Compare commits

...

193 Commits

Author SHA1 Message Date
28a3b985f0 Release: v0.33.0 2024-07-23 09:11:56 -04:00
415eddf1be feat(ci): add pip caching in CI (#2952) 2024-07-22 16:55:08 -04:00
230857691a Properly handle Params4bit in set_module_tensor_to_device (#2934)
* Properly handle  in

* Add comment to explain Params4bit skipping shape check for set_module_tensor_to_device
2024-07-22 08:42:49 -04:00
a5a3e57125 Add torch.float8_e4m3fn format dtype_byte_size (#2945)
* add new format

* check torch version

* style
2024-07-20 03:07:07 +02:00
0af1d8b8de delete CCL env var setting (#2927)
* delete CCL env var setting

* fix format
2024-07-17 22:15:46 -04:00
d16d7371a1 Improve test reliability for Accelerator.free_memory() (#2935) 2024-07-16 08:40:51 -04:00
7a5c231b9e Consider pynvml available when installed through the nvidia-ml-py distribution (#2936) 2024-07-16 08:40:16 -04:00
4f02bb764a Fix import test (#2931)
* Fix import test

* Tweak threash
2024-07-15 11:13:23 -04:00
YH
709fd1e42b Hotfix PyTorch Version Installation in CI Workflow for Minimum Version Matrix (#2889)
* Fix ci torch version matrix

* Patch torch minor version
2024-07-15 10:31:12 -04:00
f4f1260a0e Correct loading of models with shared tensors when using accelerator.load_state() (#2875)
* Enabled correct loading of models with shared tensors when using accelerator.load_state()

* removed unused import

* added a test for a model with shared weights

* removed unnecessary bits

* fixed linting errors
2024-07-15 10:29:17 -04:00
c6da9f8693 Allow multiple process per device (#2916)
* Allow more processes than devices

* Accept suggestion

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-07-15 10:18:15 -04:00
3ebbe573ad Add huggingface_hub version to setup.py (#2932) 2024-07-15 10:11:41 -04:00
24bf5ec546 add xpu device check before moving tensor directly to xpu device (#2928)
* add ipex check

* fix type

* fix bug
2024-07-15 09:30:22 -04:00
e1247de01e Better error when a bad directory is given for weight merging (#2852) 2024-07-12 13:20:00 -04:00
12a007d559 Support MUSA (Moore Threads GPU) backend in accelerate (#2917) 2024-07-10 13:42:28 +02:00
5bdcd7e169 fix: bug where mulit_gpu was being set and warning being printed even with num_processes=1 (#2921)
Signed-off-by: Harikrishnan Balagopal <harikrishmenon@gmail.com>
2024-07-08 12:06:30 -04:00
2471eacdd6 Fix slowdown on init with device_map="auto" (#2914) 2024-07-04 09:10:21 -04:00
167cb5eb20 [tests] fix bug in torch_device (#2909) 2024-07-04 06:44:40 -04:00
947f64ee62 Version update 2024-07-03 13:27:34 -04:00
8330b375d4 Fix get_backend bug and add clear_device_cache function (#2857)
* added clear_device_cache

* set lambda: 0 for mps and cpu
2024-07-03 06:59:10 -04:00
92404fbf5f fix load_state_dict for xpu and refine xpu safetensor version check (#2879)
* add fix

* update warning

* no and
2024-07-03 06:36:36 -04:00
3a02754915 add require_triton and enable test_dynamo work on xpu (#2878) 2024-07-03 04:52:09 -04:00
fec1170e35 fix mlu device longTensor bugs (#2887)
* Add Cambricon MLU accelerator support

* up mlu support for test

* fix mlu device MULTI_MLU

* Update src/accelerate/utils/imports.py

it's beautiful !

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* up mlu for quality check

* fix mlu device longTensor error

* fix mlu device tensor dtype check

* fix mlu device send_to_device with torch dynamo error

* Refactor AcceleratorState

* Should be near complete now

* Last missing piece

* Make my way to the acceleratorstate

* Include update to global var

* Don't use global

* gpu -> cuda

* Don't use update for dict, easier to read

* Fix tests

* stash

* Getting closer...

* Needed to spawn at the very end after env was setup

* Explain set_device before deepspeed

* Make docstring more accurate

* Early return insteaD

* Delineat blocks

* Make prepare_backend return state + backend for clarity/less magic

* fix mlu longtensor.to() bugs.

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-07-03 04:50:11 -04:00
eac206f063 make more cuda-only tests device-agnostic (#2876)
* enable 3 cases

* add ests

* add 2 more

* revert 1 back

* revert 1 more

* enable on xpu
2024-07-03 04:49:53 -04:00
6882ff2bea Added a MultiCPU SLURM example using Accelerate Launch and MPIRun (#2902)
* initial commit for slurm multicpu script

* changed output path

* Added multicpu example using accelerate + mpirun + slurm

* removed file

* rename file

* deleted file

* refactored for cleanliness

* updated docs

* fixed variable names

* quality update

* test fix

* addressed review comments

* fix typo for activateEnvironment.sh

* added ACCELERATE path

* Edit wording

Co-authored-by: Dina Suehiro Jones <dina.s.jones@intel.com>

* added back mistakenly deleted line

---------

Co-authored-by: Dina Suehiro Jones <dina.s.jones@intel.com>
2024-07-03 04:14:02 -04:00
57a4c7465e Add XLA Dynamo backends for training and inference (#2892) 2024-07-03 04:10:13 -04:00
YH
404510a5ec Make log_line_prefix_template Optional in Elastic Launcher for Backward Compatibility (#2888)
* Fix unexpected keyword argument err for elastic launch config

* Update torch version flow

* Del log prefix template from env vars
2024-07-03 04:06:08 -04:00
3086e26db9 Speed up imports and add a CI (#2845)
* Working test

* Timing cleanup

* Add CI

* Fix nits

* Mixup imports

* Clean

* tuna -> tuna-interpreter

* Refactor pippy imports

* Accelerator

* Fin

* Fin

* Keep specific ones for docs
2024-07-01 18:50:18 -04:00
YH
5d5d07abfc Add Profiler Support for Performance Analysis (#2883)
* Add torch profiler

* Add example

* Fix rank 0 saving

* Add docstring

* Add profile readme

* Fix minor

* Fix example path

* Add exp test code

* Rename profile dir

* Change readme

* Change save format

* Minor

* Enhance docstring example

* Add user guide

* Add memory profile guide

* Enhance error msg

* Fix type hinting

* Minor refactor

* Fix hf tag

* Fix copyright year

* Mv toctree

* Fix image path

* Fix license year

* Change profiler pattern name

* Update package reference

* Add slow decorator

* Check output value
2024-07-01 18:01:09 -04:00
5a0b7dc597 Support saving and loading of step while saving and loading state (#2765)
* Add feature to save step when saving state

* Update docstring for `load_accelerate_state`
2024-07-01 14:57:19 -04:00
c799c198e9 add xpu support (#2864) 2024-06-26 14:56:13 +02:00
1f7a79b428 Potentially fix tests (#2862)
* Potentially fix tests

* Try again with numpy sub 2
2024-06-18 11:38:30 +02:00
4cc3530b64 [tests] skip bnb-related tests instead of failing on xpu (#2860)
* fix requirement

* add one more

* add one more case

* remove files

* remove more file

* bug fix

* revert
2024-06-18 11:22:03 +02:00
5d4a3beb01 [tests] use torch_device instead of 0 for device check (#2861)
* bug fix

* fix one more case

* add more cases

* refine
2024-06-18 10:01:52 +02:00
0284f9a9f6 [tests] fix bug in test_tracking.ClearMLTest (#2863) 2024-06-17 21:40:45 +02:00
573d22d48f Default FSDP weights merge to safetensors (#2853) 2024-06-17 11:23:17 +02:00
13ca7dccb6 Drop torch re-imports in npu and mlu paths (#2856)
Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-06-14 07:13:59 -04:00
3b5a00e048 xpu: support xpu backend from stock pytorch (>=2.4) (#2825)
Fixes: https://github.com/huggingface/transformers/issues/31237

XPU backend is available in the stock PyTorch starting from
version 2.4, see [1]. This commit extends huggingface accelerate
to support XPU from both IPEX and the stock pytorch. IPEX is being
tried first.

See: https://github.com/pytorch/pytorch/issues/114842

Signed-off-by: Dmitry Rogozhkin <dmitry.v.rogozhkin@intel.com>
2024-06-13 11:20:30 -04:00
3c4eaedd46 Refactor logging to use logger in dispatch_model (#2855) 2024-06-13 11:18:48 -04:00
YH
c0faec766c Add DDP Communication Hooks (#2841)
* Add ddp comm hook

* Fix dataclass order

* Merge ddp grad hook to ddp kwargs handler

* Reset ddp kwargs key

* Add test

* Fix test case

* Split ddp grad test

* Fix test case

* Ehance docstring

* Minor

* Use naive baseenum for ddp comm hook type

* Add by feature example

* Add multi device deco

* Add user guide

* Update examples/by_feature/ddp_comm_hook.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Update examples/by_feature/ddp_comm_hook.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Add wrapper and state option details

* Update toctree

* Update docs/source/usage_guides/ddp_comm_hook.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/usage_guides/ddp_comm_hook.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/usage_guides/ddp_comm_hook.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/usage_guides/ddp_comm_hook.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/usage_guides/ddp_comm_hook.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/usage_guides/ddp_comm_hook.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Update docs/source/usage_guides/ddp_comm_hook.md

Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>

* Mv ddp comm hook index

* Fix ddp comm hook user guid

* Del empty line

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: Steven Liu <59462357+stevhliu@users.noreply.github.com>
2024-06-13 10:34:20 -04:00
91a2599f93 Auto create dir when merging FSDP weights (#2854) 2024-06-13 05:32:22 -04:00
5f9235a731 Remove underlines between badges (#2851) 2024-06-12 15:30:28 -04:00
7a36a75c7c remove warning hook addede during dispatch_model (#2843)
* remove-warning-hook

* add _accelerate_added_attributes

* add comments
2024-06-12 16:24:45 +02:00
f62854a281 Revert "Slight rename" (#2850)
This reverts commit a9869ea0dc49652e49607d5f111caed79ed5cb67.
2024-06-12 08:10:13 -04:00
a9869ea0dc Slight rename 2024-06-11 10:15:28 -04:00
6d59614603 doc: fix link (#2844) 2024-06-11 07:41:09 -04:00
2d74c0c077 fix(ci): remove unnecessary permissions (#2842) 2024-06-10 05:35:19 -04:00
40007b4e97 feat(ci): add trufflehog secrets detection (#2836) 2024-06-07 18:29:14 +02:00
7141881b1f Push new release version 2024-06-07 10:05:51 -04:00
f0049b2cfb Use shard saving from huggingface_hub (#2795)
* use shard saving from huggingface hub

* move import

* add shard_checkpoint back but with deprecation msg

* add shard_checkpoint back
2024-06-07 10:03:46 -04:00
83bad87559 fix fstr format (#2810)
* fix fstr format

* Quality pass
2024-06-07 08:46:21 -04:00
24d8b63fc3 Optimize the megatron plugin (#2822)
* Update megatron_lm.md

* Update accelerator.py

* Update dataclasses.py

* Update imports.py

* Update megatron_lm.py

* Update megatron_lm.py
2024-06-07 07:49:52 -04:00
4a83ee5382 monitor-interval, take 2 (#2833)
* monitor-interval

* Update defaults
2024-06-06 09:43:08 -04:00
05d240af95 Improve test speeds by up to 30% in multi-gpu settings (#2830) 2024-06-06 06:12:59 -04:00
bad2ce42ed Fix DeepSpeed config validation error by changing stage3_prefetch_bucket_size value to an integer (#2814) 2024-06-05 21:41:35 -04:00
30cb7ece76 Remove out-dated xpu device check code in get_balanced_memory (#2826)
* fix xpu device check

* simplify
2024-06-05 12:34:43 -04:00
b7fa2fa956 add cuda dep for a test (#2820)
* add cuda dep for a test

* hmmm
2024-06-03 08:37:44 -04:00
d5d378d64e State dictionary retrieval from offloaded modules (#2619)
* added get_state_dict_from_offloaded

* cleaned

* make style

* Update src/accelerate/utils/modeling.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

* implemented suggestions, refactored, make style

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-06-03 14:16:07 +02:00
065e74d11a 4-bit quantization meta device bias loading bug (#2805)
* 4-bit quantization meta device bias loading bug: fixes #2742

* move condition

---------

Co-authored-by: mh <mh@mhs-Mac-mini.local>
2024-05-31 15:26:17 +02:00
86b6deaea1 Fix access error for torch.mps when using torch==1.13.1 on macOS (#2806)
* Fix access error for torch.mps when using torch==1.13.1

* Add missing parentheses

* add min_version

---------

Co-authored-by: Matthew Hoffman <matthew@protopia.ai>
2024-05-31 14:48:37 +02:00
b24a0ef5db New template (#2808) 2024-05-28 10:10:13 -04:00
e061edc6e7 fix comet test (#2804) 2024-05-28 13:45:24 +02:00
c3f422699a Fix type in accelerator.py (#2800)
* Fix type in accelerator.py

* Update accelerator.py
2024-05-24 19:38:43 -04:00
0553483638 Fix Wrong use of sync_gradients used to implement sync_each_batch (#2790)
* fix wrong use of sync_gradients to implement sync_each_batch as pointed out by @Nightmare-n

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>

* fix test

---------

Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
2024-05-23 10:55:52 -04:00
YH
415789d0e4 Add Elastic Launch Support to notebook_launcher (#2788)
* Support elastic launcher

* Update src/accelerate/launchers.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Typo

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-05-23 10:52:41 -04:00
hkz
ae472bac48 fix duplicate elements in split_between_processes (#2781)
* fix duplicate elements in split_between_processes

* add test

* use divmod

* fix apply_padding=True

* fix unused import
2024-05-23 10:51:49 -04:00
4f2c2ba45c Fixup CLI test (#2796) 2024-05-23 09:06:14 -04:00
e26065a265 Upgrade huggingface's megatron to nvidia's megatron when use MegatronLMPlugin (#2501)
* nvidia-megatron

* Update megatron_lm.py

* Update megatron_lm.py

* ruff fix

* ruff format

* Update megatron_lm.py

* Update dataclasses.py

* Update megatron_lm.py

* 直接使用megatron接口

---------

Co-authored-by: zhenwenqi <zhenwenqi_2022@qq.com>
2024-05-23 08:07:27 -04:00
1cb6fdcf7b FIX / FSDP : Guard fsdp utils for earlier PyTorch versions (#2794)
* guard fsdp utils

* Update src/accelerate/utils/fsdp_utils.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Update src/accelerate/utils/fsdp_utils.py

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-05-21 19:29:30 -04:00
4ba436eccc Introduce shard-merging util for FSDP (#2772)
* Initial commit

* Now to test

* Store false

* Slight tweaks

* Fix naming

* Got it all working with tests

* Use not for safetensors arg

* rm change

* Add docs

* Adjust based on Marc's feedback

* Specify just weights

* Update tests to include CLI and swap namings

* Fin

* Rm unused

* Rm again
2024-05-16 13:49:50 -04:00
91e8a3ced4 Skip tied weights disk offload test (#2782)
* skip

* fix

* quality

* fix comment
2024-05-16 14:09:58 +02:00
4ad4d28c49 Add arg from CLI to fix failing test (#2783) 2024-05-15 12:49:54 -04:00
befd87f043 Enable config for fsdp activation checkpointing (#2779)
* Enable config for fsdp activation checkpointing

* Fix ruff errors
2024-05-14 20:17:49 -04:00
abce3604f0 Skip deepspeed test (#2776)
* skip test

* style
2024-05-14 18:28:10 +02:00
27a607ea90 Fix small edge case in get_module_leaves (#2774)
* fix edge case

* fix
2024-05-14 11:52:51 +02:00
aa21174de9 fix minor typo (#2767) 2024-05-13 08:24:01 -04:00
6cf1cc0a39 optimize get_module_leaves speed (#2756)
* optimize get_module_leaves

* fix format

* Update modeling.py
2024-05-13 08:23:38 -04:00
bb465a9cf0 Sets default to PyTorch defaults based on backend (#2758)
* Amd

* Add timeout defaults to match pytorch

* forward contrib credits from discussions

* oop

---------

Co-authored-by: Julian Buchel <jubueche@users.noreply.github.com>
2024-05-13 05:41:15 -04:00
67308ca6ef Enable sharded cpu resume (#2762) 2024-05-10 11:39:37 -04:00
63772f6ac2 Revert "Simplify CLI args validation and ensure CLI args take precedence over config file." (#2763)
This reverts commit 724824abbe0aed8606661bbce5e057c0d2447794.
2024-05-10 11:22:56 -04:00
8798cf06ab fix cpu omp num threads set (#2755)
* fix cpu omp num threads set

* fix OMP_NUM_THREADS

* consider no-cpu usage

* fix style
2024-05-10 11:16:06 -04:00
47bb2dd53e Fix sagemaker config (#2753)
* Fix sagemaker

* Default to False

* Include fixes

* Nit

* Ignore launching
2024-05-10 09:09:36 -04:00
724824abbe Simplify CLI args validation and ensure CLI args take precedence over config file. (#2757)
* Remove unnecessary args.debug statement

* Add expected test failure for config sub-sections

* Remove redundancy in config file args parsing

* Make config file --cpu logic more explicit
2024-05-09 09:30:13 -04:00
YH
afc2c99e6a Fix duplicate environment variable check in multi-cpu condition (#2752)
* Del duplicted key

* Apply format
2024-05-07 14:27:29 -04:00
0fb95a2d3b Fix max_memory assignment (#2751) 2024-05-07 11:53:25 +02:00
7ac153f404 LOMO / FIX: Support multiple optimizers (#2745) 2024-05-06 08:28:14 -04:00
0f1b91bb74 Fix stacklevel in logging to log the actual user call site (instead of the call site inside the logger wrapper) of log functions (#2730)
* fix stacklevel in logging to log info about the actual user callsite

* Add two tests for stacklevel in logging

---------

Co-authored-by: luowyang <luowyang@github.com>
2024-05-06 08:21:19 -04:00
d1eb44c856 Fixed the problem of incorrect conditional judgment statement when configuring enable_cpu_affinity (#2748) 2024-05-06 08:20:22 -04:00
11a363287a Update modeling.py by adding try-catch section to skip the unavailable devices (#2681)
* Update modeling.py to ignore the unavailable devices

* Update src/accelerate/utils/modeling.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

Update src/accelerate/utils/modeling.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

Update src/accelerate/utils/modeling.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

Update src/accelerate/utils/modeling.py

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>

---------

Co-authored-by: Marc Sun <57196510+SunMarc@users.noreply.github.com>
2024-05-06 12:44:35 +02:00
LFu
5cfe409443 Add feature to allow redirecting std streams into log files when using torchrun as the launcher. (#2740)
* Add --log-dir/--log_dir to `distributed_args` to allow redirecting std
streams into log files when using torchrun as the launcher. Used with
--tee this will acheive similar effect as running with `torchrun --tee X
--log-dir=logs`.

* Deleted the unecessary "--log-dir" argument following suggestion from
@muellerzr, since it will be automatically generated from "--log_dir".
2024-05-04 15:03:05 -04:00
5b3a7f3892 Update setup.py + test falures found during release 2024-05-03 10:40:25 -04:00
060361fca3 Fix tests on main (#2739)
* Start

* Fixings
2024-05-03 10:18:20 -04:00
6ac27e2383 FEAT: Add LOMO optimizer (#2695)
* add v1 lomo

* final fixes

* fix

* Update src/accelerate/accelerator.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* add comment

* more comments

* fix

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-05-03 10:55:44 +02:00
YH
ba5f49219f Fix offload device type (#2717) 2024-05-02 17:07:24 +05:30
2c767338f2 Fix Documentation in FSDP and DeepSpeed Concept Guide (#2725)
* address part of stats comments

* automatically set sync_module_states if low_cpu_mem is set

* Apply suggestions from @stas00

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* add links from fsdp and deepspeed docs. fix deepspeed imports

* replace raise in accelerate.launch

---------

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2024-05-01 09:25:18 -04:00
234a85506d Docs: Fix build main documentation (#2729) 2024-05-01 08:18:52 -04:00
232ebd159a Fix sampler (#2728) 2024-05-01 12:20:26 +02:00
4d3d4bc88f fix sampler serialization (#2723)
* fix sampler serialization

* add getter and setter for sampler

* more maintenable
2024-04-30 11:19:05 +02:00
2b1e7bd462 Fixup free_memory to deal with garbage collection (#2716)
* Fixup cleanup

* Return

* Fixup test

* Fix test

* DeepSpeed

* More careful guard

* bring back as none

* passing

* bring forward
2024-04-30 03:28:57 -04:00
c7e5e41b8c Segment out a deepspeed docker image (#2707)
* Segment out a deepspeed docker image

* Update readme

* Keep pinned ds
2024-04-29 11:25:22 -04:00
9557598c45 Add Upcasting for FSDP in Mixed Precision. Add Concept Guide for FSPD and DeepSpeed. (#2674)
* draft fsdp vs ds

* reframe to migration doc

* updated functionality section

* cast to float32

* improvements to float32 casting

* some cleanup

* addressed @pacman100's comments

* Apply some of @muellerz suggestions

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* change to subsections

* changed the manner upcasting warnings are surfaced

* update document to discuss fsdp and ds plugins. minor fixes.

* @muellerzr's new suggestions

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* explain all-or-nothing

* add @pacman100's comments

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* minor fix

---------

Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
2024-04-29 11:19:03 -04:00
156331aecd allow gather_for_metrics to be more flexible (#2710)
* allow gather_for_metrics to be more flexible

* style

* udapte doc

* fix

* style

* typo

* typo

* Update src/accelerate/accelerator.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* remove distributed

* clean

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-04-29 12:14:22 +02:00
cd7df4117d fix bnb multi gpu training (#2714)
* fix bnb multi gpu training

* style

* elif instead

* fix

* style

* fix
2024-04-26 15:52:15 +02:00
6af157ea93 Add diffusers to req (#2711) 2024-04-25 08:31:54 -04:00
83317b3081 add distributed examples (#2672)
* add distributed examples

* typo

* uncomment

* require multigpu

* add stable diffusion example

* style

* add copyright

* style

* remove tqdm

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* add comments

* remove print

* More comments

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-04-25 11:13:56 +02:00
e831bcb3b1 Change dataloader send_to_device calls to non-blocking (#2685)
* Change dataloader send_to_device calls to non-blocking

* add non_blocking to dataloader dataclass

* add dataloader non blocking option from dataclass

* add handling for non blocking to accelerator

* add notes on non-blocking transfers to quicktour

* link to dataloaderconfiguration in docs

* linting

* "requires" -> "recommended" on non-blocking setting

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: drhead <a@a.a>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-04-24 15:45:57 -04:00
092c3af0c4 Add version checks for the import of DeepSpeed moe utils (#2705)
* fix import for moe utils

* Apply suggestions from code review

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-04-25 00:38:56 +05:30
3e944c5583 add cann version info to command accelerate env (#2689) 2024-04-24 09:17:09 -04:00
f67737363c Do a pip freeze during workflows (#2704)
* Do a pip freeze

* No need to do source activate on non-conda workflow
2024-04-24 08:46:13 -04:00
f7daaaa305 fix support (#2699) 2024-04-23 15:32:43 +02:00
3dc131cd8d Add source code for DataLoader Animation (#2696)
* dl animation

* oops

* Export
2024-04-23 04:28:28 -04:00
ef0f62c12a Simplify test logic (#2697)
* simplify test logic 😅

* 😅
2024-04-23 02:49:55 +05:30
baafaf4a6e Fix the rng states of sampler's generator to be synchronized for correct sharding of dataset across GPUs (#2694)
* Fix the rng states of sampler's generator to be synchronized for correct sharding of dataset across GPUs

* add tests
2024-04-22 13:50:04 -04:00
abc86c0e35 Enable BF16 autocast to everything during FP8 + some tweaks to enable FSDP (#2655)
* Basic autocasting stuff

* Delay fp8 autocast until after DDP wrapping

* More fixes

* Bookmark: without dtype change

* Bookmark: with dtype changes

* Different alternative, better results

* Didn't matter what order, same result

* Revert + maintain

* Fin

* Refactor based on feedback

* native_amp bool

* Final nits
2024-04-18 10:14:35 -04:00
4450cb3132 Deprecate tqdm args + slight logic tweaks (#2673)
* Deprecate + slight logic fix

* Maybe fix test?
2024-04-17 06:26:55 -04:00
fd0dcd1c45 fix backend check (#2670)
* fix backend check

* reformat backend check

* Update src/accelerate/state.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Update src/accelerate/state.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* raise value error if backend mismatch

* Update src/accelerate/state.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-04-16 21:22:27 -04:00
f478201c28 Pin DS...again.. (#2679) 2024-04-16 12:07:59 -04:00
c7046845e7 Fix deepspeed moe test with version check (#2677) 2024-04-16 10:22:41 -04:00
701e24c539 Handle MoE models with DeepSpeed (#2662)
* Handle MoE models with DeepSpeed

* Update launch.py

* Update test_deepspeed.py

* Update test_deepspeed.py

* Update src/accelerate/utils/dataclasses.py

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* address comments

* Update deepspeed.md

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-04-16 16:11:49 +05:30
37da848e6c tqdm: *args should come ahead of main_process_only (#2654)
* Update tqdm.py

* add unit test

* add test to test_utils

* ruff changes
2024-04-15 12:30:28 -04:00
c470a1336a Revert "fix backend check (#2652)" (#2669)
This reverts commit 2fc48c7eeea67e747a39be2dec822b07a27bae71.
2024-04-15 04:30:33 -04:00
581a390e2f Megatron plugin can support NPU (#2667) 2024-04-15 03:02:13 -04:00
2fc48c7eee fix backend check (#2652)
* fix backend check

* fix ccl check
2024-04-15 02:59:29 -04:00
1024231133 Add MLU rng state setter (#2664) 2024-04-15 02:59:10 -04:00
5ca095a34f Fix test_from_pretrained_low_cpu_mem_usage_measured failure (#2644)
This test is to test the change in the memory size occupied by model loading when low_cpu_mem_usage is used.
Therefore, the default device used is cpu. However, when judging whether other devices are available,
new packages will be introduced, causing memory changes and interfering with the test results.

