_to_checkpoint = os.path.join(save_directory,"pytorch_model.bin")
|
||||
unwrapped_model.load_state_dict(torch.load(path_to_checkpoint))
|
||||
```
|
||||
|
||||
Note that since all the model parameters are references to tensors, this will load your weights inside `model`.
|
||||
|
||||
If you want to load a sharded checkpoint or a checkpoint with safetensors format into the model with a specific `device`,
|
||||
we recommend you to load it with [`~utils.load_checkpoint_in_model`] function. Here's an example:
|
||||
|
||||
```python
|
||||
load_checkpoint_in_model(unwrapped_model, save_directory, device_map={"":device})
|
||||
```
|
||||
|
||||
|
||||
### Save/load entire states
|
||||
|
||||
When training your model, you may want to save the current state of the model, optimizer, random generators, and potentially
|
||||
learning rate schedulers to be restored in the _same script_.
|
||||
You can use [`~Accelerator.save_state`] and [`~Accelerator.load_state`] respectively to do so.
|
||||
|
||||
To further customize where and how states saved through [`~Accelerator.save_state`] the [`~utils.ProjectConfiguration`] class can be used. For example
|
||||
if `automatic_checkpoint_naming` is enabled each saved checkpoint will be located then at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`.
|
||||
|
||||
If you have registered any other stateful items to be stored through [`~Accelerator.register_for_checkpointing`] they will also be saved and/or loaded.
|
||||
|
||||
<Tip>
|
||||
|
||||
Every object passed to [`~Accelerator.register_for_checkpointing`] must have a `load_state_dict` and `state_dict` function to be stored
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
### Use gradient clipping
|
||||
|
||||
If you are using gradient clipping in your script, you should replace the calls to
|
||||
`torch.nn.utils.clip_grad_norm_` or `torch.nn.utils.clip_grad_value_` with [`~Accelerator.clip_grad_norm_`]
|
||||
and [`~Accelerator.clip_grad_value_`] respectively.
|
||||
|
||||
|
||||
### Train with mixed precision
|
||||
|
||||
If you are running your training in Mixed Precision with 🤗 Accelerate, you will get the best result with your loss being
|
||||
computed inside your model (like in Transformer models for instance). Every computation outside of the model will be
|
||||
executed in full precision (which is generally what you want for loss computation, especially if it involves a
|
||||
softmax). However, you might want to put your loss computation inside the [`~Accelerator.autocast`] context manager:
|
||||
|
||||
```
|
||||
with accelerator.autocast():
|
||||
loss = complex_loss_function(outputs, target):
|
||||
```
|
||||
|
||||
Another caveat with Mixed Precision training is that the gradient will skip a few updates at the beginning and
|
||||
sometimes during training: because of the dynamic loss scaling strategy, there are points during training where the
|
||||
gradients have overflown, and the loss scaling factor is reduced to avoid this happening again at the next step.
|
||||
|
||||
This means that you may update your learning rate scheduler when there was no update, which is fine in general, but may
|
||||
have an impact when you have very little training data, or if the first learning rate values of your scheduler are very
|
||||
important. In this case, you can skip the learning rate scheduler updates when the optimizer step was not done like
|
||||
this:
|
||||
|
||||
```
|
||||
if not accelerator.optimizer_step_was_skipped:
|
||||
lr_scheduler.step()
|
||||
```
|
||||
|
||||
### Use gradient accumulation
|
||||
|
||||
To perform gradient accumulation use [`~Accelerator.accumulate`] and specify a `gradient_accumulation_steps`.
|
||||
This will also automatically ensure the gradients are synced or unsynced when on multi-device training, check if the step should
|
||||
actually be performed, and auto-scale the loss:
|
||||
|
||||
```python
|
||||
accelerator = Accelerator(gradient_accumulation_steps=2)
|
||||
model, optimizer, training_dataloader = accelerator.prepare(model, optimizer, training_dataloader)
|
||||
|
||||
for input, label in training_dataloader:
|
||||
with accelerator.accumulate(model):
|
||||
predictions = model(input)
|
||||
loss = loss_function(predictions, label)
|
||||
accelerator.backward(loss)
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
```
|
||||
* Check out the [tutorials](basic_tutorials/overview) for a gentle walkthrough of Accelerate. This is especially useful if you're new to distributed training and the library.
|
||||
* Dive into the [guides](usage_guides/explore) to see how to use Accelerate for specific use-cases.
|
||||
* Deepen your conceptual understanding of how Accelerate works internally by reading the [concept guides](concept_guides/internal_mechanism).
|
||||
* Look up classes and commands in the [API reference](package_reference/accelerator) to see what parameters and options are available.
|
||||
|
||||
@ -52,7 +52,7 @@ will attempt to fill all the space in your GPU(s), then loading them to the CPU,
|
||||
|
||||
<Tip>
|
||||
|
||||
For more details on desigining your own device map, see this section of the [concept guide](../concept_guide/big_model_inference#designing-a-device-map)
|
||||
For more details on designing your own device map, see this section of the [concept guide](../concept_guides/big_model_inference#designing-a-device-map)
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -90,7 +90,7 @@ What will happen now is each time the input gets passed through a layer, it will
|
||||
|
||||
<Tip>
|
||||
|
||||
Multiple GPUs can be utilized, however this is considered "model parallism" and as a result only one GPU will be active at a given moment, waiting for the prior one to send it the output. You should launch your script normally with `python`
|
||||
Multiple GPUs can be utilized, however this is considered "model parallelism" and as a result only one GPU will be active at a given moment, waiting for the prior one to send it the output. You should launch your script normally with `python`
|
||||
and not need `torchrun`, `accelerate launch`, etc.
|
||||
|
||||
</Tip>
|
||||
|
||||
@ -1,93 +0,0 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Debugging Distributed Operations
|
||||
|
||||
When running scripts in a distributed fashion, often functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] (and others) are neccessary to grab tensors across devices and perform certain operations on them. However, if the tensors which are being grabbed are not the proper shapes then this will result in your code hanging forever. The only sign that exists of this truly happening is hitting a timeout exception from `torch.distributed`, but this can get quite costly as usually the timeout is 10 minutes.
|
||||
|
||||
Accelerate now has a `debug` mode which adds a neglible amount of time to each operation, but allows it to verify that the inputs you are bringing in can *actually* perform the operation you want **without** hitting this timeout problem!
|
||||
|
||||
## Visualizing the problem
|
||||
|
||||
To have a tangible example of this issue, let's take the following setup (on 2 GPUs):
|
||||
|
||||
```python
|
||||
from accelerate import PartialState
|
||||
|
||||
state = PartialState()
|
||||
if state.process_index == 0:
|
||||
tensor = torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)
|
||||
else:
|
||||
tensor = torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)
|
||||
|
||||
broadcast_tensor = broadcast(tensor)
|
||||
print(broadcast_tensor)
|
||||
```
|
||||
|
||||
We've created a single tensor on each device, with two radically different shapes. With this setup if we want to perform an operation such as [`utils.broadcast`], we would forever hit a timeout because `torch.distributed` requires that these operations have the **exact same shape** across all processes for it to work.
|
||||
|
||||
If you run this yourself, you will find that `broadcast_tensor` can be printed on the main process, but its results won't quite be right, and then it will just hang never printing it on any of the other processes:
|
||||
|
||||
```
|
||||
>>> tensor([[0, 1, 2, 3, 4]], device='cuda:0')
|
||||
```
|
||||
|
||||
## The solution
|
||||
|
||||
By enabling Accelerate's operational debug mode, Accelerate will properly find and catch errors such as this and provide a very clear traceback immediatly:
|
||||
|
||||
```
|
||||
Traceback (most recent call last):
|
||||
File "/home/zach_mueller_huggingface_co/test.py", line 18, in <module>
|
||||
main()
|
||||
File "/home/zach_mueller_huggingface_co/test.py", line 15, in main
|
||||
main()broadcast_tensor = broadcast(tensor)
|
||||
File "/home/zach_mueller_huggingface_co/accelerate/src/accelerate/utils/operations.py", line 303, in wrapper
|
||||
broadcast_tensor = broadcast(tensor)
|
||||
accelerate.utils.operations.DistributedOperationException: Cannot apply desired operation due to shape mismatches. All shapes across devices must be valid.
|
||||
|
||||
Operation: `accelerate.utils.operations.broadcast`
|
||||
Input shapes:
|
||||
- Process 0: [1, 5]
|
||||
- Process 1: [1, 2, 5]
|
||||
```
|
||||
|
||||
This explains that the shapes across our devices were *not* the same, and that we should ensure that they match properly to be compatible. Typically this means that there is either an extra dimension, or certain dimensions are incompatible with the operation.
|
||||
|
||||
To enable this please do one of the following:
|
||||
|
||||
Enable it through the questionarre during `accelerate config` (recommended)
|
||||
|
||||
From the CLI:
|
||||
|
||||
```
|
||||
accelerate launch --debug {my_script.py} --arg1 --arg2
|
||||
```
|
||||
|
||||
As an environmental variable (which avoids the need for `accelerate launch`):
|
||||
|
||||
```
|
||||
ACCELERATE_DEBUG_MODE="1" accelerate launch {my_script.py} --arg1 --arg2
|
||||
```
|
||||
|
||||
Manually changing the `config.yaml` file:
|
||||
|
||||
```diff
|
||||
compute_environment: LOCAL_MACHINE
|
||||
+debug: true
|
||||
```
|
||||
|
||||
|
||||
|
||||
@ -9,13 +9,13 @@ Unless required by applicable law or agreed to in writing, software distributed
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# DeepSpeed
|
||||
# DeepSpeed
|
||||
|
||||
[DeepSpeed](https://github.com/microsoft/DeepSpeed) implements everything described in the [ZeRO paper](https://arxiv.org/abs/1910.02054). Currently, it provides full support for:
|
||||
[DeepSpeed](https://github.com/microsoft/DeepSpeed) implements everything described in the [ZeRO paper](https://arxiv.org/abs/1910.02054). Some of the salient optimizations are:
|
||||
|
||||
1. Optimizer state partitioning (ZeRO stage 1)
|
||||
2. Gradient partitioning (ZeRO stage 2)
|
||||
@ -23,6 +23,7 @@ rendered properly in your Markdown viewer.
|
||||
4. Custom mixed precision training handling
|
||||
5. A range of fast CUDA-extension-based optimizers
|
||||
6. ZeRO-Offload to CPU and Disk/NVMe
|
||||
7. Hierarchical partitioning of model parameters (ZeRO++)
|
||||
|
||||
ZeRO-Offload has its own dedicated paper: [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840). And NVMe-support is described in the paper [ZeRO-Infinity: Breaking the GPU
|
||||
Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857).
|
||||
@ -35,16 +36,16 @@ won't be possible on a single GPU.
|
||||
🤗 Accelerate integrates [DeepSpeed](https://github.com/microsoft/DeepSpeed) via 2 options:
|
||||
|
||||
1. Integration of the DeepSpeed features via `deepspeed config file` specification in `accelerate config` . You just supply your custom config file or use our template. Most of
|
||||
this document is focused on this feature. This supports all the core features of DeepSpeed and gives user a lot of flexibility.
|
||||
this document is focused on this feature. This supports all the core features of DeepSpeed and gives user a lot of flexibility.
|
||||
User may have to change a few lines of code depending on the config.
|
||||
2. Integration via `deepspeed_plugin`.This supports subset of the DeepSpeed features and uses default options for the rest of the configurations.
|
||||
2. Integration via `deepspeed_plugin`.This supports subset of the DeepSpeed features and uses default options for the rest of the configurations.
|
||||
User need not change any code and is good for those who are fine with most of the default settings of DeepSpeed.
|
||||
|
||||
## What is integrated?
|
||||
|
||||
Training:
|
||||
|
||||
1. DeepSpeed ZeRO training supports the full ZeRO stages 1, 2 and 3 as well as CPU/Disk offload of optimizer states, gradients and parameters.
|
||||
1. 🤗 Accelerate integrates all features of DeepSpeed ZeRO. This includes all the ZeRO stages 1, 2 and 3 as well as ZeRO-Offload, ZeRO-Infinity (which can offload to disk/NVMe) and ZeRO++.
|
||||
Below is a short description of Data Parallelism using ZeRO - Zero Redundancy Optimizer along with diagram from this [blog post](https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/)
|
||||

|
||||
|
||||
@ -60,6 +61,8 @@ Below is a short description of Data Parallelism using ZeRO - Zero Redundancy Op
|
||||
|
||||
e. **Param Offload**: Offloads the model parameters to CPU/Disk building on top of ZERO Stage 3
|
||||
|
||||
f. **Hierarchical Partitioning**: Enables efficient multi-node training with data-parallel training across nodes and ZeRO-3 sharding within a node, built on top of ZeRO Stage 3.
|
||||
|
||||
<u>Note</u>: With respect to Disk Offload, the disk should be an NVME for decent speed but it technically works on any Disk
|
||||
|
||||
Inference:
|
||||
@ -74,8 +77,8 @@ Inference:
|
||||
**Pre-Requisites**: Install DeepSpeed version >=0.6.5. Please refer to the [DeepSpeed Installation details](https://github.com/microsoft/DeepSpeed#installation)
|
||||
for more information.
|
||||
|
||||
We will first look at easy to use integration via `accelerate config`.
|
||||
Followed by more flexible and feature rich `deepspeed config file` integration.
|
||||
We will first look at easy to use integration via `accelerate config`.
|
||||
Followed by more flexible and feature rich `deepspeed config file` integration.
|
||||
|
||||
### Accelerate DeepSpeed Plugin
|
||||
On your machine(s) just run:
|
||||
@ -157,7 +160,7 @@ Currently, `Accelerate` supports following config through the CLI:
|
||||
`offload_param_device`: [none] Disable parameter offloading, [cpu] offload parameters to CPU, [nvme] offload parameters to NVMe SSD. Only applicable with ZeRO Stage-3.
|
||||
`zero3_init_flag`: Decides whether to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with ZeRO Stage-3.
|
||||
`zero3_save_16bit_model`: Decides whether to save 16-bit model weights when using ZeRO Stage-3.
|
||||
`mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training.
|
||||
`mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training.
|
||||
```
|
||||
To be able to tweak more options, you will need to use a DeepSpeed config file.
|
||||
|
||||
@ -168,8 +171,8 @@ On your machine(s) just run:
|
||||
accelerate config
|
||||
```
|
||||
|
||||
and answer the questions asked. It will ask whether you want to use a config file for deepspeed to which you answer yes
|
||||
and provide the path to the deepspeed config file.
|
||||
and answer the questions asked. It will ask whether you want to use a config file for deepspeed to which you answer yes
|
||||
and provide the path to the deepspeed config file.
|
||||
This will generate a config file that will be used automatically to properly set the
|
||||
default options when doing
|
||||
|
||||
@ -349,17 +352,38 @@ accelerate launch examples/by_feature/deepspeed_with_config_support.py \
|
||||
--report_to "wandb"\
|
||||
```
|
||||
|
||||
**ZeRO++ Config Example**
|
||||
You can use the features of ZeRO++ by using the appropriate config parameters. Note that ZeRO++ is an extension for ZeRO Stage 3. Here is how the config file can be modified, from [DeepSpeed's ZeRO++ tutorial](https://www.deepspeed.ai/tutorials/zeropp/):
|
||||
|
||||
```json
|
||||
{
|
||||
"zero_optimization": {
|
||||
"stage": 3,
|
||||
"reduce_bucket_size": "auto",
|
||||
|
||||
"zero_quantized_weights": true,
|
||||
"zero_hpz_partition_size": 8,
|
||||
"zero_quantized_gradients": true,
|
||||
|
||||
"contiguous_gradients": true,
|
||||
"overlap_comm": true
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
For hierarchical partitioning, the partition size `zero_hpz_partition_size` should ideally be set to the number of GPUs per node. (For example, the above config file assumes 8 GPUs per node)
|
||||
|
||||
**Important code changes when using DeepSpeed Config File**
|
||||
|
||||
1. DeepSpeed Optimizers and Schedulers. For more information on these,
|
||||
1. DeepSpeed Optimizers and Schedulers. For more information on these,
|
||||
see the [DeepSpeed Optimizers](https://deepspeed.readthedocs.io/en/latest/optimizers.html) and [DeepSpeed Schedulers](https://deepspeed.readthedocs.io/en/latest/schedulers.html) documentation.
|
||||
We will look at the changes needed in the code when using these.
|
||||
|
||||
|
||||
a. DS Optim + DS Scheduler: The case when both `optimizer` and `scheduler` keys are present in the DeepSpeed config file.
|
||||
In this situation, those will be used and the user has to use `accelerate.utils.DummyOptim` and `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom optimizers and schedulers in their code.
|
||||
Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this:
|
||||
```python
|
||||
# Creates Dummy Optimizer if `optimizer` was spcified in the config file else creates Adam Optimizer
|
||||
# Creates Dummy Optimizer if `optimizer` was specified in the config file else creates Adam Optimizer
|
||||
optimizer_cls = (
|
||||
torch.optim.AdamW
|
||||
if accelerator.state.deepspeed_plugin is None
|
||||
@ -368,7 +392,7 @@ We will look at the changes needed in the code when using these.
|
||||
)
|
||||
optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate)
|
||||
|
||||
# Creates Dummy Scheduler if `scheduler` was spcified in the config file else creates `args.lr_scheduler_type` Scheduler
|
||||
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
|
||||
if (
|
||||
accelerator.state.deepspeed_plugin is None
|
||||
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
||||
@ -388,16 +412,25 @@ We will look at the changes needed in the code when using these.
|
||||
In this situation, no code changes are needed from the user and this is the case when using integration via DeepSpeed Plugin.
|
||||
In the above example we can see that the code remains unchanged if the `optimizer` and `scheduler` keys are absent in the DeepSpeed config file.
|
||||
|
||||
c. Custom Optim + DS Scheduler: The case when only `scheduler` key is present in the DeepSpeed config file.
|
||||
In this situation, the user has to use `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom scheduler in their code.
|
||||
c. Custom Optim + DS Scheduler: The case when only `scheduler` key is present in the DeepSpeed config file.
|
||||
In this situation, the user has to use `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom scheduler in their code.
|
||||
|
||||
d. DS Optim + Custom Scheduler: The case when only `optimizer` key is present in the DeepSpeed config file.
|
||||
d. DS Optim + Custom Scheduler: The case when only `optimizer` key is present in the DeepSpeed config file.
|
||||
This will result in an error because you can only use DS Scheduler when using DS Optim.
|
||||
|
||||
2. Notice the `auto` values in the above example DeepSpeed config files. These are automatically handled by `prepare` method
|
||||
based on model, dataloaders, dummy optimizer and dummy schedulers provided to `prepare` method.
|
||||
2. Notice the `auto` values in the above example DeepSpeed config files. These are automatically handled by `prepare` method
|
||||
based on model, dataloaders, dummy optimizer and dummy schedulers provided to `prepare` method.
|
||||
Only the `auto` fields specified in above examples are handled by `prepare` method and the rest have to be explicitly specified by the user.
|
||||
|
||||
The `auto` values are calculated as:
|
||||
|
||||
- `reduce_bucket_size`: `hidden_size * hidden_size`
|
||||
- `stage3_prefetch_bucket_size`: `0.9 * hidden_size * hidden_size`
|
||||
- `stage3_param_persistence_threshold`: `10 * hidden_size`
|
||||
|
||||
For the `auto` feature to work for these 3 config entries - Accelerate will use `model.config.hidden_size` or `max(model.config.hidden_sizes)` as `hidden_size`. If neither of these is available, the launching will fail and you will have to set these 3 config entries manually. Remember the first 2 config entries are the communication buffers - the larger they are the more efficient the comms will be, and the larger they are the more GPU memory they will consume, so it's a tunable performance trade-off.
|
||||
|
||||
|
||||
**Things to note when using DeepSpeed Config File**
|
||||
|
||||
Below is a sample script using `deepspeed_config_file` in different scenarios.
|
||||
@ -482,11 +515,11 @@ use_cpu: false
|
||||
3. Output of `accelerate launch test.py`:
|
||||
|
||||
```bash
|
||||
ValueError: When using `deepspeed_config_file`, the following accelerate config variables will be ignored:
|
||||
['gradient_accumulation_steps', 'gradient_clipping', 'zero_stage', 'offload_optimizer_device', 'offload_param_device',
|
||||
ValueError: When using `deepspeed_config_file`, the following accelerate config variables will be ignored:
|
||||
['gradient_accumulation_steps', 'gradient_clipping', 'zero_stage', 'offload_optimizer_device', 'offload_param_device',
|
||||
'zero3_save_16bit_model', 'mixed_precision'].
|
||||
Please specify them appropriately in the DeepSpeed config file.
|
||||
If you are using an accelerate config file, remove others config variables mentioned in the above specified list.
|
||||
If you are using an accelerate config file, remove other config variables mentioned in the above specified list.
|
||||
The easiest method is to create a new config following the questionnaire via `accelerate config`.
|
||||
It will only ask for the necessary config variables when using `deepspeed_config_file`.
|
||||
```
|
||||
@ -499,15 +532,15 @@ It will only ask for the necessary config variables when using `deepspeed_config
|
||||
$ accelerate config
|
||||
-------------------------------------------------------------------------------------------------------------------------------
|
||||
In which compute environment are you running?
|
||||
This machine
|
||||
This machine
|
||||
-------------------------------------------------------------------------------------------------------------------------------
|
||||
Which type of machine are you using?
|
||||
multi-GPU
|
||||
How many different machines will you use (use more than 1 for multi-node training)? [1]:
|
||||
Do you wish to optimize your script with torch dynamo?[yes/NO]:
|
||||
Do you want to use DeepSpeed? [yes/NO]: yes
|
||||
Do you want to specify a json file to a DeepSpeed config? [yes/NO]: yes
|
||||
Please enter the path to the json DeepSpeed config file: ds_config.json
|
||||
Which type of machine are you using?
|
||||
multi-GPU
|
||||
How many different machines will you use (use more than 1 for multi-node training)? [1]:
|
||||
Do you wish to optimize your script with torch dynamo?[yes/NO]:
|
||||
Do you want to use DeepSpeed? [yes/NO]: yes
|
||||
Do you want to specify a json file to a DeepSpeed config? [yes/NO]: yes
|
||||
Please enter the path to the json DeepSpeed config file: ds_config.json
|
||||
Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: yes
|
||||
How many GPU(s) should be used for distributed training? [1]:4
|
||||
accelerate configuration saved at ds_config_sample.yaml
|
||||
@ -585,10 +618,10 @@ Mixed precision type: fp16
|
||||
ds_config: {'bf16': {'enabled': False}, 'zero_optimization': {'stage': 3, 'stage3_gather_16bit_weights_on_model_save': True, 'offload_optimizer': {'device': 'nvme'}, 'offload_param': {'device': 'cpu'}}, 'gradient_clipping': 1.0, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'gradient_accumulation_steps': 5, 'steps_per_print': inf, 'fp16': {'enabled': True, 'auto_cast': True}}
|
||||
```
|
||||
|
||||
**Note**:
|
||||
1. Remaining `"auto"` values are handled in `accelerator.prepare()` call as explained in point 2 of
|
||||
**Note**:
|
||||
1. Remaining `"auto"` values are handled in `accelerator.prepare()` call as explained in point 2 of
|
||||
`Important code changes when using DeepSpeed Config File`.
|
||||
2. Only when `gradient_accumulation_steps` is `auto`, the value passed while creating `Accelerator` object via `Accelerator(gradient_accumulation_steps=k)` will be used. When using DeepSpeed Plugin, the value from it will be used and it will overwrite the value passed while creating Accelerator object.
|
||||
2. Only when `gradient_accumulation_steps` is `auto`, the value passed while creating `Accelerator` object via `Accelerator(gradient_accumulation_steps=k)` will be used. When using DeepSpeed Plugin, the value from it will be used and it will overwrite the value passed while creating Accelerator object.
|
||||
|
||||
## Saving and loading
|
||||
|
||||
@ -599,7 +632,7 @@ ZeRO Stage-3 has 2 options:
|
||||
|
||||
a. Saving the entire 16bit model weights to directly load later on using `model.load_state_dict(torch.load(pytorch_model.bin))`.
|
||||
For this, either set `zero_optimization.stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed Config file or set
|
||||
`zero3_save_16bit_model` to True in DeepSpeed Plugin.
|
||||
`zero3_save_16bit_model` to True in DeepSpeed Plugin.
|
||||
**Note that this option requires consolidation of the weights on one GPU it can be slow and memory demanding, so only use this feature when needed.**
|
||||
Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this:
|
||||
```python
|
||||
@ -623,15 +656,15 @@ ZeRO Stage-3 has 2 options:
|
||||
Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this:
|
||||
```python
|
||||
success = model.save_checkpoint(PATH, ckpt_id, checkpoint_state_dict)
|
||||
status_msg = "checkpointing: PATH={}, ckpt_id={}".format(PATH, ckpt_id)
|
||||
status_msg = f"checkpointing: PATH={PATH}, ckpt_id={ckpt_id}"
|
||||
if success:
|
||||
logging.info(f"Success {status_msg}")
|
||||
else:
|
||||
logging.warning(f"Failure {status_msg}")
|
||||
```
|
||||
```
|
||||
This will create ZeRO model and optimizer partitions along with `zero_to_fp32.py` script in checkpoint directory.
|
||||
You can use this script to do offline consolidation.
|
||||
It requires no configuration files or GPUs. Here is an example of its usage:
|
||||
You can use this script to do offline consolidation.
|
||||
It requires no configuration files or GPUs. Here is an example of its usage:
|
||||
```bash
|
||||
$ cd /path/to/checkpoint_dir
|
||||
$ ./zero_to_fp32.py . pytorch_model.bin
|
||||
@ -655,7 +688,7 @@ ZeRO Stage-3 has 2 options:
|
||||
Note that all these functions require ~2x memory (general RAM) of the size of the final checkpoint.
|
||||
|
||||
## ZeRO Inference
|
||||
DeepSpeed ZeRO Inference supports ZeRO stage 3 with ZeRO-Infinity.
|
||||
DeepSpeed ZeRO Inference supports ZeRO stage 3 with ZeRO-Infinity.
|
||||
It uses the same ZeRO protocol as training, but it doesn't use an optimizer and a lr scheduler and only stage 3 is relevant.
|
||||
With accelerate integration, you just need to prepare the model and dataloader as shown below:
|
||||
|
||||
@ -663,11 +696,11 @@ With accelerate integration, you just need to prepare the model and dataloader a
|
||||
model, eval_dataloader = accelerator.prepare(model, eval_dataloader)
|
||||
```
|
||||
|
||||
## Few caveats to be aware of
|
||||
## Few caveats to be aware of
|
||||
|
||||
1. Current integration doesn’t support Pipeline Parallelism of DeepSpeed.
|
||||
2. Current integration doesn’t support `mpu`, limiting the tensor parallelism which is supported in Megatron-LM.
|
||||
3. Current integration doesn’t support multiple models.
|
||||
2. Current integration doesn’t support `mpu`, limiting the tensor parallelism which is supported in Megatron-LM.
|
||||
3. Current integration doesn’t support multiple models.
|
||||
|
||||
## DeepSpeed Resources
|
||||
|
||||
@ -683,7 +716,8 @@ Papers:
|
||||
- [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054)
|
||||
- [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840)
|
||||
- [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857)
|
||||
- [ZeRO++: Extremely Efficient Collective Communication for Giant Model Training](https://arxiv.org/abs/2306.10209)
|
||||
|
||||
|
||||
Finally, please, remember that 🤗 `Accelerate` only integrates DeepSpeed, therefore if you
|
||||
have any problems or questions with regards to DeepSpeed usage, please, file an issue with [DeepSpeed GitHub](https://github.com/microsoft/DeepSpeed/issues).
|
||||
|
||||
|
||||
@ -15,12 +15,18 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Distributed Inference with 🤗 Accelerate
|
||||
|
||||
Distributed inference is a common use case, especially with natural language processing (NLP) models. Users often want to
|
||||
send a number of different prompts, each to a different GPU, and then get the results back. This also has other cases
|
||||
outside of just NLP, however for this tutorial we will focus on just this idea of each GPU receiving a different prompt,
|
||||
and then returning the results.
|
||||
Distributed inference can fall into three brackets:
|
||||
|
||||
## The Problem
|
||||
1. Loading an entire model onto each GPU and sending chunks of a batch through each GPU's model copy at a time
|
||||
2. Loading parts of a model onto each GPU and processing a single input at one time
|
||||
3. Loading parts of a model onto each GPU and using what is called scheduled Pipeline Parallelism to combine the two prior techniques.
|
||||
|
||||
We're going to go through the first and the last bracket, showcasing how to do each as they are more realistic scenarios.
|
||||
|
||||
|
||||
## Sending chunks of a batch automatically to each loaded model
|
||||
|
||||
This is the most memory-intensive solution, as it requires each GPU to keep a full copy of the model in memory at a given time.
|
||||
|
||||
Normally when doing this, users send the model to a specific device to load it from the CPU, and then move each prompt to a different device.
|
||||
|
||||
@ -51,11 +57,10 @@ def run_inference(rank, world_size):
|
||||
One will notice how we have to check the rank to know what prompt to send, which can be a bit tedious.
|
||||
|
||||
A user might then also think that with 🤗 Accelerate, using the `Accelerator` to prepare a dataloader for such a task might also be
|
||||
a simple way to manage this. (To learn more, check out the relvent section in the [Quick Tour](../quicktour#distributed-evaluation))
|
||||
a simple way to manage this. (To learn more, check out the relevant section in the [Quick Tour](../quicktour#distributed-evaluation))
|
||||
|
||||
Can it manage it? Yes. Does it add unneeded extra code however: also yes.
|
||||
|
||||
## The Solution
|
||||
|
||||
With 🤗 Accelerate, we can simplify this process by using the [`Accelerator.split_between_processes`] context manager (which also exists in `PartialState` and `AcceleratorState`).
|
||||
This function will automatically split whatever data you pass to it (be it a prompt, a set of tensors, a dictionary of the prior data, etc.) across all the processes (with a potential
|
||||
@ -134,3 +139,97 @@ with distributed_state.split_between_processes(["a dog", "a cat", "a chicken"],
|
||||
|
||||
On the first GPU, the prompts will be `["a dog", "a cat"]`, and on the second GPU it will be `["a chicken", "a chicken"]`.
|
||||
Make sure to drop the final sample, as it will be a duplicate of the previous one.
|
||||
|
||||
## Memory-efficient pipeline parallelism (experimental)
|
||||
|
||||
This next part will discuss using *pipeline parallelism*. This is an **experimental** API utilizing the [PiPPy library by PyTorch](https://github.com/pytorch/PiPPy/) as a native solution.
|
||||
|
||||
The general idea with pipeline parallelism is: say you have 4 GPUs and a model big enough it can be *split* on four GPUs using `device_map="auto"`. With this method you can send in 4 inputs at a time (for example here, any amount works) and each model chunk will work on an input, then receive the next input once the prior chunk finished, making it *much* more efficient **and faster** than the method described earlier. Here's a visual taken from the PyTorch repository:
|
||||
|
||||

|
||||
|
||||
To illustrate how you can use this with Accelerate, we have created an [example zoo](https://github.com/huggingface/accelerate/tree/main/examples/inference) showcasing a number of different models and situations. In this tutorial, we'll show this method for GPT2 across two GPUs.
|
||||
|
||||
Before you proceed, please make sure you have the latest pippy installed by running the following:
|
||||
|
||||
```bash
|
||||
pip install torchpippy
|
||||
```
|
||||
|
||||
We require at least version 0.2.0. To confirm that you have the correct version, run `pip show torchpippy`.
|
||||
|
||||
Start by creating the model on the CPU:
|
||||
|
||||
```{python}
|
||||
from transformers import GPT2ForSequenceClassification, GPT2Config
|
||||
|
||||
config = GPT2Config()
|
||||
model = GPT2ForSequenceClassification(config)
|
||||
model.eval()
|
||||
```
|
||||
|
||||
Next you'll need to create some example inputs to use. These help PiPPy trace the model.
|
||||
|
||||
<Tip warning={true}>
|
||||
However you make this example will determine the relative batch size that will be used/passed
|
||||
through the model at a given time, so make sure to remember how many items there are!
|
||||
</Tip>
|
||||
|
||||
```{python}
|
||||
input = torch.randint(
|
||||
low=0,
|
||||
high=config.vocab_size,
|
||||
size=(2, 1024), # bs x seq_len
|
||||
device="cpu",
|
||||
dtype=torch.int64,
|
||||
requires_grad=False,
|
||||
)
|
||||
```
|
||||
Next we need to actually perform the tracing and get the model ready. To do so, use the [`inference.prepare_pippy`] function and it will fully wrap the model for pipeline parallelism automatically:
|
||||
|
||||
```{python}
|
||||
from accelerate.inference import prepare_pippy
|
||||
example_inputs = {"input_ids": input}
|
||||
model = prepare_pippy(model, example_args=(input,))
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
There are a variety of parameters you can pass through to `prepare_pippy`:
|
||||
|
||||
* `split_points` lets you determine what layers to split the model at. By default we use wherever `device_map="auto" declares, such as `fc` or `conv1`.
|
||||
|
||||
* `num_chunks` determines how the batch will be split and sent to the model itself (so `num_chunks=1` with four split points/four GPUs will have a naive MP where a single input gets passed between the four layer split points)
|
||||
|
||||
</Tip>
|
||||
|
||||
From here, all that's left is to actually perform the distributed inference!
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
When passing inputs, we highly recommend to pass them in as a tuple of arguments. Using `kwargs` is supported, however, this approach is experimental.
|
||||
</Tip>
|
||||
|
||||
```{python}
|
||||
args = some_more_arguments
|
||||
with torch.no_grad():
|
||||
output = model(*args)
|
||||
```
|
||||
|
||||
When finished all the data will be on the last process only:
|
||||
|
||||
```{python}
|
||||
from accelerate import PartialState
|
||||
if PartialState().is_last_process:
|
||||
print(output)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
If you pass in `gather_output=True` to [`inference.prepare_pippy`], the output will be sent
|
||||
across to all the GPUs afterwards without needing the `is_last_process` check. This is
|
||||
`False` by default as it incurs a communication call.
|
||||
|
||||
</Tip>
|
||||
|
||||
And that's it! To explore more, please check out the inference examples in the [Accelerate repo](https://github.com/huggingface/accelerate/tree/main/examples/inference) and our [documentation](../package_reference/inference) as we work to improving this integration.
|
||||
|
||||
@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
|
||||
# Learning how to incorporate 🤗 Accelerate features quickly!
|
||||
|
||||
Please use the interactive tool below to help you get started with learning about a particular
|
||||
feature of 🤗 Accelerate and how to utilize it! It will provide you with a code diff, an explaination
|
||||
feature of 🤗 Accelerate and how to utilize it! It will provide you with a code diff, an explanation
|
||||
towards what is going on, as well as provide you with some useful links to explore more within
|
||||
the documentation!
|
||||
|
||||
|
||||
@ -36,27 +36,34 @@ default options when doing
|
||||
accelerate launch my_script.py --args_to_my_script
|
||||
```
|
||||
|
||||
For instance, here is how you would run the NLP example (from the root of the repo) with FSDP enabled:
|
||||
For instance, here is how you would run `examples/nlp_example.py` (from the root of the repo) with FSDP enabled:
|
||||
|
||||
```bash
|
||||
compute_environment: LOCAL_MACHINE
|
||||
deepspeed_config: {}
|
||||
debug: false
|
||||
distributed_type: FSDP
|
||||
downcast_bf16: 'no'
|
||||
fsdp_config:
|
||||
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
|
||||
fsdp_backward_prefetch_policy: BACKWARD_PRE
|
||||
fsdp_forward_prefetch: false
|
||||
fsdp_cpu_ram_efficient_loading: true
|
||||
fsdp_offload_params: false
|
||||
fsdp_sharding_strategy: 1
|
||||
fsdp_state_dict_type: FULL_STATE_DICT
|
||||
fsdp_sharding_strategy: FULL_SHARD
|
||||
fsdp_state_dict_type: SHARDED_STATE_DICT
|
||||
fsdp_sync_module_states: true
|
||||
fsdp_transformer_layer_cls_to_wrap: BertLayer
|
||||
fsdp_use_orig_params: true
|
||||
machine_rank: 0
|
||||
main_process_ip: null
|
||||
main_process_port: null
|
||||
main_training_function: main
|
||||
mixed_precision: 'no'
|
||||
mixed_precision: bf16
|
||||
num_machines: 1
|
||||
num_processes: 2
|
||||
rdzv_backend: static
|
||||
same_network: true
|
||||
tpu_env: []
|
||||
tpu_use_cluster: false
|
||||
tpu_use_sudo: false
|
||||
use_cpu: false
|
||||
```
|
||||
|
||||
@ -66,42 +73,30 @@ accelerate launch examples/nlp_example.py
|
||||
|
||||
Currently, `Accelerate` supports the following config through the CLI:
|
||||
|
||||
```bash
|
||||
`Sharding Strategy`: [1] FULL_SHARD (shards optimizer states, gradients and parameters), [2] SHARD_GRAD_OP (shards optimizer states and gradients), [3] NO_SHARD (DDP), [4] HYBRID_SHARD (shards optimizer states, gradients and parameters within each node while each node has full copy), [5] HYBRID_SHARD_ZERO2 (shards optimizer states and gradients within each node while each node has full copy)
|
||||
`fsdp_sharding_strategy`: [1] FULL_SHARD (shards optimizer states, gradients and parameters), [2] SHARD_GRAD_OP (shards optimizer states and gradients), [3] NO_SHARD (DDP), [4] HYBRID_SHARD (shards optimizer states, gradients and parameters within each node while each node has full copy), [5] HYBRID_SHARD_ZERO2 (shards optimizer states and gradients within each node while each node has full copy). For more information, please refer the official [PyTorch docs](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.ShardingStrategy).
|
||||
|
||||
`Offload Params`: Decides Whether to offload parameters and gradients to CPU
|
||||
`fsdp_offload_params` : Decides Whether to offload parameters and gradients to CPU
|
||||
|
||||
`Auto Wrap Policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP
|
||||
`fsdp_auto_wrap_policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP
|
||||
|
||||
`Transformer Layer Class to Wrap`: When using `TRANSFORMER_BASED_WRAP`, user specifies comma-separated string of transformer layer class names (case-sensitive) to wrap ,e.g,
|
||||
`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`...
|
||||
This is important because submodules that share weights (e.g., embedding layer) should not end up in different FSDP wrapped units.
|
||||
Using this policy, wrapping happens for each block containing Multi-Head Attention followed by couple of MLP layers.
|
||||
Remaining layers including the shared embeddings are conveniently wrapped in same outermost FSDP unit.
|
||||
Therefore, use this for transformer based models.
|
||||
You can use the `model._no_split_modules` for 🤗 Transformer models by answering `yes` to
|
||||
`Do you want to use the model's `_no_split_modules` to wrap. Only applicable for 🤗 Transformers`.
|
||||
It will try to use `model._no_split_modules` when available.
|
||||
`fsdp_transformer_layer_cls_to_wrap`: Only applicable for 🤗 Transformers. When using `fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP`, a user may provide a comma-separated string of transformer layer class names (case-sensitive) to wrap, e.g., `BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`. This is important because submodules that share weights (e.g., embedding layers) should not end up in different FSDP wrapped units. Using this policy, wrapping happens for each block containing Multi-Head Attention followed by a couple of MLP layers. Remaining layers including the shared embeddings are conveniently wrapped in same outermost FSDP unit. Therefore, use this for transformer-based models. You can use the `model._no_split_modules` for 🤗 Transformer models by answering `yes` to `Do you want to use the model's `_no_split_modules` to wrap. It will try to use `model._no_split_modules` when possible.
|
||||
|
||||
`Min Num Params`: minimum number of parameters when using `SIZE_BASED_WRAP`
|
||||
`fsdp_min_num_params`: minimum number of parameters when using `fsdp_auto_wrap_policy=SIZE_BASED_WRAP`.
|
||||
|
||||
`Backward Prefetch`: [1] BACKWARD_PRE, [2] BACKWARD_POST, [3] NO_PREFETCH
|
||||
`fsdp_backward_prefetch_policy`: [1] BACKWARD_PRE, [2] BACKWARD_POST, [3] NO_PREFETCH
|
||||
|
||||
`State Dict Type`: [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT
|
||||
`fsdp_forward_prefetch`: if True, then FSDP explicitly prefetches the next upcoming all-gather while executing in the forward pass. Should only be used for static-graph models since the prefetching follows the first iteration’s execution order. i.e., if the sub-modules' order changes dynamically during the model's execution do not enable this feature.
|
||||
|
||||
`Forward Prefetch`: if True, then FSDP explicitly prefetches the next upcoming
|
||||
all-gather while executing in the forward pass. only use with Static graphs.
|
||||
`fsdp_state_dict_type`: [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT
|
||||
|
||||
`Use Orig Params`: If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres.
|
||||
Useful in cases such as parameter-efficient fine-tuning.
|
||||
Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019)
|
||||
`fsdp_use_orig_params`: If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. This setting is useful in cases such as parameter-efficient fine-tuning as discussed in [this post](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). This option also allows one to have multiple optimizer param groups. This should be `True` when creating an optimizer before preparing/wrapping the model with FSDP.
|
||||
|
||||
`CPU RAM Efficient Model loading`: If True, only the first process loads the pretrained model checkoint while all other processes have empty weights. Only applicable for 🤗 Transformers models. This should be set to False if you experience errors when loading the pretrained 🤗 Transformers model via `from_pretrained` method. When using this, `Sync Module States` needs to be True else all the processes expect the main process would have random empty weights leading to unexpected behaviour during training.
|
||||
`fsdp_cpu_ram_efficient_loading`: Only applicable for 🤗 Transformers models. If True, only the first process loads the pretrained model checkpoint while all other processes have empty weights. This should be set to False if you experience errors when loading the pretrained 🤗 Transformers model via `from_pretrained` method. When this setting is True `fsdp_sync_module_states` also must to be True, otherwise all the processes except the main process would have random weights leading to unexpected behaviour during training. For this to work, make sure the distributed process group is initialized before calling Transformers `from_pretrained` method. When using 🤗 Trainer API, the distributed process group is initialized when you create an instance of `TrainingArguments` class.
|
||||
|
||||
`Sync Module States`: If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0
|
||||
```
|
||||
`fsdp_sync_module_states`: If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0.
|
||||
|
||||
For additional and more nuanced control, you can specify other FSDP parameters via `FullyShardedDataParallelPlugin`.
|
||||
|
||||
For additional and more nuanced control, you can specify other FSDP parameters via `FullyShardedDataParallelPlugin`.
|
||||
When creating `FullyShardedDataParallelPlugin` object, pass it the parameters that weren't part of the accelerate config or if you want to override them.
|
||||
The FSDP parameters will be picked based on the accelerate config file or launch command arguments and other parameters that you will pass directly through the `FullyShardedDataParallelPlugin` object will set/override that.
|
||||
|
||||
@ -128,9 +123,9 @@ Below is the code snippet to save using `save_state` utility of accelerate.
|
||||
accelerator.save_state("ckpt")
|
||||
```
|
||||
|
||||
Inspect the ckeckpoint folder to see model and optimizer as shards per process:
|
||||
Inspect the checkpoint folder to see model and optimizer as shards per process:
|
||||
```
|
||||
ls ckpt
|
||||
ls ckpt
|
||||
# optimizer_0 pytorch_model_0 random_states_0.pkl random_states_1.pkl scheduler.bin
|
||||
|
||||
cd ckpt
|
||||
@ -148,7 +143,7 @@ To load them back for resuming the training, use the `load_state` utility of acc
|
||||
accelerator.load_state("ckpt")
|
||||
```
|
||||
|
||||
When using transformers `save_pretrained`, pass `state_dict=accelerator.get_state_dict(model)` to save the model state dict.
|
||||
When using transformers `save_pretrained`, pass `state_dict=accelerator.get_state_dict(model)` to save the model state dict.
|
||||
Below is an example:
|
||||
|
||||
```diff
|
||||
@ -156,72 +151,26 @@ When using transformers `save_pretrained`, pass `state_dict=accelerator.get_stat
|
||||
args.output_dir,
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
+ state_dict=accelerator.get_state_dict(model, unwrap=False),
|
||||
+ state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
```
|
||||
|
||||
### State Dict
|
||||
|
||||
`accelerator.get_state_dict` will call the underlying `model.state_dict` implementation. With a model wrapped by FSDP, the default behavior of `state_dict` is to gather all of the state in the rank 0 device. This can cause CUDA out of memory errors if the parameters don't fit on a single GPU.
|
||||
|
||||
To avoid this, PyTorch provides a context manager that adjusts the behavior of `state_dict`. To offload some of the state dict onto CPU, you can use the following code:
|
||||
|
||||
```
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType, FullStateDictConfig
|
||||
|
||||
full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
||||
with FSDP.state_dict_type(unwrapped_model, StateDictType.FULL_STATE_DICT, full_state_dict_config):
|
||||
state = accelerator.get_state_dict(unwrapped_model)
|
||||
```
|
||||
`accelerator.get_state_dict` will call the underlying `model.state_dict` implementation using `FullStateDictConfig(offload_to_cpu=True, rank0_only=True)` context manager to get the state dict only for rank 0 and it will be offloaded to CPU.
|
||||
|
||||
You can then pass `state` into the `save_pretrained` method. There are several modes for `StateDictType` and `FullStateDictConfig` that you can use to control the behavior of `state_dict`. For more information, see the [PyTorch documentation](https://pytorch.org/docs/stable/fsdp.html).
|
||||
|
||||
|
||||
## Mapping between FSDP sharding strategies and DeepSpeed ZeRO Stages
|
||||
* `FULL_SHARD` maps to the DeepSpeed `ZeRO Stage-3`. Shards optimizer states, gradients and parameters.
|
||||
* `SHARD_GRAD_OP` maps to the DeepSpeed `ZeRO Stage-2`. Shards optimizer states and gradients.
|
||||
* `NO_SHARD` maps to `ZeRO Stage-0`. No sharding wherein each GPU has full copy of model, optimizer states and gradients.
|
||||
* `HYBRID_SHARD` maps to `ZeRO++ Stage-3` wherein `zero_hpz_partition_size=<num_gpus_per_node>`. Here, this will shard optimizer states, gradients and parameters within each node while each node has full copy.
|
||||
|
||||
## A few caveats to be aware of
|
||||
|
||||
- PyTorch FSDP auto wraps sub-modules, flattens the parameters and shards the parameters in place.
|
||||
Due to this, any optimizer created before model wrapping gets broken and occupies more memory.
|
||||
Hence, it is highly recommended and efficient to prepare the model before creating the optimizer.
|
||||
`Accelerate` will automatically wrap the model and create an optimizer for you in case of single model with a warning message.
|
||||
> FSDP Warning: When using FSDP, it is efficient and recommended to call prepare for the model before creating the optimizer
|
||||
|
||||
However, below is the recommended way to prepare model and optimizer while using FSDP:
|
||||
|
||||
```diff
|
||||
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
|
||||
+ model = accelerator.prepare(model)
|
||||
|
||||
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
|
||||
|
||||
- model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
||||
- model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
- )
|
||||
|
||||
+ optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
||||
+ optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
+ )
|
||||
```
|
||||
|
||||
- In case of a single model, if you have created the optimizer with multiple parameter groups and called prepare with them together,
|
||||
then the parameter groups will be lost and the following warning is displayed:
|
||||
> FSDP Warning: When using FSDP, several parameter groups will be conflated into
|
||||
> a single one due to nested module wrapping and parameter flattening.
|
||||
|
||||
This is because parameter groups created before wrapping will have no meaning post wrapping due to parameter flattening of nested FSDP modules into 1D arrays (which can consume many layers).
|
||||
For instance, below are the named parameters of an FSDP model on GPU 0 (When using 2 GPUs. Around 55M (110M/2) params in 1D arrays as this will have the 1st shard of the parameters).
|
||||
Here, if one has applied no weight decay for [bias, LayerNorm.weight] the named parameters of an unwrapped BERT model,
|
||||
it can't be applied to the below FSDP wrapped model as there are no named parameters with either of those strings and
|
||||
the parameters of those layers are concatenated with parameters of various other layers.
|
||||
```
|
||||
{
|
||||
'_fsdp_wrapped_module.flat_param': torch.Size([494209]),
|
||||
'_fsdp_wrapped_module._fpw_module.bert.embeddings.word_embeddings._fsdp_wrapped_module.flat_param': torch.Size([11720448]),
|
||||
'_fsdp_wrapped_module._fpw_module.bert.encoder._fsdp_wrapped_module.flat_param': torch.Size([42527232])
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
- In case of multiple models, it is necessary to prepare the models before creating optimizers or else it will throw an error.
|
||||
Then pass the optimizers to the prepare call in the same order as corresponding models else `accelerator.save_state()` and `accelerator.load_state()` will result in wrong/unexpected behaviour.
|
||||
- In case of multiple models, pass the optimizers to the prepare call in the same order as corresponding models else `accelerator.save_state()` and `accelerator.load_state()` will result in wrong/unexpected behaviour.
|
||||
- This feature is incompatible with `--predict_with_generate` in the `run_translation.py` script of 🤗 `Transformers` library.
|
||||
|
||||
For more control, users can leverage the `FullyShardedDataParallelPlugin`. After creating an instance of this class, users can pass it to the Accelerator class instantiation.
|
||||
|
||||
@ -118,8 +118,24 @@ You can remove all the special checks for the step number and the loss adjustmen
|
||||
As you can see the [`Accelerator`] is able to keep track of the batch number you are on and it will automatically know whether to step through the prepared optimizer and how to adjust the loss.
|
||||
|
||||
<Tip>
|
||||
|
||||
Typically with gradient accumulation, you would need to adjust the number of steps to reflect the change in total batches you are
|
||||
training on. 🤗 Accelerate automagically does this for you by default. Behind the scenes we instantiate a GradientAccumulationPlugin configured to do this.
|
||||
training on. 🤗 Accelerate automagically does this for you by default. Behind the scenes we instantiate a [`GradientAccumulationPlugin`] configured to do this.
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
The [`state.GradientState`] is sync'd with the active dataloader being iterated upon. As such it assumes naively that when we have reached the end of the dataloader everything will sync and a step will be performed. To disable this, set `sync_with_dataloader` to be `False` in the [`GradientAccumulationPlugin`]:
|
||||
|
||||
```{python}
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import GradientAccumulationPlugin
|
||||
|
||||
plugin = GradientAccumulationPlugin(sync_with_dataloader=False)
|
||||
accelerator = Accelerator(..., gradient_accumulation_plugin=plugin)
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
## The finished code
|
||||
|
||||
@ -115,8 +115,11 @@ What is the IP address of the machine that will host the main process? 36.112.23
|
||||
What is the port you will use to communicate with the main process? 29500
|
||||
Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: yes
|
||||
Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes
|
||||
Do you want accelerate to launch mpirun? [yes/NO]: yes
|
||||
Please enter the path to the hostfile to use with mpirun [~/hostfile]: ~/hostfile
|
||||
Enter the number of oneCCL worker threads [1]: 1
|
||||
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
|
||||
How many CPU(s) should be used for distributed training? [1]:16
|
||||
How many processes should be used for distributed training? [1]:16
|
||||
-----------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
Do you wish to use FP16 or BF16 (mixed precision)?
|
||||
bf16
|
||||
@ -135,6 +138,9 @@ main_process_ip: 36.112.23.24
|
||||
main_process_port: 29500
|
||||
main_training_function: main
|
||||
mixed_precision: bf16
|
||||
mpirun_config:
|
||||
mpirun_ccl: '1'
|
||||
mpirun_hostfile: /home/user/hostfile
|
||||
num_machines: 4
|
||||
num_processes: 16
|
||||
rdzv_backend: static
|
||||
@ -148,6 +154,7 @@ use_cpu: true
|
||||
Set following env and using intel MPI to launch the training
|
||||
|
||||
In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument.
|
||||
If you selected to have Accelerate launch `mpirun`, ensure that the location of your hostfile matches the path in the config.
|
||||
```bash
|
||||
$ cat hostfile
|
||||
xxx.xxx.xxx.xxx #node0 ip
|
||||
@ -155,7 +162,18 @@ xxx.xxx.xxx.xxx #node1 ip
|
||||
xxx.xxx.xxx.xxx #node2 ip
|
||||
xxx.xxx.xxx.xxx #node3 ip
|
||||
```
|
||||
Now, run the following command in node0 and **16DDP** will be enabled in node0,node1,node2,node3 with BF16 mixed precision:
|
||||
When Accelerate is launching `mpirun`, source the oneCCL bindings setvars.sh to get your Intel MPI environment, and then
|
||||
run your script using `accelerate launch`. Note that the python script and environment needs to exist on all of the
|
||||
machines being used for multi-CPU training.
|
||||
```bash
|
||||
oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
|
||||
source $oneccl_bindings_for_pytorch_path/env/setvars.sh
|
||||
|
||||
accelerate launch examples/nlp_example.py
|
||||
```
|
||||
Otherwise, if you selected not to have Accelerate launch `mpirun`, run the following command in node0 and **16DDP** will
|
||||
be enabled in node0,node1,node2,node3 with BF16 mixed precision. When using this method, the python script, python
|
||||
environment, and accelerate config file need to be present on all of the machines used for multi-CPU training.
|
||||
```bash
|
||||
oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
|
||||
source $oneccl_bindings_for_pytorch_path/env/setvars.sh
|
||||
|
||||
@ -88,7 +88,7 @@ achieved by adding one `with LocalSGD` statement and one call `local_sgd.step()`
|
||||
+ local_sgd.step()
|
||||
```
|
||||
|
||||
Under the hood, the Local SGD code **disables** automatic gradient synchornization (but accumulation still works as expected!). Instead it averages model parameters every `local_sgd_steps` steps (as well as in the end of the training loop).
|
||||
Under the hood, the Local SGD code **disables** automatic gradient synchronization (but accumulation still works as expected!). Instead it averages model parameters every `local_sgd_steps` steps (as well as at the end of the training loop).
|
||||
|
||||
## Limitations
|
||||
|
||||
|
||||
92
docs/source/usage_guides/low_precision_training.md
Normal file
92
docs/source/usage_guides/low_precision_training.md
Normal file
@ -0,0 +1,92 @@
|
||||
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Low Precision Training Methods
|
||||
|
||||
🤗 Accelerate provides integrations to train on lower precision methods using specified supported hardware through the `TransformersEngine` and `MS-AMP` packages. This documentation will help guide you through what hardware is supported, how to configure your [`Accelerator`] to leverage the low precision methods, and what you can expect when training.