Signed-off-by: yuanwu <yuan.wu@intel.com>
2024-04-12 18:23:28 +02:00
b77c65398c Don't use deprecated Repository anymore (#2658)
* Don't use deprecated Repository anymore

* oops

* Update requirements.txt
2024-04-12 09:05:54 -04:00
YH
a91691463b Fix deepspeed plugin attr type (#2646) 2024-04-12 15:29:16 +05:30
5056d327f8 Allow "auto" for gradient clipping in YAML (#2649)
* Allow "auto" for gradient clipping in YAML

* Update src/accelerate/utils/dataclasses.py

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>

* Make style

---------

Co-authored-by: Sourab Mangrulkar <13534540+pacman100@users.noreply.github.com>
2024-04-12 13:44:39 +05:30
c0a37015e3 Typo fix in tracking.md (#2650) 2024-04-10 17:16:11 -04:00
e9b9c7d022 device agnostic testing for hooks&utils&big_modeling (#2602)
* device agnostic testing for hooks&utils&big_modeling

* fix failed test cased on cpu

* make style
2024-04-10 13:56:50 -04:00
6c09584f73 add strict arg to load_checkpoint_and_dispatch (#2641) 2024-04-10 11:20:07 +02:00
b8c8583953 add third-party device prefix to execution_device (#2612)
* add xpu device_map

* fix
2024-04-09 13:47:41 +02:00
df485ae1e3 Parenthesis on xpu_available (#2639) 2024-04-09 06:33:38 -04:00
6386f70103 Fix up state with xla + performance regression (#2634)
* Fix up state with xla

* use backend

* Change last time

* Cmoment

* Slight tweak to use dtype
2024-04-09 06:06:28 -04:00
6d92198ef4 Schedule free optimizer support (#2631)
* Schedule free optimizer supporT

* Fin

* Doc

* Add in eval

* Add to exclude

* Fix module issue
2024-04-08 11:28:27 -04:00
16488be9a4 Update version 2024-04-05 13:11:05 -04:00
685bd3a439 CLean 2024-04-05 13:05:05 -04:00
2e69948c1a Patchfix 2024-04-05 13:04:44 -04:00
7531e8c13e Unpin hub (#2625) 2024-04-04 10:33:49 -04:00
8e439de744 Link to bash in env reporting (#2623)
* link to bash in env reporting

* Not found

* Use check_output

* Support windows
2024-04-04 09:47:08 -04:00
d96a5aa730 Fix links in Quick Tour (#2617) 2024-04-03 12:47:31 -04:00
d7bcd85d4d fix llama example for pippy (#2616)
* fix llama example

* remove llama from tests
2024-04-03 08:22:16 -04:00
d927b8f3a2 Default false for trust_remote_code (#2607) 2024-04-02 10:58:24 -04:00
f579d9550d Pin hub for tests (#2608) 2024-04-02 10:58:17 -04:00
bbecad4e8e Allow for force unwrapping (#2595)
* Try new method

* Clean a bit more

* Use spmd

* reported typo

* Forward contrib credits

* Comment

* Comments

---------

Co-authored-by: Shubham Krishna <shubhamkrishna.ism@gmail.com>
2024-04-02 09:59:07 -04:00
b82999a84b Re-put in zero3 failure 2024-04-02 09:57:07 -04:00
11568e562c Refactor PartialState and AcceleratorState (#2576)
* Refactor AcceleratorState

* Should be near complete now

* Last missing piece

* Make my way to the acceleratorstate

* Include update to global var

* Don't use global

* gpu -> cuda

* Don't use update for dict, easier to read

* Fix tests

* stash

* Getting closer...

* Needed to spawn at the very end after env was setup

* Explain set_device before deepspeed

* Make docstring more accurate

* Early return insteaD

* Delineat blocks

* Make prepare_backend return state + backend for clarity/less magic

* Check if it's None and then return

* Use a dataclass

* Forgot one

* Clean

* Style

* Docstring fix?

* Fix deepspeed

* Move slighly

* Final fix

* Fix state for deepspeed

* rm comment
2024-04-02 09:55:34 -04:00
d9a1b8f975 Resolve ZeRO-3 Initialization Failure in Pre-Set Torch Distributed Environments (huggingface/transformers#28803) (#2578)
* Resolve ZeRO-3 Initialization Failure in Pre-Set Torch Distributed Environments (huggingface/transformers#28803)

* add unit test for deepspeed zero3 intergation

* update test case then keep it accelerate spec
2024-04-01 10:46:08 +05:30
b634388ef1 Fix warning log for unused checkpoint keys (#2594)
As per title
2024-03-28 15:32:44 +01:00
4d415f2129 Allow notebook_launcher to launch to multiple GPUs from Colab (#2561)
* changed notebook_launcher to not ignore num_processes parameter on colab

* clarified documentation on notebook_launcher (that config file is ignored by notebook_launcher)

* simplified logic in launcher to retain prev elif, imported get_gpu_info from environment

* run quality and style fixes

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-26 22:49:14 -04:00
829171a9a4 [docs] Fix kwarg docstring (#2590)
* fix kwarg docstrings

* **
2024-03-26 13:24:23 -07:00
5a232de2fa Expound PartialState docstring (#2589)
* Expound docstring

* Reword

* Weird spacing

* Move example

* Move to solve formatting issues

* Link to the spec class

* Take 3

* Copy kwargs format to others

* Take 4...

* Special thingy
2024-03-26 13:41:23 -04:00
5f8048cd04 Guard stateful objects (#2572)
* Guard stateful objects

* Add test

* Add a test

* MOre tests

* Update AcceleratorState

* Decision: early return

* Test accelerator as well

* use right assert check

* Use getattr
2024-03-26 12:04:40 -04:00
4378b560e8 Fix load_checkpoint_in_model behavior when unexpected keys are in the checkpoint (#2588)
* fix load_checkpoint_in_model when unexpected keys are in the checkpoint

* fix test

* style
2024-03-26 23:36:00 +08:00
8644e23b71 Refactor and improve model estimator tool (#2581)
* Start

* Stash

* Mark

* Better mixed precision

* Can confirm transformerengine

* Finish refactor

* Update training usage

* Slight tweak

* Fin

* Fixup test

* Add comment about FP8
2024-03-26 10:33:14 -04:00
b2fc3a3b0e Refactor affinity and make it stateful (#2579)
* Move under initialized check

* One more

* Numa affinity

* Docs

* Import

* Add verbosity

* Apply suggestions from code review

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

* Improve import err

* Test + fix bug

* Update src/accelerate/utils/environment.py

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* Clean

---------

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
2024-03-26 09:51:37 -04:00
UNI
290446d446 Update data_loader.py to Ensure Reproducibility in Multi-Process Environments with Dataloader Shuffle (#2584)
* Update data_loader.py

* fix reformatting bug

* add unit test

* add Accelerator initialization in unit test

* move unit test of seedable sampler to test_script.py

* reformatted
2024-03-25 15:04:05 -04:00
85a75d4c3d [docs] Missing functions from API (#2580) 2024-03-22 13:40:21 -04:00
f94f0ff912 Allow for custom deepspeed env files (#2566)
* Allow for any .env file

* Messed up merge conflicts
2024-03-22 08:20:43 -04:00
1b2e634970 Rm uv install (#2577) 2024-03-22 07:59:18 -04:00
dd62fc90ce Unpin deepspeed (#2570) 2024-03-21 09:42:03 -04:00
10b418495e Allow for setting deterministic algorithms (#2569)
* Allow for setting deterministic algorithms

* Expound doc

* English fails me again
2024-03-21 09:12:02 -04:00
c2f193a25c Improve deepspeed env gen (#2565)
* Improve .deepspeed_env generation

Co-authored-by: Rick Lamers <ricklamers@gmail.com>

* Leave for a latter date

---------

Co-authored-by: Rick Lamers <ricklamers@gmail.com>
2024-03-20 14:29:27 -04:00
1812152392 Add log message for RTX 4000 series when performing multi-gpu inference with device_map (#2557)
* add log message for RTX 4000 series when using device_map multi-gpu

* style

* style

* switch to warning

* Update src/accelerate/big_modeling.py

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-20 12:30:41 -04:00
b8b353b7a7 Add NUMA affinity control for NVIDIA GPUs (#2535)
* Beta test, could break!

* Cleanup and get rid of unneded files

* Work on integration

* Add numa affinity to config

* Add to config command

* Fix some of Stas' notes

* Use raw os to make things easier

* Update questionairre

* Use CPU_AFFINITY instead

* Change doc

* Update test

* Fix numa, I submit

* include ref to original

* Fix

---------

Co-authored-by: zach.mueller@huggingface.co <muellerzr@ip-26-0-160-100.ec2.internal>
2024-03-20 11:12:30 -04:00
f2778d6502 Add Cambricon MLU accelerator support (#2552)
* Add Cambricon MLU accelerator support

* up mlu support for test

* fix mlu device MULTI_MLU

* Update src/accelerate/utils/imports.py

it's beautiful !

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* up mlu for quality check

* fix mlu device longTensor error

* fix mlu device tensor dtype check

* fix mlu device send_to_device with torch dynamo error

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-20 10:59:00 -04:00
2ad42e77c3 🚨🚨🚨Move to using tags rather than latest for docker images and consolidate image repos 🚨 🚨🚨 (#2554)
* Move to using tags

* Add readme

* Include hf repo description in auto-build

* Test

* Even with an a...

* Rm readme things

* Symlink README for docker repo

* Include readme

* Fin

* Try now?

* Finally got symlink working

* Let's try this

* Forgot runs-on

* Still perm issues, revert
2024-03-18 09:35:32 -04:00
e8aaee5d9b Include working driver check (#2558)
* Include working driver

* Style
2024-03-15 10:12:22 -04:00
910c1b6a8f split_between_processes for Dataset (#2433)
* split_between_processes for Dataset

* Update state.py

* remove param datasets.Dataset from split_between_processes, add note to function doc

* is_datasets_available is a function not a var

* reformat to make ruff happy

* isinstance(inputs, Dataset) only if is_datasets_available()

* add test_split_between_processes_dataset

* split_between_processes for Dataset: pad if apply_padding

* removed trailing whitespace

* complete test_split_between_processes_dataset

* fix test_split_between_processes_dataset for single GPU
2024-03-14 17:39:47 -04:00
92d3240bb5 Add mapping main_process_ip and ip-master_addr when not using standard as deepspeed launcher (#2495)
Co-authored-by: 정수현 <soohyun.jung@ten1010.io>
2024-03-14 16:43:55 +05:30
02a8a9a3a7 Fix test_script.py on TPU v2/v3 (#2542)
* fix replication

* Set generator on each thread. The test passed.

* remove comments

* fix up

* fix format

* fix comment

* not setting the dataloader.batch_sampler
2024-03-13 13:20:16 -04:00
ee163b66fb Update version 2024-03-12 11:55:22 -04:00
354db5b5f7 Use uv instead of pip install for github CI (#2546)
* Test uv

* Workflow dispatch

* Modify

* Setuptools...apparently?

* No need for -y

* Rm cache

* Rm workflow dispatch

* Trainer tests

* Might need to be -e

* Try keeping it at absolute home

* Undo integration
2024-03-12 08:06:27 -04:00
92b1ad01f3 Update FSDP mixed precision setter to enable fsdp+qlora (#2544)
* update FSDP mp setter to enable fsdp+qlora

* fixes

* Update test_fsdp.py
2024-03-12 16:17:29 +05:30
60bfdaa934 Allow Gradients to be Synced Each Data Batch While Performing Gradient Accumulation (#2531)
* add force flag in _do_sync class method and add sync_each_batch in GradientAccumulationPlugin

* modify test_sync to consider sync_each_batch. fix old tests involving optimizer

* run style checker

* minor refactoring based on @muellerzr's comments.

* update docs: gradient_synchronization.md

* Apply @muellerzr's documentation suggestions.

Co-authored-by: Zach Mueller <muellerzr@gmail.com>

* Apply suggestions from @BenjaminBossan

Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>

---------

Co-authored-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
Co-authored-by: Zach Mueller <muellerzr@gmail.com>
Co-authored-by: Benjamin Bossan <BenjaminBossan@users.noreply.github.com>
2024-03-11 11:13:31 -04:00
16eb6d76bf Remove extra double-dash in error message (#2541)
Error messages should read `--main_process_port`, not `----main_process_port`.  Users who copy and paste the message as it was will get this error message:
```
Accelerate CLI tool: error: unrecognized arguments: ----main_process_port
```
2024-03-10 08:59:44 -04:00
c8acfa700b [docs] Troubleshoot (#2538)
* reorg and light edits

* fix hfoption

* move doc

* move
2024-03-08 13:28:42 -05:00
e70e3c87de Overdue email change... (#2534) 2024-03-08 12:55:42 -05:00
bc8dfe3caf init (#2438) 2024-03-08 11:36:10 -05:00
e3d324240f Check if the buffers fit GPU memory after device map auto inferred (#2412)
* Check if the buffers fit GPU memory after device map auto inferred

  * For some models, like TheBloke/WizardCoder-33B-V1.1-GPTQ, contain a
    huge buffer, which may cause OOM on GPU memory if not using
    offload_buffers. This commit adds a check for such case.

* Minor refactors.

* Add missing assertions
2024-03-08 11:05:38 -05:00
10882eeddd Update link to dynamo/compile doc (#2533) 2024-03-07 09:36:43 -05:00
145a98fc12 Update the default behavior of zero_grad(set_to_none=None) (#2472)
Now, the behavior of the wrapped optimizer is that the gradient is cleared by default when `set_to_none=None`. This aligns with `torch.optim.Optimizer` and saves memory.
2024-03-07 09:31:21 -05:00
64ae9ea3fe Enable using dash or underscore for CLI args (#2527)
* New approach

* New version, good

* Complete rewrite, and works for testing

* More nits

* Simplify option_string filtering

* More suggestions from codereview

* Add test

* Fix broken tests
2024-03-07 07:22:34 -05:00
8aa72b9748 Launch mpirun from accelerate launch for multi-CPU training (#2493)
* Update accelerate config and launch to abstract out mpirun

* Fix var

* Documentation updates, updating the launch script to work with other MPI programs, and fixing the nlp example when using IPEX

* Style fixes

* Add a test

* Style fixes

* Formatting fix

* Updates based on review feedback.

* Remove model.train()

* Doc update

* Update doc regarding the accelerate config with the old method of mpirun and accelerate

* Fix typo in comment

* Quality and test updates

* Updates based on review feedback

* Quality fix

* Fix mock patch path

* Updates based on review feedback

* Quality fixes
2024-03-06 13:52:08 -05:00
97d115a266 Remove unnecessary env=os.environ.copy()s (#2449) 2024-03-06 06:36:56 -05:00
63cfd9efdc qbitstensor compatibility (#2526) 2024-03-04 17:55:28 -05:00
6cf8221a09 Don't manage PYTORCH_NVML_BASED_CUDA_CHECK when calling accelerate.utils.imports.is_cuda_available() (#2524)
* Don't manage PYTORCH_NVML_BASED_CUDA_CHECK

PYTORCH_NVML_BASED_CUDA_CHECK will use an NVML-based check when
determining how many devices are available. That's useful for preventing
CUDA initialization when doing that check (or calling
`torch.cuda.is_available()`). Instead of manipulating that env var, one
can call the torch utility `_device_count_nvml` directly preventing the
manipulation of the env var.

* Uses env var instead of private torch function

* Fixes flake8 check
2024-03-04 14:18:17 -05:00
7a2feecad4 Add copyright + some ruff lint things (#2523)
* Copyright and ruff stuff

* lol
2024-03-04 09:14:31 -05:00
ee004674b9 fix typo in launch.py (#2516) 2024-03-03 04:51:57 -05:00
65544d8fe9 [docs] Fix typos (#2490)
* fix typos

* fix typos

* fix typo

* fix typos

* fix typos

* fix typos

* fix typo

* fix typo

---------

Co-authored-by: Zach Mueller <muellerzr@gmail.com>
2024-03-01 12:19:05 -05:00
5fce525f90 Fix edge case in infer_auto_device_map when dealing with buffers (#2511)
* fix buffer

* style
2024-03-01 10:32:31 -05:00
ca37b0e471 Fixed 0MiB bug in convert_file_size_to_int (#2507) 2024-02-29 09:32:59 -05:00
82a1258ffc Remove offline stuff (#2509)
* Better check

* Fully remove

* Trail
2024-02-29 09:17:37 -05:00
158 changed files with 8476 additions and 1638 deletions

View File

@ -37,11 +37,11 @@ members/contributors who may be interested in your PR.
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
- Big modeling: @SunMarc
- Fully-Sharded Data Parallism: @pacman100
- DeepSpeed: @pacman100
- Fully-Sharded Data Parallism: @muellerzr
- DeepSpeed: @muellerzr
- Command Line Interface: @muellerzr
- Documentation: @muellerzr
- Core parts of the library: @muellerzr @BenjaminBossan
- Maintained examples: @muellerzr or @pacman100
- Core parts of the library: @muellerzr @BenjaminBossan @SunMarc
- Maintained examples: @muellerzr or @SunMarc
-->

View File

@ -37,7 +37,7 @@ jobs:
with:
file: docker/accelerate-cpu/Dockerfile
push: true
tags: huggingface/accelerate-cpu:${{needs.get-version.outputs.version}}
tags: huggingface/accelerate:cpu-release-${{ needs.get-version.outputs.version }}
version-cuda:
name: "Latest Accelerate GPU [version]"
@ -57,4 +57,25 @@ jobs:
with:
file: docker/accelerate-gpu/Dockerfile
push: true
tags: huggingface/accelerate-gpu:${{needs.get-version.outputs.version}}
tags: huggingface/accelerate:gpu-release-${{needs.get-version.outputs.version}}
version-cuda-deepspeed:
name: "Latest Accelerate GPU DeepSpeed [version]"
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
needs: get-version
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu-deepspeed/Dockerfile
push: true
tags: huggingface/accelerate:gpu-deepspeed-release-${{needs.get-version.outputs.version}}

View File

@ -22,12 +22,18 @@ jobs:
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Get current date
id: date
run: |
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
- name: Build and Push CPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-cpu/Dockerfile
push: true
tags: huggingface/accelerate-cpu
tags: |
huggingface/accelerate:cpu-nightly
huggingface/accelerate:cpu-nightly-${{ env.date }}
latest-cuda:
name: "Latest Accelerate GPU [dev]"
@ -40,10 +46,40 @@ jobs:
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Get current date
id: date
run: |
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu/Dockerfile
push: true
tags: huggingface/accelerate-gpu
tags: |
huggingface/accelerate:gpu-nightly
huggingface/accelerate:gpu-nightly-${{ env.date }}
latest-cuda-deepspeed:
name: "Latest Accelerate GPU DeepSpeed [dev]"
runs-on: [self-hosted, nvidia-gpu, t4, ci]
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Get current date
id: date
run: |
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu-deepspeed/Dockerfile
push: true
tags: |
huggingface/accelerate:gpu-deepspeed-nightly
huggingface/accelerate:gpu-deepspeed-nightly-${{ env.date }}

View File

@ -13,5 +13,6 @@ jobs:
with:
commit_sha: ${{ github.sha }}
package: accelerate
custom_container: huggingface/transformers-doc-builder
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -14,3 +14,4 @@ jobs:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: accelerate
custom_container: huggingface/transformers-doc-builder

View File

@ -31,6 +31,8 @@ jobs:
uses: actions/setup-python@v3
with:
python-version: 3.8
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install Accelerate from source
run: |

View File

@ -12,13 +12,13 @@ env:
jobs:
run_all_tests_single_gpu:
run_core_tests_single_gpu:
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/accelerate-gpu:latest
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
@ -33,6 +33,11 @@ jobs:
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
run: |
@ -54,13 +59,67 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_all_tests_multi_gpu:
run_deepspeed_tests_single_gpu:
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu_deepspeed"
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Update clone & pip install
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
run: |
source activate accelerate
make test_deepspeed
- name: Run Integration tests on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
make test_integrations
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_core_tests_multi_gpu:
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: "0,1"
TEST_TYPE: "multi_gpu"
container:
image: huggingface/accelerate-gpu:latest
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
@ -75,6 +134,11 @@ jobs:
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run core and big modeling tests on GPUs
working-directory: accelerate
run: |
@ -105,6 +169,60 @@ jobs:
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_deepspeed_tests_multi_gpu:
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: "0,1"
TEST_TYPE: "multi_gpu_deepspeed"
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Update clone
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run DeepSpeed tests
working-directory: accelerate
run: |
source activate accelerate
make test_deepspeed
- name: Run Integration tests on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
make test_integrations
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run-integration-tests:
if: always()

View File

@ -11,6 +11,8 @@ jobs:
uses: actions/setup-python@v3
with:
python-version: 3.8
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install Python dependencies
run: pip install -e .[quality]
- name: Run Quality check

View File

@ -9,12 +9,12 @@ env:
IS_GITHUB_CI: "1"
jobs:
run_all_tests_single_gpu:
run_core_tests_single_gpu:
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: "0"
container:
image: huggingface/accelerate-gpu:latest
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
@ -29,6 +29,11 @@ jobs:
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate ;
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run CLI tests (use make cli)
working-directory: accelerate
run: |
@ -56,12 +61,51 @@ jobs:
pip install tabulate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_all_tests_multi_gpu:
run_deepspeed_tests_single_gpu:
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: "0"
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Install accelerate
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate ;
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
make test_deepspeed
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install tabulate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_core_tests_multi_gpu:
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: 0,1
container:
image: huggingface/accelerate-gpu:latest
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
@ -76,6 +120,11 @@ jobs:
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
run: |
@ -96,3 +145,40 @@ jobs:
run: |
source activate accelerate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_deepspeed_tests_multi_gpu:
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Install accelerate
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate ;
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
make test_deepspeed
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install tabulate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@ -23,7 +23,7 @@ defaults:
jobs:
run-trainer-tests:
container:
image: huggingface/accelerate-gpu:latest
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
strategy:
@ -88,7 +88,7 @@ jobs:
run-skorch-tests:
container:
image: huggingface/accelerate-gpu:latest
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
strategy:

View File

@ -19,10 +19,12 @@ jobs:
uses: actions/setup-python@v3
with:
python-version: 3.8
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install requirements
run: |
pip install PyGithub
- name: Close stale issues
run: |
python utils/stale.py
python utils/stale.py

View File

@ -16,30 +16,6 @@ env:
IS_GITHUB_CI: "1"
jobs:
check-hf-status:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3.1.0
- name: Set up python 3.8
uses: actions/setup-python@v3
with:
python-version: 3.8
- name: Install the library
run: |
pip install --upgrade pip
pip install -e .
pip install pytest-reportlog tabulate pytest
- name: Check status
run: |
make test_hub_status
- name: Generate Report
if: always()
run: |
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run-tests:
runs-on: ubuntu-latest
strategy:
@ -67,23 +43,20 @@ jobs:
uses: actions/setup-python@v3
with:
python-version: 3.8
- name: Activate python cache
uses: actions/cache@v3
with:
path: |
${{ env.pythonLocation }}
${{ env.HF_HOME }}
key: ${{ env.pythonLocation }}-${{ matrix.pytorch-version }}-${{ matrix.test-kind }}-${{ hashFiles('setup.py') }}
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install the library
run: |
pip install --upgrade pip
if [[ ${{ matrix.test-kind }} = test_prod ]]; then pip install -e .[test_prod]; fi
if [[ ${{ matrix.test-kind }} != test_prod ]]; then pip install -e .[testing,test_trackers]; fi
if [[ ${{ matrix.test-kind }} = test_rest ]]; then pip uninstall comet_ml -y; fi
if [[ ${{ matrix.test-kind }} = minimum ]]; then pip install torch==1.10.0; fi
pip install pytest-reportlog tabulate
if [[ ${{ matrix.pytorch-version }} = minimum ]]; then pip install torch==2.3.1; fi
pip install pytest-reportlog tabulate setuptools
- name: Show installed libraries
run: |
pip freeze
- name: Run Tests
env:
@ -94,4 +67,4 @@ jobs:
- name: Generate Report
if: always()
run: |
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