|
||||
|
||||
## What training on FP8 means
|
||||
|
||||
To explore more of the nitty-gritty in training in FP8 with PyTorch and 🤗 Accelerate, check out the [concept_guide](../concept_guides/low_precision_training.md) on why this can be difficult. But essentially rather than training in BF16, some (or all) aspects of training a model can be performed using 8 bits instead of 16. The challenge is doing so without degrading final performance.
|
||||
|
||||
This is only enabled on specific NVIDIA hardware, namely:
|
||||
|
||||
* Anything after the 3000 series consumer graphics cards (such as the 4090)
|
||||
* Hopper-based GPU architectures (such as the `H100` and `H200`)
|
||||
|
||||
What this will result in is some gain in the memory used (as we've cut the needed memory in half for some parts of training) and an increase in throughput *should* be seen as well for larger models that can replace certain layers with FP8-enabled ones.
|
||||
|
||||
## Configuring the Accelerator
|
||||
|
||||
Currently two different backends for FP8 are supported (`TransformersEngine` and `MS-AMP`), each with different capabilities and configurations.
|
||||
|
||||
To use either, the same core API is used. Just pass `mixed_precision="fp8"` to either the [`Accelerator`], during `accelerate config` when prompted about mixed precision, or as part of your `config.yaml` file in the `mixed_precision` key:
|
||||
|
||||
```{python}
|
||||
from accelerate import Accelerator
|
||||
accelerator = Accelerator(mixed_precision="fp8")
|
||||
```
|
||||
|
||||
By default, if `MS-AMP` is available in your environment, 🤗 Accelerate will automatically utilize it as a backend. To specify it yourself (and customize other parts of the FP8 mixed precision setup), you can utilize the [`utils.FP8RecipeKwargs`]:
|
||||
|
||||
```{python}
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import FP8RecipeKwargs
|
||||
kwargs = [FP8RecipeKwargs(backend="msamp")]
|
||||
# Or to specify the backend as `TransformersEngine` even if MS-AMP is installed
|
||||
# kwargs = [FP8RecipeKwargs(backend="te")]
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
|
||||
```
|
||||
|
||||
## Configuring MS-AMP
|
||||
|
||||
Of the two, `MS-AMP` is traditionally the easier one to configure as there is only a single argument: the optimization level.
|
||||
|
||||
Currently two levels of optimization are supported in the 🤗 Accelerate integration, `"O1"` and `"O2"` (using the letter 'o', not zero).
|
||||
|
||||
* `"O1"` will cast the weight gradients and `all_reduce` communications to happen in 8-bit, while the rest are done in 16 bit. This reduces the general GPU memory usage and speeds up communication bandwidths.
|
||||
* `"O2"` will also cast first-order optimizer states into 8 bit, while the second order states are in FP16. (Currently just the `Adam` optimizer is supported). This tries its best to minimize final accuracy degradation and will save the highest potential memory.
|
||||
|
||||
To specify an optimization level, pass it to the `FP8KwargsHandler` by setting the `optimization_level` argument:
|
||||
|
||||
```{python}
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import FP8RecipeKwargs
|
||||
kwargs = [FP8RecipeKwargs(backend="msamp", optimization_level="O2")]
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
|
||||
```
|
||||
|
||||
## Configuring TransformersEngine
|
||||
|
||||
TransformersEngine has much more available for customizing how and what FP8 calculations are performed. A full list of supported arguments and what they mean are available in [NVIDIA's documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html), however they are restated as part of [`FP8KwargsHandler`]'s docstring for your convenience.
|
||||
|
||||
🤗 Accelerate tries to set sensible defaults, but exploring and tweaking the various parameters yourself can lead to better performance potentially.
|
||||
|
||||
To use it, specify `backend="te"` and modify any of the arguments you want as part of your kwarg handler:
|
||||
|
||||
```{python}
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import FP8RecipeKwargs
|
||||
kwargs = [FP8RecipeKwargs(backend="te", ...)]
|
||||
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
|
||||
```
|
||||
|
||||
## Further Reading
|
||||
|
||||
To learn more about training in FP8 please check out the following resources:
|
||||
|
||||
* [Our concept guide](../concept_guides/low_precision_training.md) detailing into more about both TransformersEngine and MS-AMP
|
||||
* [The `transformers-engine` documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html)
|
||||
* [The `MS-AMP` documentation](https://azure.github.io/MS-AMP/docs/)
|
||||
@ -9,7 +9,7 @@ Unless required by applicable law or agreed to in writing, software distributed
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
@ -113,7 +113,7 @@ pip install git+https://github.com/huggingface/Megatron-LM.git
|
||||
## Accelerate Megatron-LM Plugin
|
||||
|
||||
Important features are directly supported via the `accelerate config` command.
|
||||
An example of thr corresponding questions for using Megatron-LM features is shown below:
|
||||
An example of the corresponding questions for using Megatron-LM features is shown below:
|
||||
|
||||
```bash
|
||||
:~$ accelerate config --config_file "megatron_gpt_config.yaml"
|
||||
@ -128,7 +128,7 @@ Do you want to enable Sequence Parallelism? [YES/no]:
|
||||
What is the Pipeline Parallelism degree/size? [1]:2
|
||||
What is the number of micro-batches? [1]:2
|
||||
Do you want to enable selective activation recomputation? [YES/no]:
|
||||
Do you want to use distributed optimizer which shards optimizer state and gradients across data pralellel ranks? [YES/no]:
|
||||
Do you want to use distributed optimizer which shards optimizer state and gradients across data parallel ranks? [YES/no]:
|
||||
What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]:
|
||||
How many GPU(s) should be used for distributed training? [1]:4
|
||||
Do you wish to use FP16 or BF16 (mixed precision)? [NO/fp16/bf16]: bf16
|
||||
@ -355,8 +355,8 @@ def main():
|
||||
|
||||
2. For using the Megatron-LM datasets, a few more changes are required. Dataloaders for these datasets
|
||||
are available only on rank 0 of each tensor parallel group. As such, there are rank where dataloader won't be
|
||||
avaiable and this requires tweaks to the training loop. Being able to do all this shows how
|
||||
felixble and extensible 🤗 Accelerate is. The changes required are as follows.
|
||||
available and this requires tweaks to the training loop. Being able to do all this shows how
|
||||
flexible and extensible 🤗 Accelerate is. The changes required are as follows.
|
||||
|
||||
a. For Megatron-LM indexed datasets, we need to use `MegatronLMDummyDataLoader`
|
||||
and pass the required dataset args to it such as `data_path`, `seq_length` etc.
|
||||
@ -542,12 +542,12 @@ megatron_lm_plugin = MegatronLMPlugin(other_megatron_args=other_megatron_args)
|
||||
This covers Decoder only, Encode only and Encoder-Decoder model classes.
|
||||
|
||||
2. Only loss is returned from model forward pass as
|
||||
there is quite complex interplay of pipeline, tensor and data parallelsim behind the scenes.
|
||||
there is quite complex interplay of pipeline, tensor and data parallelism behind the scenes.
|
||||
The `model(**batch_data)` call return loss(es) averaged across the data parallel ranks.
|
||||
This is fine for most cases wherein pre-training jobs are run using Megatron-LM features and
|
||||
you can easily compute the `perplexity` using the loss.
|
||||
For GPT model, returning logits in addition to loss(es) is supported.
|
||||
These logits aren't gathered across data prallel ranks. Use `accelerator.utils.gather_across_data_parallel_groups`
|
||||
These logits aren't gathered across data parallel ranks. Use `accelerator.utils.gather_across_data_parallel_groups`
|
||||
to gather logits across data parallel ranks. These logits along with labels can be used for computing various
|
||||
performance metrics.
|
||||
|
||||
@ -580,4 +580,4 @@ b. Megatron-LM [GPTModel](https://github.com/NVIDIA/Megatron-LM/blob/main/megatr
|
||||
c. Megatron-LM [T5Model](https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/t5_model.py) :
|
||||
🤗 transformers models with `t5` in config's model type, e.g.,
|
||||
[T5](https://huggingface.co/docs/transformers/model_doc/t5) and
|
||||
[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)
|
||||
[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)
|
||||
|
||||
@ -1,58 +0,0 @@
|
||||
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Memory Utilities
|
||||
|
||||
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory",
|
||||
as the entire script needs to be restarted, progress is lost, and typically a developer would want to simply
|
||||
start their script and let it run.
|
||||
|
||||
`Accelerate` provides a utility heavily based on [toma](https://github.com/BlackHC/toma) to give this capability.
|
||||
|
||||
## find_executable_batch_size
|
||||
|
||||
This algorithm operates with exponential decay, decreasing the batch size in half after each failed run on some
|
||||
training script. To use it, restructure your training function to include an inner function that includes this wrapper,
|
||||
and build your dataloaders inside it. At a minimum, this could look like 4 new lines of code.
|
||||
> Note: The inner function *must* take in the batch size as the first parameter, but we do not pass one to it when called. The wrapper handles this for us
|
||||
|
||||
It should also be noted that anything which will consume CUDA memory and passed to the `accelerator` **must** be declared inside the inner function,
|
||||
such as models and optimizers.
|
||||
|
||||
```diff
|
||||
def training_function(args):
|
||||
accelerator = Accelerator()
|
||||
|
||||
+ @find_executable_batch_size(starting_batch_size=args.batch_size)
|
||||
+ def inner_training_loop(batch_size):
|
||||
+ nonlocal accelerator # Ensure they can be used in our context
|
||||
+ accelerator.free_memory() # Free all lingering references
|
||||
model = get_model()
|
||||
model.to(accelerator.device)
|
||||
optimizer = get_optimizer()
|
||||
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
|
||||
lr_scheduler = get_scheduler(
|
||||
optimizer,
|
||||
num_training_steps=len(train_dataloader)*num_epochs
|
||||
)
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
)
|
||||
train(model, optimizer, train_dataloader, lr_scheduler)
|
||||
validate(model, eval_dataloader)
|
||||
+ inner_training_loop()
|
||||
```
|
||||
|
||||
To find out more, check the documentation [here](../package_reference/utilities#accelerate.find_executable_batch_size).
|
||||
@ -51,7 +51,7 @@ Below are a few gradio demos related to what was described above. The first is t
|
||||
></iframe>
|
||||
</div>
|
||||
|
||||
A community member has taken the idea and expended it further, allowing you to filter models directly and see if you can run a particular LLM given GPU constraints and LoRA configurations. To play with it, see [here](https://huggingface.co/spaces/Vokturz/can-it-run-llm) for more details.
|
||||
A community member has taken the idea and expanded it further, allowing you to filter models directly and see if you can run a particular LLM given GPU constraints and LoRA configurations. To play with it, see [here](https://huggingface.co/spaces/Vokturz/can-it-run-llm) for more details.
|
||||
|
||||
## The Command
|
||||
|
||||
@ -134,4 +134,4 @@ This calculator will tell you how much memory is needed to purely load the model
|
||||
This calculation is accurate within a few % of the actual value, so it is a very good view of just how much memory it will take. For instance loading `bert-base-cased` actually takes `413.68 MB` when loaded on CUDA in full precision, and the calculator estimates `413.18 MB`.
|
||||
|
||||
When performing inference you can expect to add up to an additional 20% as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). We'll be conducting research into finding a more accurate estimate to these values, and will update
|
||||
this calculator once done.
|
||||
this calculator once done.
|
||||
|
||||
@ -20,12 +20,15 @@ There are a large number of experiment tracking API's available, however getting
|
||||
|
||||
## Integrated Trackers
|
||||
|
||||
Currently `Accelerate` supports four trackers out-of-the-box:
|
||||
Currently `Accelerate` supports seven trackers out-of-the-box:
|
||||
|
||||
- TensorBoard
|
||||
- WandB
|
||||
- CometML
|
||||
- Aim
|
||||
- MLFlow
|
||||
- ClearML
|
||||
- DVCLive
|
||||
|
||||
To use any of them, pass in the selected type(s) to the `log_with` parameter in [`Accelerate`]:
|
||||
```python
|
||||
|
||||
@ -15,7 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Example Zoo
|
||||
|
||||
Below contains a non-exhuastive list of tutorials and scripts showcasing 🤗 Accelerate
|
||||
Below contains a non-exhaustive list of tutorials and scripts showcasing 🤗 Accelerate
|
||||
|
||||
## Official Accelerate Examples:
|
||||
|
||||
@ -72,6 +72,11 @@ These are tutorials from libraries that integrate with 🤗 Accelerate:
|
||||
|
||||
> Don't find your integration here? Make a PR to include it!
|
||||
|
||||
### Amphion
|
||||
- [Training Text-to-Speech Models with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/tts/README.md)
|
||||
- [Training Singing Voice Conversion Models with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/svc/README.md)
|
||||
- [Training Vocoders with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/vocoder/README.md)
|
||||
|
||||
### Catalyst
|
||||
|
||||
- [Distributed training tutorial with Catalyst](https://catalyst-team.github.io/catalyst/tutorials/ddp.html)
|
||||
@ -154,12 +159,12 @@ Below contains a non-exhaustive list of papers utilizing 🤗 Accelerate.
|
||||
* Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang: “Learning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancement”, 2023; [arXiv:2303.04603](http://arxiv.org/abs/2303.04603).
|
||||
* Shun Shao, Yftah Ziser, Shay Cohen: “Erasure of Unaligned Attributes from Neural Representations”, 2023; [arXiv:2302.02997](http://arxiv.org/abs/2302.02997).
|
||||
* Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, Minjoon Seo: “In-Context Instruction Learning”, 2023; [arXiv:2302.14691](http://arxiv.org/abs/2302.14691).
|
||||
* Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: “Prismer: A Vision-Language Model with An Ensemble of Experts”, 2023; [arXiv:2303.02506](http://arxiv.org/abs/2303.02506 ).
|
||||
* Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: “Prismer: A Vision-Language Model with An Ensemble of Experts”, 2023; [arXiv:2303.02506](http://arxiv.org/abs/2303.02506).
|
||||
* Haoyu Chen, Zhihua Wang, Yang Yang, Qilin Sun, Kede Ma: “Learning a Deep Color Difference Metric for Photographic Images”, 2023; [arXiv:2303.14964](http://arxiv.org/abs/2303.14964).
|
||||
* Van-Hoang Le, Hongyu Zhang: “Log Parsing with Prompt-based Few-shot Learning”, 2023; [arXiv:2302.07435](http://arxiv.org/abs/2302.07435).
|
||||
* Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui: “Do Deep Neural Networks Capture Compositionality in Arithmetic Reasoning?”, 2023; [arXiv:2302.07866](http://arxiv.org/abs/2302.07866).
|
||||
* Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, Prithviraj Ammanabrolu: “Behavior Cloned Transformers are Neurosymbolic Reasoners”, 2022; [arXiv:2210.07382](http://arxiv.org/abs/2210.07382).
|
||||
* Martin Wessel, Tomáš Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: “Introducing MBIB -- the first Media Bias Identification Benchmark Task and Dataset Collection”, 2023; [arXiv:2304.13148](http://arxiv.org/abs/2304.13148 ). DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882].
|
||||
* Martin Wessel, Tomáš Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: “Introducing MBIB -- the first Media Bias Identification Benchmark Task and Dataset Collection”, 2023; [arXiv:2304.13148](http://arxiv.org/abs/2304.13148). DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882].
|
||||
* Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, Daniel Cohen-Or: “Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models”, 2023; [arXiv:2301.13826](http://arxiv.org/abs/2301.13826).
|
||||
* Marcio Fonseca, Yftah Ziser, Shay B. Cohen: “Factorizing Content and Budget Decisions in Abstractive Summarization of Long Documents”, 2022; [arXiv:2205.12486](http://arxiv.org/abs/2205.12486).
|
||||
* Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: “TEXTure: Text-Guided Texturing of 3D Shapes”, 2023; [arXiv:2302.01721](http://arxiv.org/abs/2302.01721).
|
||||
@ -172,4 +177,4 @@ Below contains a non-exhaustive list of papers utilizing 🤗 Accelerate.
|
||||
* Zhiruo Wang, Shuyan Zhou, Daniel Fried, Graham Neubig: “Execution-Based Evaluation for Open-Domain Code Generation”, 2022; [arXiv:2212.10481](http://arxiv.org/abs/2212.10481).
|
||||
* Minh-Long Luu, Zeyi Huang, Eric P. Xing, Yong Jae Lee, Haohan Wang: “Expeditious Saliency-guided Mix-up through Random Gradient Thresholding”, 2022; [arXiv:2212.04875](http://arxiv.org/abs/2212.04875).
|
||||
* Jun Hao Liew, Hanshu Yan, Daquan Zhou, Jiashi Feng: “MagicMix: Semantic Mixing with Diffusion Models”, 2022; [arXiv:2210.16056](http://arxiv.org/abs/2210.16056).
|
||||
* Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: “LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners”, 2021; [arXiv:2110.06274](http://arxiv.org/abs/2110.06274).
|
||||
* Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: “LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners”, 2021; [arXiv:2110.06274](http://arxiv.org/abs/2110.06274).
|
||||
|
||||
@ -28,6 +28,7 @@ pip install datasets evaluate transformers
|
||||
|
||||
The same script can be run in any of the following configurations:
|
||||
- single CPU or single GPU
|
||||
- multi CPUs
|
||||
- multi GPUs (using PyTorch distributed mode)
|
||||
- (multi) TPUs
|
||||
- fp16 (mixed-precision) or fp32 (normal precision)
|
||||
@ -58,15 +59,27 @@ To run it in each of these various modes, use the following commands:
|
||||
* from any server with Accelerate launcher
|
||||
```bash
|
||||
accelerate launch --mixed_precision fp16 ./nlp_example.py
|
||||
- multi CPUs (requires Open MPI, Intel MPI, or MVAPICH)
|
||||
* With Accelerate config and launcher, execute the following from node 0:
|
||||
```bash
|
||||
accelerate config # Select to have accelerate launch mpirun
|
||||
accelerate launch ./nlp_example.py # This will run the script on each server
|
||||
```
|
||||
* With Intel MPI:
|
||||
```bash
|
||||
export CCL_WORKER_COUNT=1
|
||||
export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip
|
||||
mpirun -f hostfile -n 16 -ppn 4 python ./nlp_example.py
|
||||
```
|
||||
- multi GPUs (using PyTorch distributed mode)
|
||||
* With Accelerate config and launcher
|
||||
```bash
|
||||
accelerate config # This will create a config file on your server
|
||||
accelerate launch ./nlp_example.py # This will run the script on your server
|
||||
```
|
||||
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
|
||||
* With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`)
|
||||
```bash
|
||||
python -m torchrun --nproc_per_node 2 --use_env ./nlp_example.py
|
||||
torchrun --nproc_per_node 2 ./nlp_example.py
|
||||
```
|
||||
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
|
||||
* With Accelerate config and launcher, on each machine:
|
||||
@ -74,18 +87,15 @@ To run it in each of these various modes, use the following commands:
|
||||
accelerate config # This will create a config file on each server
|
||||
accelerate launch ./nlp_example.py # This will run the script on each server
|
||||
```
|
||||
* With PyTorch launcher only (`torch.distributed.launch` can be used in older versions of PyTorch)
|
||||
* With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node:
|
||||
```bash
|
||||
python -m torchrun --nproc_per_node 2 \
|
||||
--use_env \
|
||||
--node_rank 0 \
|
||||
--master_addr master_node_ip_address \
|
||||
./nlp_example.py # On the first server
|
||||
python -m torchrun --nproc_per_node 2 \
|
||||
--use_env \
|
||||
--node_rank 1 \
|
||||
--master_addr master_node_ip_address \
|
||||
./nlp_example.py # On the second server
|
||||
torchrun \ # python -m torch.distributed.run
|
||||
--nproc_per_node 2 \
|
||||
--nnodes 2 \
|
||||
--rdzv_id 2299 \ # A unique job id
|
||||
--rdzv_backend c10d \
|
||||
--rdzv_endpoint master_node_ip_address:29500 \
|
||||
./nlp_example.py
|
||||
```
|
||||
- (multi) TPUs
|
||||
* With Accelerate config and launcher
|
||||
@ -103,6 +113,7 @@ The [cv_example.py](./cv_example.py) script is a simple example to fine-tune a R
|
||||
|
||||
The same script can be run in any of the following configurations:
|
||||
- single CPU or single GPU
|
||||
- multi CPUs
|
||||
- multi GPUs (using PyTorch distributed mode)
|
||||
- (multi) TPUs
|
||||
- fp16 (mixed-precision) or fp32 (normal precision)
|
||||
@ -146,40 +157,49 @@ To run it in each of these various modes, use the following commands:
|
||||
* from any server with Accelerate launcher
|
||||
```bash
|
||||
accelerate launch --mixed_precison fp16 ./cv_example.py --data_dir path_to_data
|
||||
- multi CPUs (requires Open MPI, Intel MPI, or MVAPICH)
|
||||
* With Accelerate config and launcher, run the following from node 0:
|
||||
```bash
|
||||
accelerate config --config_file config.yaml # Select to have accelerate launch mpirun
|
||||
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
|
||||
```
|
||||
* With Intel MPI, execute mpirun from node 0:
|
||||
```bash
|
||||
export CCL_WORKER_COUNT=1
|
||||
export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip
|
||||
mpirun -f hostfile -n 16 -ppn 4 python ./cv_example.py --data_dir path_to_data
|
||||
```
|
||||
- multi GPUs (using PyTorch distributed mode)
|
||||
* With Accelerate config and launcher
|
||||
```bash
|
||||
accelerate config # This will create a config file on your server
|
||||
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on your server
|
||||
accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml`
|
||||
accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on your server
|
||||
```
|
||||
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
|
||||
* With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`)
|
||||
```bash
|
||||
python -m torchrun --nproc_per_node 2 --use_env ./cv_example.py --data_dir path_to_data
|
||||
torchrun --nproc_per_node 2 ./cv_example.py --data_dir path_to_data
|
||||
```
|
||||
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
|
||||
* With Accelerate config and launcher, on each machine:
|
||||
```bash
|
||||
accelerate config # This will create a config file on each server
|
||||
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
|
||||
accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml`
|
||||
accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server
|
||||
```
|
||||
* With PyTorch launcher only (`torch.distributed.launch` can be used with older versions of PyTorch)
|
||||
* With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node:
|
||||
```bash
|
||||
python -m torchrun --nproc_per_node 2 \
|
||||
--use_env \
|
||||
--node_rank 0 \
|
||||
--master_addr master_node_ip_address \
|
||||
./cv_example.py --data_dir path_to_data # On the first server
|
||||
python -m torchrun --nproc_per_node 2 \
|
||||
--use_env \
|
||||
--node_rank 1 \
|
||||
--master_addr master_node_ip_address \
|
||||
./cv_example.py --data_dir path_to_data # On the second server
|
||||
torchrun \ # python -m torch.distributed.run
|
||||
--nproc_per_node 2 \
|
||||
--nnodes 2 \
|
||||
--rdzv_id 2299 \ # A unique job id
|
||||
--rdzv_backend c10d \
|
||||
--rdzv_endpoint master_node_ip_address:29500 \
|
||||
./cv_example.py --data_dir path_to_data
|
||||
```
|
||||
- (multi) TPUs
|
||||
* With Accelerate config and launcher
|
||||
```bash
|
||||
accelerate config # This will create a config file on your TPU server
|
||||
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
|
||||
accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml`
|
||||
accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server
|
||||
```
|
||||
* In PyTorch:
|
||||
Add an `xmp.spawn` line in your script as you usually do.
|
||||
@ -206,6 +226,29 @@ with `pip install runhouse`, and you can refer to
|
||||
for hardware setup instructions, or this
|
||||
[Colab tutorial](https://colab.research.google.com/drive/1qVwYyLTCPYPSdz9ZX7BZl9Qm0A3j7RJe) for a more in-depth walkthrough.
|
||||
|
||||
## SLURM Scripts
|
||||
In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) and [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we present two scripts for running the examples on a machine with [SLURM](https://slurm.schedmd.com/documentation.html) workload manager.
|
||||
|
||||
In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) the only parameter in the launcher that needs to be modified is `--num_processes`, which determines the number of GPUs we will use. In this case, using the environment variable `$SLURM_GPUS`, we indicate that we want to utilize all the GPUs available on the node we have requested.
|
||||
|
||||
In [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we must specify the number of nodes that will be part of the training (`--num_machines`), how many GPUs we will use in total (`--num_processes`), the [`backend`](https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend), `--main_process_ip` which will be the address the master node and the `--main_process_port`.
|
||||
|
||||
In both scripts, we run `activateEnviroment.sh` at the beginning. This script should contain the necessary instructions to initialize the environment for execution. Below, we show an example that loads the necessary libraries ([Environment modules](https://github.com/cea-hpc/modules)), activates the Python environment, and sets up various environment variables, most of them to run the scripts in offline mode in case we don't have internet connection from the cluster.
|
||||
|
||||
```bash
|
||||
# activateEnvironment.sh
|
||||
module purge
|
||||
module load anaconda3/2020.02 cuda/10.2 cudnn/8.0.5 nccl/2.9.9 arrow/7.0.0 openmpi
|
||||
source activate /home/nct01/nct01328/pytorch_antoni_local
|
||||
|
||||
export HF_HOME=/gpfs/projects/nct01/nct01328/
|
||||
export HF_LOCAL_HOME=/gpfs/projects/nct01/nct01328/HF_LOCAL
|
||||
export HF_DATASETS_OFFLINE=1
|
||||
export TRANSFORMERS_OFFLINE=1
|
||||
export PYTHONPATH=/home/nct01/nct01328/transformers-in-supercomputers:$PYTHONPATH
|
||||
export GPUS_PER_NODE=4
|
||||
```
|
||||
|
||||
## Finer Examples
|
||||
|
||||
While the first two scripts are extremely barebones when it comes to what you can do with accelerate, more advanced features are documented in two other locations.
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -86,7 +85,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -154,7 +153,7 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -106,7 +105,7 @@ def get_fold_dataloaders(
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -157,7 +156,7 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
|
||||
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -220,7 +219,7 @@ def parse_args():
|
||||
default="all",
|
||||
help=(
|
||||
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
|
||||
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
|
||||
' `"wandb"`, `"comet_ml"`, and `"dvclive"`. Use `"all"` (default) to report to all integrations.'
|
||||
"Only applicable when `--with_tracking` is passed."
|
||||
),
|
||||
)
|
||||
@ -512,7 +511,7 @@ def main():
|
||||
optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate)
|
||||
|
||||
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
|
||||
if accelerator.distributed_type == DistributedType.TPU:
|
||||
if accelerator.distributed_type == DistributedType.XLA:
|
||||
model.tie_weights()
|
||||
|
||||
# Scheduler and math around the number of training steps.
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -81,7 +80,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -151,7 +150,7 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -209,13 +208,13 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -247,16 +246,19 @@ def training_function(config, args):
|
||||
args.model_name_or_path, return_dict=True, low_cpu_mem_usage=True
|
||||
)
|
||||
|
||||
# New Code #
|
||||
# For FSDP feature, it is highly recommended and efficient to prepare the model before creating optimizer
|
||||
model = accelerator.prepare(model)
|
||||
accelerator.print(model)
|
||||
no_decay = ["bias", "LayerNorm.weight"]
|
||||
optimizer_grouped_parameters = [
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.003,
|
||||
},
|
||||
{
|
||||
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
||||
"weight_decay": 0.0,
|
||||
},
|
||||
]
|
||||
|
||||
# Instantiate optimizer
|
||||
# New Code #
|
||||
# For FSDP feature, at present it doesn't support multiple parameter groups,
|
||||
# so we need to create a single parameter group for the whole model
|
||||
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr, weight_decay=2e-4)
|
||||
optimizer = torch.optim.AdamW(params=optimizer_grouped_parameters, lr=lr, weight_decay=2e-4)
|
||||
|
||||
# Instantiate scheduler
|
||||
lr_scheduler = get_linear_schedule_with_warmup(
|
||||
@ -265,13 +267,8 @@ def training_function(config, args):
|
||||
num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps,
|
||||
)
|
||||
|
||||
# New Code #
|
||||
# For FSDP feature, prepare everything except the model as we have already prepared the model
|
||||
# before creating the optimizer
|
||||
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
|
||||
# prepare method.
|
||||
optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
||||
optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
|
||||
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
|
||||
)
|
||||
|
||||
overall_step = 0
|
||||
@ -336,13 +333,11 @@ def training_function(config, args):
|
||||
accelerator.save_state(output_dir)
|
||||
# New Code #
|
||||
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
|
||||
accelerator.print("Memory before entering the train : {}".format(b2mb(tracemalloc.begin)))
|
||||
accelerator.print("Memory consumed at the end of the train (end-begin): {}".format(tracemalloc.used))
|
||||
accelerator.print("Peak Memory consumed during the train (max-begin): {}".format(tracemalloc.peaked))
|
||||
accelerator.print(f"Memory before entering the train : {b2mb(tracemalloc.begin)}")
|
||||
accelerator.print(f"Memory consumed at the end of the train (end-begin): {tracemalloc.used}")
|
||||
accelerator.print(f"Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}")
|
||||
accelerator.print(
|
||||
"Total Peak Memory consumed during the train (max): {}".format(
|
||||
tracemalloc.peaked + b2mb(tracemalloc.begin)
|
||||
)
|
||||
f"Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}"
|
||||
)
|
||||
# Logging the peak memory usage of the GPU to the tracker
|
||||
if args.with_tracking:
|
||||
@ -389,11 +384,11 @@ def training_function(config, args):
|
||||
accelerator.save_state(output_dir)
|
||||
# New Code #
|
||||
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
|
||||
accelerator.print("Memory before entering the eval : {}".format(b2mb(tracemalloc.begin)))
|
||||
accelerator.print("Memory consumed at the end of the eval (end-begin): {}".format(tracemalloc.used))
|
||||
accelerator.print("Peak Memory consumed during the eval (max-begin): {}".format(tracemalloc.peaked))
|
||||
accelerator.print(f"Memory before entering the eval : {b2mb(tracemalloc.begin)}")
|
||||
accelerator.print(f"Memory consumed at the end of the eval (end-begin): {tracemalloc.used}")
|
||||
accelerator.print(f"Peak Memory consumed during the eval (max-begin): {tracemalloc.peaked}")
|
||||
accelerator.print(
|
||||
"Total Peak Memory consumed during the eval (max): {}".format(tracemalloc.peaked + b2mb(tracemalloc.begin))
|
||||
f"Total Peak Memory consumed during the eval (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}"
|
||||
)
|
||||
# Logging the peak memory usage of the GPU to the tracker
|
||||
if args.with_tracking:
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -81,7 +80,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -126,7 +125,7 @@ def training_function(config, args):
|
||||
accelerator = Accelerator(
|
||||
cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps
|
||||
)
|
||||
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
|
||||
if accelerator.distributed_type == DistributedType.XLA and gradient_accumulation_steps > 1:
|
||||
raise NotImplementedError(
|
||||
"Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`"
|
||||
)
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -84,7 +83,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -130,8 +129,6 @@ def training_function(config, args):
|
||||
accelerator = Accelerator(
|
||||
cpu=args.cpu, mixed_precision=args.mixed_precision, gradient_accumulation_steps=gradient_accumulation_steps
|
||||
)
|
||||
if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]:
|
||||
raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)")
|
||||
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
|
||||
lr = config["lr"]
|
||||
num_epochs = int(config["num_epochs"])
|
||||
|
||||
@ -1,5 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -216,7 +215,7 @@ def parse_args():
|
||||
default="all",
|
||||
help=(
|
||||
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
|
||||
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
|
||||
' `"wandb"`, `"comet_ml"`, and `"dvclive"`. Use `"all"` (default) to report to all integrations.'
|
||||
"Only applicable when `--with_tracking` is passed."
|
||||
),
|
||||
)
|
||||
@ -405,7 +404,7 @@ def main():
|
||||
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
|
||||
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
|
||||
)
|
||||
block_size = 1024
|
||||
block_size = 1024
|
||||
else:
|
||||
if args.block_size > tokenizer.model_max_length:
|
||||
logger.warning(
|
||||
@ -506,7 +505,7 @@ def main():
|
||||
)
|
||||
|
||||
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
|
||||
if accelerator.distributed_type == DistributedType.TPU:
|
||||
if accelerator.distributed_type == DistributedType.XLA:
|
||||
model.tie_weights()
|
||||
|
||||
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
||||
|
||||
@ -86,7 +86,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -88,7 +87,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -139,7 +138,7 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -86,7 +85,7 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -149,7 +148,7 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -103,13 +102,13 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
|
||||
62
examples/inference/README.md
Normal file
62
examples/inference/README.md
Normal file
@ -0,0 +1,62 @@
|
||||
# Distributed inference examples with PiPPy
|
||||
|
||||
This repo contains a variety of tutorials for using the [PiPPy](https://github.com/PyTorch/PiPPy) pipeline parallelism library with accelerate. You will find examples covering:
|
||||
|
||||
1. How to trace the model using `accelerate.prepare_pippy`
|
||||
2. How to specify inputs based on what the model expects (when to use `kwargs`, `args`, and such)
|
||||
3. How to gather the results at the end.
|
||||
|
||||
## Installation
|
||||
|
||||
This requires the `main` branch of accelerate (or a version at least 0.27.0), `pippy` version of 0.2.0 or greater, and at least python 3.9. Please install using `pip install .` to pull from the `setup.py` in this repo, or run manually:
|
||||
|
||||
```bash
|
||||
pip install 'accelerate>=0.27.0' 'torchpippy>=0.2.0'
|
||||
```
|
||||
|
||||
## Running code
|
||||
|
||||
You can either use `torchrun` or the recommended way of `accelerate launch` (without needing to run `accelerate config`) on each script:
|
||||
|
||||
```bash
|
||||
accelerate launch bert.py
|
||||
```
|
||||
|
||||
Or:
|
||||
|
||||
```bash
|
||||
accelerate launch --num_processes {NUM_GPUS} bert.py
|
||||
```
|
||||
|
||||
Or:
|
||||
|
||||
```bash
|
||||
torchrun --nproc-per-node {NUM_GPUS} bert.py
|
||||
```
|
||||
|
||||
## General speedups
|
||||
|
||||
One can expect that PiPPy will outperform native model parallism by a multiplicative factor since all GPUs are running at all times with inputs, rather than one input being passed through a GPU at a time waiting for the prior to finish.
|
||||
|
||||
Below are some benchmarks we have found when using the accelerate-pippy integration for a few models when running on 2x4090's:
|
||||
|
||||
### Bert
|
||||
|
||||
| | Accelerate/Sequential | PiPPy + Accelerate |
|
||||
|---|---|---|
|
||||
| First batch | 0.2137s | 0.3119s |
|
||||
| Average of 5 batches | 0.0099s | **0.0062s** |
|
||||
|
||||
### GPT2
|
||||
|
||||
| | Accelerate/Sequential | PiPPy + Accelerate |
|
||||
|---|---|---|
|
||||
| First batch | 0.1959s | 0.4189s |
|
||||
| Average of 5 batches | 0.0205s | **0.0126s** |
|
||||
|
||||
### T5
|
||||
|
||||
| | Accelerate/Sequential | PiPPy + Accelerate |
|
||||
|---|---|---|
|
||||
| First batch | 0.2789s | 0.3809s |
|
||||
| Average of 5 batches | 0.0198s | **0.0166s** |
|
||||
78
examples/inference/bert.py
Normal file
78
examples/inference/bert.py
Normal file
@ -0,0 +1,78 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import time
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM
|
||||
|
||||
from accelerate import PartialState, prepare_pippy
|
||||
from accelerate.utils import set_seed
|
||||
|
||||
|
||||
# Set the random seed to have reproducable outputs
|
||||
set_seed(42)
|
||||
|
||||
# Create an example model
|
||||
model = AutoModelForMaskedLM.from_pretrained("bert-base-uncased")
|
||||
model.eval()
|
||||
|
||||
# Input configs
|
||||
# Create example inputs for the model
|
||||
input = torch.randint(
|
||||
low=0,
|
||||
high=model.config.vocab_size,
|
||||
size=(2, 512), # bs x seq_len
|
||||
device="cpu",
|
||||
dtype=torch.int64,
|
||||
requires_grad=False,
|
||||
)
|
||||
|
||||
|
||||
# Create a pipeline stage from the model
|
||||
# Using `auto` is equivalent to letting `device_map="auto"` figure
|
||||
# out device mapping and will also split the model according to the
|
||||
# number of total GPUs available if it fits on one GPU
|
||||
model = prepare_pippy(model, split_points="auto", example_args=(input,))
|
||||
|
||||
# You can pass `gather_output=True` to have the output from the model
|
||||
# available on all GPUs
|
||||
# model = prepare_pippy(model, split_points="auto", example_args=(input,), gather_output=True)
|
||||
|
||||
# Move the inputs to the first device
|
||||
input = input.to("cuda:0")
|
||||
|
||||
# Take an average of 5 times
|
||||
# Measure first batch
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
output = model(input)
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
first_batch = end_time - start_time
|
||||
|
||||
# Now that CUDA is init, measure after
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
for i in range(5):
|
||||
with torch.no_grad():
|
||||
output = model(input)
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
|
||||
# The outputs are only on the final process by default
|
||||
if PartialState().is_last_process:
|
||||
output = torch.stack(tuple(output[0]))
|
||||
print(f"Time of first pass: {first_batch}")
|
||||
print(f"Average time per batch: {(end_time - start_time) / 5}")
|
||||
77
examples/inference/gpt2.py
Normal file
77
examples/inference/gpt2.py
Normal file
@ -0,0 +1,77 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import time
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForSequenceClassification
|
||||
|
||||
from accelerate import PartialState, prepare_pippy
|
||||
from accelerate.utils import set_seed
|
||||
|
||||
|
||||
# Set the random seed to have reproducable outputs
|
||||
set_seed(42)
|
||||
|
||||
# Create an example model
|
||||
model = AutoModelForSequenceClassification.from_pretrained("gpt2")
|
||||
model.eval()
|
||||
|
||||
# Input configs
|
||||
# Create example inputs for the model
|
||||
input = torch.randint(
|
||||
low=0,
|
||||
high=model.config.vocab_size,
|
||||
size=(2, 1024), # bs x seq_len
|
||||
device="cpu",
|
||||
dtype=torch.int64,
|
||||
requires_grad=False,
|
||||
)
|
||||
|
||||
# Create a pipeline stage from the model
|
||||
# Using `auto` is equivalent to letting `device_map="auto"` figure
|
||||
# out device mapping and will also split the model according to the
|
||||
# number of total GPUs available if it fits on one GPU
|
||||
model = prepare_pippy(model, split_points="auto", example_args=(input,))
|
||||
|
||||
# You can pass `gather_output=True` to have the output from the model
|
||||
# available on all GPUs
|
||||
# model = prepare_pippy(model, split_points="auto", example_args=(input,), gather_output=True)
|
||||
|
||||
# Move the inputs to the first device
|
||||
input = input.to("cuda:0")
|
||||
|
||||
# Take an average of 5 times
|
||||
# Measure first batch
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
output = model(input)
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
first_batch = end_time - start_time
|
||||
|
||||
# Now that CUDA is init, measure after
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
for i in range(5):
|
||||
with torch.no_grad():
|
||||
output = model(input)
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
|
||||
# The outputs are only on the final process by default
|
||||
if PartialState().is_last_process:
|
||||
output = torch.stack(tuple(output[0]))
|
||||
print(f"Time of first pass: {first_batch}")
|
||||
print(f"Average time per batch: {(end_time - start_time) / 5}")
|
||||
54
examples/inference/llama.py
Normal file
54
examples/inference/llama.py
Normal file
@ -0,0 +1,54 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
from accelerate import PartialState, prepare_pippy
|
||||
|
||||
|
||||
# sdpa implementation which is the default torch>2.1.2 fails with the tracing + attention mask kwarg
|
||||
# with attn_implementation="eager" mode, the forward is very slow for some reason
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"meta-llama/Llama-2-7b-chat-hf", low_cpu_mem_usage=True, attn_implementation="sdpa"
|
||||
)
|
||||
model.eval()
|
||||
|
||||
# Input configs
|
||||
# Create example inputs for the model
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
|
||||
prompts = ("I would like to", "I really like to", "The weather is pretty") # bs = 3
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
inputs = tokenizer(prompts, return_tensors="pt", padding=True)
|
||||
|
||||
# Create a pipeline stage from the model
|
||||
# Using `auto` is equivalent to letting `device_map="auto"` figure
|
||||
# out device mapping and will also split the model according to the
|
||||
# number of total GPUs available if it fits on one GPU
|
||||
model = prepare_pippy(model, split_points="auto", example_kwargs=inputs)
|
||||
|
||||
# You can pass `gather_output=True` to have the output from the model
|
||||
# available on all GPUs
|
||||
# model = prepare_pippy(model, split_points="auto", example_args=(input,), gather_output=True)
|
||||
|
||||
# currently we don't support `model.generate`
|
||||
# output = model.generate(**inputs, max_new_tokens=1)
|
||||
inputs = inputs.to(0)
|
||||
with torch.no_grad():
|
||||
output = model(**inputs)
|
||||
|
||||
# The outputs are only on the final process by default
|
||||
if PartialState().is_last_process:
|
||||
next_token_logits = output[0][:, -1, :]
|
||||
next_token = torch.argmax(next_token_logits, dim=-1)
|
||||
print(tokenizer.batch_decode(next_token))
|
||||
2
examples/inference/requirements.txt
Normal file
2
examples/inference/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
accelerate
|
||||
pippy>=0.2.0
|
||||
89
examples/inference/t5.py
Normal file
89
examples/inference/t5.py
Normal file
@ -0,0 +1,89 @@
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import time
|
||||
|
||||
import torch
|
||||
from transformers import AutoModelForSeq2SeqLM
|
||||
|
||||
from accelerate import PartialState, prepare_pippy
|
||||
from accelerate.utils import set_seed
|
||||
|
||||
|
||||
# Set the random seed to have reproducable outputs
|
||||
set_seed(42)
|
||||
|
||||
# Create an example model
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
|
||||
model.eval()
|
||||
|
||||
# Input configs
|
||||
# Create example inputs for the model
|
||||
input = torch.randint(
|
||||
low=0,
|
||||
high=model.config.vocab_size,
|
||||
size=(2, 1024), # bs x seq_len
|
||||
device="cpu",
|
||||
dtype=torch.int64,
|
||||
requires_grad=False,
|
||||
)
|
||||
|
||||
example_inputs = {"input_ids": input, "decoder_input_ids": input}
|
||||
|
||||
# Create a pipeline stage from the model
|
||||
# Using `auto` is equivalent to letting `device_map="auto"` figure
|
||||
# out device mapping and will also split the model according to the
|
||||
# number of total GPUs available if it fits on one GPU
|
||||
model = prepare_pippy(
|
||||
model,
|
||||
no_split_module_classes=["T5Block"],
|
||||
example_kwargs=example_inputs,
|
||||
)
|
||||
|
||||
# You can pass `gather_output=True` to have the output from the model
|
||||
# available on all GPUs
|
||||
# model = prepare_pippy(
|
||||
# model,
|
||||
# no_split_module_classes=["T5Block"],
|
||||
# example_kwargs=example_inputs,
|
||||
# gather_outputs=True
|
||||
# )
|
||||
|
||||
# The model expects a tuple during real inference
|
||||
# with the data on the first device
|
||||
args = (example_inputs["input_ids"].to("cuda:0"), example_inputs["decoder_input_ids"].to("cuda:0"))
|
||||
|
||||
# Take an average of 5 times
|
||||
# Measure first batch
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
output = model(*args)
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
first_batch = end_time - start_time
|
||||
|
||||
# Now that CUDA is init, measure after
|
||||
torch.cuda.synchronize()
|
||||
start_time = time.time()
|
||||
for i in range(5):
|
||||
with torch.no_grad():
|
||||
output = model(*args)
|
||||
torch.cuda.synchronize()
|
||||
end_time = time.time()
|
||||
|
||||
# The outputs are only on the final process by default
|
||||
if PartialState().is_last_process:
|
||||
output = torch.stack(tuple(output[0]))
|
||||
print(f"Time of first pass: {first_batch}")
|
||||
print(f"Average time per batch: {(end_time - start_time) / 5}")
|
||||
@ -1,3 +1,16 @@
|
||||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
|
||||
import runhouse as rh
|
||||
@ -11,7 +24,7 @@ def launch_train(*args):
|
||||
num_processes = torch.cuda.device_count()
|
||||
print(f"Device count: {num_processes}")
|
||||
with patch_environment(
|
||||
world_size=num_processes, master_addr="127.0.01", master_port="29500", mixed_precision=args[1].mixed_precision
|
||||
world_size=num_processes, master_addr="127.0.0.1", master_port="29500", mixed_precision=args[1].mixed_precision
|
||||
):
|
||||
launcher = PrepareForLaunch(training_function, distributed_type="MULTI_GPU")
|
||||
torch.multiprocessing.start_processes(launcher, args=args, nprocs=num_processes, start_method="spawn")
|
||||
|
||||
@ -1,4 +1,3 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
@ -78,8 +77,8 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
|
||||
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
||||
|
||||
def collate_fn(examples):
|
||||
# On TPU it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
|
||||
# For Torchxla, it's best to pad everything to the same length or training will be very slow.
|
||||
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
|
||||
# When using mixed precision we want round multiples of 8/16
|
||||
if accelerator.mixed_precision == "fp8":
|
||||
pad_to_multiple_of = 16
|
||||
@ -124,7 +123,7 @@ def training_function(config, args):
|
||||
|
||||
# If the batch size is too big we use gradient accumulation
|
||||
gradient_accumulation_steps = 1
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
|
||||
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
|
||||
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
|
||||
batch_size = MAX_GPU_BATCH_SIZE
|
||||
|
||||
|
||||
27
examples/slurm/submit_multigpu.sh
Normal file
27
examples/slurm/submit_multigpu.sh
Normal file
@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
|
||||
#SBATCH --job-name=multigpu
|
||||
#SBATCH -D .
|
||||
#SBATCH --output=O-%x.%j
|
||||
#SBATCH --error=E-%x.%j
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --ntasks-per-node=1 # number of MP tasks
|
||||
#SBATCH --gres=gpu:4 # number of GPUs per node
|
||||
#SBATCH --cpus-per-task=160 # number of cores per tasks
|
||||
#SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS)
|
||||
|
||||
######################
|
||||
### Set enviroment ###
|
||||
######################
|
||||
source activateEnviroment.sh
|
||||
export GPUS_PER_NODE=4
|
||||
######################
|
||||
|
||||
export SCRIPT=/accelerate/examples/complete_nlp_example.py
|
||||
export SCRIPT_ARGS=" \
|
||||
--mixed_precision fp16 \
|
||||
--output_dir /accelerate/examples/output \
|
||||
--with_tracking \
|
||||
"
|
||||
|
||||
accelerate launch --num_processes $GPUS_PER_NODE $SCRIPT $SCRIPT_ARGS
|
||||
41
examples/slurm/submit_multinode.sh
Normal file
41
examples/slurm/submit_multinode.sh
Normal file
@ -0,0 +1,41 @@
|
||||
#!/bin/bash
|
||||
|
||||
#SBATCH --job-name=multinode
|
||||
#SBATCH -D .
|
||||
#SBATCH --output=O-%x.%j
|
||||
#SBATCH --error=E-%x.%j
|
||||
#SBATCH --nodes=4 # number of nodes
|
||||
#SBATCH --ntasks-per-node=1 # number of MP tasks
|
||||
#SBATCH --gres=gpu:4 # number of GPUs per node
|
||||
#SBATCH --cpus-per-task=160 # number of cores per tasks
|
||||
#SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS)
|
||||
|
||||
######################
|
||||
### Set enviroment ###
|
||||
######################
|
||||
source activateEnviroment.sh
|
||||
export GPUS_PER_NODE=4
|
||||
######################
|
||||
|
||||
######################
|
||||
#### Set network #####
|
||||
######################
|
||||
head_node_ip=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
|
||||
######################
|
||||
|
||||
export LAUNCHER="accelerate launch \
|
||||
--num_processes $((SLURM_NNODES * GPUS_PER_NODE)) \
|
||||
--num_machines $SLURM_NNODES \
|
||||
--rdzv_backend c10d \
|
||||
--main_process_ip $head_node_ip \
|
||||
--main_process_port 29500 \
|
||||
"
|
||||
export SCRIPT="/accelerate/examples/complete_nlp_example.py"
|
||||
export SCRIPT_ARGS=" \
|
||||
--mixed_precision fp16 \
|
||||
--output_dir /accelerate/examples/output \
|
||||
"
|
||||
|
||||
# This step is necessary because accelerate launch does not handle multiline arguments properly
|
||||
export CMD="$LAUNCHER $PYTHON_FILE $ARGS"
|
||||
srun $CMD
|
||||
@ -1,17 +1,44 @@
|
||||
[tool.black]
|
||||
line-length = 119
|
||||
target-version = ['py37']
|
||||
|
||||
[tool.ruff]
|
||||
# Never enforce `E501` (line length violations).
|
||||
ignore = ["E501", "E741", "W605"]
|
||||
select = ["E", "F", "I", "W"]
|
||||
line-length = 119
|
||||
target-version = "py38"
|
||||
|
||||
# Ignore import violations in all `__init__.py` files.
|
||||
[tool.ruff.per-file-ignores]
|
||||
"__init__.py" = ["E402", "F401", "F403", "F811"]
|
||||
[tool.ruff.lint]
|
||||
preview = true
|
||||
ignore-init-module-imports = true
|
||||
extend-select = [
|
||||
"B009", # static getattr
|
||||
"B010", # static setattr
|
||||
"CPY", # Copyright
|
||||
"E", # PEP8 errors
|
||||
"F", # PEP8 formatting
|
||||
"I", # Import sorting
|
||||
"TID251", # Banned API
|
||||
"UP", # Pyupgrade
|
||||
"W", # PEP8 warnings
|
||||
]
|
||||
ignore = [
|
||||
"E501", # Line length (handled by ruff-format)
|
||||
"E741", # Ambiguous variable name
|
||||
"W605", # Invalid escape sequence
|
||||
"UP007", # X | Y type annotations
|
||||
]
|
||||
|
||||
[tool.ruff.isort]
|
||||
[tool.ruff.lint.per-file-ignores]
|
||||
"__init__.py" = [
|
||||
"F401", # Ignore seemingly unused imports (they're meant for re-export)
|
||||
]
|
||||
"manim_animations/*" = ["ALL"]
|
||||
|
||||
[tool.ruff.lint.isort]
|
||||
lines-after-imports = 2
|
||||
known-first-party = ["accelerate"]
|
||||
|
||||
[tool.ruff.format]
|
||||
exclude = [
|
||||
"manim_animations/*"
|
||||
]
|
||||
|
||||
[tool.ruff.lint.flake8-tidy-imports.banned-api]
|
||||
"os.getenv".msg = "Use os.environ instead"
|
||||
"os.putenv".msg = "Use os.environ instead"
|
||||
"os.unsetenv".msg = "Use os.environ instead"
|
||||
|
||||
14
setup.cfg
14
setup.cfg
@ -1,14 +0,0 @@
|
||||
[isort]
|
||||
default_section = FIRSTPARTY
|
||||
ensure_newline_before_comments = True
|
||||
force_grid_wrap = 0
|
||||
include_trailing_comma = True
|
||||
known_first_party = accelerate
|
||||
line_length = 119
|
||||
lines_after_imports = 2
|
||||
multi_line_output = 3
|
||||
use_parentheses = True
|
||||
|
||||
[flake8]
|
||||
ignore = E203, E722, E501, E741, W503, W605
|
||||
max-line-length = 119
|
||||
41
setup.py
41
setup.py
@ -12,20 +12,33 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from setuptools import setup
|
||||
from setuptools import find_packages
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
|
||||
extras = {}
|
||||
extras["quality"] = ["black ~= 23.1", "ruff >= 0.0.241", "hf-doc-builder >= 0.3.0", "urllib3 < 2.0.0"]
|
||||
extras["quality"] = [
|
||||
"black ~= 23.1", # hf-doc-builder has a hidden dependency on `black`
|
||||
"hf-doc-builder >= 0.3.0",
|
||||
"ruff ~= 0.2.1",
|
||||
]
|
||||
extras["docs"] = []
|
||||
extras["test_prod"] = ["pytest", "pytest-xdist", "pytest-subtests", "parameterized"]
|
||||
extras["test_prod"] = ["pytest>=7.2.0,<=8.0.0", "pytest-xdist", "pytest-subtests", "parameterized"]
|
||||
extras["test_dev"] = [
|
||||
"datasets", "evaluate", "transformers", "scipy", "scikit-learn", "deepspeed", "tqdm", "bitsandbytes", "timm"
|
||||
"datasets",
|
||||
"evaluate",
|
||||
"torchpippy>=0.2.0",
|
||||
"transformers",
|
||||
"scipy",
|
||||
"scikit-learn",
|
||||
"deepspeed",
|
||||
"tqdm",
|
||||
"bitsandbytes",
|
||||
"timm",
|
||||
]
|
||||
extras["testing"] = extras["test_prod"] + extras["test_dev"]
|
||||
extras["rich"] = ["rich"]
|
||||
|
||||
extras["test_trackers"] = ["wandb", "comet-ml", "tensorboard"]
|
||||
extras["test_trackers"] = ["wandb", "comet-ml", "tensorboard", "dvclive"]
|
||||
extras["dev"] = extras["quality"] + extras["testing"] + extras["rich"]
|
||||
|
||||
extras["sagemaker"] = [
|
||||
@ -34,14 +47,14 @@ extras["sagemaker"] = [
|
||||
|
||||
setup(
|
||||
name="accelerate",
|
||||
version="0.24.0.dev0",
|
||||
version="0.29.0",
|
||||
description="Accelerate",
|
||||
long_description=open("README.md", "r", encoding="utf-8").read(),
|
||||
long_description=open("README.md", encoding="utf-8").read(),
|
||||
long_description_content_type="text/markdown",
|
||||
keywords="deep learning",
|
||||
license="Apache",
|
||||
author="The HuggingFace team",
|
||||
author_email="sylvain@huggingface.co",
|
||||
author_email="zach.mueller@huggingface.co",
|
||||
url="https://github.com/huggingface/accelerate",
|
||||
package_dir={"": "src"},
|
||||
packages=find_packages("src"),
|
||||
@ -54,7 +67,15 @@ setup(
|
||||
]
|
||||
},
|
||||
python_requires=">=3.8.0",
|
||||
install_requires=["numpy>=1.17", "packaging>=20.0", "psutil", "pyyaml", "torch>=1.10.0", "huggingface_hub"],
|
||||
install_requires=[
|
||||
"numpy>=1.17",
|
||||
"packaging>=20.0",
|
||||
"psutil",
|
||||
"pyyaml",
|
||||
"torch>=1.10.0",
|
||||
"huggingface_hub",
|
||||
"safetensors>=0.3.1",
|
||||
],
|
||||
extras_require=extras,
|
||||
classifiers=[
|
||||
"Development Status :: 5 - Production/Stable",
|
||||
|
||||
@ -1,4 +1,17 @@
|
||||
__version__ = "0.24.0.dev0"
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
__version__ = "0.29.0"
|
||||
|
||||
from .accelerator import Accelerator
|
||||
from .big_modeling import (
|
||||
@ -11,10 +24,12 @@ from .big_modeling import (
|
||||
load_checkpoint_and_dispatch,
|
||||
)
|
||||
from .data_loader import skip_first_batches
|
||||
from .inference import prepare_pippy
|
||||
from .launchers import debug_launcher, notebook_launcher
|
||||
from .state import PartialState
|
||||
from .utils import (
|
||||
AutocastKwargs,
|
||||
DataLoaderConfiguration,
|
||||
DeepSpeedPlugin,
|
||||
DistributedDataParallelKwargs,
|
||||
DistributedType,
|
||||
|
||||
@ -14,7 +14,6 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import collections
|
||||
import contextlib
|
||||
import functools
|
||||
import json
|
||||
@ -35,6 +34,7 @@ import torch.utils.hooks as hooks
|
||||
|
||||
from .checkpointing import load_accelerator_state, load_custom_state, save_accelerator_state, save_custom_state
|
||||
from .data_loader import DataLoaderDispatcher, prepare_data_loader, skip_first_batches
|
||||
from .hooks import AlignDevicesHook
|
||||
from .logging import get_logger
|
||||
from .optimizer import AcceleratedOptimizer
|
||||
from .scheduler import AcceleratedScheduler
|
||||
@ -47,6 +47,7 @@ from .utils import (
|
||||
WEIGHTS_INDEX_NAME,
|
||||
WEIGHTS_NAME,
|
||||
AutocastKwargs,
|
||||
DataLoaderConfiguration,
|
||||
DeepSpeedPlugin,
|
||||
DistributedDataParallelKwargs,
|
||||
DistributedType,
|
||||
@ -64,6 +65,7 @@ from .utils import (
|
||||
RNGType,
|
||||
TorchDynamoPlugin,
|
||||
check_os_kernel,
|
||||
clean_state_dict_for_safetensors,
|
||||
compare_versions,
|
||||
convert_model,
|
||||
convert_outputs_to_fp32,
|
||||
@ -73,16 +75,16 @@ from .utils import (
|
||||
get_mixed_precision_context_manager,
|
||||
get_pretty_name,
|
||||
has_transformer_engine_layers,
|
||||
id_tensor_storage,
|
||||
is_bf16_available,
|
||||
is_deepspeed_available,
|
||||
is_fp8_available,
|
||||
is_ipex_available,
|
||||
is_megatron_lm_available,
|
||||
is_mlu_available,
|
||||
is_msamp_available,
|
||||
is_npu_available,
|
||||
is_safetensors_available,
|
||||
is_torch_version,
|
||||
is_tpu_available,
|
||||
is_torch_xla_available,
|
||||
is_xpu_available,
|
||||
load_fsdp_model,
|
||||
load_fsdp_optimizer,
|
||||
@ -98,6 +100,7 @@ from .utils import (
|
||||
wait_for_everyone,
|
||||
)
|
||||
from .utils.constants import FSDP_PYTORCH_VERSION
|
||||
from .utils.modeling import get_state_dict_offloaded_model
|
||||
from .utils.other import is_compiled_module
|
||||
|
||||
|
||||
@ -132,7 +135,8 @@ if is_megatron_lm_available():
|
||||
from torch.distributed.algorithms.join import Join
|
||||
|
||||
|
||||
if is_tpu_available(check_device=False):
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.amp as xamp
|
||||
import torch_xla.core.xla_model as xm
|
||||
import torch_xla.distributed.xla_multiprocessing as xmp
|
||||
|
||||
@ -148,6 +152,12 @@ except ImportError:
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
# Sentinel values for defaults
|
||||
_split_batches = object()
|
||||
_dispatch_batches = object()
|
||||
_even_batches = object()
|
||||
_use_seedable_sampler = object()
|
||||
|
||||
|
||||
class Accelerator:
|
||||
"""
|
||||
@ -157,11 +167,6 @@ class Accelerator:
|
||||
device_placement (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the accelerator should put objects on device (tensors yielded by the dataloader, model,
|
||||
etc...).