55
.github/workflows/test_imports.yml vendored Normal file
View File

@ -0,0 +1,55 @@
name: Run Import Tests
on:
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "examples/**"
- "setup.py"
types: [opened, synchronize, reopened]
env:
HF_HOME: ~/hf_cache
TESTING_MOCKED_DATALOADERS: "1"
IS_GITHUB_CI: "1"
jobs:
run-tests:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
pytorch-version: [
latest,
minimum,
]
steps:
- uses: actions/checkout@v3.1.0
- name: Set up python 3.8
uses: actions/setup-python@v3
with:
python-version: 3.8
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install the library
run: |
pip install -e .
pip install pytest-reportlog tabulate setuptools git+https://github.com/muellerzr/import-timer
- name: Show installed libraries
run: |
pip freeze
- name: Run Import Tests
env:
PYTORCH_VERSION: ${{ matrix.pytorch-version }}
run: |
pytest -sv tests/test_imports.py
- name: Generate Report
if: always()
run: |
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

15
.github/workflows/trufflehog.yml vendored Normal file
View File

@ -0,0 +1,15 @@
on:
push:
name: Secret Leaks
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

View File

@ -12,26 +12,23 @@ extra_quality_checks:
# this target runs checks on all files
quality:
ruff $(check_dirs)
ruff check $(check_dirs)
ruff format --check $(check_dirs)
doc-builder style src/accelerate docs/source --max_len 119 --check_only
# Format source code automatically and check is there are any problems left that need manual fixing
style:
ruff $(check_dirs) --fix
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
doc-builder style src/accelerate docs/source --max_len 119
# Run tests for the library
test_hub_status:
python -m pytest -s -v ./tests/test_hub_status.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_hub_status.log",)
test_big_modeling:
python -m pytest -s -v ./tests/test_big_modeling.py ./tests/test_modeling_utils.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_big_modeling.log",)
test_core:
python -m pytest -s -v ./tests/ --ignore=./tests/test_examples.py --ignore=./tests/deepspeed --ignore=./tests/test_big_modeling.py \
--ignore=./tests/fsdp --ignore=./tests/test_cli.py --ignore=./tests/test_hub_status.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_core.log",)
--ignore=./tests/fsdp --ignore=./tests/test_cli.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_core.log",)
test_cli:
python -m pytest -s -v ./tests/test_cli.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_cli.log",)

View File

@ -22,22 +22,12 @@ limitations under the License.
<p align="center">
<!-- Uncomment when CircleCI is set up
<a href="https://circleci.com/gh/huggingface/accelerate">
<img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master">
</a>
<a href="https://circleci.com/gh/huggingface/accelerate"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"></a>
-->
<a href="https://github.com/huggingface/accelerate/blob/main/LICENSE">
<img alt="License" src="https://img.shields.io/github/license/huggingface/accelerate.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/accelerate/index.html">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/accelerate/index.html.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/accelerate/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/accelerate.svg">
</a>
<a href="https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md">
<img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg">
</a>
<a href="https://github.com/huggingface/accelerate/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/accelerate.svg?color=blue"></a>
<a href="https://huggingface.co/docs/accelerate/index.html"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/accelerate/index.html.svg?down_color=red&down_message=offline&up_message=online"></a>
<a href="https://github.com/huggingface/accelerate/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/accelerate.svg"></a>
<a href="https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"></a>
</p>
<h3 align="center">
@ -171,7 +161,15 @@ To learn more, check the CLI documentation available [here](https://huggingface.
🤗 Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on [this page](https://www.open-mpi.org/faq/?category=building#easy-build). You can use Intel MPI or MVAPICH as well.
Once you have MPI setup on your cluster, just run:
```bash
accelerate config
```
Answer the questions that are asked, selecting to run using multi-CPU, and answer "yes" when asked if you want accelerate to launch mpirun.
Then, use `accelerate launch` with your script like:
```bash
accelerate launch examples/nlp_example.py
```
Alternatively, you can use mpirun directly, without using the CLI like:
```bash
mpirun -np 2 python examples/nlp_example.py
```

View File

@ -1,3 +1,16 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import threading
import time

73
docker/README.md Normal file
View File

@ -0,0 +1,73 @@
<!---
Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Official Hugging Face Accelerate Docker Images
Accelerate publishes a variety of docker versions as part of our CI that users can also use. These are stable images that Accelerate can run off of which comes with a variety of different setup configurations, all of which are officially hosted on [Docker Hub](https://hub.docker.com/r/huggingface/accelerate).
A breakdown of each are given below
## Naming Conventions
Accelerate docker images follow a tagging convention of:
```bash
huggingface/accelerate:{accelerator}-{nightly,release}
```
`accelerator` in this instance is one of many applical pre-configured backend supports:
* `gpu`: Comes compiled off of the `nvidia/cuda` image and includes core parts like `bitsandbytes`. Runs off python 3.9.
* `cpu`: Comes compiled off of `python:3.9-slim` and is designed for non-CUDA based workloads.
* More to come soon
* `gpu-deepspeed`: Comes compiled off of the `nvidia/cuda` image and includes core parts like `bitsandbytes` as well as the latest `deepspeed` version. Runs off python 3.10.
## Nightlies vs Releases
Each release a new build is pushed with a version number included in the name. For a GPU-supported image of version 0.28.0 for instance, it would look like the following:
```bash
huggingface/accelerate:gpu-release-0.28.0
```
Nightlies contain two different image tags. There is a general `nightly` tag which is built each night, and a `nightly-YYYY-MM-DD` which corresponds to a build from a particular date.
For instance, here is an example nightly CPU image from 3/14/2024
```bash
huggingface/accelerate:cpu-nightly-2024-03-14
```
## Running the images
Each image comes compiled with `conda` and an `accelerate` environment contains all of the installed dependencies.
To pull down the latest nightly run:
```bash
docker pull huggingface/accelerate:gpu-nightly
```
To then run it in interactive mode with GPU-memory available, run:
```bash
docker container run --gpus all -it huggingface/accelerate:gpu-nightly
```
## DEPRECATED IMAGES
CPU and GPU docker images were hosted at `huggingface/accelerate-gpu` and `huggingface/accelerate-cpu`. These builds are now outdated and will not receive updates.
The builds at the corresponding `huggingface/accelerate:{gpu,cpu}` contain the same `Dockerfile`, so it's as simple as changing the docker image to the desired ones from above. We will not be deleting these images for posterity, but they will not be receiving updates going forward.

View File

@ -0,0 +1,46 @@
# Builds GPU docker image of PyTorch specifically
# Uses multi-staged approach to reduce size
# Stage 1
# Use base conda image to reduce time
FROM continuumio/miniconda3:latest AS compile-image
# Specify py version
# Note: DeepSpeed beyond v0.12.6 requires py 3.10
ENV PYTHON_VERSION=3.10
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
# Create our conda env
RUN conda create --name accelerate python=${PYTHON_VERSION} ipython jupyter pip
# We don't install pytorch here yet since CUDA isn't available
# instead we use the direct torch wheel
ENV PATH /opt/conda/envs/accelerate/bin:$PATH
# Activate our bash shell
RUN chsh -s /bin/bash
SHELL ["/bin/bash", "-c"]
# Activate the conda env, install mpy4pi, and install torch + accelerate
RUN source activate accelerate && conda install -c conda-forge mpi4py
RUN source activate accelerate && \
python3 -m pip install --no-cache-dir \
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers,deepspeed] \
--extra-index-url https://download.pytorch.org/whl/cu117
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Stage 2
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 AS build-image
COPY --from=compile-image /opt/conda /opt/conda
ENV PATH /opt/conda/bin:$PATH
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
RUN echo "source activate accelerate" >> ~/.profile
# Activate the virtualenv
CMD ["/bin/bash"]

View File

@ -19,8 +19,6 @@
title: Launching distributed code
- local: basic_tutorials/notebook
title: Launching distributed training from Jupyter Notebooks
- local: basic_tutorials/troubleshooting
title: Troubleshooting guide
title: Tutorials
- sections:
- isExpanded: true
@ -33,8 +31,12 @@
title: Model quantization
- local: usage_guides/tracking
title: Experiment trackers
- local: usage_guides/profiler
title: Profiler
- local: usage_guides/checkpoint
title: Save and load training states
- local: basic_tutorials/troubleshooting
title: Troubleshoot
- local: usage_guides/training_zoo
title: Example Zoo
title: Accelerate
@ -48,6 +50,8 @@
title: Low precision (FP8) training
- local: usage_guides/deepspeed
title: DeepSpeed
- local: usage_guides/ddp_comm_hook
title: DDP Communication Hooks
- local: usage_guides/fsdp
title: Fully Sharded Data Parallelism
- local: usage_guides/megatron_lm
@ -78,6 +82,8 @@
title: Executing and deferring jobs
- local: concept_guides/gradient_synchronization
title: Gradient synchronization
- local: concept_guides/fsdp_and_deepspeed
title: FSDP vs DeepSpeed
- local: concept_guides/low_precision_training
title: How training in low-precision environments is possible (FP8)
- local: concept_guides/training_tpu

View File

@ -430,6 +430,17 @@ args = (model, "fp16", 42, 64)
notebook_launcher(training_loop, args, num_processes=8)
```
To launch the training process with elasticity, enabling fault tolerance, you can use the `elastic_launch` feature provided by PyTorch. This requires setting additional parameters such as `rdzv_backend` and `max_restarts`. Here is an example of how to use `notebook_launcher` with elastic capabilities:
```python
notebook_launcher(
training_loop,
args,
num_processes=2,
max_restarts=3
)
```
As it's running it will print the progress as well as state how many devices you ran on. This tutorial was ran with two GPUs:
```python out
@ -443,6 +454,12 @@ epoch 4: 94.71
And that's it!
Please note that [`notebook_launcher`] ignores the 🤗 Accelerate config file, to launch based on the config use:
```bash
accelerate launch
```
## Debugging
A common issue when running the `notebook_launcher` is receiving a CUDA has already been initialized issue. This usually stems