|
||||
split_batches (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not the accelerator should split the batches yielded by the dataloaders across the devices. If
|
||||
`True` the actual batch size used will be the same on any kind of distributed processes, but it must be a
|
||||
round multiple of the `num_processes` you are using. If `False`, actual batch size used will be the one set
|
||||
in your script multiplied by the number of processes.
|
||||
mixed_precision (`str`, *optional*):
|
||||
Whether or not to use mixed precision training. Choose from 'no','fp16','bf16 or 'fp8'. Will default to the
|
||||
value in the environment variable `ACCELERATE_MIXED_PRECISION`, which will use the default value in the
|
||||
@ -174,13 +179,15 @@ class Accelerator:
|
||||
cpu (`bool`, *optional*):
|
||||
Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force
|
||||
the execution on one process only.
|
||||
deepspeed_plugin (`DeepSpeedPlugin`, *optional*):
|
||||
dataloader_config (`DataLoaderConfiguration`, *optional*):
|
||||
A configuration for how the dataloaders should be handled in distributed scenarios.
|
||||
deepspeed_plugin ([`~utils.DeepSpeedPlugin`], *optional*):
|
||||
Tweak your DeepSpeed related args using this argument. This argument is optional and can be configured
|
||||
directly using *accelerate config*
|
||||
fsdp_plugin (`FullyShardedDataParallelPlugin`, *optional*):
|
||||
fsdp_plugin ([`~utils.FullyShardedDataParallelPlugin`], *optional*):
|
||||
Tweak your FSDP related args using this argument. This argument is optional and can be configured directly
|
||||
using *accelerate config*
|
||||
megatron_lm_plugin (`MegatronLMPlugin`, *optional*):
|
||||
megatron_lm_plugin ([`~utils.MegatronLMPlugin`], *optional*):
|
||||
Tweak your MegatronLM related args using this argument. This argument is optional and can be configured
|
||||
directly using *accelerate config*
|
||||
rng_types (list of `str` or [`~utils.RNGType`]):
|
||||
@ -203,28 +210,20 @@ class Accelerator:
|
||||
- `"comet_ml"`
|
||||
If `"all"` is selected, will pick up all available trackers in the environment and initialize them. Can
|
||||
also accept implementations of `GeneralTracker` for custom trackers, and can be combined with `"all"`.
|
||||
project_config (`ProjectConfiguration`, *optional*):
|
||||
project_config ([`~utils.ProjectConfiguration`], *optional*):
|
||||
A configuration for how saving the state can be handled.
|
||||
project_dir (`str`, `os.PathLike`, *optional*):
|
||||
A path to a directory for storing data such as logs of locally-compatible loggers and potentially saved
|
||||
checkpoints.
|
||||
dispatch_batches (`bool`, *optional*):
|
||||
If set to `True`, the dataloader prepared by the Accelerator is only iterated through on the main process
|
||||
and then the batches are split and broadcast to each process. Will default to `True` for `DataLoader` whose
|
||||
underlying dataset is an `IterableDataset`, `False` otherwise.
|
||||
even_batches (`bool`, *optional*, defaults to `True`):
|
||||
If set to `True`, in cases where the total batch size across all processes does not exactly divide the
|
||||
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
|
||||
all workers.
|
||||
step_scheduler_with_optimizer (`bool`, *optional`, defaults to `True`):
|
||||
Set `True` if the learning rate scheduler is stepped at the same time as the optimizer, `False` if only
|
||||
done under certain circumstances (at the end of each epoch, for instance).
|
||||
kwargs_handlers (`list[KwargHandler]`, *optional*)
|
||||
A list of `KwargHandler` to customize how the objects related to distributed training or mixed precision
|
||||
are created. See [kwargs](kwargs) for more information.
|
||||
dynamo_backend (`str` or `DynamoBackend`, *optional*, defaults to `"no"`):
|
||||
kwargs_handlers (list of [`~utils.KwargsHandler`], *optional*)
|
||||
A list of [`~utils.KwargsHandler`] to customize how the objects related to distributed training or mixed
|
||||
precision are created. See [kwargs](kwargs) for more information.
|
||||
dynamo_backend (`str` or [`~utils.DynamoBackend`], *optional*, defaults to `"no"`):
|
||||
Set to one of the possible dynamo backends to optimize your training with torch dynamo.
|
||||
gradient_accumulation_plugin (`GradientAccumulationPlugin`, *optional*):
|
||||
gradient_accumulation_plugin ([`~utils.GradientAccumulationPlugin`], *optional*):
|
||||
A configuration for how gradient accumulation should be handled, if more tweaking than just the
|
||||
`gradient_accumulation_steps` is needed.
|
||||
|
||||
@ -247,10 +246,11 @@ class Accelerator:
|
||||
def __init__(
|
||||
self,
|
||||
device_placement: bool = True,
|
||||
split_batches: bool = False,
|
||||
split_batches: bool = _split_batches,
|
||||
mixed_precision: PrecisionType | str | None = None,
|
||||
gradient_accumulation_steps: int = 1,
|
||||
cpu: bool = False,
|
||||
dataloader_config: DataLoaderConfiguration | None = None,
|
||||
deepspeed_plugin: DeepSpeedPlugin | None = None,
|
||||
fsdp_plugin: FullyShardedDataParallelPlugin | None = None,
|
||||
megatron_lm_plugin: MegatronLMPlugin | None = None,
|
||||
@ -259,8 +259,9 @@ class Accelerator:
|
||||
project_dir: str | os.PathLike | None = None,
|
||||
project_config: ProjectConfiguration | None = None,
|
||||
gradient_accumulation_plugin: GradientAccumulationPlugin | None = None,
|
||||
dispatch_batches: bool | None = None,
|
||||
even_batches: bool = True,
|
||||
dispatch_batches: bool | None = _dispatch_batches,
|
||||
even_batches: bool = _even_batches,
|
||||
use_seedable_sampler: bool = _use_seedable_sampler,
|
||||
step_scheduler_with_optimizer: bool = True,
|
||||
kwargs_handlers: list[KwargsHandler] | None = None,
|
||||
dynamo_backend: DynamoBackend | str | None = None,
|
||||
@ -293,7 +294,10 @@ class Accelerator:
|
||||
if deepspeed_plugin:
|
||||
if not is_deepspeed_available():
|
||||
raise ImportError("DeepSpeed is not installed => run `pip install deepspeed` or build it from source.")
|
||||
if compare_versions("deepspeed", "<", "0.9.3"):
|
||||
if is_mlu_available():
|
||||
if compare_versions("deepspeed-mlu", "<", "0.10.1"):
|
||||
raise ImportError("DeepSpeed MLU version must be >= 0.10.1. Please update DeepSpeed MLU.")
|
||||
elif compare_versions("deepspeed", "<", "0.9.3"):
|
||||
raise ImportError("DeepSpeed version must be >= 0.9.3. Please update DeepSpeed.")
|
||||
|
||||
mixed_precision = (
|
||||
@ -379,6 +383,9 @@ class Accelerator:
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
if self.fp8_recipe_handler is None and self.state.mixed_precision == "fp8":
|
||||
self.fp8_recipe_handler = FP8RecipeKwargs(backend="MSAMP" if is_msamp_available() else "TE")
|
||||
|
||||
trackers = filter_trackers(log_with, self.logging_dir)
|
||||
if len(trackers) < 1 and log_with is not None:
|
||||
warnings.warn(f"`log_with={log_with}` was passed but no supported trackers are currently installed.")
|
||||
@ -387,7 +394,7 @@ class Accelerator:
|
||||
if (
|
||||
(mixed_precision != "bf16")
|
||||
and getattr(self.state, "downcast_bfloat", False)
|
||||
and (self.state.distributedType != DistributedType.TPU)
|
||||
and (self.state.distributedType != DistributedType.XLA)
|
||||
):
|
||||
raise ValueError("Can only use `downcast_bf16` when using `mixed_precision='bf16'` and on a TPU")
|
||||
|
||||
@ -404,35 +411,58 @@ class Accelerator:
|
||||
self.gradient_state = GradientState(
|
||||
gradient_accumulation_plugin=gradient_accumulation_plugin,
|
||||
)
|
||||
if self.state.distributed_type == DistributedType.TPU:
|
||||
if self.gradient_state.num_steps != 1:
|
||||
raise ValueError(
|
||||
"Gradient accumulation is not supported on TPU. Please set `gradient_accumulation_steps` to 1 and don't pass in a `GradientAccumulationPlugin` object."
|
||||
)
|
||||
|
||||
self.device_placement = device_placement
|
||||
self.split_batches = split_batches
|
||||
self.dispatch_batches = dispatch_batches
|
||||
self.even_batches = even_batches
|
||||
if dataloader_config is None:
|
||||
dataloader_config = DataLoaderConfiguration()
|
||||
self.dataloader_config = dataloader_config
|
||||
# Deal with deprecated args
|
||||
# TODO: Remove in v1.0.0
|
||||
deprecated_dl_args = {}
|
||||
if dispatch_batches is not _dispatch_batches:
|
||||
deprecated_dl_args["dispatch_batches"] = dispatch_batches
|
||||
self.dataloader_config.dispatch_batches = dispatch_batches
|
||||
if split_batches is not _split_batches:
|
||||
deprecated_dl_args["split_batches"] = split_batches
|
||||
self.dataloader_config.split_batches = split_batches
|
||||
if even_batches is not _even_batches:
|
||||
deprecated_dl_args["even_batches"] = even_batches
|
||||
self.dataloader_config.even_batches = even_batches
|
||||
if use_seedable_sampler is not _use_seedable_sampler:
|
||||
deprecated_dl_args["use_seedable_sampler"] = use_seedable_sampler
|
||||
self.dataloader_config.use_seedable_sampler = use_seedable_sampler
|
||||
if len(deprecated_dl_args) > 0:
|
||||
values = ", ".join([f"{k}={v}" for k, v in deprecated_dl_args.items()])
|
||||
warnings.warn(
|
||||
f"Passing the following arguments to `Accelerator` is deprecated and will be removed in version 1.0 of Accelerate: {deprecated_dl_args.keys()}. "
|
||||
"Please pass an `accelerate.DataLoaderConfiguration` instead: \n"
|
||||
f"dataloader_config = DataLoaderConfiguration({values})",
|
||||
FutureWarning,
|
||||
)
|
||||
self.step_scheduler_with_optimizer = step_scheduler_with_optimizer
|
||||
|
||||
# Mixed precision attributes
|
||||
self.scaler = None
|
||||
self.native_amp = False
|
||||
err = "{mode} mixed precision requires {requirement}"
|
||||
if (
|
||||
self.state.mixed_precision == "fp16"
|
||||
and self.device.type != "cpu"
|
||||
and self.distributed_type not in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM)
|
||||
):
|
||||
self.native_amp = True
|
||||
if self.device.type not in ("xpu", "cuda", "mps", "npu"):
|
||||
raise ValueError(err.format(mode="fp16", requirement="a GPU"))
|
||||
if self.device.type not in ("xpu", "cuda", "mps", "npu", "xla", "mlu") or is_torch_xla_available(
|
||||
check_is_tpu=True
|
||||
):
|
||||
raise ValueError(f"fp16 mixed precision requires a GPU (not {self.device.type!r}).")
|
||||
kwargs = self.scaler_handler.to_kwargs() if self.scaler_handler is not None else {}
|
||||
if self.distributed_type == DistributedType.FSDP:
|
||||
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
|
||||
|
||||
self.scaler = ShardedGradScaler(**kwargs)
|
||||
elif is_torch_xla_available(check_is_gpu=True):
|
||||
self.scaler = xamp.GradScaler(**kwargs)
|
||||
elif is_mlu_available():
|
||||
self.scaler = torch.mlu.amp.GradScaler(**kwargs)
|
||||
elif is_npu_available():
|
||||
self.scaler = torch.npu.amp.GradScaler(**kwargs)
|
||||
else:
|
||||
@ -446,8 +476,8 @@ class Accelerator:
|
||||
self.native_amp = True
|
||||
else:
|
||||
self.native_amp = is_bf16_available(True)
|
||||
if mixed_precision == "bf16" and not self.native_amp and not is_tpu_available():
|
||||
raise ValueError(err.format(mode="bf16", requirement="PyTorch >= 1.10 and a supported device."))
|
||||
if mixed_precision == "bf16" and not self.native_amp and not is_torch_xla_available():
|
||||
raise ValueError("bf16 mixed precision requires PyTorch >= 1.10 and a supported device.")
|
||||
|
||||
# Start of internal step tracking
|
||||
self.step = 0
|
||||
@ -500,6 +530,26 @@ class Accelerator:
|
||||
def device(self):
|
||||
return self.state.device
|
||||
|
||||
@property
|
||||
def split_batches(self):
|
||||
return self.dataloader_config.split_batches
|
||||
|
||||
@property
|
||||
def dispatch_batches(self):
|
||||
return self.dataloader_config.dispatch_batches
|
||||
|
||||
@property
|
||||
def even_batches(self):
|
||||
return self.dataloader_config.even_batches
|
||||
|
||||
@even_batches.setter
|
||||
def even_batches(self, value: bool):
|
||||
self.dataloader_config.even_batches = value
|
||||
|
||||
@property
|
||||
def use_seedable_sampler(self):
|
||||
return self.dataloader_config.use_seedable_sampler
|
||||
|
||||
@property
|
||||
def project_dir(self):
|
||||
return self.project_configuration.project_dir
|
||||
@ -928,14 +978,14 @@ class Accelerator:
|
||||
model.require_backward_grad_sync = old_require_backward_grad_sync
|
||||
model.require_forward_param_sync = old_require_forward_param_sync
|
||||
|
||||
def _do_sync(self):
|
||||
def _do_sync(self, force: bool = False):
|
||||
"Sets the right `sync_gradients` context and either resets or increases `self.step`"
|
||||
if self.gradient_state.sync_with_dataloader and self.gradient_state.end_of_dataloader:
|
||||
self.step = 0
|
||||
self.gradient_state._set_sync_gradients(True)
|
||||
else:
|
||||
self.step += 1
|
||||
self.gradient_state._set_sync_gradients((self.step % self.gradient_state.num_steps) == 0)
|
||||
self.gradient_state._set_sync_gradients(force or ((self.step % self.gradient_state.num_steps) == 0))
|
||||
|
||||
@property
|
||||
def sync_gradients(self):
|
||||
@ -960,8 +1010,8 @@ class Accelerator:
|
||||
|
||||
Args:
|
||||
*models (list of `torch.nn.Module`):
|
||||
PyTorch Modules that was prepared with `Accelerator.prepare`. Models passed to `accumulate()` will skip
|
||||
gradient syncing during backward pass in distributed training
|
||||
PyTorch Modules that were prepared with `Accelerator.prepare`. Models passed to `accumulate()` will
|
||||
skip gradient syncing during backward pass in distributed training
|
||||
|
||||
Example:
|
||||
|
||||
@ -981,7 +1031,9 @@ class Accelerator:
|
||||
... optimizer.zero_grad()
|
||||
```
|
||||
"""
|
||||
self._do_sync()
|
||||
# sync_each_batch=True will guarantee below that self.sync_gradients=True, therefore
|
||||
# resulting in the nullcontext always being selected.
|
||||
self._do_sync(force=self.gradient_state.plugin_kwargs.get("sync_each_batch", False))
|
||||
with contextlib.ExitStack() as cm_stack:
|
||||
for m in models:
|
||||
cm_stack.enter_context(contextlib.nullcontext() if self.sync_gradients else self.no_sync(m))
|
||||
@ -1032,7 +1084,12 @@ class Accelerator:
|
||||
... optimizer.zero_grad()
|
||||
```
|
||||
"""
|
||||
if self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU):
|
||||
if self.distributed_type in (
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_XPU,
|
||||
):
|
||||
dl_even_batches_values = []
|
||||
|
||||
if even_batches is not None:
|
||||
@ -1102,52 +1159,6 @@ class Accelerator:
|
||||
# Return the unprocessed object if previous criteria was not met
|
||||
return obj
|
||||
|
||||
def _prepare_fsdp(self, *args):
|
||||
result = []
|
||||
for obj in args:
|
||||
if isinstance(obj, torch.nn.Module):
|
||||
model = obj
|
||||
break
|
||||
optimizers = []
|
||||
|
||||
self._schedulers = []
|
||||
self._models = []
|
||||
intermediate_result = []
|
||||
for obj in args:
|
||||
if isinstance(obj, torch.optim.Optimizer):
|
||||
if len(obj.param_groups) > 1:
|
||||
logger.warning(
|
||||
"FSDP Warning: When using FSDP, several parameter groups will be conflated into "
|
||||
"a single one due to nested module wrapping and parameter flattening."
|
||||
)
|
||||
try:
|
||||
optimizer = obj.optimizer.__class__(model.parameters(), **obj.optimizer.defaults)
|
||||
except TypeError:
|
||||
if "differentiable" in obj.optimizer.defaults:
|
||||
# https://github.com/huggingface/accelerate/issues/801
|
||||
defaults = {k: v for k, v in obj.optimizer.defaults.items() if k != "differentiable"}
|
||||
optimizer = obj.optimizer.__class__(model.parameters(), **defaults)
|
||||
else:
|
||||
raise
|
||||
obj = self.prepare_optimizer(optimizer)
|
||||
optimizers.append(obj)
|
||||
elif isinstance(obj, torch.nn.Module):
|
||||
self._models.append(obj)
|
||||
intermediate_result.append(obj)
|
||||
|
||||
for obj in intermediate_result:
|
||||
if isinstance(obj, AcceleratedScheduler):
|
||||
obj.optimizer = optimizers
|
||||
for i, opt in enumerate(self._optimizers):
|
||||
if getattr(obj.scheduler, "optimizer", None) == opt.optimizer:
|
||||
obj.scheduler.optimizer = optimizers[i]
|
||||
obj.optimizers = [optimizers[i]]
|
||||
break
|
||||
self._schedulers.append(obj)
|
||||
result.append(obj)
|
||||
self._optimizers = optimizers
|
||||
return tuple(result)
|
||||
|
||||
def prepare(self, *args, device_placement=None):
|
||||
"""
|
||||
Prepare all objects passed in `args` for distributed training and mixed precision, then return them in the same
|
||||
@ -1216,35 +1227,6 @@ class Accelerator:
|
||||
" Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`."
|
||||
)
|
||||
|
||||
if self.distributed_type == DistributedType.FSDP:
|
||||
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
|
||||
|
||||
model_count = 0
|
||||
optimizer_present = False
|
||||
is_type_fsdp = False
|
||||
for obj in args:
|
||||
if isinstance(obj, torch.nn.Module):
|
||||
model_count += 1
|
||||
# if the model is compiled using PyTorch 2.0,
|
||||
# check that the wrapped model is FSDP or not;
|
||||
# else check if it is FSDP or not;
|
||||
is_type_fsdp = isinstance(obj, FSDP) or (
|
||||
is_compiled_module(obj) and isinstance(obj._orig_mod, FSDP)
|
||||
)
|
||||
if isinstance(obj, torch.optim.Optimizer):
|
||||
optimizer_present = True
|
||||
if model_count > 1 and optimizer_present:
|
||||
raise ValueError(
|
||||
"For FSDP to work with multiple models (>1), "
|
||||
"prepare must be called for all the models before optimizers are created. "
|
||||
"Then pass the optimizers to the prepare call in the same order as corresponding models."
|
||||
)
|
||||
elif model_count == 1 and not is_type_fsdp and optimizer_present:
|
||||
logger.warning(
|
||||
"FSDP Warning: When using FSDP, "
|
||||
"it is efficient and recommended to call prepare for the model before creating the optimizer"
|
||||
)
|
||||
|
||||
if self.distributed_type == DistributedType.DEEPSPEED:
|
||||
model_count = 0
|
||||
for obj in args:
|
||||
@ -1258,7 +1240,7 @@ class Accelerator:
|
||||
# On TPUs, putting the model on the XLA device will create new parameters, so the corresponding optimizer will
|
||||
# have parameters disconnected from the model (so no training :-( ).
|
||||
# If the model and optimizer have parameters on different devices we raise an error.
|
||||
if self.distributed_type == DistributedType.TPU:
|
||||
if self.distributed_type == DistributedType.XLA:
|
||||
model_device, optimizer_device = self._get_devices()
|
||||
if model_device is not None and optimizer_device is not None and model_device != optimizer_device:
|
||||
raise ValueError(
|
||||
@ -1270,8 +1252,8 @@ class Accelerator:
|
||||
)
|
||||
|
||||
# If we're dealing with device placement, this deals with that by...
|
||||
tpu_should_fix_optimizer = self.device_placement and self.distributed_type == DistributedType.TPU
|
||||
if tpu_should_fix_optimizer or self.mixed_precision == "fp8":
|
||||
tpu_should_fix_optimizer = self.device_placement and self.distributed_type == DistributedType.XLA
|
||||
if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"):
|
||||
# 1. grabbing old model parameters
|
||||
old_named_params = self._get_named_parameters(*args)
|
||||
|
||||
@ -1285,12 +1267,16 @@ class Accelerator:
|
||||
elif self.distributed_type == DistributedType.MEGATRON_LM:
|
||||
result = self._prepare_megatron_lm(*args)
|
||||
else:
|
||||
if self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "MSAMP":
|
||||
args = self._prepare_msamp(*args)
|
||||
# MS-AMP will handle the device placement
|
||||
device_placement = [False for _ in args]
|
||||
result = tuple(
|
||||
self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement)
|
||||
)
|
||||
result = tuple(self._prepare_one(obj, device_placement=d) for obj, d in zip(result, device_placement))
|
||||
|
||||
if tpu_should_fix_optimizer or self.mixed_precision == "fp8":
|
||||
if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"):
|
||||
# 2. grabbing new model parameters
|
||||
new_named_params = self._get_named_parameters(*result)
|
||||
# 3. building a map from the first to the second
|
||||
@ -1300,20 +1286,12 @@ class Accelerator:
|
||||
if isinstance(obj, torch.optim.Optimizer):
|
||||
obj._switch_parameters(mapping)
|
||||
|
||||
if (
|
||||
self.distributed_type == DistributedType.FSDP
|
||||
and model_count == 1
|
||||
and not is_type_fsdp
|
||||
and optimizer_present
|
||||
):
|
||||
result = self._prepare_fsdp(*result)
|
||||
|
||||
for item in result:
|
||||
if any(
|
||||
item in container
|
||||
for container in (self._dataloaders, self._models, self._optimizers, self._schedulers)
|
||||
):
|
||||
setattr(item, "_is_accelerate_prepared", True)
|
||||
item._is_accelerate_prepared = True
|
||||
|
||||
return result if len(result) > 1 else result[0]
|
||||
|
||||
@ -1357,6 +1335,29 @@ class Accelerator:
|
||||
" Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`."