View File

@ -13,77 +13,82 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
# Troubleshooting guide
# Troubleshoot
This guide aims to provide you the tools and knowledge required to navigate some common issues. However,
as 🤗 Accelerate continuously evolves and the use cases and setups are diverse, you might encounter an issue not covered in this
guide. If the suggestions listed in this guide do not cover your such situation, please refer to the final section of
the guide, [Asking for Help](#ask-for-help), to learn where to find help with your specific issue.
This guide provides solutions to some issues you might encounter when using Accelerate. Not all errors are covered because Accelerate is an active library that is continuously evolving and there are many different use cases and distributed training setups. If the solutions described here don't help with your specific error, please take a look at the [Ask for help](#ask-for-help) section to learn where and how to get help.
## Logging
When facing an error, logging can help narrow down where it is coming from. In a distributed setup with multiple processes,
logging can be a challenge, but 🤗 Accelerate provides a utility that streamlines the logging process and ensures that
logs are synchronized and managed effectively across the distributed setup.
Logging can help you identify where an error is coming from. In a distributed setup with multiple processes, logging can be a challenge, but Accelerate provides the [`~accelerate.logging`] utility to ensure logs are synchronized.
To troubleshoot an issue, use `accelerate.logging` instead of the standard Python `logging` module:
To troubleshoot an issue, use [`~accelerate.logging`] instead of the standard Python [`logging`](https://docs.python.org/3/library/logging.html#module-logging) module. Set the verbosity level (`INFO`, `DEBUG`, `WARNING`, `ERROR`, `CRITICAL`) with the `log_level` parameter, and then you can either:
```diff
- import logging
+ from accelerate.logging import get_logger
- logger = logging.getLogger(__name__)
+ logger = get_logger(__name__)
```
1. Export the `log_level` as the `ACCELERATE_LOG_LEVEL` environment variable.
2. Pass the `log_level` directly to `get_logger`.
To set the log level (`INFO`, `DEBUG`, `WARNING`, `ERROR`, `CRITICAL`), export it as the `ACCELERATE_LOG_LEVEL` environment,
or pass as `log_level` to `get_logger`:
For example, to set `log_level="INFO"`:
```python
```py
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
logger = get_logger(__name__, log_level="DEBUG")
```
By default, the log is called on main processes only. To call it on all processes, pass `main_process_only=False`.
If a log should be called on all processes and in order, also pass `in_order=True`.
```py
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="DEBUG")
# log all processes
logger.debug("thing_to_log", main_process_only=False)
# log all processes in order
logger.debug("thing_to_log", main_process_only=False, in_order=True)
```
## Hanging code and timeout errors
### Mismatched tensor shapes
There can be many reasons why your code is hanging. Let's take a look at how to solve some of the most common issues that can cause your code to hang.
If your code seems to be hanging for a significant amount time on a distributed setup, a common cause is mismatched shapes of tensors on different
devices.
### Mismatched tensor shapes
When running scripts in a distributed fashion, functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] are
necessary to grab tensors across devices to perform operations on them collectively. These (and other) functions rely on
`torch.distributed` performing a `gather` operation, which requires that tensors have the **exact same shape** across all processes.
When the tensor shapes don't match, you will experience handing code, and eventually hit a timeout exception.
Mismatched tensor shapes is a common issue that can cause your code to hang for a significant amount of time on a distributed setup.
If you suspect this to be the case, use Accelerate's operational debug mode to immediately catch the issue.
When running scripts in a distributed setup, functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] are necessary to grab tensors across devices to collectively perform operations on them. These (and other) functions rely on `torch.distributed` to perform a `gather` operation, which requires tensors to have the **exact same shape** across all processes. When the tensor shapes don't match, your code hangs and you'll eventually hit a timeout exception.
The recommended way to enable Accelerate's operational debug mode is during `accelerate config` setup.
Alternative ways to enable debug mode are:
You can use Accelerate's operational debug mode to immediately catch this issue. We recommend enabling this mode during the `accelerate config` setup, but you can also enable it from the CLI, as an environment variable, or by manually editing the `config.yaml` file.
* From the CLI:
<hfoptions id="mismatch">
<hfoption id="CLI">
```bash
accelerate launch --debug {my_script.py} --arg1 --arg2
```
* As an environmental variable (which avoids the need for `accelerate launch`):
</hfoption>
<hfoption id="environment variable">
If enabling debug mode as an environment variable, you don't need to call `accelerate launch`.
```bash
ACCELERATE_DEBUG_MODE="1" torchrun {my_script.py} --arg1 --arg2
```
* Manually changing the `config.yaml` file:
</hfoption>
<hfoption id="config.yaml">
```diff
compute_environment: LOCAL_MACHINE
+debug: true
Add `debug: true` to your `config.yaml` file.
```yaml
compute_environment: LOCAL_MACHINE
debug: true
```
Once you enable the debug mode, you should get a similar traceback that points to the tensor shape mismatch issue:
</hfoption>
</hfoptions>
Once you enable debug mode, you should get a traceback that points to the tensor shape mismatch issue.
```py
Traceback (most recent call last):
@ -100,16 +105,14 @@ Operation: `accelerate.utils.operations.broadcast`
Input shapes:
- Process 0: [1, 5]
- Process 1: [1, 2, 5]
```
```
### Early stopping leads to hanging
### Early stopping
When doing early stopping in distributed training, if each process has a specific stopping condition (e.g. validation loss),
it may not be synchronized across all of them. As a result, a break can happen on process 0 but not on process 1.
This will cause the code to hang indefinitely until a timeout occurs.
For early stopping in distributed training, if each process has a specific stopping condition (e.g. validation loss), it may not be synchronized across all processes. As a result, a break can happen on process 0 but not on process 1 which will cause your code to hang indefinitely until a timeout occurs.
If you have early stopping conditionals, use `set_breakpoint` and `check_breakpoint` methods to make sure all the processes
are ended correctly:
If you have early stopping conditionals, use the `set_breakpoint` and `check_breakpoint` methods to make sure all the processes
are ended correctly.
```py
# Assume `should_do_breakpoint` is a custom defined function that returns a conditional,
@ -122,35 +125,38 @@ if accelerator.check_breakpoint():
break
```
### Hanging on low kernel versions on Linux
### Low kernel versions on Linux
This is a known issue. On Linux with kernel version < 5.5, hanging processes have been reported. To avoid
encountering this problem, we recommend upgrading your system to a later kernel version.
On Linux with kernel version < 5.5, hanging processes have been reported. To avoid this problem, upgrade your system to a later kernel version.
## CUDA out of memory
### MPI
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory",
as the entire script needs to be restarted, progress is lost, and typically a developer would want to simply
start their script and let it run.
If your distributed CPU training job using MPI is hanging, ensure that you have
[passwordless SSH](https://www.open-mpi.org/faq/?category=rsh#ssh-keys) setup (using keys) between the nodes. This means
that for all nodes in your hostfile, you should to be able to SSH from one node to another without being prompted for a password.
To address this problem, `Accelerate` offers a utility `find_executable_batch_size` that is heavily based on [toma](https://github.com/BlackHC/toma).
The utility retries code that fails due to OOM (out-of-memory) conditions and lowers batch sizes automatically.
Next, try to run the `mpirun` command as a sanity check. For example, the command below should print out the
hostnames for each of the nodes.
### find_executable_batch_size
```bash
mpirun -f hostfile -n {number of nodes} -ppn 1 hostname
```
This algorithm operates with exponential decay, decreasing the batch size in half after each failed run on some
training script. To use it, restructure your training function to include an inner function that includes this wrapper,
and build your dataloaders inside it. At a minimum, this could look like 4 new lines of code.
## CUDA Out-of-Memory
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory". The entire script needs to be restarted and any progress is lost.
To address this problem, Accelerate provides the [`find_executable_batch_size`] utility that is heavily based on [toma](https://github.com/BlackHC/toma).
This utility retries code that fails due to OOM (out-of-memory) conditions and automatically lowers batch sizes. For each OOM condition, the algorithm decreases the batch size by half and retries the code until it succeeds.
To use [`find_executable_batch_size`], restructure your training function to include an inner function with `find_executable_batch_size` and build your dataloaders inside it. At a minimum, this only takes 4 new lines of code.
<Tip warning={true}>
The inner function *must* take in the batch size as the first parameter, but we do not pass one to it when called. The wrapper handles this for us.
The inner function **must** take batch size as the first parameter, but we do not pass one to it when called. The wrapper will handles this for you. Any object (models, optimizers) that consumes CUDA memory and is passed to the [`Accelerator`] also **must** be declared inside the inner function.
</Tip>
It should also be noted that anything which will consume CUDA memory and passed to the `accelerator` **must** be declared inside the inner function,
such as models and optimizers.
```diff
def training_function(args):
accelerator = Accelerator()
@ -175,48 +181,31 @@ def training_function(args):
+ inner_training_loop()
```
To find out more, check the documentation [here](../package_reference/utilities#accelerate.find_executable_batch_size).
## Non-reproducible results between device setups
If you have changed the device setup and are observing different model performance, this is likely due to the fact that
you have not updated your script when moving from one setup to another. The same script with the same batch size across TPU,
multi-GPU, and single-GPU with Accelerate will have different results.
If you changed the device setup and observe different model performance, it is likely you didn't update your script when moving from one setup to another. Even if you're using the same script with the same batch size, the results will still be different on a TPU, multi-GPU, and single GPU.
For example, if you were previously training on a single GPU with a batch size of 16, when moving to two GPU setup,
you need to change the batch size to 8 to have the same effective batch size. This is because when training with Accelerate,
the batch size passed to the dataloader is the **batch size per GPU**.
For example, if you were training on a single GPU with a batch size of 16 and you move to a dual GPU setup, you need to change the batch size to 8 to have the same effective batch size. This is because when training with Accelerate, the batch size passed to the dataloader is the **batch size per GPU**.
To make sure you can reproduce the results between the setups, make sure to use the same seed, adjust the batch size
accordingly, consider scaling the learning rate.
To make sure you can reproduce the results between the setups, make sure to use the same seed, adjust the batch size accordingly, and consider scaling the learning rate.
For more details and a quick reference for batch sizes, check out the [Comparing performance between different device setups](../concept_guides/performance) guide.
## Performance issues on different GPUs
If your multi-GPU setup consists of different GPUs, you may hit some limitations:
If your multi-GPU setup consists of different GPUs, you may encounter some performance issues:
- There may be an imbalance in GPU memory between the GPUs. In this case, the GPU with smaller memory will limit the batch size or the size of the model that can be loaded onto the GPUs.
- If you are using GPUs with different performance profiles, the performance will be driven by the slowest GPU that you are using as the other GPUs will have to wait for it to complete its workload.
- There may be an imbalance in GPU memory between the GPUs. In this case, the GPU with the smaller memory will limit the batch size or the size of the model that can be loaded onto the GPUs.
- If you are using GPUs with different performance profiles, the performance will be driven by the slowest GPU you are using because the other GPUs will have to wait for it to complete its workload.
Vastly different GPUs within the same setup can lead to performance bottlenecks.
## Ask for help
If the above troubleshooting tools and advice did not help you resolve your issue, reach out for help to the community
and the team.
If none of the solutions and advice here helped resolve your issue, you can always reach out to the community and Accelerate team for help.
### Forums
- Ask for help on the Hugging Face forums by posting your question in the [🤗 Accelerate category](https://discuss.huggingface.co/c/accelerate/18). Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
Ask for help on the Hugging Face forums - post your question in the [🤗Accelerate category](https://discuss.huggingface.co/c/accelerate/18)
Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
- Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you.
### Discord
Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you.
### GitHub Issues
Create an Issue on the 🤗 Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you suspect
to have found a bug related to the library. Include context regarding the bug and details about your distributed setup
to help us better figure out what's wrong and how we can fix it.
- Create an Issue on the 🤗 Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you think you've found a bug related to the library. Include context regarding the bug and details about your distributed setup to help us better figure out what's wrong and how we can fix it.

View File

@ -0,0 +1,192 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Moving between FSDP And DeepSpeed
🤗 Accelerate offers flexibilty of training frameworks, by integrating two extremely powerful tools for distributed training, namely [Pytorch FSDP](../usage_guides/fsdp) and [Microsoft DeepSpeed](../usage_guides/deepspeed). The aim of this tutorial is to draw parallels, as well as to outline potential differences, to empower the user to switch seamlessly between these two frameworks.
<Tip>
To switch between the frameworks, we recommend launching code 🤗 `accelerate launch` passing in the correct config file with `--config_file`, or passing in the respective arguments directly for [FSDP and DeepSpeed](../package_reference/cli#accelerate-launch) .
Example 🤗 Accelerate configurations can be found here for [DeepSpeed](../usage_guides/deepspeed#accelerate-deepspeed-plugin) and [FSDP](../usage_guides/fsdp#how-it-works-out-of-the-box), or in the [example zoo under "Launch Configurations"](../usage_guides/explore)
</Tip>
<Tip warning={true}>
This tutorial is for single-node, multi-GPU, scenarios only.
</Tip>
## Configuring Functionalities
Model tensors are split into different GPUs in an attempt to scale up model sizes; this is termed *sharding* in FSDP, and *partitioning* in DeepSpeed. FSDP sharding and DeepSpeed ZeRO (partitioning) stages are configured by `--fsdp_sharding_strategy`, and `--zero_stage`, respectively. In particular, FSDP `FULL_SHARD` maps to DeepSpeed ZeRO stage `3`; see this [comprehensive mapping between FSDP sharding and DeepSpeed ZeRO settings](../usage_guides/fsdp#mapping-between-fsdp-sharding-strategies-and-deepspeed-zero-stages). The below table summarizes and groups similar settings:
Group | Framework | Configuration | Example | Restrictions (if any)
--|--|--|--|--
sharding / partitioning | FSDP<br>DeepSpeed | `--fsdp_sharding_strategy`<br>`--zero_stage` | `1` (`FULL_SHARD`) <br>`3` |
offload | FSDP<br>DeepSpeed | `--fsdp_offload_params`<br>`--offload_param_device`<br>`--offload_optimizer_device` | `true`<br>`cpu`<br>`cpu` | all or nothing <br><br>
model loading | FSDP<br>DeepSpeed | <span style="white-space:nowrap;">`--fsdp_cpu_ram_efficient_loading`</span><br>`--zero3_init_flag` | `true`<br>`true` | <br>only ZeRO 3
efficient checkpointing | FSDP<br>DeepSpeed | `--fsdp_state_dict_type`<br>`--zero3_save_16bit_model` | `SHARDED_STATE_DICT`<br>`true` | <br>only ZeRO 3
weights prefetching | FSDP<br><br>DeepSpeed | `--fsdp_forward_prefetch`<br>`--fsdp_backward_prefetch`<br>None | `true`<br>`BACKWARD_PRE` | <br><br>
model | FSDP<br><br>DeepSpeed | `--fsdp_auto_wrap_policy`<br><span style="white-space:nowrap;">`--fsdp_transformer_layer_cls_to_wrap`</span><br>None | `TRANSFORMER_BASED_WRAP`<br><Layer Class> |<br>Usually not needed <br>Transparent to user.
parameters summoning | FSDP<br>DeepSpeed | `--fsdp_use_orig_params`<br>None | `true` | required for `torch.compile`<br>Transparent to user
parameters syncing | FSDP<br>DeepSpeed | `--fsdp_sync_module_states`<br>None | `true` |
training | FSDP<br>DeepSpeed | None<br>`--gradient_accumulation_steps`<br>`--gradient_clipping` | <br>`auto`<br>`auto` | Transparent to user
For detailed descriptions of the above, refer to [🤗 `Accelerate` launch documentation](../package_reference/cli#accelerate-launch).
<Tip>
To access other DeepSpeed configurations, such as mixed precision settings,
you need to pass in a `--deepspeed_config_file`, see the [documentation](../usage_guides/deepspeed#deepspeed-config-file).
DeepSpeed can be also configured via [`DeepSpeedPlugin`], e.g., `DeepSpeedPlugin.zero_stage` is equivalent of `--zero_stage`, and `DeepSpeedPlugin.hf_ds_config` can be used to pass `--deepeed_config_file.`
</Tip>
<Tip>
FSDP can be also configured via [`FullyShardedDataParallelPlugin`], e.g., `FullyShardedDataParallelPlugin.sharding_strategy` is equivalent of `--fsdp_sharding_strategy`.
</Tip>
### Checkpointing
Do note that while FSDP can be configured via `--fsdp_state_dict_type` to save either full / sharded checkpoints.
<Tip>
For DeepSpeed Zero3, one could pass a `--zero3_save_16bit_model true`, which conveniently consolidates the model to a single rank and saves; this is the FSDP equivalent of `fsdp_state_dict_type: FULL_STATE_DICT`.
</Tip>
<Tip warning={true}>
For large models, consolidating the model to a single rank can be very slow.
</Tip>
<Tip>
For quicker checkpointing, for FSDP use `fsdp_state_dict_type: SHARDED_STATE_DICT`, and for DeepSpeed Zero3 [use the `zero_to_fp32.py` script to post-convert sharded checkpoints](https://www.deepspeed.ai/tutorials/zero/#extracting-weights).
</Tip>
### Offloading
FSDP only allows *all-or-nothing* offload (i.e., either offload parameters, gradients, and optimizer, or keep them all in GPU), but DeepSpeed can offload parameters and optimizer differently. Furthermore, DeepSpeed also supports [offloading to NVME](https://www.deepspeed.ai/docs/config-json/#parameter-offloading).
### Prefetching
FSDP allows two prefetching configurations `--fsdp_forward_prefetch` and `--fsdp_backward_prefetch` to improve overlap of comms / computation at a cost of extra memory, see [FSDP documentation](https://pytorch.org/docs/stable/fsdp.html).
For DeepSpeed, the prefetching will be turned on when needed, and it turns on depending on certain hyper-params like `stage3_param_persistence_threshold`, `stage3_max_reuse_distance`, etc, [that can be configured for Zero3](https://www.deepspeed.ai/docs/config-json/#parameter-offloading); 🤗 `accelerate` may set these hyper-params automatically if you don't set those explicitly in the deepspeed config file.
<Tip>
For FSDP set `fsdp_backward_prefetch: BACKWARD_PRE` for improved throughputs if memory allows.
</Tip>
### Model Loading
While FSDP require an explicit `--fsdp_cpu_ram_efficient_loading true` to activate efficient model loading, 🤗 `transformers` will activate the similar feature whenever DeepSpeed Zero3 is used.
<Tip>
For FSDP, whenever setting `--fsdp_cpu_ram_efficient_loading true`, 🤗 `accelerate` will automatically set `sync_module_states` to true.
For RAM efficient loading the weights will be loaded only in a singe rank, and thus requires `sync_module_states` to broadcast weights to other ranks.
</Tip>
### Model
FSDP requires an explicit `--fsdp_auto_wrap_policy` for the algorithm to decide how to schedule the all-gather and reduce-scatter operations. But for DeepSpeed this is transparent to the user.
<Tip>
For FSDP, simply set `fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP`. With the latest [`transformers`] versions, we try our best to figure out the suitable `fsdp_transformer_layer_cls_to_wrap` for HF transformers models. However, if you get an error regarding it, please specify this.
</Tip>
### Parameters Summoning
FSDP requires an explicit `--fsdp_use_orig_params` flag if using `torch.compile`, see [the pytorch documenation](https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp). For DeepSpeed this is transparent to the user.
<Tip>
For FSDP, when using `torch.compile` please set `fsdp_use_orig_params: True`.
</Tip>
## Training
Deepspeed requires explicit `--gradient_accumulation_steps` and `--gradient_clipping` flags. For FSDP this is transparent to the user.
<Tip>
When using DeepSpeed, set `gradient_accumulation_steps: "auto"` and `gradient_clipping: "auto"` to automatically pick up values set in the [`Accelerator`] or [`TrainingArguments`] (if using `transformers`).
</Tip>
## On Differences in Data Precision Handling
To discuss the how data precision is handled in both FSDP and Deepspeed, it is instructive to first give an overview of how model parameters are handled in these frameworks. Before the model / optimizer parameters are distributed across GPUs, parameter preparation is involved to first "flatten" them to one-dimensional [`torch.Tensor`](https://pytorch.org/docs/stable/tensors.html#torch-tensor). The implementation of FSDP / DeepSpeed varies in the respect of the `dtype` in which these "flattened" parameters are stored, and there are ramifications with regards to how [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) allocate their `dtype`s. The table below outlines the processes for both frameworks; the "Local" column indicates the process occurring at a per-gpu level, therefore any memory overheads by upcasting should be understood to be amortized by the number of gpus used.
<Tip>
As a rule of thumb, for stable training with automatic mixed precision, all the trainable parameters have to be in `torch.float32`.
</Tip>
Process | Local | Framework | Details
--|--|--|--
Loading, i.e., [`AutoModel.from_pretrained(..., torch_dtype=torch_dtype)`] |
Preparation, i.e., creation of "flat params" | ✅ | FSDP<br>DeepSpeed | created in `torch_dtype`.<br> disregards `torch_dtype`, created in `float32`.
Optimizer initialization | ✅ | FSDP<br>DeepSpeed | creates parameters in `torch_dtype`<br> creates parameters in `float32`
Training Step, i.e, forward, backward, reduction | | FSDP<br>DeepSpeed | follows [`MixedPrecision`](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision)<br> follows `deepspeed_config_file` mixed precision settings.
Optimizer (Pre-Step) | ✅ | FSDP<br>DeepSpeed | upcasting (if any) to `torch_dtype`<br>upcasted to `float32`
Optimizer (Actual Step) | ✅ | FSDP<br>DeepSpeed | occurs in `torch_dtype` <br> occurs in `float32`.
<Tip warning={true}>
Therefore when using DeepSpeed a small number of GPUs, be aware of potentially significant memory overheads due to the upcasting during preperation.
</Tip>
<Tip>
With FSDP, in the absence of mixed precision, it is possible to operate the [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) in low precision `torch_dtype`, which may be helpful when using small number of GPUs.
</Tip>
<Tip warning={true}>
With mixed precision, FSDP and DeepSpeed will upcast in the model preparation step (c.f. table above). But do note that FSDP will then save checkpoints in the upcasted precision; Deepspeed may still save low precision checkpoints if `--zero3_save_16bit_model` is specified.
</Tip>
To clarify the above table consider the concrete examples below; the optimizer pre- and actual step combined for brevity. With FSDP it is possible to operate in the two modes shown below, but DeepSpeed can only operate in one.
Framework | Model Loading (`torch_dtype`) | Mixed Precision | Preparation (Local) | Training | Optimizer (Local)
--|--|--|--|--|--
FSDP | bf16 | default (none) | bf16 | bf16 | bf16
FSDP | bf16 | bf16 | fp32 | bf16 | fp32
DeepSpeed | bf16 | bf16 | fp32 | bf16 | fp32

View File

@ -167,3 +167,18 @@ As you can see, if you are not careful about how you set up your gradient synchr
If you are worried about making sure everything is done properly, we highly recommend utilizing the [`~Accelerator.accumulate`] function and passing in
`gradient_accumulation_steps` or `gradient_accumulation_plugin` to the [`Accelerator`] object so Accelerate can handle this for you.
### `no_sync` requires additional GPU memory when using FSDP
Be aware that not syncing gradients can have adverse effects while performing FSDP training. As it has been warned in `torch`, the [`no_sync` context manager for FSDP](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.FullyShardedDataParallel.no_sync) will require additional memory.
Therefore in memory intensive situations while using FSDP, we recommend to set `sync_each_batch` to `True` in the [`~utils.GradientAccumulationPlugin`] to disable `no_sync`.
See the example below where we fine-tune Mixtral (47B parameters) on 8 A100-80GB GPUs. We see that even for a modest `gradient_accumulation_steps=2` we quickly go out-of-memory (OOM) if `no_sync` is enabled. Again, this is due to additional memory overheads due to FSDP's `no_sync`. However, if `no_sync` is disabled via `sync_each_batch=True`, then the memory consumption for `gradient_accumulation_steps=16` reverts to that of `gradient_accumulation_steps=1`.
| Model | `no_sync` (accum=1) | `no_sync` (accum=2) | `no_sync` disabled (accum=16)
| :-------------: | :-----------------: | :-----------------: | :-----------------:
mixtral 8x7B | 69G | OOM | 69G
> [!WARNING]
> Disabling `no_sync` means there _will be slowdown_ due the extra data syncs, as explained by the earlier sections of this guide.

View File

@ -34,7 +34,7 @@ MS-AMP O3 | FP8 | FP8 | FP8 | FP16 | FP8 | FP8+FP16
## `TransformersEngine`
`TransformersEngine` is the first solution to trying to train in 8-bit floating point. It works by using drop-in replacement layers for certain ones in a model that utilize their FP8-engine to reduce the number of bits (such as 32 to 8) without degrading the final accuracy of the model.
`TransformersEngine` is the first solution to trying to train in 8-bit floating point. It works by using drop-in replacement layers for certain ones in a model that utilizes their FP8-engine to reduce the number of bits (such as 32 to 8) without degrading the final accuracy of the model.
Specifically, 🤗 Accelerate will find and replace the following layers with `TransformersEngine` versions:
@ -71,4 +71,4 @@ MS-AMP takes a different approach to `TransformersEngine` by providing three dif
## Combining the two
More experiments need to be performed but it's been noted that combining both MS-AMP and TransformersEngine can lead to the highest throughput by relying on NVIDIA's optimized FP8 operators and utilizing how MS-AMP reduces the memory overhead.
More experiments need to be performed but it's been noted that combining both MS-AMP and TransformersEngine can lead to the highest throughput by relying on NVIDIA's optimized FP8 operators and utilizing how MS-AMP reduces the memory overhead.

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

View File

@ -20,3 +20,7 @@ The [`Accelerator`] is the main class for enabling distributed training on any t
## Accelerator[[api]]
[[autodoc]] Accelerator
## Utilities
[[autodoc]] accelerate.utils.gather_object

View File

@ -208,6 +208,10 @@ The following arguments are only useful when `use_fsdp` is passed or Fully Shard
* `--fsdp_transformer_layer_cls_to_wrap` (`str`) -- Transformer layer class name (case-sensitive) to wrap, e.g, `BertLayer`, `GPTJBlock`, `T5Block` ...
* `--fsdp_backward_prefetch_policy` (`str`) -- FSDP's backward prefetch policy.
* `--fsdp_state_dict_type` (`str`) -- FSDP's state dict type.
* `--fsdp_forward_prefetch` (`str`) -- FSDP forward prefetch.
* `--fsdp_use_orig_params` (`str`) -- If True, allows non-uniform `requires_grad` mixed in a FSDP unit.
* `--fsdp_cpu_ram_efficient_loading` (`str`) - If true, only the first process loads the pretrained model checkoint while all other processes have empty weights. When using this, `--fsdp_sync_module_states` needs to True.
* `--fsdp_sync_module_states` (`str`) - If true, each individually wrapped FSDP unit will broadcast module parameters from rank 0.
**Megatron-LM Arguments**:

View File

@ -17,12 +17,12 @@ rendered properly in your Markdown viewer.
[[autodoc]] utils.DeepSpeedPlugin
[[autodoc]] utils.DummyOptim
[[autodoc]] utils.deepspeed.DummyOptim
[[autodoc]] utils.DummyScheduler
[[autodoc]] utils.deepspeed.DummyScheduler
[[autodoc]] utils.DeepSpeedEngineWrapper
[[autodoc]] utils.deepspeed.DeepSpeedEngineWrapper
[[autodoc]] utils.DeepSpeedOptimizerWrapper
[[autodoc]] utils.deepspeed.DeepSpeedOptimizerWrapper
[[autodoc]] utils.DeepSpeedSchedulerWrapper
[[autodoc]] utils.deepspeed.DeepSpeedSchedulerWrapper

View File

@ -15,4 +15,6 @@ rendered properly in your Markdown viewer.
# Utilities for Fully Sharded Data Parallelism
[[autodoc]] utils.merge_fsdp_weights
[[autodoc]] utils.FullyShardedDataParallelPlugin

View File

@ -30,6 +30,10 @@ related to distributed training or mixed precision are created.
[[autodoc]] utils.FP8RecipeKwargs
## ProfileKwargs
[[autodoc]] utils.ProfileKwargs
## GradScalerKwargs
[[autodoc]] GradScalerKwargs

View File

@ -166,6 +166,10 @@ These functionalities check the state of the current working environment includi
When setting up 🤗 Accelerate for the first time, rather than running `accelerate config` [~utils.write_basic_config] can be used as an alternative for quick configuration.
[[autodoc]] utils.set_numa_affinity
[[autodoc]] utils.environment.override_numa_affinity
## Memory
[[autodoc]] utils.find_executable_batch_size

View File

@ -9,7 +9,7 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
@ -25,17 +25,18 @@ This quicktour introduces the three main features of Accelerate:
## Unified launch interface
Accelerate automatically selects the appropriate configuration values for any given distributed training framework (DeepSpeed, FSDP, etc.) through a unified configuration file generated from the [`accelerate config`](../../docs/source/package_reference/cli#accelerate-config) command. You could also pass the configuration values explicitly to the command line which is helpful in certain situations like if you're using SLURM.
Accelerate automatically selects the appropriate configuration values for any given distributed training framework (DeepSpeed, FSDP, etc.) through a unified configuration file generated from the [`accelerate config`](package_reference/cli#accelerate-config) command. You could also pass the configuration values explicitly to the command line which is helpful in certain situations like if you're using SLURM.
But in most cases, you should always run [`accelerate config`](../../docs/source/package_reference/cli#accelerate-config) first to help Accelerate learn about your training setup.
But in most cases, you should always run [`accelerate config`](package_reference/cli#accelerate-config) first to help Accelerate learn about your training setup.
```bash
accelerate config
```
The [`accelerate config`](../../docs/source/package_reference/cli#accelerate-config) command creates and saves a default_config.yaml file in Accelerates cache folder. This file stores the configuration for your training environment, which helps Accelerate correctly launch your training script based on your machine.
The [`accelerate config`](package_reference/cli#accelerate-config) command creates and saves a default_config.yaml file in Accelerates cache folder. This file stores the configuration for your training environment, which helps Accelerate correctly launch your training script based on your machine.
After you've configured your environment, you can test your setup with [`accelerate test`](../../docs/source/package_reference/cli#accelerate-test), which launches a short script to test the distributed environment.
After you've configured your environment, you can test your setup with [`accelerate test`](package_reference/cli#accelerate-test), which launches a short script to test the distributed environment.
```bash
accelerate test
@ -44,7 +45,7 @@ accelerate test
> [!TIP]
> Add `--config_file` to the `accelerate test` or `accelerate launch` command to specify the location of the configuration file if it is saved in a non-default location like the cache.
Once your environment is setup, launch your training script with [`accelerate launch`](../../docs/source/package_reference/cli#accelerate-launch)!
Once your environment is setup, launch your training script with [`accelerate launch`](package_reference/cli#accelerate-launch)!
```bash
accelerate launch path_to_script.py --args_for_the_script
@ -92,6 +93,9 @@ accelerator = Accelerator()
> [!WARNING]
> This step is *optional* but it is considered best practice to allow Accelerate to handle device placement. You could also deactivate automatic device placement by passing `device_placement=False` when initializing the [`Accelerator`]. If you want to explicitly place objects on a device with `.to(device)`, make sure you use `accelerator.device` instead. For example, if you create an optimizer before placing a model on `accelerator.device`, training fails on a TPU.
> [!WARNING]
> Accelerate does not use non-blocking transfers by default for its automatic device placement, which can result in potentially unwanted CUDA synchronizations. You can enable non-blocking transfers by passing a [`~utils.dataclasses.DataLoaderConfiguration`] with `non_blocking=True` set as the `dataloader_config` when initializing the [`Accelerator`]. As usual, non-blocking transfers will only work if the dataloader also has `pin_memory=True` set. Be wary that using non-blocking transfers from GPU to CPU may cause incorrect results if it results in CPU operations being performed on non-ready tensors.
```py
device = accelerator.device
```
@ -110,7 +114,7 @@ model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
accelerator.backward(loss)
```
Read [Accelerates internal mechanisms](../../docs/source/concept_guides/internal_mechanism) guide to learn more details about how Accelerate adapts your code.
Read [Accelerates internal mechanisms](concept_guides/internal_mechanism) guide to learn more details about how Accelerate adapts your code.
### Distributed evaluation
@ -120,7 +124,7 @@ To perform distributed evaluation, pass your validation dataloader to the [`~Acc
validation_dataloader = accelerator.prepare(validation_dataloader)
```
Each device in your distributed setup only receives a part of the evaluation data, which means you should group your predictions together with the [`~Accelerator.gather_for_metrics`] method. This method requires all tensors to be the same size on each process, so if your tensors have different sizes on each process (for instance when dynamically padding to the maximum length in a batch), you should use the [`~Accelerator.pad_across_processes`] method to pad you tensor to the largest size across processes.
Each device in your distributed setup only receives a part of the evaluation data, which means you should group your predictions together with the [`~Accelerator.gather_for_metrics`] method. This method requires all tensors to be the same size on each process, so if your tensors have different sizes on each process (for instance when dynamically padding to the maximum length in a batch), you should use the [`~Accelerator.pad_across_processes`] method to pad you tensor to the largest size across processes. Note that the tensors needs to be 1D and that we concatenate the tensors along the first dimension.
```python
for inputs, targets in validation_dataloader:
@ -131,6 +135,8 @@ for inputs, targets in validation_dataloader:
metric.add_batch(all_predictions, all_targets)
```
For more complex cases (e.g. 2D tensors, don't want to concatenate tensors, dict of 3D tensors), you can pass `use_gather_object=True` in `gather_for_metrics`. This will return the list of objects after gathering. Note that using it with GPU tensors is not well supported and inefficient.
> [!TIP]
> Data at the end of a dataset may be duplicated so the batch can be equally divided among all workers. The [`~Accelerator.gather_for_metrics`] method automatically removes the duplicated data to calculate a more accurate metric.
@ -139,7 +145,7 @@ for inputs, targets in validation_dataloader:
Accelerate's Big Model Inference has two main features, [`~accelerate.init_empty_weights`] and [`~accelerate.load_checkpoint_and_dispatch`], to load large models for inference that typically don't fit into memory.
> [!TIP]
> Take a look at the [Handling big models for inference](../../docs/source/concept_guides/big_model_inference) guide for a better understanding of how Big Model Inference works under the hood.
> Take a look at the [Handling big models for inference](concept_guides/big_model_inference) guide for a better understanding of how Big Model Inference works under the hood.
### Empty weights initialization
@ -174,7 +180,7 @@ model = load_checkpoint_and_dispatch(
Now that you've been introduced to the main Accelerate features, your next steps could include:
* Check out the [tutorials](docs/source/basic_tutorials/overview) for a gentle walkthrough of Accelerate. This is especially useful if you're new to distributed training and the library.
* Dive into the [guides](docs/source/usage_guides/explore) to see how to use Accelerate for specific use-cases.
* Deepen your conceptual understanding of how Accelerate works internally by reading the [concept guides](docs/source/concept_guides/internal_mechanism).
* Look up classes and commands in the [API reference](docs/source/package_reference/accelerator) to see what parameters and options are available.
* Check out the [tutorials](basic_tutorials/overview) for a gentle walkthrough of Accelerate. This is especially useful if you're new to distributed training and the library.
* Dive into the [guides](usage_guides/explore) to see how to use Accelerate for specific use-cases.
* Deepen your conceptual understanding of how Accelerate works internally by reading the [concept guides](concept_guides/internal_mechanism).
* Look up classes and commands in the [API reference](package_reference/accelerator) to see what parameters and options are available.

View File

@ -0,0 +1,325 @@
<!--
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DDP Communication Hooks
Distributed Data Parallel (DDP) communication hooks provide a generic interface to control how gradients are communicated across workers by overriding the vanilla allreduce in `DistributedDataParallel`. A few built-in communication hooks are provided, and users can easily apply any of these hooks to optimize communication.
- **FP16 Compression Hook**: Compresses gradients by casting them to half-precision floating-point format (`torch.float16`), reducing communication overhead.
- **BF16 Compression Hook**: Similar to FP16, but uses the Brain Floating Point format (`torch.bfloat16`), which can be more efficient on certain hardware.
- **PowerSGD Hook**: An advanced gradient compression algorithm that provides high compression rates and can accelerate bandwidth-bound distributed training.
In this tutorial, you will see how to quickly set up DDP communication hooks and perform training with the utilities provided in 🤗 Accelerate, which can be as simple as adding just one new line of code! This demonstrates how to use DDP communication hooks to optimize gradient communication in distributed training with the 🤗 Accelerate library.
## FP16 Compression Hook
<hfoptions id="fp16">
<hfoption id="PyTorch">
```python
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
model = MyModel()
model = DDP(model, device_ids=[torch.cuda.current_device()])
model.register_comm_hook(state=None, hook=default_hooks.fp16_compress_hook)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
```
</hfoption>
<hfoption id="Accelerate">
```python
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
import torch
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
# DDP Communication Hook setup
ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.FP16)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
data_loader = DataLoader(dataset, batch_size=16)
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
</hfoption>
</hfoptions>
### BF16 Compression Hook
<Tip warning={true}>
BF16 Compression Hook API is experimental, and it requires NCCL version later than 2.9.6.
</Tip>
<hfoptions id="bf16">
<hfoption id="PyTorch">
```python
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.algorithms.ddp_comm_hooks import default_hooks
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
model = MyModel()
model = DDP(model, device_ids=[torch.cuda.current_device()])
model.register_comm_hook(state=None, hook=default_hooks.bf16_compress_hook)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
```
</hfoption>
<hfoption id="Accelerate">
```python
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
import torch
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
# DDP Communication Hook setup
ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.BF16)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
data_loader = DataLoader(dataset, batch_size=16)
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
</hfoption>
</hfoptions>
### PowerSGD Hook
<Tip warning={true}>
PowerSGD typically requires extra memory of the same size as the models gradients to enable error feedback, which can compensate for biased compressed communication and improve accuracy.
</Tip>
<hfoptions id="powerSGD">
<hfoption id="PyTorch">
```python
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.algorithms.ddp_comm_hooks import powerSGD_hook
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
model = MyModel()
model = DDP(model, device_ids=[torch.cuda.current_device()])
state = powerSGD_hook.PowerSGDState(process_group=None)
model.register_comm_hook(state=state, hook=powerSGD_hook.powerSGD_hook)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
optimizer.zero_grad()
```
</hfoption>
<hfoption id="Accelerate">
```python
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
import torch
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
# DDP Communication Hook setup
ddp_kwargs = DistributedDataParallelKwargs(comm_hook=DDPCommunicationHookType.POWER_SGD)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
data_loader = DataLoader(dataset, batch_size=16)
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
</hfoption>
</hfoptions>
## DDP Communication Hooks utilities
There are two additional utilities for supporting optional functionalities with the communication hooks.
### comm_wrapper
`comm_wrapper` is an option to wrap a communication hook with additional functionality. For example, it can be used to combine FP16 compression with other communication strategies. Currently supported wrappers are `no`, `fp16`, and `bf16`.
```python
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
import torch
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
# DDP Communication Hook setup
ddp_kwargs = DistributedDataParallelKwargs(
comm_hook=DDPCommunicationHookType.POWER_SGD,
comm_wrapper=DDPCommunicationHookType.FP16
)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
data_loader = DataLoader(dataset, batch_size=16)
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
### comm_state_option
`comm_state_option` allows you to pass additional state information required by certain communication hooks. This is particularly useful for stateful hooks like `PowerSGD`, which require maintaining hyperparameters and internal states across training steps. Below is an example showcasing the use of `comm_state_option` with the `PowerSGD` hook.
```python
from accelerate import Accelerator, DDPCommunicationHookType, DistributedDataParallelKwargs
import torch
class MyModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(10, 10)
def forward(self, x):
return self.layer(x)
# DDP Communication Hook setup
ddp_kwargs = DistributedDataParallelKwargs(
comm_hook=DDPCommunicationHookType.POWER_SGD,
comm_state_option={"matrix_approximation_rank": 2}
)
accelerator = Accelerator(kwargs_handlers=[ddp_kwargs])
model = MyModel()
optimizer = torch.optim.Adam(model.parameters())
data_loader = DataLoader(dataset, batch_size=16)
model, optimizer, data_loader = accelerator.prepare(model, optimizer, data_loader)
# Training loop
for data, targets in data_loader:
outputs = model(data)
loss = criterion(outputs, targets)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
For more advanced usage and additional hooks, refer to the [PyTorch DDP Communication Hooks documentation](https://pytorch.org/docs/stable/ddp_comm_hooks.html).

View File

@ -9,7 +9,7 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
@ -157,10 +157,18 @@ Currently, `Accelerate` supports following config through the CLI:
`gradient_accumulation_steps`: Number of training steps to accumulate gradients before averaging and applying them.
`gradient_clipping`: Enable gradient clipping with value.
`offload_optimizer_device`: [none] Disable optimizer offloading, [cpu] offload optimizer to CPU, [nvme] offload optimizer to NVMe SSD. Only applicable with ZeRO >= Stage-2.
`offload_optimizer_nvme_path`: Decides Nvme Path to offload optimizer states. If unspecified, will default to 'none'.
`offload_param_device`: [none] Disable parameter offloading, [cpu] offload parameters to CPU, [nvme] offload parameters to NVMe SSD. Only applicable with ZeRO Stage-3.
`offload_param_nvme_path`: Decides Nvme Path to offload parameters. If unspecified, will default to 'none'.
`zero3_init_flag`: Decides whether to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with ZeRO Stage-3.
`zero3_save_16bit_model`: Decides whether to save 16-bit model weights when using ZeRO Stage-3.
`mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training.
`deepspeed_moe_layer_cls_names`: Comma-separated list of transformer Mixture-of-Experts (MoE) layer class names (case-sensitive) to wrap ,e.g, `MixtralSparseMoeBlock`, `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` ...
`deepspeed_hostfile`: DeepSpeed hostfile for configuring multi-node compute resources.
`deepspeed_exclusion_filter`: DeepSpeed exclusion filter string when using mutli-node setup.
`deepspeed_inclusion_filter`: DeepSpeed inclusion filter string when using mutli-node setup.
`deepspeed_multinode_launcher`: DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.
`deepspeed_config_file`: path to the DeepSpeed config file in `json` format. See the next section for more details on this.
```
To be able to tweak more options, you will need to use a DeepSpeed config file.
@ -353,7 +361,7 @@ accelerate launch examples/by_feature/deepspeed_with_config_support.py \
```
**ZeRO++ Config Example**
You can use the the features of ZeRO++ by using the appropriate config parameters. Note that ZeRO++ is an extension for ZeRO Stage 3. Here is how the config file can be modified, from [DeepSpeed's ZeRO++ tutorial](https://www.deepspeed.ai/tutorials/zeropp/):
You can use the features of ZeRO++ by using the appropriate config parameters. Note that ZeRO++ is an extension for ZeRO Stage 3. Here is how the config file can be modified, from [DeepSpeed's ZeRO++ tutorial](https://www.deepspeed.ai/tutorials/zeropp/):
```json
{
@ -425,7 +433,7 @@ Only the `auto` fields specified in above examples are handled by `prepare` meth
The `auto` values are calculated as:
- `reduce_bucket_size`: `hidden_size * hidden_size`
- `stage3_prefetch_bucket_size`: `0.9 * hidden_size * hidden_size`
- `stage3_prefetch_bucket_size`: `int(0.9 * hidden_size * hidden_size)`
- `stage3_param_persistence_threshold`: `10 * hidden_size`
For the `auto` feature to work for these 3 config entries - Accelerate will use `model.config.hidden_size` or `max(model.config.hidden_sizes)` as `hidden_size`. If neither of these is available, the launching will fail and you will have to set these 3 config entries manually. Remember the first 2 config entries are the communication buffers - the larger they are the more efficient the comms will be, and the larger they are the more GPU memory they will consume, so it's a tunable performance trade-off.
@ -519,7 +527,7 @@ ValueError: When using `deepspeed_config_file`, the following accelerate config
['gradient_accumulation_steps', 'gradient_clipping', 'zero_stage', 'offload_optimizer_device', 'offload_param_device',
'zero3_save_16bit_model', 'mixed_precision'].
Please specify them appropriately in the DeepSpeed config file.
If you are using an accelerate config file, remove others config variables mentioned in the above specified list.
If you are using an accelerate config file, remove other config variables mentioned in the above specified list.
The easiest method is to create a new config following the questionnaire via `accelerate config`.
It will only ask for the necessary config variables when using `deepspeed_config_file`.
```
@ -721,3 +729,10 @@ Papers:
Finally, please, remember that 🤗 `Accelerate` only integrates DeepSpeed, therefore if you
have any problems or questions with regards to DeepSpeed usage, please, file an issue with [DeepSpeed GitHub](https://github.com/microsoft/DeepSpeed/issues).
<Tip>
For those interested in the similarities and differences between FSDP and DeepSpeed, please check out the [concept guide here](../concept_guides/fsdp_and_deepspeed.md)!
</Tip>

View File

@ -140,6 +140,8 @@ with distributed_state.split_between_processes(["a dog", "a cat", "a chicken"],
On the first GPU, the prompts will be `["a dog", "a cat"]`, and on the second GPU it will be `["a chicken", "a chicken"]`.
Make sure to drop the final sample, as it will be a duplicate of the previous one.
You can find more complex examples [here](https://github.com/huggingface/accelerate/tree/main/examples/inference/distributed) such as how to use it with LLMs.
## Memory-efficient pipeline parallelism (experimental)
This next part will discuss using *pipeline parallelism*. This is an **experimental** API utilizing the [PiPPy library by PyTorch](https://github.com/pytorch/PiPPy/) as a native solution.
@ -232,4 +234,4 @@ if PartialState().is_last_process:
</Tip>
And that's it! To explore more, please check out the inference examples in the [Accelerate repo](https://github.com/huggingface/accelerate/tree/main/examples/inference) and our [documentation](../package_reference/inference) as we work to improving this integration.
And that's it! To explore more, please check out the inference examples in the [Accelerate repo](https://github.com/huggingface/accelerate/tree/main/examples/inference/pippy) and our [documentation](../package_reference/inference) as we work to improving this integration.

View File

@ -161,6 +161,22 @@ When using transformers `save_pretrained`, pass `state_dict=accelerator.get_stat
You can then pass `state` into the `save_pretrained` method. There are several modes for `StateDictType` and `FullStateDictConfig` that you can use to control the behavior of `state_dict`. For more information, see the [PyTorch documentation](https://pytorch.org/docs/stable/fsdp.html).
If you choose to use `StateDictType.SHARDED_STATE_DICT`, the weights of the model during `Accelerator.save_state` will be split into `n` files for each sub-split on the model. To merge them back into
a single dictionary to load back into the model later after training you can use the `merge_weights` utility:
```py
from accelerate.utils import merge_fsdp_weights
# Our weights are saved usually in a `pytorch_model_fsdp_{model_number}` folder
merge_fsdp_weights("pytorch_model_fsdp_0", "output_path", safe_serialization=True)
```
The final output will then either be saved to `model.safetensors` or `pytorch_model.bin` (if `safe_serialization=False` is passed).
This can also be called using the CLI:
```bash
accelerate merge-weights pytorch_model_fsdp_0/ output_path
```
## Mapping between FSDP sharding strategies and DeepSpeed ZeRO Stages
* `FULL_SHARD` maps to the DeepSpeed `ZeRO Stage-3`. Shards optimizer states, gradients and parameters.
@ -175,3 +191,10 @@ You can then pass `state` into the `save_pretrained` method. There are several
For more control, users can leverage the `FullyShardedDataParallelPlugin`. After creating an instance of this class, users can pass it to the Accelerator class instantiation.
For more information on these options, please refer to the PyTorch [FullyShardedDataParallel](https://github.com/pytorch/pytorch/blob/0df2e863fbd5993a7b9e652910792bd21a516ff3/torch/distributed/fsdp/fully_sharded_data_parallel.py#L236) code.
<Tip>
For those interested in the similarities and differences between FSDP and DeepSpeed, please check out the [concept guide here](../concept_guides/fsdp_and_deepspeed.md)!
</Tip>

View File

@ -115,8 +115,11 @@ What is the IP address of the machine that will host the main process? 36.112.23
What is the port you will use to communicate with the main process? 29500
Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: yes
Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes
Do you want accelerate to launch mpirun? [yes/NO]: yes
Please enter the path to the hostfile to use with mpirun [~/hostfile]: ~/hostfile
Enter the number of oneCCL worker threads [1]: 1
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
How many CPU(s) should be used for distributed training? [1]:16
How many processes should be used for distributed training? [1]:16
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Do you wish to use FP16 or BF16 (mixed precision)?
bf16
@ -135,6 +138,9 @@ main_process_ip: 36.112.23.24
main_process_port: 29500
main_training_function: main
mixed_precision: bf16
mpirun_config:
mpirun_ccl: '1'
mpirun_hostfile: /home/user/hostfile
num_machines: 4
num_processes: 16
rdzv_backend: static
@ -148,6 +154,7 @@ use_cpu: true
Set following env and using intel MPI to launch the training
In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument.
If you selected to have Accelerate launch `mpirun`, ensure that the location of your hostfile matches the path in the config.
```bash
$ cat hostfile
xxx.xxx.xxx.xxx #node0 ip
@ -155,7 +162,18 @@ xxx.xxx.xxx.xxx #node1 ip
xxx.xxx.xxx.xxx #node2 ip
xxx.xxx.xxx.xxx #node3 ip
```
Now, run the following command in node0 and **16DDP** will be enabled in node0,node1,node2,node3 with BF16 mixed precision:
When Accelerate is launching `mpirun`, source the oneCCL bindings setvars.sh to get your Intel MPI environment, and then
run your script using `accelerate launch`. Note that the python script and environment needs to exist on all of the
machines being used for multi-CPU training.
```bash
oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
source $oneccl_bindings_for_pytorch_path/env/setvars.sh
accelerate launch examples/nlp_example.py
```
Otherwise, if you selected not to have Accelerate launch `mpirun`, run the following command in node0 and **16DDP** will
be enabled in node0,node1,node2,node3 with BF16 mixed precision. When using this method, the python script, python
environment, and accelerate config file need to be present on all of the machines used for multi-CPU training.
```bash
oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
source $oneccl_bindings_for_pytorch_path/env/setvars.sh

View File

@ -88,7 +88,7 @@ achieved by adding one `with LocalSGD` statement and one call `local_sgd.step()`
+ local_sgd.step()
```
Under the hood, the Local SGD code **disables** automatic gradient synchornization (but accumulation still works as expected!). Instead it averages model parameters every `local_sgd_steps` steps (as well as in the end of the training loop).
Under the hood, the Local SGD code **disables** automatic gradient synchronization (but accumulation still works as expected!). Instead it averages model parameters every `local_sgd_steps` steps (as well as at the end of the training loop).
## Limitations

View File

@ -57,7 +57,7 @@ Of the two, `MS-AMP` is traditionally the easier one to configure as there is on
Currently two levels of optimization are supported in the 🤗 Accelerate integration, `"O1"` and `"O2"` (using the letter 'o', not zero).
* `"O1"` will cast the weight gradients and `all_reduce` communications to happen in 8-bit, while the rest are done in 16 bit. This reduces the general GPU memory usage and speeds up communication bandwidths.
* `"O2"` will also cast first-order optimizer states into 8 bit, while the second order states are in FP16. (Currently just the `Adam` optimizer is supported). This tries it's best to minimize final accuracy degradation and will save the highest potential memory.
* `"O2"` will also cast first-order optimizer states into 8 bit, while the second order states are in FP16. (Currently just the `Adam` optimizer is supported). This tries its best to minimize final accuracy degradation and will save the highest potential memory.
To specify an optimization level, pass it to the `FP8KwargsHandler` by setting the `optimization_level` argument:
@ -70,7 +70,7 @@ accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
## Configuring TransformersEngine
TransformersEngine has much more available for customizing how and what FP8 calculations are performed. A full list of supported arguments and what they mean are available in [NVIDIA's documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html), however they are restated as part of [`FP8KwargsHandler`]'s docstring for your convience.
TransformersEngine has much more available for customizing how and what FP8 calculations are performed. A full list of supported arguments and what they mean are available in [NVIDIA's documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html), however they are restated as part of [`FP8KwargsHandler`]'s docstring for your convenience.
🤗 Accelerate tries to set sensible defaults, but exploring and tweaking the various parameters yourself can lead to better performance potentially.
@ -83,10 +83,10 @@ kwargs = [FP8RecipeKwargs(backend="te", ...)]
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
```
## Futher Reading
## Further Reading
To learn more about training in FP8 please check out the following resources:
* [Our concept guide](../concept_guides/low_precision_training.md) detailing into more about both TransformersEngine and MS-AMP
* [The `transformers-engine` documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html)
* [The `MS-AMP` documentation](https://azure.github.io/MS-AMP/docs/)
* [The `MS-AMP` documentation](https://azure.github.io/MS-AMP/docs/)

View File

@ -9,7 +9,7 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
@ -107,7 +107,10 @@ cd ..
4. Installing Megatron-LM
```
pip install git+https://github.com/huggingface/Megatron-LM.git
git clone https://github.com/NVIDIA/Megatron-LM.git
cd Megatron-LM
git checkout core_r0.5.0
pip install --no-use-pep517 -e .
```
## Accelerate Megatron-LM Plugin
@ -542,7 +545,7 @@ megatron_lm_plugin = MegatronLMPlugin(other_megatron_args=other_megatron_args)
This covers Decoder only, Encode only and Encoder-Decoder model classes.
2. Only loss is returned from model forward pass as
there is quite complex interplay of pipeline, tensor and data parallelsim behind the scenes.
there is quite complex interplay of pipeline, tensor and data parallelism behind the scenes.
The `model(**batch_data)` call return loss(es) averaged across the data parallel ranks.
This is fine for most cases wherein pre-training jobs are run using Megatron-LM features and
you can easily compute the `perplexity` using the loss.
@ -580,4 +583,4 @@ b. Megatron-LM [GPTModel](https://github.com/NVIDIA/Megatron-LM/blob/main/megatr
c. Megatron-LM [T5Model](https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/t5_model.py) :
🤗 transformers models with `t5` in config's model type, e.g.,
[T5](https://huggingface.co/docs/transformers/model_doc/t5) and
[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)
[MT5](https://huggingface.co/docs/transformers/model_doc/mt5)

View File

@ -51,7 +51,7 @@ Below are a few gradio demos related to what was described above. The first is t
></iframe>
</div>
A community member has taken the idea and expended it further, allowing you to filter models directly and see if you can run a particular LLM given GPU constraints and LoRA configurations. To play with it, see [here](https://huggingface.co/spaces/Vokturz/can-it-run-llm) for more details.
A community member has taken the idea and expanded it further, allowing you to filter models directly and see if you can run a particular LLM given GPU constraints and LoRA configurations. To play with it, see [here](https://huggingface.co/spaces/Vokturz/can-it-run-llm) for more details.
## The Command
@ -134,4 +134,4 @@ This calculator will tell you how much memory is needed to purely load the model
This calculation is accurate within a few % of the actual value, so it is a very good view of just how much memory it will take. For instance loading `bert-base-cased` actually takes `413.68 MB` when loaded on CUDA in full precision, and the calculator estimates `413.18 MB`.
When performing inference you can expect to add up to an additional 20% as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). We'll be conducting research into finding a more accurate estimate to these values, and will update
this calculator once done.
this calculator once done.

View File

@ -0,0 +1,334 @@
<!--
Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Profiler
Profiler is a tool that allows the collection of performance metrics during training and inference. Profilers context manager API can be used to better understand what model operators are the most expensive, examine their input shapes and stack traces, study device kernel activity, and visualize the execution trace. It provides insights into the performance of your model, allowing you to optimize and improve it.
This guide explains how to use PyTorch Profiler to measure the time and memory consumption of the models operators and how to integrate this with 🤗 Accelerate. We will cover various use cases and provide examples for each.
## Using profiler to analyze execution time
Profiler allows one to check which operators were called during the execution of a code range wrapped with a profiler context manager.
Lets see how we can use profiler to analyze the execution time:
<hfoptions id="cpu execution time">
<hfoption id="PyTorch">
```python
import torch
import torchvision.models as models
from torch.profiler import profile, record_function, ProfilerActivity
model = models.resnet18()
inputs = torch.randn(5, 3, 224, 224)
with profile(activities=[ProfilerActivity.CPU], record_shapes=True) as prof:
model(inputs)
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
```
</hfoption>
<hfoption id="Accelerate">
```python
from accelerate import Accelerator, ProfileKwargs
import torch
import torchvision.models as models
model = models.resnet18()
inputs = torch.randn(5, 3, 224, 224)
profile_kwargs = ProfileKwargs(
activities=["cpu"],
record_shapes=True
)
accelerator = Accelerator(cpu=True, kwargs_handlers=[profile_kwargs])
model = accelerator.prepare(model)
with accelerator.profile() as prof:
with torch.no_grad():
model(inputs)
print(prof.key_averages().table(sort_by="cpu_time_total", row_limit=10))
```
</hfoption>
</hfoptions>
The resulting table output (omitting some columns):
```
--------------------------------- ------------ ------------ ------------ ------------
Name Self CPU CPU total CPU time avg # of Calls
--------------------------------- ------------ ------------ ------------ ------------
aten::conv2d 171.000us 52.260ms 2.613ms 20
aten::convolution 227.000us 52.089ms 2.604ms 20
aten::_convolution 270.000us 51.862ms 2.593ms 20
aten::mkldnn_convolution 51.273ms 51.592ms 2.580ms 20
aten::batch_norm 118.000us 7.059ms 352.950us 20
aten::_batch_norm_impl_index 315.000us 6.941ms 347.050us 20
aten::native_batch_norm 6.305ms 6.599ms 329.950us 20
aten::max_pool2d 40.000us 4.008ms 4.008ms 1
aten::max_pool2d_with_indices 3.968ms 3.968ms 3.968ms 1
aten::add_ 780.000us 780.000us 27.857us 28
--------------------------------- ------------ ------------ ------------ ------------
Self CPU time total: 67.016ms
```
To get a finer granularity of results and include operator input shapes, pass `group_by_input_shape=True` (note: this requires running the profiler with `record_shapes=True`):
```python
print(prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=10))
```
## Using profiler to analyze memory consumption
Profiler can also show the amount of memory (used by the models tensors) that was allocated (or released) during the execution of the models operators. To enable memory profiling functionality pass `profile_memory=True`.
<hfoptions id="memory consumption">
<hfoption id="PyTorch">
```python
model = models.resnet18()
inputs = torch.randn(5, 3, 224, 224)
with profile(activities=[ProfilerActivity.CPU],
profile_memory=True, record_shapes=True) as prof:
model(inputs)
print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=10))
```
</hfoption>
<hfoption id="Accelerate">
```python
model = models.resnet18()
inputs = torch.randn(5, 3, 224, 224)
profile_kwargs = ProfileKwargs(
activities=["cpu"],
profile_memory=True,
record_shapes=True
)
accelerator = Accelerator(cpu=True, kwargs_handlers=[profile_kwargs])
model = accelerator.prepare(model)
with accelerator.profile() as prof:
model(inputs)
print(prof.key_averages().table(sort_by="self_cpu_memory_usage", row_limit=10))
```
</hfoption>
</hfoptions>
The resulting table output (omitting some columns):
```
--------------------------------- ------------ ------------ ------------
Name CPU Mem Self CPU Mem # of Calls
--------------------------------- ------------ ------------ ------------
aten::empty 94.85 Mb 94.85 Mb 205
aten::max_pool2d_with_indices 11.48 Mb 11.48 Mb 1
aten::addmm 19.53 Kb 19.53 Kb 1
aten::mean 10.00 Kb 10.00 Kb 1
aten::empty_strided 492 b 492 b 5
aten::cat 240 b 240 b 6
aten::abs 480 b 240 b 4
aten::masked_select 120 b 112 b 1
aten::ne 61 b 53 b 3
aten::eq 30 b 30 b 1
--------------------------------- ------------ ------------ ------------
Self CPU time total: 69.332ms
```
## Exporting chrome trace
You can examine the sequence of profiled operators and CUDA kernels in Chrome trace viewer (`chrome://tracing`):
![profile_export](https://github.com/huggingface/accelerate/assets/100389977/5acb193f-6d11-4f7b-9873-c600c19e8172)
<hfoptions id="exporting chrome trace">
<hfoption id="PyTorch">
```python
model = models.resnet18().cuda()
inputs = torch.randn(5, 3, 224, 224).cuda()
with profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA]) as prof:
model(inputs)
prof.export_chrome_trace("trace.json")
```
</hfoption>
<hfoption id="Accelerate">
```python
profile_kwargs = ProfileKwargs(
activities=["cpu", "cuda"],
output_trace_dir="trace"
)
accelerator = Accelerator(kwargs_handlers=[profile_kwargs])
model = accelerator.prepare(model)
with accelerator.profile() as prof:
model(inputs)
# The trace will be saved to the specified directory
```
</hfoption>
</hfoptions>
## Using Profiler to Analyze Long-Running Jobs
Profiler offers an additional API to handle long-running jobs (such as training loops). Tracing all of the execution can be slow and result in very large trace files. To avoid this, use optional arguments:
- `schedule_option`: Scheduling options allow you to control when profiling is active. This is useful for long-running jobs to avoid collecting too much data. Available keys are `wait`, `warmup`, `active`, `repeat` and `skip_first`. The profiler will skip the first `skip_first` steps, then wait for `wait` steps, then do the warmup for the next `warmup` steps, then do the active recording for the next `active` steps and then repeat the cycle starting with `wait` steps. The optional number of cycles is specified with the `repeat` parameter, the zero value means that the cycles will continue until the profiling is finished.
- `on_trace_ready`: specifies a function that takes a reference to the profiler as an input and is called by the profiler each time the new trace is ready.
To illustrate how the API works, consider the following example:
<hfoptions id="custom handler">
<hfoption id="PyTorch">
```python
from torch.profiler import schedule
my_schedule = schedule(
skip_first=10,
wait=5,
warmup=1,
active=3,
repeat=2
)
def trace_handler(p):
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
print(output)
p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json")
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
schedule=my_schedule,
on_trace_ready=trace_handler
) as p:
for idx in range(8):
model(inputs)
p.step()
```
</hfoption>
<hfoption id="Accelerate">
```python
def trace_handler(p):
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
print(output)
p.export_chrome_trace("/tmp/trace_" + str(p.step_num) + ".json")
profile_kwargs = ProfileKwargs(
activities=["cpu", "cuda"],
schedule_option={"wait": 5, "warmup": 1, "active": 3, "repeat": 2, "skip_first": 10},
on_trace_ready=trace_handler
)
accelerator = Accelerator(kwargs_handlers=[profile_kwargs])
model = accelerator.prepare(model)
with accelerator.profile() as prof:
for idx in range(8):
model(inputs)
prof.step()
```
</hfoption>
</hfoptions>
## FLOPS
Use formula to estimate the FLOPs (floating point operations) of specific operators (matrix multiplication and 2D convolution).
To measure floating-point operations (FLOPS):
<hfoptions id="FLOPS">
<hfoption id="PyTorch">
```python
with profile(
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
with_flops=True
) as prof:
model(inputs)
print(prof.key_averages().table(sort_by="flops", row_limit=10))
```
</hfoption>
<hfoption id="Accelerate">
```python
profile_kwargs = ProfileKwargs(
with_flops=True
)
accelerator = Accelerator(kwargs_handlers=[profile_kwargs])
with accelerator.profile() as prof:
model(inputs)
print(prof.key_averages().table(sort_by="flops", row_limit=10))
```
</hfoption>
</hfoptions>
The resulting table output (omitting some columns):
```
------------------------------------------------------- ------------ ------------ ------------
Name Self CPU Self CUDA Total FLOPs
------------------------------------------------------- ------------ ------------ ------------
aten::conv2d 197.000us 0.000us 18135613440.000
aten::addmm 103.000us 17.000us 5120000.000
aten::mul 29.000us 2.000us 30.000
aten::convolution 409.000us 0.000us --
aten::_convolution 253.000us 0.000us --
aten::cudnn_convolution 5.465ms 2.970ms --
cudaEventRecord 138.000us 0.000us --
cudaStreamIsCapturing 43.000us 0.000us --
cudaStreamGetPriority 40.000us 0.000us --
cudaDeviceGetStreamPriorityRange 10.000us 0.000us --
------------------------------------------------------- ------------ ------------ ------------
Self CPU time total: 21.938ms
Self CUDA time total: 4.165ms
```
## Conclusion and Further Information
PyTorch Profiler is a powerful tool for analyzing the performance of your models. By integrating it with 🤗 Accelerate, you can easily profile your models and gain insights into their performance, helping you to optimize and improve them.
For more detailed information, refer to the [PyTorch Profiler documentation](https://pytorch.org/docs/stable/profiler.html).

View File

@ -198,7 +198,7 @@ achieve the same outcome with:
```python
wandb_tracker = accelerator.get_tracker("wandb", unwrap=True)
with accelerator.on_main_process:
if accelerator.is_main_process:
wandb_tracker.log_artifact(some_artifact_to_log)
```

View File

@ -28,6 +28,7 @@ pip install datasets evaluate transformers
The same script can be run in any of the following configurations:
- single CPU or single GPU
- multi CPUs
- multi GPUs (using PyTorch distributed mode)
- (multi) TPUs
- fp16 (mixed-precision) or fp32 (normal precision)
@ -58,6 +59,18 @@ To run it in each of these various modes, use the following commands:
* from any server with Accelerate launcher
```bash
accelerate launch --mixed_precision fp16 ./nlp_example.py
- multi CPUs (requires Open MPI, Intel MPI, or MVAPICH)
* With Accelerate config and launcher, execute the following from node 0:
```bash
accelerate config # Select to have accelerate launch mpirun
accelerate launch ./nlp_example.py # This will run the script on each server
```
* With Intel MPI:
```bash
export CCL_WORKER_COUNT=1
export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip
mpirun -f hostfile -n 16 -ppn 4 python ./nlp_example.py
```
- multi GPUs (using PyTorch distributed mode)
* With Accelerate config and launcher
```bash
@ -100,6 +113,7 @@ The [cv_example.py](./cv_example.py) script is a simple example to fine-tune a R
The same script can be run in any of the following configurations:
- single CPU or single GPU
- multi CPUs
- multi GPUs (using PyTorch distributed mode)
- (multi) TPUs
- fp16 (mixed-precision) or fp32 (normal precision)
@ -143,6 +157,18 @@ To run it in each of these various modes, use the following commands:
* from any server with Accelerate launcher
```bash
accelerate launch --mixed_precison fp16 ./cv_example.py --data_dir path_to_data
- multi CPUs (requires Open MPI, Intel MPI, or MVAPICH)
* With Accelerate config and launcher, run the following from node 0:
```bash
accelerate config --config_file config.yaml # Select to have accelerate launch mpirun
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
```
* With Intel MPI, execute mpirun from node 0:
```bash
export CCL_WORKER_COUNT=1
export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip
mpirun -f hostfile -n 16 -ppn 4 python ./cv_example.py --data_dir path_to_data
```
- multi GPUs (using PyTorch distributed mode)
* With Accelerate config and launcher
```bash
@ -207,6 +233,8 @@ In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) the only parameter in
In [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we must specify the number of nodes that will be part of the training (`--num_machines`), how many GPUs we will use in total (`--num_processes`), the [`backend`](https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend), `--main_process_ip` which will be the address the master node and the `--main_process_port`.
In [/slurm/submit_multicpu.sh](./slurm/submit_multicpu.sh) we must specify the number of nodes that will be part of the training (`--num_machines`), how many CPU processes we will use in total (`--num_processes`), the [`backend`](https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend), `--main_process_ip` which will be the address the master node and the `--main_process_port`. `mpirun_hostfile` specifies to run the job using MPIRun.
In both scripts, we run `activateEnviroment.sh` at the beginning. This script should contain the necessary instructions to initialize the environment for execution. Below, we show an example that loads the necessary libraries ([Environment modules](https://github.com/cea-hpc/modules)), activates the Python environment, and sets up various environment variables, most of them to run the scripts in offline mode in case we don't have internet connection from the cluster.
```bash