|
||||
)
|
||||
|
||||
if self.native_amp:
|
||||
model._original_forward = model.forward
|
||||
model_forward_func = model.forward.__func__ if hasattr(model.forward, "__func__") else model.forward
|
||||
autocast_context = get_mixed_precision_context_manager(self.native_amp, self.autocast_handler)
|
||||
new_forward = autocast_context(model_forward_func)
|
||||
if hasattr(model.forward, "__func__"):
|
||||
model.forward = MethodType(new_forward, model)
|
||||
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
|
||||
else:
|
||||
model.forward = convert_outputs_to_fp32(new_forward)
|
||||
elif self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE":
|
||||
if not has_transformer_engine_layers(model):
|
||||
with torch.no_grad():
|
||||
convert_model(model)
|
||||
model._converted_to_transformer_engine = True
|
||||
model._original_forward = model.forward
|
||||
|
||||
kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {}
|
||||
if "fp8_format" in kwargs:
|
||||
kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"])
|
||||
fp8_recipe = te_recipe.DelayedScaling(**kwargs)
|
||||
model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)(model.forward)
|
||||
|
||||
if (getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)) and getattr(
|
||||
model, "hf_device_map", False
|
||||
):
|
||||
@ -1375,7 +1376,6 @@ class Accelerator:
|
||||
if (self.device.index is not None) or (current_device_index != 0):
|
||||
raise ValueError(
|
||||
"You can't train a model that has been loaded in 8-bit precision on a different device than the one "
|
||||
"you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}"
|
||||
"you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device() or device_map={'':torch.xpu.current_device()}"
|
||||
)
|
||||
|
||||
@ -1385,40 +1385,10 @@ class Accelerator:
|
||||
)
|
||||
elif device_placement and not self.verify_device_map(model):
|
||||
model = model.to(self.device)
|
||||
|
||||
if self.native_amp:
|
||||
model._original_forward = model.forward
|
||||
model_forward_func = model.forward.__func__ if hasattr(model.forward, "__func__") else model.forward
|
||||
autocast_context = get_mixed_precision_context_manager(self.native_amp, self.autocast_handler)
|
||||
new_forward = autocast_context(model_forward_func)
|
||||
if hasattr(model.forward, "__func__"):
|
||||
model.forward = MethodType(new_forward, model)
|
||||
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
|
||||
else:
|
||||
model.forward = convert_outputs_to_fp32(new_forward)
|
||||
elif self.mixed_precision == "fp8":
|
||||
if not has_transformer_engine_layers(model):
|
||||
with torch.no_grad():
|
||||
convert_model(model)
|
||||
model._converted_to_transformer_engine = True
|
||||
model._original_forward = model.forward
|
||||
|
||||
kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {}
|
||||
if "fp8_format" in kwargs:
|
||||
kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"])
|
||||
fp8_recipe = te_recipe.DelayedScaling(**kwargs)
|
||||
cuda_device_capacity = torch.cuda.get_device_capability()
|
||||
fp8_enabled = cuda_device_capacity >= (8, 9)
|
||||
if not fp8_enabled:
|
||||
logger.warn(
|
||||
f"The current device has compute capability of {cuda_device_capacity} which is "
|
||||
"insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace "
|
||||
"or higher, compute capability of 8.9 or higher). Will use FP16 instead."
|
||||
)
|
||||
model.forward = fp8_autocast(enabled=fp8_enabled, fp8_recipe=fp8_recipe)(model.forward)
|
||||
if not evaluation_mode:
|
||||
if self.distributed_type in (
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.MULTI_XPU,
|
||||
):
|
||||
@ -1484,7 +1454,7 @@ class Accelerator:
|
||||
elif self.distributed_type == DistributedType.MULTI_CPU:
|
||||
kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {}
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, **kwargs)
|
||||
elif self.distributed_type == DistributedType.TPU and self.state.fork_launched:
|
||||
elif self.distributed_type == DistributedType.XLA and self.state.fork_launched:
|
||||
model = xmp.MpModelWrapper(model).to(self.device)
|
||||
# torch.compile should be called last and only if the model isn't already compiled.
|
||||
if self.state.dynamo_plugin.backend != DynamoBackend.NO and not is_compiled_module(model):
|
||||
@ -1499,38 +1469,38 @@ class Accelerator:
|
||||
deepspeed_plugin = self.state.deepspeed_plugin
|
||||
|
||||
is_dataloader_present = any(isinstance(obj, torch.utils.data.DataLoader) for obj in args)
|
||||
if deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] == "auto" or is_dataloader_present:
|
||||
result = [
|
||||
self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj
|
||||
for obj in args
|
||||
]
|
||||
result = [
|
||||
self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj
|
||||
for obj in args
|
||||
]
|
||||
|
||||
batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")]
|
||||
if self.split_batches:
|
||||
batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes]
|
||||
if deepspeed_plugin.is_auto("train_micro_batch_size_per_gpu"):
|
||||
if is_dataloader_present:
|
||||
batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")]
|
||||
if any(bs is None for bs in batch_sizes):
|
||||
raise ValueError(
|
||||
"At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size. "
|
||||
"Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file "
|
||||
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
|
||||
)
|
||||
if self.split_batches:
|
||||
batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes]
|
||||
|
||||
if any(bs is None for bs in batch_sizes):
|
||||
batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes)
|
||||
if len(batch_sizes) > 1:
|
||||
logger.info(
|
||||
"Since you passed both train and evaluation dataloader, `is_train_batch_min` (here "
|
||||
f"{deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device})."
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
"At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size."
|
||||
"Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file"
|
||||
"When using DeepSpeed, `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders "
|
||||
"with `batch_size` attribute returning an integer value "
|
||||
"or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file "
|
||||
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
|
||||
)
|
||||
if len(batch_sizes) == 0:
|
||||
raise ValueError(
|
||||
"When using DeepSpeed `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders "
|
||||
"or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file"
|
||||
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
|
||||
)
|
||||
|
||||
batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes)
|
||||
if len(batch_sizes) > 1:
|
||||
logger.info(
|
||||
"Since you passed both train and evaluation dataloader, `is_train_batch_min` (here "
|
||||
f"{deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device})."
|
||||
)
|
||||
else:
|
||||
batch_size_per_device = deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"]
|
||||
result = [obj for obj in args]
|
||||
batch_size_per_device = deepspeed_plugin.get_value("train_micro_batch_size_per_gpu")
|
||||
|
||||
# handle `gradient_accumulation_steps` when the value is `auto`
|
||||
deepspeed_plugin.fill_match(
|
||||
@ -1542,7 +1512,7 @@ class Accelerator:
|
||||
config_kwargs = {
|
||||
"train_micro_batch_size_per_gpu": batch_size_per_device,
|
||||
"train_batch_size": batch_size_per_device
|
||||
* deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"]
|
||||
* deepspeed_plugin.get_value("gradient_accumulation_steps")
|
||||
* self.num_processes,
|
||||
"gradient_clipping": 1.0,
|
||||
"zero_optimization.stage3_gather_16bit_weights_on_model_save": False,
|
||||
@ -1601,21 +1571,40 @@ class Accelerator:
|
||||
)
|
||||
|
||||
if model is not None:
|
||||
if hasattr(model, "config"):
|
||||
hidden_size = (
|
||||
max(model.config.hidden_sizes)
|
||||
if getattr(model.config, "hidden_sizes", None)
|
||||
else getattr(model.config, "hidden_size", None)
|
||||
# deal with config keys that use `auto` value and rely on model's hidden_size
|
||||
hidden_size_based_keys = [
|
||||
"zero_optimization.reduce_bucket_size",
|
||||
"zero_optimization.stage3_prefetch_bucket_size",
|
||||
"zero_optimization.stage3_param_persistence_threshold",
|
||||
]
|
||||
hidden_size_auto_keys = [x for x in hidden_size_based_keys if deepspeed_plugin.is_auto(x)]
|
||||
if len(hidden_size_auto_keys) > 0:
|
||||
reasoning = (
|
||||
"therefore it's not possible to automatically fill out the following `auto` entries "
|
||||
+ f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
|
||||
+ "`auto` values for these keys with an integer value of your choice."
|
||||
)
|
||||
if hidden_size is not None:
|
||||
config_kwargs.update(
|
||||
{
|
||||
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
|
||||
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
|
||||
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
|
||||
}
|
||||
if not hasattr(model, "config"):
|
||||
raise ValueError("Can't find `model.config` entry, " + reasoning)
|
||||
|
||||
if hasattr(model.config, "hidden_size"):
|
||||
hidden_size = model.config.hidden_size
|
||||
elif hasattr(model.config, "hidden_sizes"):
|
||||
# if there are many hidden sizes pick the largest one
|
||||
hidden_size = max(model.config.hidden_sizes)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Can find neither `model.config.hidden_size` nor `model.config.hidden_sizes`, " + reasoning
|
||||
)
|
||||
|
||||
config_kwargs.update(
|
||||
{
|
||||
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
|
||||
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
|
||||
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
|
||||
}
|
||||
)
|
||||
|
||||
if isinstance(optimizer, (DummyOptim)):
|
||||
config_kwargs.update(
|
||||
{"optimizer.params.lr": optimizer.lr, "optimizer.params.weight_decay": optimizer.weight_decay}
|
||||
@ -1657,10 +1646,7 @@ class Accelerator:
|
||||
optimizer = DeepSpeedCPUAdam(optimizer.param_groups, **defaults)
|
||||
kwargs["optimizer"] = optimizer
|
||||
if scheduler is not None:
|
||||
if (
|
||||
isinstance(scheduler, LRScheduler)
|
||||
or type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES
|
||||
):
|
||||
if type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES:
|
||||
kwargs["lr_scheduler"] = scheduler
|
||||
|
||||
engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs)
|
||||
@ -1815,10 +1801,11 @@ class Accelerator:
|
||||
for obj in result:
|
||||
if isinstance(obj, torch.nn.Module):
|
||||
model = obj
|
||||
model.train()
|
||||
elif isinstance(obj, (torch.optim.Optimizer)):
|
||||
optimizer = obj
|
||||
if optimizer is not None and model is not None:
|
||||
dtype = torch.bfloat16 if self.state.mixed_precision == "bf16" else torch.float32
|
||||
dtype = torch.bfloat16 if self.state.mixed_precision == "bf16" else None
|
||||
if self.device.type == "xpu" and is_xpu_available():
|
||||
model = model.to(self.device)
|
||||
model, optimizer = torch.xpu.optimize(
|
||||
@ -1833,6 +1820,42 @@ class Accelerator:
|
||||
result[i] = optimizer
|
||||
return tuple(result)
|
||||
|
||||
def _prepare_msamp(self, *args):
|
||||
if not is_msamp_available():
|
||||
raise ImportError(
|
||||
"MS-AMP was not found on your system. Please ensure that MS-AMP is available "
|
||||
" or choose `'te'` as the backend for FP8 mixed precision training."
|
||||
)
|
||||
else:
|
||||
import msamp
|
||||
|
||||
model, optimizer = None, None
|
||||
num_models, num_optimizers = 0, 0
|
||||
result = [obj for obj in args]
|
||||
for obj in result:
|
||||
if isinstance(obj, torch.nn.Module):
|
||||
model = obj
|
||||
num_models += 1
|
||||
elif isinstance(obj, (torch.optim.Optimizer)):
|
||||
optimizer = obj
|
||||
num_optimizers += 1
|
||||
if optimizer is None or model is None:
|
||||
raise ValueError(
|
||||
"You must pass a model and an optimizer together to `accelerate.prepare()` when using MS-AMP."
|
||||
)
|
||||
elif num_models > 1 or num_optimizers > 1:
|
||||
raise ValueError(
|
||||
f"You can't use multiple models ({num_models}) or optimizers {num_optimizers} with MS-AMP."
|
||||
)
|
||||
else:
|
||||
model, optimizer = msamp.initialize(model, optimizer, opt_level=self.fp8_recipe_handler.opt_level)
|
||||
for i in range(len(result)):
|
||||
if isinstance(result[i], torch.nn.Module):
|
||||
result[i] = model
|
||||
elif isinstance(result[i], (torch.optim.Optimizer)):
|
||||
result[i] = optimizer
|
||||
return tuple(result)
|
||||
|
||||
def prepare_data_loader(
|
||||
self, data_loader: torch.utils.data.DataLoader, device_placement=None, slice_fn_for_dispatch=None
|
||||
):
|
||||
@ -1868,7 +1891,7 @@ class Accelerator:
|
||||
self._dataloaders.append(data_loader)
|
||||
return data_loader
|
||||
if device_placement is None:
|
||||
device_placement = self.device_placement if self.distributed_type != DistributedType.TPU else False
|
||||
device_placement = self.device_placement if self.distributed_type != DistributedType.XLA else False
|
||||
prepared_data_loader = prepare_data_loader(
|
||||
data_loader,
|
||||
self.device,
|
||||
@ -1880,6 +1903,7 @@ class Accelerator:
|
||||
dispatch_batches=self.dispatch_batches,
|
||||
even_batches=self.even_batches,
|
||||
slice_fn_for_dispatch=slice_fn_for_dispatch,
|
||||
use_seedable_sampler=self.use_seedable_sampler,
|
||||
)
|
||||
self._dataloaders.append(prepared_data_loader)
|
||||
return prepared_data_loader
|
||||
@ -2080,10 +2104,6 @@ class Accelerator:
|
||||
for opt in optimizer:
|
||||
while isinstance(opt, AcceleratedOptimizer):
|
||||
opt = opt.optimizer
|
||||
# Reduce gradients first for XLA
|
||||
if self.distributed_type == DistributedType.TPU:
|
||||
gradients = xm._fetch_gradients(opt)
|
||||
self.reduce(gradients, scale=1.0 / self.num_processes)
|
||||
self.scaler.unscale_(opt)
|
||||
|
||||
def clip_grad_norm_(self, parameters, max_norm, norm_type=2):
|
||||
@ -2121,6 +2141,19 @@ class Accelerator:
|
||||
# `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed
|
||||
# We cannot return the gradient norm because DeepSpeed does it.
|
||||
return None
|
||||
elif self.distributed_type == DistributedType.XLA:
|
||||
# Reduce gradients first for XLA
|
||||
for acc_opt in self._optimizers:
|
||||
if not acc_opt.gradient_state.is_xla_gradients_synced:
|
||||
opt = acc_opt
|
||||
while isinstance(opt, AcceleratedOptimizer):
|
||||
opt = opt.optimizer
|
||||
gradients = xm._fetch_gradients(opt)
|
||||
# Use xm.all_reduce to perform an in-place all-reduce. Recusrsive all-reduce each tensor
|
||||
# one by one in self.reduce is non-inplace.
|
||||
xm.all_reduce("sum", gradients, scale=1.0 / self.num_processes)
|
||||
# Set is_xla_gradients_synced to True to avoid all-reduce twice in the AcceleratedOptimizer step.
|
||||
acc_opt.gradient_state.is_xla_gradients_synced = True
|
||||
self.unscale_gradients()
|
||||
return torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=norm_type)
|
||||
|
||||
@ -2409,7 +2442,7 @@ class Accelerator:
|
||||
self.trackers.append(tracker)
|
||||
else:
|
||||
tracker_init = LOGGER_TYPE_TO_CLASS[str(tracker)]
|
||||
if getattr(tracker_init, "requires_logging_directory"):
|
||||
if tracker_init.requires_logging_directory:
|
||||
# We can skip this check since it was done in `__init__`
|
||||
self.trackers.append(
|
||||
tracker_init(project_name, self.logging_dir, **init_kwargs.get(str(tracker), {}))
|
||||
@ -2537,7 +2570,7 @@ class Accelerator:
|
||||
model: torch.nn.Module,
|
||||
save_directory: Union[str, os.PathLike],
|
||||
max_shard_size: Union[int, str] = "10GB",
|
||||
safe_serialization: bool = False,
|
||||
safe_serialization: bool = True,
|
||||
):
|
||||
"""
|
||||
Save a model so that it can be re-loaded using load_checkpoint_in_model
|
||||
@ -2558,7 +2591,7 @@ class Accelerator:
|
||||
|
||||
</Tip>
|
||||
|
||||
safe_serialization (`bool`, *optional*, defaults to `False`):
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
||||
|
||||
Example:
|
||||
@ -2572,9 +2605,6 @@ class Accelerator:
|
||||
```
|
||||
"""
|
||||
|
||||
if safe_serialization and not is_safetensors_available():
|
||||
raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
|
||||
|
||||
if os.path.isfile(save_directory):
|
||||
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
||||
return
|
||||
@ -2582,38 +2612,21 @@ class Accelerator:
|
||||
os.makedirs(save_directory, exist_ok=True)
|
||||
|
||||
# get the state_dict of the model
|
||||
state_dict = self.get_state_dict(model)
|
||||
if any(
|
||||
[
|
||||
module._hf_hook.offload
|
||||
for module in model.modules()
|
||||
if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook)
|
||||
]
|
||||
):
|
||||
state_dict = get_state_dict_offloaded_model(model)
|
||||
else:
|
||||
if any(param.device == torch.device("meta") for param in model.parameters()):
|
||||
raise RuntimeError("You can't save the model since some parameters are on the meta device.")
|
||||
state_dict = self.get_state_dict(model)
|
||||
|
||||
if safe_serialization:
|
||||
# Safetensors does not allow tensor aliasing.
|
||||
# We're going to remove aliases before saving
|
||||
ptrs = collections.defaultdict(list)
|
||||
# when bnb serialization is used the weights in the state dict can be strings
|
||||
for name, tensor in state_dict.items():
|
||||
if not isinstance(tensor, str):
|
||||
ptrs[id_tensor_storage(tensor)].append(name)
|
||||
|
||||
# These are all the pointers of shared tensors.
|
||||
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
|
||||
warn_names = set()
|
||||
for names in shared_ptrs.values():
|
||||
# When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
|
||||
# If the link between tensors was done at runtime then `from_pretrained` will not get
|
||||
# the key back leading to random tensor. A proper warning will be shown
|
||||
# during reload (if applicable), but since the file is not necessarily compatible with
|
||||
# the config, better show a proper warning.
|
||||
found = 0
|
||||
for name in names:
|
||||
if name in state_dict:
|
||||
found += 1
|
||||
if found > 1:
|
||||
del state_dict[name]
|
||||
warn_names.add(name)
|
||||
if len(warn_names) > 0:
|
||||
logger.warning(
|
||||
f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
|
||||
)
|
||||
|
||||
state_dict = clean_state_dict_for_safetensors(state_dict)
|
||||
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
|
||||
|
||||
# Shard the model if it is too big.
|
||||
@ -2691,7 +2704,7 @@ class Accelerator:
|
||||
self._save_model_state_pre_hook[handle.id] = hook
|
||||
return handle
|
||||
|
||||
def save_state(self, output_dir: str = None, **save_model_func_kwargs):
|
||||
def save_state(self, output_dir: str = None, safe_serialization: bool = True, **save_model_func_kwargs):
|
||||
"""
|
||||
Saves the current states of the model, optimizer, scaler, RNG generators, and registered objects to a folder.
|
||||
|
||||
@ -2712,6 +2725,8 @@ class Accelerator:
|
||||
Args:
|
||||
output_dir (`str` or `os.PathLike`):
|
||||
The name of the folder to save all relevant weights and states.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
||||
save_model_func_kwargs (`dict`, *optional*):
|
||||
Additional keyword arguments for saving model which can be passed to the underlying save function, such
|
||||
as optional arguments for DeepSpeed's `save_checkpoint` function.
|
||||
@ -2756,7 +2771,7 @@ class Accelerator:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
logger.info(f"Saving current state to {output_dir}")
|
||||
|
||||
if self.distributed_type == DistributedType.TPU:
|
||||
if self.distributed_type == DistributedType.XLA:
|
||||
# Finish running the previous step before checkpointing
|
||||
xm.mark_step()
|
||||
|
||||
@ -2782,7 +2797,7 @@ class Accelerator:
|
||||
# Save the optimizers taking care of FSDP and DeepSpeed nuances
|
||||
optimizers = []
|
||||
if self.distributed_type == DistributedType.FSDP:
|
||||
for opt in self._optimizers:
|
||||
for i, opt in enumerate(self._optimizers):
|
||||
logger.info("Saving FSDP Optimizer")
|
||||
save_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], output_dir, i)
|
||||
logger.info(f"FSDP Optimizer saved to output dir {output_dir}")
|
||||
@ -2816,6 +2831,7 @@ class Accelerator:
|
||||
self.state.process_index,
|
||||
self.scaler,
|
||||
save_on_each_node=self.project_configuration.save_on_each_node,
|
||||
safe_serialization=safe_serialization,
|
||||
)
|
||||
for i, obj in enumerate(self._custom_objects):
|
||||
save_custom_state(obj, output_dir, i, save_on_each_node=self.project_configuration.save_on_each_node)
|
||||
@ -2953,6 +2969,7 @@ class Accelerator:
|
||||
if map_location is None:
|
||||
if self.num_processes > 1 and self.distributed_type in (
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_NPU,
|
||||
):
|
||||
map_location = "on_device"
|
||||
@ -3096,6 +3113,13 @@ class Accelerator:
|
||||
from deepspeed.checkpoint.utils import clone_tensors_for_torch_save
|
||||
|
||||
state_dict = clone_tensors_for_torch_save(self.unwrap_model(model).state_dict())
|
||||
elif self.distributed_type == DistributedType.FSDP:
|
||||
from torch.distributed.fsdp import FullStateDictConfig, StateDictType
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
|
||||
full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
|
||||
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, full_state_dict_config):
|
||||
state_dict = model.state_dict()
|
||||
else:
|
||||
if unwrap:
|
||||
model = self.unwrap_model(model)
|
||||
@ -3172,6 +3196,7 @@ class Accelerator:
|
||||
autocast_handler = self.autocast_handler
|
||||
autocast_context = get_mixed_precision_context_manager(self.native_amp, autocast_handler)
|
||||
autocast_context.__enter__()
|
||||
# TODO: should the `yield` be in a try/finally block?
|
||||
yield
|
||||
autocast_context.__exit__(*sys.exc_info())
|
||||
|
||||
|
||||
@ -31,17 +31,22 @@ from .hooks import (
|
||||
)
|
||||
from .utils import (
|
||||
OffloadedWeightsLoader,
|
||||
check_cuda_p2p_ib_support,
|
||||
check_device_map,
|
||||
extract_submodules_state_dict,
|
||||
find_tied_parameters,
|
||||
get_balanced_memory,
|
||||
infer_auto_device_map,
|
||||
is_mlu_available,
|
||||
is_npu_available,
|
||||
is_torch_version,
|
||||
is_xpu_available,
|
||||
load_checkpoint_in_model,
|
||||
offload_state_dict,
|
||||
parse_flag_from_env,
|
||||
retie_parameters,
|
||||
)
|
||||
from .utils.other import recursive_getattr
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@ -72,6 +77,8 @@ def init_empty_weights(include_buffers: bool = None):
|
||||
|
||||
Any model created under this context manager has no weights. As such you can't do something like
|
||||
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
||||
Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not
|
||||
called.
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
@ -120,6 +127,7 @@ def init_on_device(device: torch.device, include_buffers: bool = None):
|
||||
if param is not None:
|
||||
param_cls = type(module._parameters[name])
|
||||
kwargs = module._parameters[name].__dict__
|
||||
kwargs["requires_grad"] = param.requires_grad
|
||||
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
||||
|
||||
def register_empty_buffer(module, name, buffer, persistent=True):
|
||||
@ -392,7 +400,22 @@ def dispatch_model(
|
||||
else:
|
||||
weights_map = None
|
||||
|
||||
# When dispatching the model's parameters to the devices specified in device_map, we want to avoid allocating memory several times for the
|
||||
# tied parameters. The dictionary tied_params_map keeps track of the already allocated data for a given tied parameter (represented by its
|
||||
# original pointer) on each devices.
|
||||
tied_params = find_tied_parameters(model)
|
||||
|
||||
tied_params_map = {}
|
||||
for group in tied_params:
|
||||
for param_name in group:
|
||||
# data_ptr() is enough here, as `find_tied_parameters` finds tied params simply by comparing `param1 is param2`, so we don't need
|
||||
# to care about views of tensors through storage_offset.
|
||||
data_ptr = recursive_getattr(model, param_name).data_ptr()
|
||||
tied_params_map[data_ptr] = {}
|
||||
|
||||
# Note: To handle the disk offloading case, we can not simply use weights_map[param_name].data_ptr() as the reference pointer,
|
||||
# as we have no guarantee that safetensors' `file.get_tensor()` will always give the same pointer.
|
||||
|
||||
attach_align_device_hook_on_blocks(
|
||||
model,
|
||||
execution_device=execution_device,
|
||||
@ -401,7 +424,18 @@ def dispatch_model(
|
||||
weights_map=weights_map,
|
||||
skip_keys=skip_keys,
|
||||
preload_module_classes=preload_module_classes,
|
||||
tied_params_map=tied_params_map,
|
||||
)
|
||||
|
||||
# warn if there is any params on the meta device
|
||||
offloaded_devices_str = " and ".join(
|
||||
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
|
||||
)
|
||||
if len(offloaded_devices_str) > 0:
|
||||
logging.warning(
|
||||
f"Some parameters are on the meta device device because they were offloaded to the {offloaded_devices_str}."
|
||||
)
|
||||
|
||||
# Attaching the hook may break tied weights, so we retie them
|
||||
retie_parameters(model, tied_params)
|
||||
|
||||
@ -409,7 +443,13 @@ def dispatch_model(
|
||||
def add_warning(fn, model):
|
||||
@wraps(fn)
|
||||
def wrapper(*args, **kwargs):
|
||||
logger.warning("You shouldn't move a model when it is dispatched on multiple devices.")
|
||||
warning_msg = "You shouldn't move a model that is dispatched using accelerate hooks."
|
||||
if str(fn.__name__) == "to":
|
||||
to_device = torch._C._nn._parse_to(*args, **kwargs)[0]
|
||||
if to_device is not None:
|
||||
logger.warning(warning_msg)
|
||||
else:
|
||||
logger.warning(warning_msg)
|
||||
for param in model.parameters():
|
||||
if param.device == torch.device("meta"):
|
||||
raise RuntimeError("You can't move a model that has some modules offloaded to cpu or disk.")
|
||||
@ -418,17 +458,40 @@ def dispatch_model(
|
||||
return wrapper
|
||||
|
||||
model.to = add_warning(model.to, model)
|
||||
model.cuda = add_warning(model.cuda, model)
|
||||
if is_npu_available():
|
||||
model.npu = add_warning(model.npu, model)
|
||||
elif is_mlu_available():
|
||||
model.mlu = add_warning(model.mlu, model)
|
||||
elif is_xpu_available():
|
||||
model.xpu = add_warning(model.xpu, model)
|
||||
else:
|
||||
model.cuda = add_warning(model.cuda, model)
|
||||
|
||||
# Check if we are using multi-gpus with RTX 4000 series
|
||||
use_multi_gpu = len([device for device in set(device_map.values()) if device not in ("cpu", "disk")]) > 1
|
||||
if use_multi_gpu and not check_cuda_p2p_ib_support():
|
||||
logger.warning(
|
||||
"We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. "
|
||||
"This can affect the multi-gpu inference when using accelerate device_map."
|
||||
"Please make sure to update your driver to the latest version which resolves this."
|
||||
)
|
||||
else:
|
||||
device = list(device_map.values())[0]
|
||||
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
|
||||
if is_npu_available() and isinstance(device, int):
|
||||
device = f"npu:{device}"
|
||||
elif is_mlu_available() and isinstance(device, int):
|
||||
device = f"mlu:{device}"
|
||||
elif is_xpu_available() and isinstance(device, int):
|
||||
device = f"xpu:{device}"
|
||||
if device != "disk":
|
||||
model.to(device)
|
||||
else:
|
||||
raise ValueError(
|
||||
"You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead."
|
||||
)
|
||||
model.hf_device_map = device_map
|
||||
# Convert OrderedDict back to dict for easier usage
|
||||
model.hf_device_map = dict(device_map)
|
||||
return model
|
||||
|
||||
|
||||
@ -462,7 +525,8 @@ def load_checkpoint_and_dispatch(
|
||||
name, once a given module name is inside, every submodule of it will be sent to the same device.
|
||||
|
||||
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more
|
||||
information about each option see [here](big_modeling#designing-a-device-map).
|
||||
information about each option see [here](../concept_guides/big_model_inference#designing-a-device-map).
|
||||
Defaults to None, which means [`dispatch_model`] will not be called.
|
||||
max_memory (`Dict`, *optional*):
|
||||
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU
|
||||
and the available CPU RAM if unset.
|
||||
@ -528,7 +592,11 @@ def load_checkpoint_and_dispatch(
|
||||
low_zero=(device_map == "balanced_low_0"),
|
||||
)
|
||||
device_map = infer_auto_device_map(
|
||||
model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype
|
||||
model,
|
||||
max_memory=max_memory,
|
||||
no_split_module_classes=no_split_module_classes,
|
||||
dtype=dtype,
|
||||
offload_buffers=offload_buffers,
|
||||
)
|
||||
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
|
||||
offload_state_dict = True
|
||||
|
||||
@ -12,30 +12,33 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import random
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from safetensors.torch import load_file
|
||||
from torch.cuda.amp import GradScaler
|
||||
|
||||
from .utils import (
|
||||
MODEL_NAME,
|
||||
OPTIMIZER_NAME,
|
||||
RNG_STATE_NAME,
|
||||
SAFE_MODEL_NAME,
|
||||
SAFE_WEIGHTS_NAME,
|
||||
SAMPLER_NAME,
|
||||
SCALER_NAME,
|
||||
SCHEDULER_NAME,
|
||||
WEIGHTS_NAME,
|
||||
get_pretty_name,
|
||||
is_tpu_available,
|
||||
is_torch_xla_available,
|
||||
is_xpu_available,
|
||||
save,
|
||||
)
|
||||
|
||||
|
||||
if is_tpu_available(check_device=False):
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
from .logging import get_logger
|
||||
@ -54,10 +57,18 @@ def save_accelerator_state(
|
||||
process_index: int,
|
||||
scaler: GradScaler = None,
|
||||
save_on_each_node: bool = False,
|
||||
safe_serialization: bool = True,
|
||||
):
|
||||
"""
|
||||
Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory.
|
||||
|
||||
<Tip>
|
||||
|
||||
If `safe_serialization` is `True`, models will be saved with `safetensors` while the rest are saved using native
|
||||
`pickle`.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
output_dir (`str` or `os.PathLike`):
|
||||
The name of the folder to save all relevant weights and states.
|
||||
@ -75,31 +86,36 @@ def save_accelerator_state(
|
||||
An optional gradient scaler instance to save
|
||||
save_on_each_node (`bool`, *optional*):
|
||||
Whether to save on every node, or only the main node.
|
||||
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||||
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
||||
"""
|
||||
output_dir = Path(output_dir)
|
||||
# Model states
|
||||
for i, state in enumerate(model_states):
|
||||
weights_name = f"{MODEL_NAME}.bin" if i == 0 else f"{MODEL_NAME}_{i}.bin"
|
||||
output_model_file = os.path.join(output_dir, weights_name)
|
||||
save(state, output_model_file, save_on_each_node=save_on_each_node)
|
||||
weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
|
||||
if i > 0:
|
||||
weights_name = weights_name.replace(".", f"_{i}.")
|
||||
output_model_file = output_dir.joinpath(weights_name)
|
||||
save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization)
|
||||
logger.info(f"Model weights saved in {output_model_file}")
|
||||
# Optimizer states
|
||||
for i, opt in enumerate(optimizers):
|
||||
state = opt.state_dict()
|
||||
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
|
||||
output_optimizer_file = os.path.join(output_dir, optimizer_name)
|
||||
save(state, output_optimizer_file, save_on_each_node=save_on_each_node)
|
||||
output_optimizer_file = output_dir.joinpath(optimizer_name)
|
||||
save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
||||
logger.info(f"Optimizer state saved in {output_optimizer_file}")
|
||||
# Scheduler states
|
||||
for i, scheduler in enumerate(schedulers):
|
||||
state = scheduler.state_dict()
|
||||
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
|
||||
output_scheduler_file = os.path.join(output_dir, scheduler_name)
|
||||
save(state, output_scheduler_file, save_on_each_node=save_on_each_node)
|
||||
output_scheduler_file = output_dir.joinpath(scheduler_name)
|
||||
save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
||||
logger.info(f"Scheduler state saved in {output_scheduler_file}")
|
||||
# DataLoader states
|
||||
for i, dataloader in enumerate(dataloaders):
|
||||
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
|
||||
output_sampler_file = os.path.join(output_dir, sampler_name)
|
||||
output_sampler_file = output_dir.joinpath(sampler_name)
|
||||
# Only save if we have our custom sampler
|
||||
from .data_loader import IterableDatasetShard, SeedableRandomSampler
|
||||
|
||||
@ -107,13 +123,13 @@ def save_accelerator_state(
|
||||
sampler = dataloader.sampler.sampler
|
||||
|
||||
if isinstance(sampler, SeedableRandomSampler):
|
||||
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node)
|
||||
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
|
||||
logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}")
|
||||
|
||||
# GradScaler state
|
||||
if scaler is not None:
|
||||
state = scaler.state_dict()
|
||||
output_scaler_file = os.path.join(output_dir, SCALER_NAME)
|
||||
output_scaler_file = output_dir.joinpath(SCALER_NAME)
|
||||
torch.save(state, output_scaler_file)
|
||||
logger.info(f"Gradient scaler state saved in {output_scaler_file}")
|
||||
# Random number generator states
|
||||
@ -126,9 +142,9 @@ def save_accelerator_state(
|
||||
states["torch_xpu_manual_seed"] = torch.xpu.get_rng_state_all()
|
||||
else:
|
||||
states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all()
|
||||
if is_tpu_available():
|
||||
if is_torch_xla_available():
|
||||
states["xm_seed"] = xm.get_rng_state()
|
||||
output_states_file = os.path.join(output_dir, states_name)
|
||||
output_states_file = output_dir.joinpath(states_name)
|
||||
torch.save(states, output_states_file)
|
||||
logger.info(f"Random states saved in {output_states_file}")
|
||||
return output_dir
|
||||
@ -174,17 +190,25 @@ def load_accelerator_state(
|
||||
map_location = "cpu"
|
||||
elif map_location == "on_device":
|
||||
map_location = PartialState().device
|
||||
|
||||
input_dir = Path(input_dir)
|
||||
# Model states
|
||||
for i, model in enumerate(models):
|
||||
weights_name = f"{MODEL_NAME}.bin" if i == 0 else f"{MODEL_NAME}_{i}.bin"
|
||||
input_model_file = os.path.join(input_dir, weights_name)
|
||||
models[i].load_state_dict(torch.load(input_model_file, map_location=map_location), **load_model_func_kwargs)
|
||||
ending = f"_{i}" if i > 0 else ""
|
||||
input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors")
|
||||
if input_model_file.exists():
|
||||
state_dict = load_file(input_model_file, device=str(map_location))
|
||||
else:
|
||||
# Load with torch
|
||||
input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin")
|
||||
state_dict = torch.load(input_model_file, map_location=map_location)
|
||||
models[i].load_state_dict(state_dict, **load_model_func_kwargs)
|
||||
logger.info("All model weights loaded successfully")
|
||||
|
||||
# Optimizer states
|
||||
for i, opt in enumerate(optimizers):
|
||||
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
|
||||
input_optimizer_file = os.path.join(input_dir, optimizer_name)
|
||||
input_optimizer_file = input_dir.joinpath(optimizer_name)
|
||||
optimizer_state = torch.load(input_optimizer_file, map_location=map_location)
|
||||
optimizers[i].load_state_dict(optimizer_state)
|
||||
logger.info("All optimizer states loaded successfully")
|
||||
@ -192,13 +216,13 @@ def load_accelerator_state(
|
||||
# Scheduler states
|
||||
for i, scheduler in enumerate(schedulers):
|
||||
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
|
||||
input_scheduler_file = os.path.join(input_dir, scheduler_name)
|
||||
input_scheduler_file = input_dir.joinpath(scheduler_name)
|
||||
scheduler.load_state_dict(torch.load(input_scheduler_file))
|
||||
logger.info("All scheduler states loaded successfully")
|
||||
|
||||
for i, dataloader in enumerate(dataloaders):
|
||||
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
|
||||
input_sampler_file = os.path.join(input_dir, sampler_name)
|
||||
input_sampler_file = input_dir.joinpath(sampler_name)
|
||||
# Only load if we have our custom sampler
|
||||
from .data_loader import IterableDatasetShard, SeedableRandomSampler
|
||||
|
||||
@ -211,13 +235,13 @@ def load_accelerator_state(
|
||||
|
||||
# GradScaler state
|
||||
if scaler is not None:
|
||||
input_scaler_file = os.path.join(input_dir, SCALER_NAME)
|
||||
input_scaler_file = input_dir.joinpath(SCALER_NAME)
|
||||
scaler.load_state_dict(torch.load(input_scaler_file))
|
||||
logger.info("GradScaler state loaded successfully")
|
||||
|
||||
# Random states
|
||||
try:
|
||||
states = torch.load(os.path.join(input_dir, f"{RNG_STATE_NAME}_{process_index}.pkl"))
|
||||
states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl"))
|
||||
random.setstate(states["random_state"])
|
||||
np.random.set_state(states["numpy_random_seed"])
|
||||
torch.set_rng_state(states["torch_manual_seed"])
|
||||
@ -225,7 +249,7 @@ def load_accelerator_state(
|
||||
torch.xpu.set_rng_state_all(states["torch_xpu_manual_seed"])
|
||||
else:
|
||||
torch.cuda.set_rng_state_all(states["torch_cuda_manual_seed"])
|
||||
if is_tpu_available():
|
||||
if is_torch_xla_available():
|
||||
xm.set_rng_state(states["xm_seed"])
|
||||
logger.info("All random states loaded successfully")
|
||||
except Exception:
|
||||
|
||||
@ -0,0 +1,13 @@
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
@ -14,18 +14,17 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from argparse import ArgumentParser
|
||||
|
||||
from accelerate.commands.config import get_config_parser
|
||||
from accelerate.commands.env import env_command_parser
|
||||
from accelerate.commands.estimate import estimate_command_parser
|
||||
from accelerate.commands.launch import launch_command_parser
|
||||
from accelerate.commands.test import test_command_parser
|
||||
from accelerate.commands.tpu import tpu_command_parser
|
||||
from accelerate.commands.utils import CustomArgumentParser
|
||||
|
||||
|
||||
def main():
|
||||
parser = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
|
||||
parser = CustomArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
|
||||
subparsers = parser.add_subparsers(help="accelerate command helpers")
|
||||
|
||||
# Register commands
|
||||
|
||||
@ -20,6 +20,7 @@ from ...utils import (
|
||||
ComputeEnvironment,
|
||||
DistributedType,
|
||||
is_deepspeed_available,
|
||||
is_mlu_available,
|
||||
is_mps_available,
|
||||
is_npu_available,
|
||||
is_transformers_available,
|
||||
@ -48,7 +49,7 @@ from .config_utils import (
|
||||
def get_cluster_input():
|
||||
distributed_type = _ask_options(
|
||||
"Which type of machine are you using?",
|
||||
["No distributed training", "multi-CPU", "multi-XPU", "multi-GPU", "multi-NPU", "TPU"],
|
||||
["No distributed training", "multi-CPU", "multi-XPU", "multi-GPU", "multi-NPU", "multi-MLU", "TPU"],
|
||||
_convert_distributed_mode,
|
||||
)
|
||||
|
||||
@ -64,6 +65,7 @@ def get_cluster_input():
|
||||
|
||||
if distributed_type in [
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.MULTI_XPU,
|
||||
DistributedType.MULTI_CPU,
|
||||
@ -116,6 +118,7 @@ def get_cluster_input():
|
||||
use_cpu = False
|
||||
|
||||
ipex_config = {}
|
||||
mpirun_config = {}
|
||||
if use_cpu:
|
||||
ipex_config["ipex"] = _ask_field(
|
||||
"Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:",
|
||||
@ -123,10 +126,26 @@ def get_cluster_input():
|
||||
default=False,
|
||||
error_message="Please enter yes or no.",
|
||||
)
|
||||
if distributed_type == DistributedType.MULTI_CPU:
|
||||
use_mpirun = _ask_field(
|
||||
"Do you want accelerate to launch mpirun? [yes/NO]: ",
|
||||
_convert_yes_no_to_bool,
|
||||
default=False,
|
||||
error_message="Please enter yes or no.",
|
||||
)
|
||||
if use_mpirun:
|
||||
mpirun_hostfile = _ask_field(
|
||||
"Please enter the path to the hostfile to use with mpirun [~/hostfile]: ",
|
||||
str,
|
||||
default="~/hostfile",
|
||||
)
|
||||
mpirun_config["mpirun_hostfile"] = os.path.expanduser(mpirun_hostfile.strip())
|
||||
mpirun_config["mpirun_ccl"] = _ask_field("Enter the number of oneCCL worker threads [1]: ", default=1)
|
||||
if (
|
||||
not use_cpu
|
||||
and is_xpu_available()
|
||||
and distributed_type not in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.TPU]
|
||||
and distributed_type
|
||||
not in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.XLA]
|
||||
):
|
||||
ipex_config["use_xpu"] = _ask_field(
|
||||
"Do you want to use XPU plugin to speed up training on XPU? [yes/NO]:",
|
||||
@ -179,7 +198,17 @@ def get_cluster_input():
|
||||
|
||||
use_mps = not use_cpu and is_mps_available()
|
||||
deepspeed_config = {}
|
||||
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.NO] and not use_mps:
|
||||
if (
|
||||
distributed_type
|
||||
in [
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_XPU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.NO,
|
||||
]
|
||||
and not use_mps
|
||||
):
|
||||
use_deepspeed = _ask_field(
|
||||
"Do you want to use DeepSpeed? [yes/NO]: ",
|
||||
_convert_yes_no_to_bool,
|
||||
@ -313,7 +342,12 @@ def get_cluster_input():
|
||||
)
|
||||
|
||||
fsdp_config = {}
|
||||
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU]:
|
||||
if distributed_type in [
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_XPU,
|
||||
]:
|
||||
use_fsdp = _ask_field(
|
||||
"Do you want to use FullyShardedDataParallel? [yes/NO]: ",
|
||||
_convert_yes_no_to_bool,
|
||||
@ -327,8 +361,7 @@ def get_cluster_input():
|
||||
fsdp_config["fsdp_sharding_strategy"] = _ask_options(
|
||||
sharding_strategy_query,
|
||||
FSDP_SHARDING_STRATEGY,
|
||||
lambda x: int(x) + 1,
|
||||
default=1,
|
||||
lambda x: FSDP_SHARDING_STRATEGY[int(x)],
|
||||
)
|
||||
fsdp_config["fsdp_offload_params"] = _ask_field(
|
||||
"Do you want to offload parameters and gradients to CPU? [yes/NO]: ",
|
||||
@ -362,7 +395,7 @@ def get_cluster_input():
|
||||
default=100000000,
|
||||
)
|
||||
fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy?"
|
||||
fsdp_config["fsdp_backward_prefetch_policy"] = _ask_options(
|
||||
fsdp_config["fsdp_backward_prefetch"] = _ask_options(
|
||||
fsdp_backward_prefetch_query,
|
||||
FSDP_BACKWARD_PREFETCH,
|
||||
lambda x: FSDP_BACKWARD_PREFETCH[int(x)],
|
||||
@ -381,9 +414,9 @@ def get_cluster_input():
|
||||
error_message="Please enter yes or no.",
|
||||
)
|
||||
fsdp_config["fsdp_use_orig_params"] = _ask_field(
|
||||
"Do you want to enable FSDP's `use_orig_params` feature? [yes/NO]: ",
|
||||
"Do you want to enable FSDP's `use_orig_params` feature? [YES/no]: ",
|
||||
_convert_yes_no_to_bool,
|
||||
default=False,
|
||||
default=True,
|
||||
error_message="Please enter yes or no.",
|
||||
)
|
||||
fsdp_config["fsdp_cpu_ram_efficient_loading"] = _ask_field(
|
||||
@ -451,7 +484,7 @@ def get_cluster_input():
|
||||
|
||||
megatron_lm_config[prefix + "use_distributed_optimizer"] = _ask_field(
|
||||
"Do you want to use distributed optimizer "
|
||||
"which shards optimizer state and gradients across data pralellel ranks? [YES/no]: ",
|
||||
"which shards optimizer state and gradients across data parallel ranks? [YES/no]: ",
|
||||
_convert_yes_no_to_bool,
|
||||
default=True,
|
||||
error_message="Please enter yes or no.",
|
||||
@ -477,12 +510,15 @@ def get_cluster_input():
|
||||
DistributedType.MULTI_CPU,
|
||||
DistributedType.MULTI_XPU,
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.TPU,
|
||||
DistributedType.XLA,
|
||||
]:
|
||||
machine_type = str(distributed_type).split(".")[1].replace("MULTI_", "")
|
||||
if machine_type == "TPU":
|
||||
machine_type += " cores"
|
||||
elif machine_type == "CPU":
|
||||
machine_type = "processes"
|
||||
else:
|
||||
machine_type += "(s)"
|
||||
num_processes = _ask_field(
|
||||
@ -510,6 +546,7 @@ def get_cluster_input():
|
||||
distributed_type
|
||||
in [
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.MULTI_XPU,
|
||||
DistributedType.NO,
|
||||
@ -519,6 +556,8 @@ def get_cluster_input():
|
||||
):
|
||||
if is_npu_available():
|
||||
machine_type = "NPU(s)"
|
||||
elif is_mlu_available():
|
||||
machine_type = "MLU(s)"
|
||||
else:
|
||||
machine_type = "GPU(s)"
|
||||
gpu_ids = _ask_field(
|
||||
@ -526,7 +565,17 @@ def get_cluster_input():
|
||||
default="all",
|
||||
)
|
||||
|
||||
if distributed_type == DistributedType.TPU:
|
||||
# CPU affinity is only supported on NVIDIA hardware for now
|
||||
enable_cpu_affinity = False
|
||||
if distributed_type == (DistributedType.NO, DistributedType.MULTI_GPU) and not use_cpu and not use_mps:
|
||||
enable_cpu_affinity = _ask_field(
|
||||
"Would you like to enable numa efficiency? (Currently only supported on NVIDIA hardware). [yes/NO]: ",
|
||||
_convert_yes_no_to_bool,
|
||||
default=False,
|
||||
error_message="Please enter yes or no.",
|
||||
)
|
||||
|
||||
if distributed_type == DistributedType.XLA:
|
||||
mixed_precision = "no"
|
||||
main_training_function = _ask_field(
|
||||
"What is the name of the function in your script that should be launched in all parallel scripts? [main]: ",
|
||||
@ -617,7 +666,7 @@ def get_cluster_input():
|
||||
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
|
||||
)
|
||||
|
||||
if distributed_type == DistributedType.TPU and mixed_precision == "bf16":
|
||||
if distributed_type == DistributedType.XLA and mixed_precision == "bf16":
|
||||
tpu_downcast_bf16 = _ask_field(
|
||||
"Should `torch.float` be cast as `bfloat16` and `torch.double` remain `float32` on TPUs?", default="no"
|
||||
)
|
||||
@ -638,6 +687,7 @@ def get_cluster_input():
|
||||
fsdp_config=fsdp_config,
|
||||
megatron_lm_config=megatron_lm_config,
|
||||
ipex_config=ipex_config,
|
||||
mpirun_config=mpirun_config,
|
||||
use_cpu=use_cpu,
|
||||
rdzv_backend=rdzv_backend,
|
||||
same_network=same_network,
|
||||
@ -651,4 +701,5 @@ def get_cluster_input():
|
||||
tpu_use_cluster=tpu_use_cluster,
|
||||
dynamo_config=dynamo_config,
|
||||
debug=debug,
|
||||
enable_cpu_affinity=enable_cpu_affinity,
|
||||
)
|
||||
|
||||
@ -27,7 +27,7 @@ from ...utils.constants import SAGEMAKER_PYTHON_VERSION, SAGEMAKER_PYTORCH_VERSI
|
||||
|
||||
|
||||
hf_cache_home = os.path.expanduser(
|
||||
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
|
||||
os.environ.get("HF_HOME", os.path.join(os.environ.get("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
|
||||
)
|
||||
cache_dir = os.path.join(hf_cache_home, "accelerate")
|
||||
default_json_config_file = os.path.join(cache_dir, "default_config.yaml")
|
||||
@ -45,13 +45,13 @@ def load_config_from_file(config_file):
|
||||
if not os.path.isfile(config_file):
|
||||
raise FileNotFoundError(
|
||||
f"The passed configuration file `{config_file}` does not exist. "
|
||||
"Please pass an existing file to `accelerate launch`, or use the the default one "
|
||||
"Please pass an existing file to `accelerate launch`, or use the default one "
|
||||
"created through `accelerate config` and run `accelerate launch` "
|
||||
"without the `--config_file` argument."
|
||||
)
|
||||
else:
|
||||
config_file = default_config_file
|
||||
with open(config_file, "r", encoding="utf-8") as f:
|
||||
with open(config_file, encoding="utf-8") as f:
|
||||
if config_file.endswith(".json"):
|
||||
if (
|
||||
json.load(f).get("compute_environment", ComputeEnvironment.LOCAL_MACHINE)
|
||||
@ -94,7 +94,7 @@ class BaseConfig:
|
||||
@classmethod
|
||||
def from_json_file(cls, json_file=None):
|
||||
json_file = default_json_config_file if json_file is None else json_file
|
||||
with open(json_file, "r", encoding="utf-8") as f:
|
||||
with open(json_file, encoding="utf-8") as f:
|
||||
config_dict = json.load(f)
|
||||
if "compute_environment" not in config_dict:
|
||||
config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE
|
||||
@ -109,6 +109,8 @@ class BaseConfig:
|
||||
config_dict["use_cpu"] = False
|
||||
if "debug" not in config_dict:
|
||||
config_dict["debug"] = False
|
||||
if "enable_cpu_affinity" not in config_dict:
|
||||
config_dict["enable_cpu_affinity"] = False
|
||||
extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys()))
|
||||
if len(extra_keys) > 0:
|
||||
raise ValueError(
|
||||
@ -126,7 +128,7 @@ class BaseConfig:
|
||||
@classmethod
|
||||
def from_yaml_file(cls, yaml_file=None):
|
||||
yaml_file = default_yaml_config_file if yaml_file is None else yaml_file
|
||||
with open(yaml_file, "r", encoding="utf-8") as f:
|
||||
with open(yaml_file, encoding="utf-8") as f:
|
||||
config_dict = yaml.safe_load(f)
|
||||
if "compute_environment" not in config_dict:
|
||||
config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE
|
||||
@ -143,6 +145,8 @@ class BaseConfig:
|
||||
config_dict["use_cpu"] = False
|
||||
if "debug" not in config_dict:
|
||||
config_dict["debug"] = False
|
||||
if "enable_cpu_affinity" not in config_dict:
|
||||
config_dict["enable_cpu_affinity"] = False
|
||||
extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys()))
|
||||
if len(extra_keys) > 0:
|
||||
raise ValueError(
|
||||
@ -163,7 +167,7 @@ class BaseConfig:
|
||||
self.distributed_type = SageMakerDistributedType(self.distributed_type)
|
||||
else:
|
||||
self.distributed_type = DistributedType(self.distributed_type)
|
||||
if self.dynamo_config is None:
|
||||
if getattr(self, "dynamo_config", None) is None:
|
||||
self.dynamo_config = {}
|
||||
|
||||
|
||||
@ -178,6 +182,7 @@ class ClusterConfig(BaseConfig):
|
||||
rdzv_backend: Optional[str] = "static"
|
||||
same_network: Optional[bool] = False
|
||||
main_training_function: str = "main"
|
||||
enable_cpu_affinity: bool = False
|
||||
|
||||
# args for deepspeed_plugin
|
||||
deepspeed_config: dict = None
|
||||
@ -187,6 +192,8 @@ class ClusterConfig(BaseConfig):
|
||||
megatron_lm_config: dict = None
|
||||
# args for ipex
|
||||
ipex_config: dict = None
|
||||
# args for mpirun
|
||||
mpirun_config: dict = None
|
||||
# args for TPU
|
||||
downcast_bf16: bool = False
|
||||
|
||||
@ -212,6 +219,8 @@ class ClusterConfig(BaseConfig):
|
||||
self.megatron_lm_config = {}
|
||||
if self.ipex_config is None:
|
||||
self.ipex_config = {}
|
||||
if self.mpirun_config is None:
|
||||
self.mpirun_config = {}
|
||||
return super().__post_init__()
|
||||
|
||||
|
||||
|
||||
@ -68,7 +68,7 @@ def _convert_compute_environment(value):
|
||||
|
||||
def _convert_distributed_mode(value):
|
||||
value = int(value)
|
||||
return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value])
|
||||
return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "MULTI_MLU", "XLA"][value])
|
||||
|
||||
|
||||
def _convert_dynamo_backend(value):
|
||||
|
||||
@ -18,7 +18,7 @@ from pathlib import Path
|
||||
|
||||
import torch
|
||||
|
||||
from ...utils import is_npu_available, is_xpu_available
|
||||
from ...utils import is_mlu_available, is_npu_available, is_xpu_available
|
||||
from .config_args import ClusterConfig, default_json_config_file
|
||||
from .config_utils import SubcommandHelpFormatter
|
||||
|
||||
@ -57,7 +57,15 @@ def write_basic_config(mixed_precision="no", save_location: str = default_json_c
|
||||
"compute_environment": "LOCAL_MACHINE",
|
||||
"mixed_precision": mixed_precision,
|
||||
}
|
||||
if torch.cuda.is_available():
|
||||
if is_mlu_available():
|
||||
num_mlus = torch.mlu.device_count()
|
||||
config["num_processes"] = num_mlus
|
||||
config["use_cpu"] = False
|
||||
if num_mlus > 1:
|
||||
config["distributed_type"] = "MULTI_MLU"
|
||||
else:
|
||||
config["distributed_type"] = "NO"
|
||||
elif torch.cuda.is_available():
|
||||
num_gpus = torch.cuda.device_count()
|
||||
config["num_processes"] = num_gpus
|
||||
config["use_cpu"] = False
|
||||
|
||||
@ -17,6 +17,7 @@
|
||||
import argparse
|
||||
import os
|
||||
import platform
|
||||
import subprocess
|
||||
|
||||
import numpy as np
|
||||
import psutil
|
||||
@ -25,7 +26,7 @@ import torch
|
||||
from accelerate import __version__ as version
|
||||
from accelerate.commands.config import default_config_file, load_config_from_file
|
||||
|
||||
from ..utils import is_npu_available, is_xpu_available
|
||||
from ..utils import is_mlu_available, is_npu_available, is_xpu_available
|
||||
|
||||
|
||||
def env_command_parser(subparsers=None):
|
||||
@ -47,6 +48,7 @@ def env_command(args):
|
||||
pt_version = torch.__version__
|
||||
pt_cuda_available = torch.cuda.is_available()
|
||||
pt_xpu_available = is_xpu_available()
|
||||
pt_mlu_available = is_mlu_available()
|
||||
pt_npu_available = is_npu_available()
|
||||
|
||||
accelerate_config = "Not found"
|
||||
@ -54,14 +56,25 @@ def env_command(args):
|
||||
if args.config_file is not None or os.path.isfile(default_config_file):
|
||||
accelerate_config = load_config_from_file(args.config_file).to_dict()
|
||||
|
||||
# if we can run which, get it
|
||||
command = None
|
||||
bash_location = "Not found"
|
||||
if os.name == "nt":
|
||||
command = ["where", "accelerate"]
|
||||
elif os.name == "posix":
|
||||
command = ["which", "accelerate"]
|
||||
if command is not None:
|
||||
bash_location = subprocess.check_output(command, text=True, stderr=subprocess.STDOUT).strip()
|
||||
info = {
|
||||
"`Accelerate` version": version,
|
||||
"Platform": platform.platform(),
|
||||
"`accelerate` bash location": bash_location,
|
||||
"Python version": platform.python_version(),
|
||||
"Numpy version": np.__version__,
|
||||
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
||||
"PyTorch XPU available": str(pt_xpu_available),
|
||||
"PyTorch NPU available": str(pt_npu_available),
|
||||
"PyTorch MLU available": str(pt_mlu_available),
|
||||
"System RAM": f"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB",
|
||||
}
|
||||
if pt_cuda_available:
|
||||
|
||||
@ -13,12 +13,11 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
|
||||
from huggingface_hub import model_info
|
||||
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from accelerate.commands.utils import CustomArgumentParser
|
||||
from accelerate.utils import (
|
||||
calculate_maximum_sizes,
|
||||
convert_bytes,
|
||||
@ -105,10 +104,11 @@ def create_empty_model(model_name: str, library_name: str, trust_remote_code: bo
|
||||
f"To check `{model_name}`, `transformers` must be installed. Please install it via `pip install transformers`"
|
||||
)
|
||||
print(f"Loading pretrained config for `{model_name}` from `transformers`...")