View File

@ -88,4 +88,34 @@ These arguments should be added at the end of any method for starting the python
accelerate launch ./local_sgd.py --local_sgd_steps 4
```
### DDP Communication Hook (`ddp_comm_hook.py`)
- Shows how to use DDP Communication Hooks to control and optimize gradient communication across workers in a DistributedDataParallel setup.
- Arguments available:
- `ddp_comm_hook`, the type of DDP communication hook to use. Choose between `no`, `fp16`, `bf16`, `power_sgd`, and `batched_power_sgd`.
These arguments should be added at the end of any method for starting the python script (such as `accelerate launch`, `python -m torch.distributed.run`), such as:
```bash
accelerate launch ./ddp_comm_hook.py --mixed_precision fp16 --ddp_comm_hook power_sgd
```
### Profiler (`profiler.py`)
- Shows how to use the profiling capabilities of `Accelerate` to profile PyTorch models during training.
- Uses the `ProfileKwargs` handler to customize profiling options, including activities, scheduling, and additional profiling options.
- Can generate and save profiling traces in JSON format for visualization in Chrome's tracing tool.
Arguments available:
- `--record_shapes`: If passed, records shapes for profiling.
- `--profile_memory`: If passed, profiles memory usage.
- `--with_stack`: If passed, profiles stack traces.
- `--with_flops`: If passed, profiles floating point operations (FLOPS).
- `--output_trace_dir`: If specified, saves the profiling trace to the given dir in JSON format.
- `--cpu`: If passed, trains on the CPU instead of GPU.
These arguments should be added at the end of any method for starting the Python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as:
```bash
accelerate launch ./profiler.py --record_shapes --profile_memory --with_flops --output_trace_dir "profiler"
```

View File

@ -248,7 +248,7 @@ def training_function(config, args):
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(fold_predictions, dim=0))
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
model, optimizer = accelerator.free_memory(model, optimizer)
# New Code #
# Finally we check the accuracy of our folded results:
test_references = torch.cat(test_references, dim=0)

View File

@ -0,0 +1,231 @@
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import DDPCommunicationHookType, DistributedDataParallelKwargs
########################################################################
# This is a fully working simple example to use Accelerate
# and perform ddp communication hook
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
MAX_GPU_BATCH_SIZE = 16
EVAL_BATCH_SIZE = 32
def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
"""
Creates a set of `DataLoader`s for the `glue` dataset,
using "bert-base-cased" as the tokenizer.
Args:
accelerator (`Accelerator`):
An `Accelerator` object
batch_size (`int`, *optional*):
The batch size for the train and validation DataLoaders.
"""
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
datasets = load_dataset("glue", "mrpc")
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
get_dataloaders = mocked_dataloaders # noqa: F811
def training_function(config, args):
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
config["num_epochs"] = 2
# New Code #
ddp_comm_hook_type = DDPCommunicationHookType(args.ddp_comm_hook)
ddp_comm_wrapper = DDPCommunicationHookType(args.ddp_comm_wrapper)
ddp_kwargs = DistributedDataParallelKwargs(comm_hook=ddp_comm_hook_type, comm_wrapper=ddp_comm_wrapper)
# Initialize accelerator
accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision, kwargs_handlers=[ddp_kwargs])
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lr = config["lr"]
num_epochs = int(config["num_epochs"])
seed = int(config["seed"])
batch_size = int(config["batch_size"])
metric = evaluate.load("glue", "mrpc")
set_seed(seed)
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
model = model.to(accelerator.device)
# Instantiate optimizer
optimizer = AdamW(params=model.parameters(), lr=lr)
# Instantiate scheduler
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=(len(train_dataloader) * num_epochs),
)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Now we train the model
for epoch in range(num_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
# We use the new `accumulate` context manager to perform gradient accumulation
with accelerator.accumulate(model):
output = model(**batch)
loss = output.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(eval_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:", eval_metric)
def main():
parser = argparse.ArgumentParser(description="Simple example of training script.")
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
# New Code #
parser.add_argument(
"--ddp_comm_hook",
type=str,
default="no",
choices=["no", "fp16", "bf16", "power_sgd", "batched_power_sgd"],
help="DDP Communication hook to use. Choose between `no`, `fp16`, `bf16`, `power_sgd`, and `batched_power_sgd`.",
)
# New Code #
parser.add_argument(
"--ddp_comm_wrapper",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="DDP Communication wrapper to use. Choose between `no`, `fp16`, and `bf16`.",
)
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
args = parser.parse_args()
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(config, args)
if __name__ == "__main__":
main()

View File

@ -34,7 +34,7 @@ import datasets
import torch
import transformers
from datasets import load_dataset
from huggingface_hub import Repository
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import (
@ -47,7 +47,6 @@ from transformers import (
default_data_collator,
get_scheduler,
)
from transformers.utils import get_full_repo_name
from transformers.utils.versions import require_version
from accelerate import Accelerator, DistributedType
@ -303,11 +302,13 @@ def main():
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
api = HfApi(token=args.hub_token)
# Create repo (repo_name from args or inferred)
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
repo_id = api.create_repo(repo_name, exist_ok=True).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
@ -707,7 +708,11 @@ def main():
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
api.upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump({"perplexity": perplexity, "eval_loss": eval_loss.item()}, f)

View File

@ -34,7 +34,7 @@ import datasets
import torch
import transformers
from datasets import load_dataset
from huggingface_hub import Repository
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import (
@ -47,7 +47,7 @@ from transformers import (
default_data_collator,
get_scheduler,
)
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from accelerate import Accelerator, DistributedType
@ -277,11 +277,13 @@ def main():
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
api = HfApi(token=args.hub_token)
# Create repo (repo_name from args or inferred)
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
repo_id = api.create_repo(repo_name, exist_ok=True).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
@ -661,8 +663,11 @@ def main():
)
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
repo.push_to_hub(
commit_message=f"Training in progress epoch {epoch}", blocking=False, auto_lfs_prune=True
api.upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message=f"Training in progress epoch {epoch}",
run_as_future=True,
)
if args.checkpointing_steps == "epoch":
@ -690,7 +695,11 @@ def main():
if accelerator.is_main_process:
tokenizer.save_pretrained(args.output_dir)
if args.push_to_hub:
repo.push_to_hub(commit_message="End of training", auto_lfs_prune=True)
api.upload_folder(
repo_id=repo_id,
folder_path=args.output_dir,
commit_message="End of training",
)
with open(os.path.join(args.output_dir, "all_results.json"), "w") as f:
json.dump({"perplexity": perplexity}, f)

View File

@ -0,0 +1,254 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import ProfileKwargs
########################################################################
# This is a fully working simple example to use Accelerate
# and perform profiling
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
MAX_GPU_BATCH_SIZE = 16
EVAL_BATCH_SIZE = 32
def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
"""
Creates a set of `DataLoader`s for the `glue` dataset,
using "bert-base-cased" as the tokenizer.
Args:
accelerator (`Accelerator`):
An `Accelerator` object
batch_size (`int`, *optional*):
The batch size for the train and validation DataLoaders.
"""
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
datasets = load_dataset("glue", "mrpc")
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
get_dataloaders = mocked_dataloaders # noqa: F811
def training_function(config, args):
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
config["num_epochs"] = 2
# New Code #
profile_kwargs = ProfileKwargs(
record_shapes=args.record_shapes,
profile_memory=args.profile_memory,
with_flops=args.with_flops,
output_trace_dir=args.output_trace_dir,
)
# Initialize accelerator
accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision, kwargs_handlers=[profile_kwargs])
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lr = config["lr"]
num_epochs = int(config["num_epochs"])
seed = int(config["seed"])
batch_size = int(config["batch_size"])
metric = evaluate.load("glue", "mrpc")
set_seed(seed)
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
model = model.to(accelerator.device)
# Instantiate optimizer
optimizer = AdamW(params=model.parameters(), lr=lr)
# Instantiate scheduler
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=(len(train_dataloader) * num_epochs),
)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Now we train the model
for epoch in range(num_epochs):
model.train()
# New Code #
with accelerator.profile() as prof:
for step, batch in enumerate(train_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
# We use the new `accumulate` context manager to perform gradient accumulation
with accelerator.accumulate(model):
output = model(**batch)
loss = output.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# New Code #
accelerator.print(
prof.key_averages().table(
sort_by="self_cpu_time_total" if args.cpu else "self_cuda_time_total", row_limit=-1
)
)
model.eval()
for step, batch in enumerate(eval_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:", eval_metric)
def main():
parser = argparse.ArgumentParser(description="Simple example of training script.")
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
# New Code #
parser.add_argument(
"--record_shapes",
action="store_true",
default=False,
help="If passed, will record shapes for profiling.",
)
# New Code #
parser.add_argument(
"--profile_memory",
action="store_true",
default=False,
help="If passed, will profile memory.",
)
# New Code #
parser.add_argument(
"--with_flops",
action="store_true",
default=False,
help="If passed, will profile flops.",
)
# New Code #
parser.add_argument(
"--output_trace_dir",
type=str,
default=None,
help="If passed, will save a json trace to the specified path.",
)
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
args = parser.parse_args()
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(config, args)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,225 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import is_schedulefree_available
if is_schedulefree_available():
import schedulefree
else:
raise ImportError(
"This example requires the `schedulefree` library. Please install it with `pip install schedulefree`"
)
########################################################################
# This is a fully working simple example to use Accelerate and Facebook's
# scheduler-free optimizer: https://github.com/facebookresearch/schedule_free/
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
MAX_GPU_BATCH_SIZE = 16
EVAL_BATCH_SIZE = 32
def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
"""
Creates a set of `DataLoader`s for the `glue` dataset,
using "bert-base-cased" as the tokenizer.
Args:
accelerator (`Accelerator`):
An `Accelerator` object
batch_size (`int`, *optional*):
The batch size for the train and validation DataLoaders.
"""
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
datasets = load_dataset("glue", "mrpc")
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
def collate_fn(examples):
# For Torchxla, it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.XLA else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"],
shuffle=False,
collate_fn=collate_fn,
batch_size=EVAL_BATCH_SIZE,
drop_last=(accelerator.mixed_precision == "fp8"),
)
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
get_dataloaders = mocked_dataloaders # noqa: F811
def training_function(config, args):
# Initialize accelerator
accelerator = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision)
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lr = config["lr"]
num_epochs = int(config["num_epochs"])
seed = int(config["seed"])
batch_size = int(config["batch_size"])
metric = evaluate.load("glue", "mrpc")
# If the batch size is too big we use gradient accumulation
gradient_accumulation_steps = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.XLA:
gradient_accumulation_steps = batch_size // MAX_GPU_BATCH_SIZE
batch_size = MAX_GPU_BATCH_SIZE
set_seed(seed)
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
model = model.to(accelerator.device)
# Instantiate optimizer with warmup steps
optimizer = schedulefree.AdamWScheduleFree(
model.parameters(),
lr=lr,
warmup_steps=100,
)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Now we train the model
for epoch in range(num_epochs):
model.train()
optimizer.train()
for step, batch in enumerate(train_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
outputs = model(**batch)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
if step % gradient_accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
model.eval()
optimizer.eval()
for step, batch in enumerate(eval_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=predictions,
references=references,
)
eval_metric = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:", eval_metric)
def main():
parser = argparse.ArgumentParser(description="Simple example of training script.")
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
args = parser.parse_args()
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(config, args)
if __name__ == "__main__":
main()

View File

@ -0,0 +1,25 @@
# Distributed inference examples
This folder contains a variety of tutorials for running distributed inference with the following strategy:
Load an entire model onto each GPU and sending chunks of a batch through each GPUs model copy at a time
## Installation
```bash
pip install accelerate torch
```
## Running code
You can either use `torchrun` or the recommended way of `accelerate launch` (without needing to run `accelerate config`) on each script:
```bash
accelerate launch --num_processes {NUM_GPUS} phi2.py
```
Or:
```bash
torchrun --nproc-per-node {NUM_GPUS} phi2.py
```

View File

@ -0,0 +1,86 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import PartialState
from accelerate.utils import gather_object
# Start up the distributed environment without needing the Accelerator.
distributed_state = PartialState()
# You can change the model to any LLM such as mistralai/Mistral-7B-v0.1 or meta-llama/Llama-2-7b-chat-hf
model_name = "microsoft/phi-2"
model = AutoModelForCausalLM.from_pretrained(
model_name, device_map=distributed_state.device, torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Need to set the padding token to the eos token for generation
tokenizer.pad_token = tokenizer.eos_token
prompts = [
"I would like to",
"hello how are you",
"what is going on",
"roses are red and",
"welcome to the hotel",
]
# You can change the batch size depending on your GPU RAM
batch_size = 2
# We set it to 8 since it is better for some hardware. More information here https://github.com/huggingface/tokenizers/issues/991
pad_to_multiple_of = 8
# Split into batches
# We will get the following results:
# [ ["I would like to", "hello how are you"], [ "what is going on", "roses are red and"], [ "welcome to the hotel"] ]
formatted_prompts = [prompts[i : i + batch_size] for i in range(0, len(prompts), batch_size)]
# Apply padding on the left since we are doing generation
padding_side_default = tokenizer.padding_side
tokenizer.padding_side = "left"
# Tokenize each batch
tokenized_prompts = [
tokenizer(formatted_prompt, padding=True, pad_to_multiple_of=pad_to_multiple_of, return_tensors="pt")
for formatted_prompt in formatted_prompts
]
# Put back the original padding behavior
tokenizer.padding_side = padding_side_default
completions_per_process = []
# We automatically split the batched data we passed to it across all the processes. We also set apply_padding=True
# so that the GPUs will have the same number of prompts, and you can then gather the results.
# For example, if we have 2 gpus, the distribution will be:
# GPU 0: ["I would like to", "hello how are you"], "what is going on", "roses are red and"]
# GPU 1: ["welcome to the hotel"], ["welcome to the hotel"] -> this prompt is duplicated to ensure that all gpus have the same number of prompts
with distributed_state.split_between_processes(tokenized_prompts, apply_padding=True) as batched_prompts:
for batch in batched_prompts:
# Move the batch to the device
batch = batch.to(distributed_state.device)
# We generate the text, decode it and add it to the list completions_per_process
outputs = model.generate(**batch, max_new_tokens=20)
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
completions_per_process.extend(generated_text)
# We are gathering string, so we need to use gather_object.
# If you need to gather tensors, you can use gather from accelerate.utils
completions_gather = gather_object(completions_per_process)
# Drop duplicates produced by apply_padding in split_between_processes
completions = completions_gather[: len(prompts)]
distributed_state.print(completions)

View File

@ -0,0 +1,30 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from diffusers import DiffusionPipeline
from accelerate import PartialState # Can also be Accelerator or AcceleratorState
pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
distributed_state = PartialState()
pipe.to(distributed_state.device)
# Assume two processes
# On the first GPU, the prompts will be ["a dog", "a cat"],
# and on the second GPU it will be ["a chicken", "a chicken"].
# Make sure to drop the final sample, as it will be a duplicate of the previous one.
with distributed_state.split_between_processes(["a dog", "a cat", "a chicken"], apply_padding=True) as prompt:
result = pipe(prompt).images

View File

@ -75,4 +75,4 @@ end_time = time.time()
if PartialState().is_last_process:
output = torch.stack(tuple(output[0]))
print(f"Time of first pass: {first_batch}")
print(f"Average time per batch: {(end_time - start_time)/5}")
print(f"Average time per batch: {(end_time - start_time) / 5}")

View File

@ -74,4 +74,4 @@ end_time = time.time()
if PartialState().is_last_process:
output = torch.stack(tuple(output[0]))
print(f"Time of first pass: {first_batch}")
print(f"Average time per batch: {(end_time - start_time)/5}")
print(f"Average time per batch: {(end_time - start_time) / 5}")

View File

@ -27,7 +27,7 @@ model.eval()
# Input configs
# Create example inputs for the model
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
prompts = ("I would like to", "I really like to", "The weather is") # bs = 3
prompts = ("I would like to", "I really like to", "The weather is pretty") # bs = 3
tokenizer.pad_token = tokenizer.eos_token
inputs = tokenizer(prompts, return_tensors="pt", padding=True)
@ -35,7 +35,7 @@ inputs = tokenizer(prompts, return_tensors="pt", padding=True)
# Using `auto` is equivalent to letting `device_map="auto"` figure
# out device mapping and will also split the model according to the
# number of total GPUs available if it fits on one GPU
model = prepare_pippy(model, split_points="auto", example_args=inputs)
model = prepare_pippy(model, split_points="auto", example_kwargs=inputs)
# You can pass `gather_output=True` to have the output from the model
# available on all GPUs
@ -43,7 +43,7 @@ model = prepare_pippy(model, split_points="auto", example_args=inputs)
# currently we don't support `model.generate`
# output = model.generate(**inputs, max_new_tokens=1)
inputs = inputs.to(0)
with torch.no_grad():
output = model(**inputs)

View File

@ -86,4 +86,4 @@ end_time = time.time()
if PartialState().is_last_process:
output = torch.stack(tuple(output[0]))
print(f"Time of first pass: {first_batch}")
print(f"Average time per batch: {(end_time - start_time)/5}")
print(f"Average time per batch: {(end_time - start_time) / 5}")

View File

@ -1,3 +1,16 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import runhouse as rh

View File

@ -1,3 +1,5 @@
accelerate # used to be installed in Amazon SageMaker environment
evaluate
datasets==2.3.2
datasets==2.3.2
schedulefree
huggingface_hub>=0.20.0

View File

@ -0,0 +1,65 @@
#!/bin/bash -l
#SBATCH --job-name=multicpu
#SBATCH --nodes=2 # number of Nodes
#SBATCH --ntasks-per-node=1 # number of MP tasks
#SBATCH --exclusive
#SBATCH --output=O-%x.%j
#SBATCH --error=E-%x.%j
######################
### Set enviroment ###
######################
source activateEnvironment.sh
######################
#### Set network #####
######################
head_node_ip=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
######################
# Setup env variables for distributed jobs
export MASTER_PORT="${MASTER_PORT:-29555 }"
echo "head_node_ip=${head_node_ip}"
echo "MASTER_PORT=${MASTER_PORT}"
INSTANCES_PER_NODE="${INSTANCES_PER_NODE:-1}"
if [[ $SLURM_NNODES == 1 ]] && [[ $INSTANCES_PER_NODE == 1 ]]; then
export CCL_WORKER_COUNT=0
LAUNCHER=""
else
# Setup env variables for distributed jobs
export CCL_WORKER_COUNT="${CCL_WORKER_COUNT:-2}"
echo "CCL_WORKER_COUNT=${CCL_WORKER_COUNT}"
# Write hostfile
HOSTFILE_PATH=hostfile
scontrol show hostname $SLURM_JOB_NODELIST | perl -ne 'chomb; print "$_"x1'> ${HOSTFILE_PATH}
export LAUNCHER="accelerate launch \
--num_processes $((SLURM_NNODES * ${INSTANCES_PER_NODE})) \
--num_machines $SLURM_NNODES \
--rdzv_backend c10d \
--main_process_ip $head_node_ip \
--main_process_port $MASTER_PORT \
--mpirun_hostfile $HOSTFILE_PATH \
--mpirun_ccl $CCL_WORKER_COUNT"
fi
# This step is necessary because accelerate launch does not handle multiline arguments properly
export ACCELERATE_DIR="${ACCELERATE_DIR:-/accelerate}"
export SCRIPT="${ACCELERATE_DIR}/examples/complete_nlp_example.py"
export SCRIPT_ARGS=" \
--cpu \
--output_dir ${ACCELERATE_DIR}/examples/output \
"
# This step is necessary because accelerate launch does not handle multiline arguments properly
export CMD="$LAUNCHER $SCRIPT $SCRIPT_ARGS"
# Print the command
echo $CMD
echo ""
# Run the command
eval $CMD

View File

@ -13,14 +13,15 @@
######################
### Set enviroment ###
######################
source activateEnviroment.sh
source activateEnvironment.sh
export GPUS_PER_NODE=4
######################
export SCRIPT=/accelerate/examples/complete_nlp_example.py
export ACCELERATE_DIR="${ACCELERATE_DIR:-/accelerate}"
export SCRIPT="${ACCELERATE_DIR}/examples/complete_nlp_example.py"
export SCRIPT_ARGS=" \
--mixed_precision fp16 \
--output_dir /accelerate/examples/output \
--output_dir ${ACCELERATE_DIR}/examples/output \
--with_tracking \
"

View File

@ -13,7 +13,7 @@
######################
### Set enviroment ###
######################
source activateEnviroment.sh
source activateEnvironment.sh
export GPUS_PER_NODE=4
######################
@ -30,10 +30,11 @@ export LAUNCHER="accelerate launch \
--main_process_ip $head_node_ip \
--main_process_port 29500 \
"
export SCRIPT="/accelerate/examples/complete_nlp_example.py"
export ACCELERATE_DIR="${ACCELERATE_DIR:-/accelerate}"
export SCRIPT="${ACCELERATE_DIR}/examples/complete_nlp_example.py"
export SCRIPT_ARGS=" \
--mixed_precision fp16 \
--output_dir /accelerate/examples/output \
--output_dir ${ACCELERATE_DIR}/examples/output \
"
# This step is necessary because accelerate launch does not handle multiline arguments properly

View File

@ -12,16 +12,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from accelerate.test_utils.testing import is_hub_online
from manim import *
class HooksModelTester(unittest.TestCase):
"Simple tester that checks if the Hub is online or not"
def test_hub_online(self):
self.assertTrue(
is_hub_online(),
"Hub is offline! This test will fail until the hub is back online. Relevent tests will be skipped.",
class Stage0(Scene):
def construct(self):
mascot = ImageMobject("mascot_bookie.png")
mascot.scale(.35)
mascot.move_to([-3.75,-1,0])
text = Paragraph(
"Distributed Training,\nHugging Face Accelerate,\nand PyTorch DataLoaders\n\nHow do they all interact?",
font_size=36,
line_spacing=1,
alignment="center",
weight=BOLD,
)
text.move_to([1.75,.5,0])
self.add(mascot)
self.add(text)

View File

@ -0,0 +1,31 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage01(Scene):
def construct(self):
mascot = ImageMobject("mascot_bookie.png")
mascot.scale(.35)
mascot.move_to([-3.75,-1,0])
text = Paragraph(
"Distributed Training,\nHugging Face Accelerate,\nand PyTorch DataLoaders\n\nHow do they all interact?",
font_size=36,
line_spacing=1,
alignment="center",
weight=BOLD,
)
text.move_to([1.75,.5,0])
self.add(mascot)
self.add(text)

View File

@ -0,0 +1,176 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage2(Scene):
def construct(self):
# The dataset items
fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
columns = [
VGroup(*[Rectangle(height=0.25,width=0.25,color="green") for i in range(8)]).arrange(RIGHT,buff=0)
for j in range(4)
]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text("Dataset", font_size=24)
dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2,0,0])
self.add(dataset)
code = Code(
code="dataloader = DataLoader(...)\nfor batch in dataloader():\n\t...",
tab_width=4,
background="window",
language="Python",
font="Monospace",
font_size=14,
corner_radius=.2,
insert_line_no=False,
line_spacing=.75,
style=Code.styles_list[1],
)
code.move_to([-3.5, 2.5, 0])
self.add(code)
# The dataloader itself
dataloader = Group(
Rectangle(color="red", height=2, width=2),
Text("DataLoader", font_size=24)
).arrange(DOWN, buff=.5, aligned_edge=DOWN)
sampler = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
dataloader.move_to([1, 0, 0])
sampler.move_to([.75,.25,0])
self.add(dataloader)
self.add(sampler)
gpu_1 = Group(
Rectangle(color="white", height=1, width=1),
Text("GPU 1", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, 2, 0])
gpu_2 = Group(
Rectangle(color="white", height=1, width=1),
Text("GPU 2", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, .5, 0])
gpu_3 = Group(
Rectangle(color="white", height=1, width=1),
Text("GPU 3", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, -1, 0])
gpu_4 = Group(
Rectangle(color="white", height=1, width=1),
Text("GPU 4", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
# Animate their existence
self.play(
Create(gpu_1[0], run_time=0.5),
Create(gpu_2[0], run_time=0.5),
Create(gpu_3[0], run_time=0.5),
Create(gpu_4[0], run_time=0.5),
Create(dataset_recs, run_time=1),
Create(sampler[0], run_time=1),
Create(dataloader[0], run_time=1)
)
step_1 = MarkupText(
f"Without any special care, \nthe same data is sent though each sampler, \nand the same samples are spit out on each GPU",
font_size=18
)
step_1.move_to([0, -2.5, 0])
self.play(
Write(step_1, run_time=4),
)
first_animations = []
second_animations = []
colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
current_color = colors[0]
buff = 0
lr_buff = .25
old_target = None
new_datasets = []
for i,data in enumerate(dataset_recs[-1]):
if i % 2 == 0:
# current_color = colors[i//2]
current_color = "BLUE_E"
dataset_target = Rectangle(height=0.46/2,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
dataset_target.move_to(data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if i % 2 == 0:
old_target = dataset_target.target
buff -= .25
aligned_edge = LEFT
dataset_target.target.next_to(
sampler, buff=buff, direction=UP,
aligned_edge=LEFT
)
else:
dataset_target.target.next_to(
old_target, direction=RIGHT, buff=0.01,
)
new_datasets.append(dataset_target)
first_animations.append(data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
self.play(*first_animations)
self.play(*second_animations)
self.wait()
move_animation = []
for j,gpu in enumerate(gpus):
buff = 0
for i,data in enumerate(new_datasets):
if i % 2 == 0:
current_color = colors[i//2]
if j != 3:
data = data.copy()
data.generate_target()
aligned_edge = ORIGIN
if i % 2 == 0:
old_target = data.target
buff -= .25
aligned_edge = LEFT
data.target.next_to(
gpu, buff=buff, direction=UP,
aligned_edge=LEFT
)
else:
data.target.next_to(
old_target, direction=RIGHT, buff=0.01,
)
move_animation.append(MoveToTarget(data, run_time=1.5))
self.play(*move_animation)
self.remove(step_1)
step_2 = MarkupText(
f"This behavior is undesireable, because we want\neach GPU to see different data for efficient training.",
font_size=18
)
step_2.move_to([0, -2.5, 0])
self.play(
Write(step_2, run_time=2.5),
)
self.wait()

View File

@ -0,0 +1,34 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage3(Scene):
def construct(self):
step_1 = MarkupText(
f"To combat this, Accelerate employs one of two different\nSampler wrapper methods depending on the scenario:",
font_size=24
)
step_1.move_to([0, 1.5, 0])
self.add(step_1)
step_2 = MarkupText(
f"1. Sharding the dataset before drawing:\n\t● <span fgcolor='{RED}'>IterableDatasetShard</span>\n\t● <span fgcolor='{RED}'>BatchSamplerShard</span>",
font_size=24,
).next_to(step_1, direction=DOWN, aligned_edge=LEFT)
self.add(step_2)
step_3 = MarkupText(
f"\n\n2. Splitting the batch after drawing:\n\t● <span fgcolor='{BLUE}'>DataLoaderDispatcher</span>",
font_size=24,
).next_to(step_2, direction=DOWN, aligned_edge=LEFT)
self.add(step_3)

View File

@ -0,0 +1,52 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage4(Scene):
def construct(self):
step_1 = MarkupText(
f"To understand the next part fully, let's define two terms,\n<span fgcolor='{RED}'>`batch_size`</span> and <span fgcolor='{BLUE}'>`global_batch_size`</span>:",
font_size=18
)
step_1.move_to([0, 1.5, 0])
# <span fgcolor='{YELLOW}'>●</span>
step_2 = MarkupText(
f"\n\n● <span fgcolor='{RED}'>`batch_size`</span>: \n\tThis will be defined as the batch size seen on a given\n\t*individual* GPU",
font_size=18,
).next_to(step_1, direction=DOWN, aligned_edge=LEFT)
step_3 = MarkupText(
f"\n\n● <span fgcolor='{BLUE}'>`global_batch_size`</span>:\n\tThis will be defined as the *total* number of\n\tdifferent items seen in the dataset, across all GPUs",
font_size=18,
).next_to(step_2, direction=DOWN, aligned_edge=LEFT)
step_4 = MarkupText(
f"\n\nSo if we have a dataset of 64 items, 8 GPUs, \nand a `batch_size` of 8, each *step* will go through\nthe entire dataset one time as 8*8=64",
font_size=18,
).next_to(step_3, direction=DOWN, aligned_edge=LEFT)
self.play(
Write(step_1, run_time=4),
)
self.play(
Write(step_2, run_time=4)
)
self.play(
Write(step_3, run_time=4)
)
self.play(
Write(step_4, run_time=6)
)
self.wait()

View File

@ -0,0 +1,203 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage5(Scene):
def construct(self):
# The dataset items
colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
columns = [
VGroup(*[Rectangle(height=0.25,width=0.25,color=colors[j]) for i in range(8)]).arrange(RIGHT,buff=0)
for j in range(4)
]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text("Dataset", font_size=24)
dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2,0,0])
self.add(dataset)
code = Code(
code="# We enable this by default\naccelerator = Accelerator()\ndataloader = DataLoader(...)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...",
tab_width=4,
background="window",
language="Python",
font="Monospace",
font_size=14,
corner_radius=.2,
insert_line_no=False,
line_spacing=.75,
style=Code.styles_list[1],
)
code.move_to([-3.5, 2.5, 0])
self.add(code)
# The dataloader itself
sampler_1 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 1", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_2 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 2", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_3 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 3", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_4 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 4", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_1.move_to([2,2,0])
sampler_2.move_to([2,.5,0])
sampler_3.move_to([2,-1.,0])
sampler_4.move_to([2,-2.5,0])
self.add(sampler_1, sampler_2, sampler_3, sampler_4)
samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
gpu_1 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 1", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
gpu_2 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 2", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, .5, 0])
gpu_3 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 3", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
gpu_4 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 4", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
# Animate their existence
self.play(
Create(gpu_1[0], run_time=1),
Create(gpu_2[0], run_time=1),
Create(gpu_3[0], run_time=1),
Create(gpu_4[0], run_time=1),
Create(dataset_recs, run_time=1),
Create(sampler_1[0], run_time=1),
Create(sampler_2[0], run_time=1),
Create(sampler_3[0], run_time=1),
Create(sampler_4[0], run_time=1),
)
first_animations = []
second_animations = []
colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
current_color = colors[0]
buff = 0
lr_buff = .25
old_target = None
new_datasets = []
for i,row_data in enumerate(dataset_recs):
new_row = []
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for j,indiv_data in enumerate(row_data):
dataset_target = Rectangle(height=0.46/2,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
dataset_target.move_to(indiv_data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
dataset_target.target.next_to(
samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
dataset_target.target.set_x(dataset_target.target.get_x())
elif j % 4 == 0:
old_target = dataset_target.target
dataset_target.target.next_to(
samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y()-.25)
else:
dataset_target.target.next_to(
old_target, direction=RIGHT, buff=0.02,
)
old_target = dataset_target.target
new_row.append(dataset_target)
first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
new_datasets.append(new_row)
step_1 = MarkupText(
f"Since we splice the dataset between each GPU,\nthe models weights can be averaged during `backward()`\nActing as though we did one giant epoch\nvery quickly.",
font_size=18
)
step_1.move_to([-2.5, -2, 0])
self.play(
Write(step_1, run_time=3),
)
self.play(
*first_animations,
)
self.play(*second_animations)
self.wait(duration=.5)
move_animation = []
import random
for i,row in enumerate(new_datasets):
# row = [row[k] for k in random.sample(range(8), 8)]
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for j,indiv_data in enumerate(row):
indiv_data.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
indiv_data.target.next_to(
gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
indiv_data.target.set_x(indiv_data.target.get_x())
elif j % 4 == 0:
indiv_data.target.next_to(
gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
indiv_data.target.set_x(indiv_data.target.get_x())
indiv_data.target.set_y(indiv_data.target.get_y()-.25)
else:
indiv_data.target.next_to(
old_target, direction=RIGHT, buff=0.02,
)
old_target = indiv_data.target
move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
self.play(*move_animation)
self.wait()

View File

@ -0,0 +1,193 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage6(Scene):
def construct(self):
# The dataset items
colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
columns = [
VGroup(*[Rectangle(height=0.25,width=0.25,color=colors[j]) for i in range(8)]).arrange(RIGHT,buff=0)
for j in range(4)
]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text("Dataset", font_size=24)
dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2,0,0])
self.add(dataset)
code = Code(
code="# We enable this by default\naccelerator = Accelerator()\ndataloader = DataLoader(..., shuffle=True)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...",
tab_width=4,
background="window",
language="Python",
font="Monospace",
font_size=14,
corner_radius=.2,
insert_line_no=False,
line_spacing=.75,
style=Code.styles_list[1],
)
code.move_to([-3.5, 2.5, 0])
self.add(code)
# The dataloader itself
sampler_1 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 1", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_2 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 2", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_3 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 3", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_4 = Group(
Rectangle(color="blue", height=1, width=1),
Text("Sampler GPU 4", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_1.move_to([2,2,0])
sampler_2.move_to([2,.5,0])
sampler_3.move_to([2,-1.,0])
sampler_4.move_to([2,-2.5,0])
self.add(sampler_1, sampler_2, sampler_3, sampler_4)
samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
gpu_1 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 1", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
gpu_2 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 2", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, .5, 0])
gpu_3 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 3", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
gpu_4 = Group(
Rectangle(color="white", height=1, width=1),
Text("Output GPU 4", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
first_animations = []
second_animations = []
colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
current_color = colors[0]
buff = 0
lr_buff = .25
old_target = None
new_datasets = []
for i,row_data in enumerate(dataset_recs):
new_row = []
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for j,indiv_data in enumerate(row_data):
dataset_target = Rectangle(height=0.46/2,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
dataset_target.move_to(indiv_data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
old_target = dataset_target.target
dataset_target.target.next_to(
samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
dataset_target.target.set_x(dataset_target.target.get_x())
elif j % 4 == 0:
old_target = dataset_target.target
dataset_target.target.next_to(
samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y()-.25)
else:
dataset_target.target.next_to(
old_target, direction=RIGHT, buff=0.02,
)
old_target = dataset_target.target
new_row.append(dataset_target)
first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
new_datasets.append(new_row)
step_1 = MarkupText(
f"During shuffling, each mini-batch's\noutput order will be modified",
font_size=18
)
step_1.move_to([-1.5, -2, 0])
self.play(
Write(step_1, run_time=3),
)
self.play(
*first_animations,
)
self.play(*second_animations)
self.wait(duration=.5)
move_animation = []
import random
for i,row in enumerate(new_datasets):
row = [row[k] for k in random.sample(range(8), 8)]
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for j,indiv_data in enumerate(row):
indiv_data.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
indiv_data.target.next_to(
gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
indiv_data.target.set_x(indiv_data.target.get_x())
elif j % 4 == 0:
indiv_data.target.next_to(
gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
)
indiv_data.target.set_x(indiv_data.target.get_x())
indiv_data.target.set_y(indiv_data.target.get_y()-.25)
else:
indiv_data.target.next_to(
old_target, direction=RIGHT, buff=0.02,
)
old_target = indiv_data.target
move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
self.play(*move_animation)
self.wait()

View File

@ -0,0 +1,182 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from manim import *
class Stage7(Scene):
def construct(self):
# The dataset items
code = Code(
code="accelerator = Accelerator(dispatch_batches=True)\ndataloader = DataLoader(...)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...",
tab_width=4,
background="window",
language="Python",
font="Monospace",
font_size=14,
corner_radius=.2,
insert_line_no=False,
line_spacing=.75,
style=Code.styles_list[1],
)
code.move_to([-3.5, 2.5, 0])
self.add(code)
colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
columns = [
VGroup(*[Rectangle(height=0.25,width=0.25,color=colors[j]) for i in range(8)]).arrange(RIGHT,buff=0)
for j in range(4)
]
dataset_recs = VGroup(*columns).arrange(UP, buff=0)
dataset_text = Text("Dataset", font_size=24)
dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
dataset.move_to([-2,0,0])
self.add(dataset)
# The dataloader itself
sampler_1 = Group(
Rectangle(color="blue", height=1.02, width=1.02),
Text("Sampler GPU 1", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_2 = Group(
Rectangle(color="blue", height=1.02, width=1.02),
Text("Sampler GPU 2", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_3 = Group(
Rectangle(color="blue", height=1.02, width=1.02),
Text("Sampler GPU 3", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_4 = Group(
Rectangle(color="blue", height=1.02, width=1.02),
Text("Sampler GPU 4", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN)
sampler_1.move_to([2,2,0])
sampler_2.move_to([2,.5,0])
sampler_3.move_to([2,-1.,0])
sampler_4.move_to([2,-2.5,0])
self.add(sampler_1, sampler_2, sampler_3, sampler_4)
samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
gpu_1 = Group(
Rectangle(color="white", height=1.02, width=.98),
Text("Output GPU 1", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
gpu_2 = Group(
Rectangle(color="white", height=1.02, width=.98),
Text("Output GPU 2", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, .5, 0])
gpu_3 = Group(
Rectangle(color="white", height=1.02, width=.98),
Text("Output GPU 3", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
gpu_4 = Group(
Rectangle(color="white", height=1.02, width=.98),
Text("Output GPU 4", font_size=12)
).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
self.add(gpu_1, gpu_2, gpu_3, gpu_4)
step_1 = MarkupText(
f"When using a `DataLoaderDispatcher`, all\nof the samples are collected from GPU 0's dataset,\nthen divided and sent to each GPU.\nAs a result, this will be slower.",
font_size=18
)
step_1.move_to([-2.5, -2, 0])
self.play(
Write(step_1, run_time=3.5),
)
first_animations = []
second_animations = []
colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
current_color = colors[0]
ud_buff = 0.01
lr_buff = 0.01
old_target = None
new_datasets = []
for i,row_data in enumerate(dataset_recs):
new_row = []
current_color = colors[i]
for j,indiv_data in enumerate(row_data):
dataset_target = Rectangle(height=0.46/4,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
dataset_target.move_to(indiv_data)
dataset_target.generate_target()
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
dataset_target.target.next_to(
samplers[0].get_corner(DOWN+LEFT), buff=0.0125, direction=RIGHT+UP,
)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y() + (.25 * i))
elif j % 4 == 0:
old_target = dataset_target.target
dataset_target.target.next_to(
samplers[0].get_corner(DOWN+LEFT), buff=0.0125, direction=RIGHT+UP,
)
dataset_target.target.set_x(dataset_target.target.get_x())
dataset_target.target.set_y(dataset_target.target.get_y()+.125 + (.25 * i))
else:
dataset_target.target.next_to(
old_target, direction=RIGHT, buff=0.0125,
)
old_target = dataset_target.target
new_row.append(dataset_target)
first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
new_datasets.append(new_row)
self.play(
*first_animations,
)
self.play(*second_animations)
move_animation = []
for i,row in enumerate(new_datasets):
current_color = colors[i]
if i == 0:
idx = -3
elif i == 1:
idx = -2
elif i == 2:
idx = -1
elif i == 3:
idx = 0
for j,indiv_data in enumerate(row):
indiv_data.generate_target()
indiv_data.animate.stretch_to_fit_height(0.46/2)
aligned_edge = ORIGIN
if j % 8 == 0:
aligned_edge = LEFT
indiv_data.target.next_to(
gpus[abs(idx)].get_corner(UP+LEFT), buff=.01, direction=RIGHT+DOWN,
)
indiv_data.target.set_x(indiv_data.target.get_x())
indiv_data.target.set_y(indiv_data.target.get_y()-.25)
elif j % 4 == 0:
indiv_data.target.next_to(
gpus[abs(idx)].get_corner(UP+LEFT), buff=.01, direction=RIGHT+DOWN,
)
indiv_data.target.set_x(indiv_data.target.get_x())
else:
indiv_data.target.next_to(
old_target, direction=RIGHT, buff=0.01,
)
old_target = indiv_data.target
move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
self.play(*move_animation)
self.wait()

View File

@ -3,10 +3,12 @@ line-length = 119
target-version = "py38"
[tool.ruff.lint]
preview = true
ignore-init-module-imports = true
extend-select = [
"B009", # static getattr
"B010", # static setattr
"CPY", # Copyright
"E", # PEP8 errors
"F", # PEP8 formatting
"I", # Import sorting

View File

@ -25,17 +25,18 @@ extras["docs"] = []
extras["test_prod"] = ["pytest>=7.2.0,<=8.0.0", "pytest-xdist", "pytest-subtests", "parameterized"]
extras["test_dev"] = [
"datasets",
"diffusers",
"evaluate",
"torchpippy>=0.2.0",
"transformers",
"scipy",
"scikit-learn",
"deepspeed<0.13.0",
"tqdm",
"bitsandbytes",
"timm",
]
extras["testing"] = extras["test_prod"] + extras["test_dev"]
extras["deepspeed"] = ["deepspeed<=0.14.0"]
extras["rich"] = ["rich"]
extras["test_trackers"] = ["wandb", "comet-ml", "tensorboard", "dvclive"]
@ -47,14 +48,14 @@ extras["sagemaker"] = [
setup(
name="accelerate",
version="0.28.0.dev",
version="0.33.0",
description="Accelerate",
long_description=open("README.md", encoding="utf-8").read(),
long_description_content_type="text/markdown",
keywords="deep learning",
license="Apache",
author="The HuggingFace team",
author_email="sylvain@huggingface.co",
author_email="zach.mueller@huggingface.co",
url="https://github.com/huggingface/accelerate",
package_dir={"": "src"},
packages=find_packages("src"),
@ -64,16 +65,17 @@ setup(
"accelerate-config=accelerate.commands.config:main",
"accelerate-estimate-memory=accelerate.commands.estimate:main",
"accelerate-launch=accelerate.commands.launch:main",
"accelerate-merge-weights=accelerate.commands.merge:main",
]
},
python_requires=">=3.8.0",
install_requires=[
"numpy>=1.17",
"numpy>=1.17,<2.0.0",
"packaging>=20.0",
"psutil",
"pyyaml",
"torch>=1.10.0",
"huggingface_hub",
"huggingface_hub>=0.21.0",
"safetensors>=0.3.1",
],
extras_require=extras,

View File

@ -1,4 +1,17 @@
__version__ = "0.28.0.dev0"
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__version__ = "0.33.0"
from .accelerator import Accelerator
from .big_modeling import (
@ -17,12 +30,14 @@ from .state import PartialState
from .utils import (
AutocastKwargs,
DataLoaderConfiguration,
DDPCommunicationHookType,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
ProfileKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,

View File

@ -31,6 +31,7 @@ from typing import Any, Callable, Union
import torch
import torch.utils.hooks as hooks
from huggingface_hub import split_torch_state_dict_into_shards
from .checkpointing import load_accelerator_state, load_custom_state, save_accelerator_state, save_custom_state
from .data_loader import DataLoaderDispatcher, prepare_data_loader, skip_first_batches
@ -44,8 +45,10 @@ from .utils import (
MODEL_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_PATTERN_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
WEIGHTS_PATTERN_NAME,
AutocastKwargs,
DataLoaderConfiguration,
DeepSpeedPlugin,
@ -61,6 +64,7 @@ from .utils import (
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProfileKwargs,
ProjectConfiguration,
RNGType,
TorchDynamoPlugin,
@ -77,10 +81,12 @@ from .utils import (
has_transformer_engine_layers,
is_bf16_available,
is_deepspeed_available,
is_fp8_available,
is_ipex_available,
is_lomo_available,
is_megatron_lm_available,
is_mlu_available,
is_msamp_available,
is_musa_available,
is_npu_available,
is_torch_version,
is_torch_xla_available,
@ -95,10 +101,9 @@ from .utils import (
save,
save_fsdp_model,
save_fsdp_optimizer,
shard_checkpoint,
wait_for_everyone,
)
from .utils.constants import FSDP_PYTORCH_VERSION
from .utils.constants import FSDP_PYTORCH_VERSION, PROFILE_PATTERN_NAME
from .utils.modeling import get_state_dict_offloaded_model
from .utils.other import is_compiled_module
@ -112,11 +117,6 @@ if is_deepspeed_available():
DummyScheduler,
)
if is_fp8_available():
import transformer_engine.common.recipe as te_recipe
from transformer_engine.pytorch import fp8_autocast
if is_megatron_lm_available():
from .utils import (
MegatronEngine,
@ -126,9 +126,7 @@ if is_megatron_lm_available():
MegatronLMSchedulerWrapper,
megatron_lm_initialize,
megatron_lm_prepare_data_loader,
megatron_lm_prepare_model,
megatron_lm_prepare_optimizer,
megatron_lm_prepare_scheduler,
megatron_lm_prepare_model_optimizer_scheduler,
)
from torch.distributed.algorithms.join import Join
@ -214,12 +212,12 @@ class Accelerator:
project_dir (`str`, `os.PathLike`, *optional*):
A path to a directory for storing data such as logs of locally-compatible loggers and potentially saved
checkpoints.
step_scheduler_with_optimizer (`bool`, *optional`, defaults to `True`):
step_scheduler_with_optimizer (`bool`, *optional*, defaults to `True`):
Set `True` if the learning rate scheduler is stepped at the same time as the optimizer, `False` if only
done under certain circumstances (at the end of each epoch, for instance).
kwargs_handlers (list of [`~utils.KwargsHandler`], *optional*)
A list of [`~utils.KwargsHandler`] to customize how the objects related to distributed training or mixed
precision are created. See [kwargs](kwargs) for more information.
A list of [`~utils.KwargsHandler`] to customize how the objects related to distributed training, profiling
or mixed precision are created. See [kwargs](kwargs) for more information.
dynamo_backend (`str` or [`~utils.DynamoBackend`], *optional*, defaults to `"no"`):
Set to one of the possible dynamo backends to optimize your training with torch dynamo.
gradient_accumulation_plugin ([`~utils.GradientAccumulationPlugin`], *optional*):
@ -293,7 +291,13 @@ class Accelerator:
if deepspeed_plugin:
if not is_deepspeed_available():
raise ImportError("DeepSpeed is not installed => run `pip install deepspeed` or build it from source.")
if compare_versions("deepspeed", "<", "0.9.3"):
if is_mlu_available():
if compare_versions("deepspeed-mlu", "<", "0.10.1"):