|
||||
if model_info.config is None:
|
||||
raise RuntimeError(f"Tried to load `{model_name}` with `transformers` but it does not have any metadata.")
|
||||
|
||||
auto_map = model_info.config.get("auto_map", False)
|
||||
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=access_token)
|
||||
with init_empty_weights():
|
||||
# remote code could specify a specific `AutoModel` class in the `auto_map`
|
||||
constructor = AutoModel
|
||||
@ -181,7 +181,7 @@ def estimate_command_parser(subparsers=None):
|
||||
if subparsers is not None:
|
||||
parser = subparsers.add_parser("estimate-memory")
|
||||
else:
|
||||
parser = argparse.ArgumentParser(description="Model size estimator for fitting a model onto CUDA memory.")
|
||||
parser = CustomArgumentParser(description="Model size estimator for fitting a model onto CUDA memory.")
|
||||
|
||||
parser.add_argument("model_name", type=str, help="The model name on the Hugging Face Hub.")
|
||||
parser.add_argument(
|
||||
@ -204,6 +204,7 @@ def estimate_command_parser(subparsers=None):
|
||||
help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. This flag
|
||||
should only be used for repositories you trust and in which you have read the code, as it will execute
|
||||
code present on the Hub on your local machine.""",
|
||||
default=False,
|
||||
)
|
||||
|
||||
if subparsers is not None:
|
||||
@ -211,6 +212,41 @@ def estimate_command_parser(subparsers=None):
|
||||
return parser
|
||||
|
||||
|
||||
def estimate_training_usage(bytes: int, mixed_precision: str, msamp_config: str = None) -> dict:
|
||||
"""
|
||||
Given an amount of `bytes` and `mixed_precision`, calculates how much training memory is needed for a batch size of
|
||||
1.
|
||||
|
||||
Args:
|
||||
bytes (`int`):
|
||||
The size of the model being trained.
|
||||
mixed_precision (`str`):
|
||||
The mixed precision that would be ran.
|
||||
msamp_config (`str`):
|
||||
The msamp config to estimate the training memory for if `mixed_precision` is set to `"fp8"`.
|
||||
"""
|
||||
memory_sizes = {"model": -1, "optimizer": -1, "gradients": -1, "step": -1}
|
||||
fp32_size = bytes
|
||||
fp16_size = bytes // 2
|
||||
|
||||
if mixed_precision == "float32":
|
||||
memory_sizes["model"] = fp32_size
|
||||
memory_sizes["gradients"] = fp32_size
|
||||
memory_sizes["optimizer"] = fp32_size * 2
|
||||
memory_sizes["step"] = fp32_size * 4
|
||||
elif mixed_precision in ("float16", "bfloat16") or (mixed_precision == "fp8" and msamp_config is None):
|
||||
# With native `TransformersEngine`, there is no memory savings with FP8
|
||||
# With mixed precision training, the model has weights stored
|
||||
# in FP16 and FP32
|
||||
memory_sizes["model"] = fp32_size
|
||||
# 1.5 from weight gradient + computation (GEMM)
|
||||
memory_sizes["gradients"] = fp32_size + fp16_size
|
||||
# 2x from optimizer states
|
||||
memory_sizes["optimizer"] = fp32_size * 2 # Optimizer states
|
||||
memory_sizes["step"] = memory_sizes["optimizer"]
|
||||
return memory_sizes
|
||||
|
||||
|
||||
def gather_data(args):
|
||||
"Creates an empty model and gathers the data for the sizes"
|
||||
try:
|
||||
@ -232,6 +268,7 @@ def gather_data(args):
|
||||
for dtype in args.dtypes:
|
||||
dtype_total_size = total_size
|
||||
dtype_largest_layer = largest_layer[0]
|
||||
dtype_training_size = estimate_training_usage(dtype_total_size, dtype)
|
||||
if dtype == "float16":
|
||||
dtype_total_size /= 2
|
||||
dtype_largest_layer /= 2
|
||||
@ -241,7 +278,6 @@ def gather_data(args):
|
||||
elif dtype == "int4":
|
||||
dtype_total_size /= 8
|
||||
dtype_largest_layer /= 8
|
||||
dtype_training_size = dtype_total_size * 4
|
||||
data.append([dtype, dtype_largest_layer, dtype_total_size, dtype_training_size])
|
||||
return data
|
||||
|
||||
@ -252,6 +288,9 @@ def estimate_command(args):
|
||||
for i, item in enumerate(row):
|
||||
if isinstance(item, (int, float)):
|
||||
row[i] = convert_bytes(item)
|
||||
elif isinstance(item, dict):
|
||||
training_usage = max(item.values())
|
||||
row[i] = convert_bytes(training_usage) if training_usage != -1 else "N/A"
|
||||
|
||||
headers = ["dtype", "Largest Layer", "Total Size", "Training using Adam"]
|
||||
|
||||
|
||||
@ -28,19 +28,23 @@ import torch
|
||||
from accelerate.commands.config import default_config_file, load_config_from_file
|
||||
from accelerate.commands.config.config_args import SageMakerConfig
|
||||
from accelerate.commands.config.config_utils import DYNAMO_BACKENDS
|
||||
from accelerate.commands.utils import CustomArgumentParser
|
||||
from accelerate.state import get_int_from_env
|
||||
from accelerate.utils import (
|
||||
ComputeEnvironment,
|
||||
DistributedType,
|
||||
PrepareForLaunch,
|
||||
_filter_args,
|
||||
check_cuda_p2p_ib_support,
|
||||
convert_dict_to_env_variables,
|
||||
is_bf16_available,
|
||||
is_deepspeed_available,
|
||||
is_mlu_available,
|
||||
is_npu_available,
|
||||
is_rich_available,
|
||||
is_sagemaker_available,
|
||||
is_torch_version,
|
||||
is_tpu_available,
|
||||
is_torch_xla_available,
|
||||
is_xpu_available,
|
||||
patch_environment,
|
||||
prepare_deepspeed_cmd_env,
|
||||
@ -62,80 +66,93 @@ if is_rich_available():
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
options_to_group = {
|
||||
"--multi-gpu": "Distributed GPUs",
|
||||
"--tpu": "TPU",
|
||||
"--use_deepspeed": "DeepSpeed Arguments",
|
||||
"--use_fsdp": "FSDP Arguments",
|
||||
"--use_megatron_lm": "Megatron-LM Arguments",
|
||||
"multi_gpu": "Distributed GPUs",
|
||||
"tpu": "TPU",
|
||||
"use_deepspeed": "DeepSpeed Arguments",
|
||||
"use_fsdp": "FSDP Arguments",
|
||||
"use_megatron_lm": "Megatron-LM Arguments",
|
||||
}
|
||||
|
||||
|
||||
def clean_option(option):
|
||||
"Finds all cases of - after the first two characters and changes them to _"
|
||||
if option.startswith("--"):
|
||||
return option[:3] + option[3:].replace("-", "_")
|
||||
return option[2:].replace("-", "_")
|
||||
|
||||
|
||||
class _CustomHelpAction(argparse._HelpAction):
|
||||
class CustomHelpFormatter(argparse.HelpFormatter):
|
||||
"""
|
||||
This is a custom help action that will hide all arguments that are not used in the command line when the help is
|
||||
This is a custom help formatter that will hide all arguments that are not used in the command line when the help is
|
||||
called. This is useful for the case where the user is using a specific platform and only wants to see the arguments
|
||||
for that platform.
|
||||
"""
|
||||
|
||||
def __call__(self, parser, namespace, values, option_string=None):
|
||||
if "accelerate" in sys.argv[0] and "launch" in sys.argv[1:]:
|
||||
args = sys.argv[2:]
|
||||
else:
|
||||
args = sys.argv[1:]
|
||||
opts = parser._actions
|
||||
titles = [
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.titles = [
|
||||
"Hardware Selection Arguments",
|
||||
"Resource Selection Arguments",
|
||||
"Training Paradigm Arguments",
|
||||
"positional arguments",
|
||||
"optional arguments",
|
||||
]
|
||||
if len(args) > 1:
|
||||
used_platforms = [arg for arg in args if arg in options_to_group.keys()]
|
||||
args = list(map(clean_option, args))
|
||||
used_titles = [options_to_group[o] for o in used_platforms]
|
||||
for i, arg in enumerate(opts):
|
||||
# If the argument's container is outside of the used titles, hide it
|
||||
if arg.container.title not in titles + used_titles:
|
||||
setattr(opts[i], "help", argparse.SUPPRESS)
|
||||
# If the argument is hardware selection, but not being passed, hide it
|
||||
elif arg.container.title == "Hardware Selection Arguments":
|
||||
if set(arg.option_strings).isdisjoint(set(args)):
|
||||
setattr(opts[i], "help", argparse.SUPPRESS)
|
||||
else:
|
||||
setattr(opts[i], "help", arg.help + " (currently selected)")
|
||||
# If the argument is a training paradigm, but not being passed, hide it
|
||||
elif arg.container.title == "Training Paradigm Arguments":
|
||||
if set(arg.option_strings).isdisjoint(set(used_platforms)):
|
||||
setattr(opts[i], "help", argparse.SUPPRESS)
|
||||
else:
|
||||
setattr(opts[i], "help", arg.help + " (currently selected)")
|
||||
for i, group in enumerate(list(parser._action_groups)):
|
||||
# If all arguments in the group are hidden, hide the group
|
||||
if all([arg.help == argparse.SUPPRESS for arg in group._group_actions]):
|
||||
parser._action_groups.remove(group)
|
||||
|
||||
super().__call__(parser, namespace, values, option_string)
|
||||
def add_argument(self, action: argparse.Action):
|
||||
if "accelerate" in sys.argv[0] and "launch" in sys.argv[1:]:
|
||||
args = sys.argv[2:]
|
||||
else:
|
||||
args = sys.argv[1:]
|
||||
|
||||
if len(args) > 1:
|
||||
args = list(map(clean_option, args))
|
||||
used_platforms = [arg for arg in args if arg in options_to_group.keys()]
|
||||
used_titles = [options_to_group[o] for o in used_platforms]
|
||||
if action.container.title not in self.titles + used_titles:
|
||||
action.help = argparse.SUPPRESS
|
||||
elif action.container.title == "Hardware Selection Arguments":
|
||||
if set(action.option_strings).isdisjoint(set(args)):
|
||||
action.help = argparse.SUPPRESS
|
||||
else:
|
||||
action.help = action.help + " (currently selected)"
|
||||
elif action.container.title == "Training Paradigm Arguments":
|
||||
if set(action.option_strings).isdisjoint(set(args)):
|
||||
action.help = argparse.SUPPRESS
|
||||
else:
|
||||
action.help = action.help + " (currently selected)"
|
||||
|
||||
action.option_strings = [s for s in action.option_strings if "-" not in s[2:]]
|
||||
super().add_argument(action)
|
||||
|
||||
def end_section(self):
|
||||
if len(self._current_section.items) < 2:
|
||||
self._current_section.items = []
|
||||
self._current_section.heading = ""
|
||||
super().end_section()
|
||||
|
||||
|
||||
def launch_command_parser(subparsers=None):
|
||||
description = "Launch a python script in a distributed scenario. Arguments can be passed in with either hyphens (`--num-processes=2`) or underscores (`--num_processes=2`)"
|
||||
if subparsers is not None:
|
||||
parser = subparsers.add_parser("launch", add_help=False, allow_abbrev=False)
|
||||
parser = subparsers.add_parser(
|
||||
"launch", description=description, add_help=False, allow_abbrev=False, formatter_class=CustomHelpFormatter
|
||||
)
|
||||
else:
|
||||
parser = argparse.ArgumentParser("Accelerate launch command", add_help=False, allow_abbrev=False)
|
||||
parser = CustomArgumentParser(
|
||||
"Accelerate launch command",
|
||||
description=description,
|
||||
add_help=False,
|
||||
allow_abbrev=False,
|
||||
formatter_class=CustomHelpFormatter,
|
||||
)
|
||||
|
||||
parser.register("action", "help", _CustomHelpAction)
|
||||
parser.add_argument("-h", "--help", action="help", help="Show this help message and exit.")
|
||||
|
||||
parser.add_argument(
|
||||
"--config_file", default=None, help="The config file to use for the default values in the launching script."
|
||||
"--config_file",
|
||||
default=None,
|
||||
help="The config file to use for the default values in the launching script.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quiet",
|
||||
@ -190,6 +207,12 @@ def launch_command_parser(subparsers=None):
|
||||
default=None,
|
||||
help="The number of CPU threads per process. Can be tuned for optimal performance.",
|
||||
)
|
||||
resource_args.add_argument(
|
||||
"--enable_cpu_affinity",
|
||||
default=False,
|
||||
action="store_true",
|
||||
help="Whether or not CPU affinity and balancing should be enabled. Currently only supported on NVIDIA hardware.",
|
||||
)
|
||||
|
||||
# Dynamo arguments
|
||||
resource_args.add_argument(
|
||||
@ -481,8 +504,8 @@ def launch_command_parser(subparsers=None):
|
||||
)
|
||||
fsdp_args.add_argument(
|
||||
"--fsdp_sharding_strategy",
|
||||
type=int,
|
||||
default=1,
|
||||
type=str,
|
||||
default="FULL_SHARD",
|
||||
help="FSDP's Sharding Strategy. (useful only when `use_fsdp` flag is passed).",
|
||||
)
|
||||
fsdp_args.add_argument(
|
||||
@ -502,6 +525,12 @@ def launch_command_parser(subparsers=None):
|
||||
"--fsdp_backward_prefetch_policy",
|
||||
default=None,
|
||||
type=str,
|
||||
help="This argument is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use `fsdp_backward_prefetch` instead.",
|
||||
)
|
||||
fsdp_args.add_argument(
|
||||
"--fsdp_backward_prefetch",
|
||||
default=None,
|
||||
type=str,
|
||||
help="FSDP's backward prefetch policy. (useful only when `use_fsdp` flag is passed).",
|
||||
)
|
||||
fsdp_args.add_argument(
|
||||
@ -519,7 +548,7 @@ def launch_command_parser(subparsers=None):
|
||||
)
|
||||
fsdp_args.add_argument(
|
||||
"--fsdp_use_orig_params",
|
||||
default="false",
|
||||
default="true",
|
||||
type=str,
|
||||
help="If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres."
|
||||
" (useful only when `use_fsdp` flag is passed).",
|
||||
@ -618,6 +647,22 @@ def launch_command_parser(subparsers=None):
|
||||
),
|
||||
)
|
||||
|
||||
# MPI arguments
|
||||
mpirun_args = parser.add_argument_group("MPI Arguments", "Arguments related to mpirun for Multi-CPU")
|
||||
mpirun_args.add_argument(
|
||||
"--mpirun_hostfile",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Location for a hostfile for using Accelerate to launch a multi-CPU training job with mpirun. This will "
|
||||
"get passed to the MPI --hostfile or -f parameter, depending on which MPI program is installed.",
|
||||
)
|
||||
mpirun_args.add_argument(
|
||||
"--mpirun_ccl",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The number of oneCCL worker threads when using Accelerate to launch multi-CPU training with mpirun.",
|
||||
)
|
||||
|
||||
# Other arguments of the training scripts
|
||||
parser.add_argument("training_script_args", nargs=argparse.REMAINDER, help="Arguments of the training script.")
|
||||
|
||||
@ -642,6 +687,17 @@ def multi_gpu_launcher(args):
|
||||
import torch.distributed.run as distrib_run
|
||||
|
||||
current_env = prepare_multi_gpu_env(args)
|
||||
if not check_cuda_p2p_ib_support():
|
||||
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
|
||||
warn = False
|
||||
if "NCCL_P2P_DISABLE" not in current_env:
|
||||
current_env["NCCL_P2P_DISABLE"] = "1"
|
||||
warn = True
|
||||
if "NCCL_IB_DISABLE" not in current_env:
|
||||
current_env["NCCL_IB_DISABLE"] = "1"
|
||||
warn = True
|
||||
if warn:
|
||||
logger.warning(message)
|
||||
|
||||
debug = getattr(args, "debug", False)
|
||||
args = _filter_args(
|
||||
@ -649,6 +705,7 @@ def multi_gpu_launcher(args):
|
||||
distrib_run.get_args_parser(),
|
||||
["--training_script", args.training_script, "--training_script_args", args.training_script_args],
|
||||
)
|
||||
|
||||
with patch_environment(**current_env):
|
||||
try:
|
||||
distrib_run.run(args)
|
||||
@ -666,15 +723,27 @@ def deepspeed_launcher(args):
|
||||
|
||||
if not is_deepspeed_available():
|
||||
raise ImportError("DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source.")
|
||||
else:
|
||||
from deepspeed.launcher.runner import DEEPSPEED_ENVIRONMENT_NAME
|
||||
|
||||
cmd, current_env = prepare_deepspeed_cmd_env(args)
|
||||
if not check_cuda_p2p_ib_support():
|
||||
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
|
||||
warn = False
|
||||
if "NCCL_P2P_DISABLE" not in current_env:
|
||||
current_env["NCCL_P2P_DISABLE"] = "1"
|
||||
warn = True
|
||||
if "NCCL_IB_DISABLE" not in current_env:
|
||||
current_env["NCCL_IB_DISABLE"] = "1"
|
||||
warn = True
|
||||
if warn:
|
||||
logger.warning(message)
|
||||
|
||||
if args.num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
|
||||
with open(".deepspeed_env", "a") as f:
|
||||
for key, value in current_env.items():
|
||||
if ";" in value or " " in value:
|
||||
continue
|
||||
f.write(f"{key}={value}\n")
|
||||
with open(DEEPSPEED_ENVIRONMENT_NAME, "a") as f:
|
||||
valid_env_items = convert_dict_to_env_variables(current_env)
|
||||
if len(valid_env_items) > 1:
|
||||
f.writelines(valid_env_items)
|
||||
|
||||
process = subprocess.Popen(cmd, env=current_env)
|
||||
process.wait()
|
||||
@ -756,7 +825,7 @@ def tpu_pod_launcher(args):
|
||||
"--tpu",
|
||||
"--no_tpu_cluster",
|
||||
"--num_machines",
|
||||
str(1),
|
||||
"1",
|
||||
"--mixed_precision",
|
||||
"no",
|
||||
"--dynamo_backend",
|
||||
@ -839,10 +908,15 @@ def _validate_launch_command(args):
|
||||
args.multi_gpu = (
|
||||
True
|
||||
if defaults.distributed_type
|
||||
in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU)
|
||||
in (
|
||||
DistributedType.MULTI_GPU,
|
||||
DistributedType.MULTI_NPU,
|
||||
DistributedType.MULTI_MLU,
|
||||
DistributedType.MULTI_XPU,
|
||||
)
|
||||
else False
|
||||
)
|
||||
args.tpu = defaults.distributed_type == DistributedType.TPU
|
||||
args.tpu = defaults.distributed_type == DistributedType.XLA
|
||||
args.use_fsdp = defaults.distributed_type == DistributedType.FSDP
|
||||
args.use_megatron_lm = defaults.distributed_type == DistributedType.MEGATRON_LM
|
||||
args.tpu_use_cluster = defaults.tpu_use_cluster if args.tpu else False
|
||||
@ -877,6 +951,8 @@ def _validate_launch_command(args):
|
||||
setattr(args, k, defaults.dynamo_config[k])
|
||||
for k in defaults.ipex_config:
|
||||
setattr(args, k, defaults.ipex_config[k])
|
||||
for k in defaults.mpirun_config:
|
||||
setattr(args, k, defaults.mpirun_config[k])
|
||||
continue
|
||||
|
||||
# Those args are handled separately
|
||||
@ -895,14 +971,16 @@ def _validate_launch_command(args):
|
||||
args.mixed_precision = defaults.mixed_precision
|
||||
mp_from_config_flag = True
|
||||
else:
|
||||
native_amp = False
|
||||
err = "{mode} mixed precision requires {requirement}"
|
||||
if args.use_cpu or (args.use_xpu and torch.xpu.is_available()):
|
||||
native_amp = is_torch_version(">=", "1.10")
|
||||
else:
|
||||
native_amp = is_bf16_available(True)
|
||||
if args.mixed_precision == "bf16" and not native_amp and not (args.tpu and is_tpu_available()):
|
||||
raise ValueError(err.format(mode="bf16", requirement="PyTorch >= 1.10 and a supported device."))
|
||||
if (
|
||||
args.mixed_precision == "bf16"
|
||||
and not native_amp
|
||||
and not (args.tpu and is_torch_xla_available(check_is_tpu=True))
|
||||
):
|
||||
raise ValueError("bf16 mixed precision requires PyTorch >= 1.10 and a supported device.")
|
||||
|
||||
# Silently set the default here
|
||||
if args.dynamo_backend is None:
|
||||
@ -911,6 +989,8 @@ def _validate_launch_command(args):
|
||||
if args.num_processes is None:
|
||||
if args.use_xpu and is_xpu_available():
|
||||
args.num_processes = torch.xpu.device_count()
|
||||
elif is_mlu_available():
|
||||
args.num_processes = torch.mlu.device_count()
|
||||
elif is_npu_available():
|
||||
args.num_processes = torch.npu.device_count()
|
||||
else:
|
||||
@ -920,6 +1000,7 @@ def _validate_launch_command(args):
|
||||
args.debug = False
|
||||
if not args.multi_gpu and (
|
||||
(args.use_xpu and is_xpu_available() and torch.xpu.device_count() > 1)
|
||||
or (is_mlu_available() and torch.mlu.device_count() > 1)
|
||||
or (is_npu_available() and torch.npu.device_count() > 1)
|
||||
or (torch.cuda.device_count() > 1)
|
||||
):
|
||||
|
||||
@ -1 +1,14 @@
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .selection_menu import BulletMenu
|
||||
|
||||
@ -30,7 +30,7 @@ def mark(key: str):
|
||||
def decorator(func):
|
||||
handle = getattr(func, "handle_key", [])
|
||||
handle += [key]
|
||||
setattr(func, "handle_key", handle)
|
||||
func.handle_key = handle
|
||||
return func
|
||||
|
||||
return decorator
|
||||
@ -44,7 +44,7 @@ def mark_multiple(*keys: List[str]):
|
||||
def decorator(func):
|
||||
handle = getattr(func, "handle_key", [])
|
||||
handle += keys
|
||||
setattr(func, "handle_key", handle)
|
||||
func.handle_key = handle
|
||||
return func
|
||||
|
||||
return decorator
|
||||
@ -58,8 +58,8 @@ class KeyHandler(type):
|
||||
def __new__(cls, name, bases, attrs):
|
||||
new_cls = super().__new__(cls, name, bases, attrs)
|
||||
if not hasattr(new_cls, "key_handler"):
|
||||
setattr(new_cls, "key_handler", {})
|
||||
setattr(new_cls, "handle_input", KeyHandler.handle_input)
|
||||
new_cls.key_handler = {}
|
||||
new_cls.handle_input = KeyHandler.handle_input
|
||||
|
||||
for value in attrs.values():
|
||||
handled_keys = getattr(value, "handle_key", [])
|
||||
|
||||
@ -16,7 +16,6 @@
|
||||
Utilities relating to parsing raw characters from the keyboard, based on https://github.com/bchao1/bullet
|
||||
"""
|
||||
|
||||
|
||||
import os
|
||||
import string
|
||||
import sys
|
||||
|
||||
@ -15,6 +15,7 @@
|
||||
"""
|
||||
Main driver for the selection menu, based on https://github.com/bchao1/bullet
|
||||
"""
|
||||
|
||||
import builtins
|
||||
import sys
|
||||
|
||||
|
||||
@ -15,9 +15,8 @@
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import os
|
||||
|
||||
from accelerate.test_utils import execute_subprocess_async
|
||||
from accelerate.test_utils import execute_subprocess_async, path_in_accelerate_package
|
||||
|
||||
|
||||
def test_command_parser(subparsers=None):
|
||||
@ -43,15 +42,15 @@ def test_command_parser(subparsers=None):
|
||||
|
||||
|
||||
def test_command(args):
|
||||
script_name = os.path.sep.join(__file__.split(os.path.sep)[:-2] + ["test_utils", "scripts", "test_script.py"])
|
||||
script_name = path_in_accelerate_package("test_utils", "scripts", "test_script.py")
|
||||
|
||||
if args.config_file is None:
|
||||
test_args = script_name
|
||||
test_args = [script_name]
|
||||
else:
|
||||
test_args = f"--config_file={args.config_file} {script_name}"
|
||||
test_args = f"--config_file={args.config_file} {script_name}".split()
|
||||
|
||||
cmd = ["accelerate-launch"] + test_args.split()
|
||||
result = execute_subprocess_async(cmd, env=os.environ.copy())
|
||||
cmd = ["accelerate-launch"] + test_args
|
||||
result = execute_subprocess_async(cmd)
|
||||
if result.returncode == 0:
|
||||
print("Test is a success! You are ready for your distributed training!")
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user