raise ImportError("DeepSpeed MLU version must be >= 0.10.1. Please update DeepSpeed MLU.")
elif is_musa_available():
if compare_versions("deepspeed", ">", "0.14.3"):
raise ImportError("DeepSpeed MUSA version must be <= 0.14.3. Please downgrade DeepSpeed.")
elif compare_versions("deepspeed", "<", "0.9.3"):
raise ImportError("DeepSpeed version must be >= 0.9.3. Please update DeepSpeed.")
mixed_precision = (
@ -336,6 +340,9 @@ class Accelerator:
self.init_handler = None
self.fp8_recipe_handler = None
self.autocast_handler = None
self.profile_handler = None
self.has_lomo_optimizer = False
if kwargs_handlers is not None:
for handler in kwargs_handlers:
assert isinstance(
@ -366,6 +373,11 @@ class Accelerator:
raise ValueError("You can only pass one `AutocastKwargs` in `kwargs_handler`.")
else:
self.autocast_handler = handler
elif isinstance(handler, ProfileKwargs):
if self.profile_handler is not None:
raise ValueError("You can only pass one `ProfileKwargs` in `kwargs_handler`.")
else:
self.profile_handler = handler
kwargs = self.init_handler.to_kwargs() if self.init_handler is not None else {}
self.state = AcceleratorState(
@ -379,8 +391,15 @@ class Accelerator:
**kwargs,
)
if self.fp8_recipe_handler is None and self.state.mixed_precision == "fp8":
self.fp8_recipe_handler = FP8RecipeKwargs(backend="MSAMP" if is_msamp_available() else "TE")
self.delayed_fp8_autocast = False
if self.fp8_recipe_handler is not None:
# We already check if FP8 is available during `self.state`
if self.state.mixed_precision != "fp8":
raise ValueError("Passing in a `FP8RecipeKwargs` object requires setting `mixed_precision='fp8'`.")
self.delayed_fp8_autocast = self.fp8_recipe_handler.backend == "TE" and self.distributed_type in (
DistributedType.MULTI_GPU,
DistributedType.FSDP,
)
trackers = filter_trackers(log_with, self.logging_dir)
if len(trackers) < 1 and log_with is not None:
@ -446,7 +465,7 @@ class Accelerator:
and self.distributed_type not in (DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM)
):
self.native_amp = True
if self.device.type not in ("xpu", "cuda", "mps", "npu", "xla") or is_torch_xla_available(
if self.device.type not in ("xpu", "cuda", "npu", "xla", "mlu", "musa") or is_torch_xla_available(
check_is_tpu=True
):
raise ValueError(f"fp16 mixed precision requires a GPU (not {self.device.type!r}).")
@ -457,8 +476,14 @@ class Accelerator:
self.scaler = ShardedGradScaler(**kwargs)
elif is_torch_xla_available(check_is_gpu=True):
self.scaler = xamp.GradScaler(**kwargs)
elif is_mlu_available():
self.scaler = torch.mlu.amp.GradScaler(**kwargs)
elif is_musa_available():
self.scalar = torch.musa.amp.GradScaler(**kwargs)
elif is_npu_available():
self.scaler = torch.npu.amp.GradScaler(**kwargs)
elif is_xpu_available():
self.scaler = torch.amp.GradScaler("xpu", **kwargs)
else:
self.scaler = torch.cuda.amp.GradScaler(**kwargs)
@ -473,6 +498,10 @@ class Accelerator:
if mixed_precision == "bf16" and not self.native_amp and not is_torch_xla_available():
raise ValueError("bf16 mixed precision requires PyTorch >= 1.10 and a supported device.")
elif self.state.mixed_precision == "fp8":
# We always enable `native_amp` for FP8
self.native_amp = True
# Start of internal step tracking
self.step = 0
@ -544,6 +573,10 @@ class Accelerator:
def use_seedable_sampler(self):
return self.dataloader_config.use_seedable_sampler
@property
def non_blocking(self):
return self.dataloader_config.non_blocking
@property
def project_dir(self):
return self.project_configuration.project_dir
@ -1026,9 +1059,20 @@ class Accelerator:
```
"""
self._do_sync()
allow_gradient_sync = (
self.sync_gradients # must sync if sync gradients need to complete an optimizer step
or (
# the no_sync context stops the gradients from reducing during distributed training
# bringing speedup (potentially at some costs). Here, no_sync can be prevented
# by setting sync_each_batch = True.
self.use_distributed # only relevant in distributed settings
and self.gradient_state.plugin_kwargs.get("sync_each_batch", False)
)
)
with contextlib.ExitStack() as cm_stack:
for m in models:
cm_stack.enter_context(contextlib.nullcontext() if self.sync_gradients else self.no_sync(m))
cm_stack.enter_context(contextlib.nullcontext() if allow_gradient_sync else self.no_sync(m))
yield
@contextmanager
@ -1076,7 +1120,13 @@ class Accelerator:
... optimizer.zero_grad()
```
"""
if self.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU):
if self.distributed_type in (
DistributedType.MULTI_GPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_XPU,
):
dl_even_batches_values = []
if even_batches is not None:
@ -1246,9 +1296,9 @@ class Accelerator:
if self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_XPU, DistributedType.NO]:
if self.device.type == "cpu" and self.state.use_ipex:
args = self._prepare_ipex(*args)
args = self._prepare_ipex_or_xpu(*args)
elif self.device.type == "xpu" and is_xpu_available():
args = self._prepare_ipex(*args)
args = self._prepare_ipex_or_xpu(*args)
if self.distributed_type == DistributedType.DEEPSPEED:
result = self._prepare_deepspeed(*args)
elif self.distributed_type == DistributedType.MEGATRON_LM:
@ -1332,18 +1382,26 @@ class Accelerator:
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
else:
model.forward = convert_outputs_to_fp32(new_forward)
elif self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE":
# We prepare fp8 after, allowing for bf16 autocast to happen first
if getattr(self.fp8_recipe_handler, "backend", None) == "TE":
# Import here to keep base imports fast
import transformer_engine.common.recipe as te_recipe
from transformer_engine.pytorch import fp8_autocast
if not has_transformer_engine_layers(model):
with torch.no_grad():
convert_model(model)
model._converted_to_transformer_engine = True
model._original_forward = model.forward
kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {}
if "fp8_format" in kwargs:
kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"])
fp8_recipe = te_recipe.DelayedScaling(**kwargs)
model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)(model.forward)
# If we are in DDP or FSDP, we delay `autocast` until after FSDP/DDP has been initialized
# to make use of the process group
if not self.delayed_fp8_autocast:
model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)(model.forward)
if (getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)) and getattr(
model, "hf_device_map", False
@ -1355,16 +1413,19 @@ class Accelerator:
" In order to use 8-bit models that have been loaded across multiple GPUs the solution is to use Naive Pipeline Parallelism."
" Therefore you should not specify that you are under any distributed regime in your accelerate config."
)
current_device = list(model_devices)[0]
current_device_index = current_device.index if isinstance(current_device, torch.device) else current_device
elif len(model_devices) == 1:
current_device = list(model_devices)[0]
current_device_index = (
current_device.index if isinstance(current_device, torch.device) else current_device
)
if torch.device(current_device_index) != self.device:
# if on the first device (GPU 0) we don't care
if (self.device.index is not None) or (current_device_index != 0):
raise ValueError(
"You can't train a model that has been loaded in 8-bit precision on a different device than the one "
"you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device() or device_map={'':torch.xpu.current_device()}"
)
if torch.device(current_device_index) != self.device:
# if on the first device (GPU 0) we don't care
if (self.device.index is not None) or (current_device_index != 0):
raise ValueError(
"You can't train a model that has been loaded in 8-bit precision on a different device than the one "
"you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}` or `device_map={'':torch.xpu.current_device()}`"
)
if "cpu" in model_devices or "disk" in model_devices:
raise ValueError(
@ -1375,6 +1436,8 @@ class Accelerator:
if not evaluation_mode:
if self.distributed_type in (
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
):
@ -1389,6 +1452,8 @@ class Accelerator:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=device_ids, output_device=output_device, **kwargs
)
if self.ddp_handler is not None:
self.ddp_handler.register_comm_hook(model)
elif self.distributed_type == DistributedType.FSDP:
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
@ -1433,6 +1498,73 @@ class Accelerator:
),
auto_wrap_policy=fsdp_plugin.auto_wrap_policy,
)
# In the event the model had been loaded in low precision, but
# mixed precision had also been activated, then we follow DeepSpeed's
# strategy to hold the parameters in full precision.
# - assume that trainer.args.bf16 and trainer.args.fp16 are already checked against
# fsdp_plugin.mixed_precision_policy.
# - NOTE: we do not check the mixed_precision attribute on the FSDP root wrapper.
# * this attribute will always set by init_utils.init_core_state so its always not None.
# * mixed_precision.param_dtype only regards _fwd_bwd_param_dtype
# * if model is loaded in 16bit, and even if mixed_precision.param_dtype is None,
# we sill want to upcast the flat_param.
if self.mixed_precision != "no": # if mixed precision is set
upcasted_log = []
for module in FSDP.fsdp_modules(model):
# Referencing DeepSpeed Zero3
# - in Init, params are converted to 16bit while partitioning.
# - in accelerator.prepare, deepspeed.initalize is called to:
# * creates the DeepSpeeedEngine.
# * since zero_optimization() is True , calls engine._configure_zero_optimizer.
#
# Inside the DeepSpeed Zero3 optimizer configuration, which initalizes
# DeepSpeedZeroOptimizer_Stage3, during which:
# * trainable_param_groups are obtained from the attached optimizer
# (already partitioned in 16bit).
# * then _setup_for_real_optimizer -> _create_fp32_partitions
# which performs the fp32 upcasting.
# To mimick DeepSeepds's casting in FSDP, we look at the (single) FlatParameter held
# within an FSDP wrapper. This FlatParameter will be seen by the optimizer.
# - even though there is a torch.device('meta') guard below, we
# expect _init_utils._init_param_handle_from_module to already
# sync the parameter.
if not module._has_params:
continue # skip if FSDP module not managing parameters
param = module._flat_param
if (
param.dtype != torch.float32
and param.device != torch.device("meta")
and param.requires_grad
):
# keep log of names_params that was upcasted
# NOTE: resorted to this because warnings.simplefilter("once") is somehow not working
name_param_log = (module.module.__class__.__name__, ", ".join(module._flat_param._fqns))
if name_param_log not in upcasted_log:
upcasted_log.append(name_param_log)
# this works because of FSDP's _runtime_utils.lazy_init.
# Have to be careful not to call anything before this that
# triggers lazy_init (e.g., _is_fsdp_root).
param.data = param.data.to(torch.float32) # upcasting
module._handle._orig_param_dtype = torch.float32 # update
# report the warnings
# some messages can be quite repetitive, especially when reporting about layers that have identical architecture.
if self.is_main_process:
for name_log, param_log in upcasted_log:
warnings.warn(
f"Upcasted low precision parameters in {name_log} because mixed precision turned on in FSDP. "
f"Affects: {param_log}."
)
if len(upcasted_log) > 0:
warnings.warn(
"FSDP upcast of low precision parameters may affect the precision of model checkpoints."
)
# if the previous and current models are same, delete the previous one
if len(self._models) > 1 and (self._models[-2] is self._models[-1]):
del self._models[-2]
@ -1440,8 +1572,15 @@ class Accelerator:
elif self.distributed_type == DistributedType.MULTI_CPU:
kwargs = self.ddp_handler.to_kwargs() if self.ddp_handler is not None else {}
model = torch.nn.parallel.DistributedDataParallel(model, **kwargs)
if self.ddp_handler is not None:
self.ddp_handler.register_comm_hook(model)
elif self.distributed_type == DistributedType.XLA and self.state.fork_launched:
model = xmp.MpModelWrapper(model).to(self.device)
# Now we can apply the FP8 autocast
if self.delayed_fp8_autocast:
model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe, fp8_group=model.process_group)(
model.forward
)
# torch.compile should be called last and only if the model isn't already compiled.
if self.state.dynamo_plugin.backend != DynamoBackend.NO and not is_compiled_module(model):
if not is_torch_version(">=", "2.0"):
@ -1557,6 +1696,8 @@ class Accelerator:
)
if model is not None:
# if the model is an MOE, set the appropriate MOE layers as leaf Z3 modules
deepspeed_plugin.set_moe_leaf_modules(model)
# deal with config keys that use `auto` value and rely on model's hidden_size
hidden_size_based_keys = [
"zero_optimization.reduce_bucket_size",
@ -1586,7 +1727,7 @@ class Accelerator:
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": int(0.9 * hidden_size * hidden_size),
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
}
)
@ -1673,6 +1814,7 @@ class Accelerator:
def _prepare_megatron_lm(self, *args):
megatron_lm_plugin = self.state.megatron_lm_plugin
micro_batch_size = None
if not megatron_lm_plugin.megatron_dataset_flag:
batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")]
if len(batch_sizes) == 0:
@ -1691,19 +1833,22 @@ class Accelerator:
if isinstance(obj, MegatronLMDummyDataLoader):
micro_batch_size = obj.dataset_args["micro_batch_size"]
break
dp_degree = self.num_processes // (megatron_lm_plugin.tp_degree * megatron_lm_plugin.pp_degree)
megatron_lm_plugin.set_training_args(micro_batch_size, dp_degree)
if micro_batch_size is not None:
dp_degree = self.num_processes // (megatron_lm_plugin.tp_degree * megatron_lm_plugin.pp_degree)
megatron_lm_plugin.set_training_args(micro_batch_size, dp_degree)
else:
raise ValueError(
"When you do not pass the dataloader parameter, the `data_parallel_size`, "
"`micro_batch_size`, and `global_batch_size` megatron parameters will not be updated."
)
model = None
optimizer = None
scheduler = None
is_dummy_scheduler = False
batch_data = None
for obj in args:
if isinstance(obj, torch.utils.data.DataLoader) and batch_data is None:
batch_data = next(iter(obj))
if isinstance(obj, torch.nn.Module):
elif isinstance(obj, torch.nn.Module):
model = obj
elif isinstance(obj, (torch.optim.Optimizer)):
optimizer = obj
@ -1715,8 +1860,7 @@ class Accelerator:
if optimizer is not None:
megatron_lm_plugin.set_optimizer_type(optimizer)
if scheduler is not None:
is_dummy_scheduler = isinstance(scheduler, MegatronLMDummyScheduler)
if not is_dummy_scheduler:
if not isinstance(scheduler, MegatronLMDummyScheduler):
raise ValueError(
"You can't use a custom scheduler with Megatron-LM. Please use the `accelerate.utils.MegatronLMDummyScheduler` instead."
)
@ -1724,6 +1868,10 @@ class Accelerator:
# initialize megatron-lm
megatron_lm_initialize(self, args_defaults=megatron_lm_plugin.megatron_lm_default_args)
(model, optimizer, scheduler) = megatron_lm_prepare_model_optimizer_scheduler(self)
self.wait_for_everyone()
counter = 0
result = []
for obj in args:
@ -1739,13 +1887,6 @@ class Accelerator:
else:
result.append(obj)
if model is not None:
model = megatron_lm_prepare_model(self)
if optimizer is not None:
optimizer = megatron_lm_prepare_optimizer(self, model)
if scheduler is not None:
scheduler = megatron_lm_prepare_scheduler(self, optimizer, scheduler)
if model is not None:
model = MegatronEngine(self, model, optimizer, scheduler)
if optimizer is not None:
@ -1760,26 +1901,32 @@ class Accelerator:
result[i] = optimizer
elif isinstance(result[i], MegatronLMDummyScheduler):
result[i] = scheduler
if model is not None:
self._models.append(model)
if len(self._models) > 1:
raise AssertionError(
"You can't use same `Accelerator()` instance with multiple models when using Megatron-LM"
)
if optimizer is not None:
self._optimizers.append(optimizer)
if scheduler is not None:
self._schedulers.append(scheduler)
if len(self._models) > 1:
raise AssertionError(
"You can't use same `Accelerator()` instance with multiple models when using Megatron-LM"
)
return tuple(result)
def _prepare_ipex(self, *args):
if not is_ipex_available():
raise ImportError(
"IPEX is not installed or IPEX's version does not match current PyTorch version. Please refer"
" to https://github.com/intel/intel-extension-for-pytorch."
)
else:
import intel_extension_for_pytorch as ipex
def _prepare_ipex_or_xpu(self, *args):
"""
Prepares model and optimizer for training with IPEX or XPU acceleration. This covers 3 cases, IPEX compiled
with CPU only support, IPEX compiled with XPU support and training with XPU pytorch backend available in stock
pytorch starting from version 2.4.
"""
if self.state.use_ipex:
if not is_ipex_available():
raise ImportError(
"IPEX is not installed or IPEX's version does not match current PyTorch version. Please refer"
" to https://github.com/intel/intel-extension-for-pytorch."
)
model = None
optimizer = None
@ -1792,12 +1939,12 @@ class Accelerator:
optimizer = obj
if optimizer is not None and model is not None:
dtype = torch.bfloat16 if self.state.mixed_precision == "bf16" else None
if self.device.type == "xpu" and is_xpu_available():
if self.device.type == "xpu":
model = model.to(self.device)
model, optimizer = torch.xpu.optimize(
model, optimizer=optimizer, dtype=dtype, inplace=True, level="O1"
)
else:
# ipex.optimize() is available only for IPEX, both IPEX-CPU and IPEX-XPU
if is_ipex_available():
import intel_extension_for_pytorch as ipex
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=dtype, inplace=True, level="O1")
for i in range(len(result)):
if isinstance(result[i], torch.nn.Module):
@ -1890,6 +2037,7 @@ class Accelerator:
even_batches=self.even_batches,
slice_fn_for_dispatch=slice_fn_for_dispatch,
use_seedable_sampler=self.use_seedable_sampler,
non_blocking=self.non_blocking,
)
self._dataloaders.append(prepared_data_loader)
return prepared_data_loader
@ -1916,6 +2064,14 @@ class Accelerator:
>>> optimizer = accelerator.prepare_optimizer(optimizer, device_placement=True)
```
"""
if is_lomo_available():
# We need to import locally to avoid circular imports since lomo imports stuff from
# transformers & accelerate
from lomo_optim import AdaLomo, Lomo
# Support multiple optimizers: https://github.com/huggingface/accelerate/pull/2695#discussion_r1589164607
self.has_lomo_optimizer |= isinstance(optimizer, (Lomo, AdaLomo))
# Ensure we can't double wrap an optimizer due to `find_batch_size`
if getattr(optimizer, "_is_accelerate_prepared", False):
if optimizer not in self._optimizers:
@ -1986,6 +2142,8 @@ class Accelerator:
>>> accelerator.backward(loss)
```
"""
learning_rate = kwargs.get("learning_rate")
if self.distributed_type != DistributedType.DEEPSPEED:
# deepspeed handles loss scaling by gradient_accumulation_steps in its `backward`
loss = loss / self.gradient_accumulation_steps
@ -1995,6 +2153,8 @@ class Accelerator:
return
elif self.scaler is not None:
self.scaler.scale(loss).backward(**kwargs)
elif learning_rate is not None and self.has_lomo_optimizer:
self.lomo_backward(loss, learning_rate)
else:
loss.backward(**kwargs)
@ -2202,7 +2362,7 @@ class Accelerator:
"""
return gather(tensor)
def gather_for_metrics(self, input_data):
def gather_for_metrics(self, input_data, use_gather_object=False):
"""
Gathers `input_data` and potentially drops duplicates in the last batch if on a distributed system. Should be
used for gathering the inputs and targets for metric calculation.
@ -2210,6 +2370,11 @@ class Accelerator:
Args:
input (`torch.Tensor`, `object`, a nested tuple/list/dictionary of `torch.Tensor`, or a nested tuple/list/dictionary of `object`):
The tensors or objects for calculating metrics across all processes
use_gather_object(`bool`):
Whether to forcibly use gather_object instead of gather (which is already done if all objects passed do
not contain tensors). This flag can be useful for gathering tensors with different sizes that we don't
want to pad and concatenate along the first dimension. Using it with GPU tensors is not well supported
and inefficient as it incurs GPU -> CPU transfer since tensors would be pickled.
Example:
@ -2234,7 +2399,9 @@ class Accelerator:
except TypeError:
all_tensors = False
if not all_tensors:
use_gather_object = use_gather_object or not all_tensors
if use_gather_object:
data = gather_object(input_data)
else:
data = self.gather(input_data)
@ -2253,7 +2420,11 @@ class Accelerator:
def _adjust_samples(tensor):
return tensor[: self.gradient_state.remainder]
return recursively_apply(_adjust_samples, data)
if use_gather_object:
# gather_object put the objects in a list
return _adjust_samples(data)
else:
return recursively_apply(_adjust_samples, data)
else: # remainder is 0
# no remainder even though at end of dataloader, so nothing to do.
return data
@ -2614,9 +2785,11 @@ class Accelerator:
if safe_serialization:
state_dict = clean_state_dict_for_safetensors(state_dict)
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
filename_pattern = SAFE_WEIGHTS_PATTERN_NAME if safe_serialization else WEIGHTS_PATTERN_NAME
# Shard the model if it is too big.
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
state_dict_split = split_torch_state_dict_into_shards(
state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size
)
# Clean the folder from a previous save
for filename in os.listdir(save_directory):
@ -2632,31 +2805,36 @@ class Accelerator:
if (
filename.startswith(weights_no_suffix)
and os.path.isfile(full_filename)
and filename not in shards.keys()
and filename not in state_dict_split.filename_to_tensors.keys()
and reg.fullmatch(filename_no_suffix) is not None
and PartialState().is_main_process
):
os.remove(full_filename)
# Save the model
for shard_file, shard in shards.items():
self.save(shard, os.path.join(save_directory, shard_file), safe_serialization=safe_serialization)
for filename, tensors in state_dict_split.filename_to_tensors.items():
shard = {tensor: state_dict[tensor] for tensor in tensors}
self.save(shard, os.path.join(save_directory, filename), safe_serialization=safe_serialization)
if index is None:
path_to_weights = os.path.join(save_directory, WEIGHTS_NAME)
logger.info(f"Model weights saved in {path_to_weights}")
else:
# Save index if sharded
if state_dict_split.is_sharded:
index = {
"metadata": state_dict_split.metadata,
"weight_map": state_dict_split.tensor_to_filename,
}
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
save_index_file = os.path.join(save_directory, save_index_file)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
logger.info(
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"split in {len(state_dict_split.filename_to_tensors)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
else:
path_to_weights = os.path.join(save_directory, WEIGHTS_NAME)
logger.info(f"Model weights saved in {path_to_weights}")
def register_save_state_pre_hook(self, hook: Callable[..., None]) -> hooks.RemovableHandle:
"""
@ -2815,6 +2993,7 @@ class Accelerator:
schedulers,
dataloaders,
self.state.process_index,
self.step,
self.scaler,
save_on_each_node=self.project_configuration.save_on_each_node,
safe_serialization=safe_serialization,
@ -2955,13 +3134,15 @@ class Accelerator:
if map_location is None:
if self.num_processes > 1 and self.distributed_type in (
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_NPU,
):
map_location = "on_device"
else:
map_location = "cpu"
load_accelerator_state(
override_attributes = load_accelerator_state(
input_dir,
models,
optimizers,
@ -2972,11 +3153,14 @@ class Accelerator:
map_location,
**load_model_func_kwargs,
)
self.step = override_attributes["step"]
custom_checkpoints = [
f for f in os.listdir(input_dir) if re.search(r"^custom_checkpoint_\d+\.pkl$", f) is not None
]
if len(custom_checkpoints) != len(self._custom_objects):
err = "Number of custom checkpoints in folder {input_dir} does not match the number of registered objects:"
err = (
f"Number of custom checkpoints in folder {input_dir} does not match the number of registered objects:"
)
err += f"\n\tFound checkpoints: {len(custom_checkpoints)}"
err += f"\n\tRegistered objects: {len(self._custom_objects)}\n"
err += "Please make sure to only load checkpoints from folders that were created with the same set of registered objects,"
@ -2987,7 +3171,7 @@ class Accelerator:
for index, obj in enumerate(self._custom_objects):
load_custom_state(obj, input_dir, index)
def free_memory(self):
def free_memory(self, *objects):
"""
Will release all references to the internal objects stored and call the garbage collector. You should call this
method between two trainings with different models/optimizers. Also will reset `Accelerator.step` to 0.
@ -3000,19 +3184,23 @@ class Accelerator:
>>> accelerator = Accelerator()
>>> model, optimizer, scheduler = ...
>>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler)
>>> accelerator.free_memory()
>>> del model, optimizer, scheduler
>>> model, optimizer, scheduler = accelerator.free_memory(model, optimizer, scheduler)
```
"""
# Deepspeed needs a bit more prep that should be done first
if hasattr(self, "deepspeed_engine_wrapped"):
if self.deepspeed_engine_wrapped is not None:
self.deepspeed_engine_wrapped.engine.destroy()
self.deepspeed_engine_wrapped = None
objects = release_memory(*objects)
self._schedulers = []
self._optimizers = []
self._models = []
self._dataloaders = []
self.deepspeed_engine_wrapped = None
self.step = 0
release_memory()
return objects
def clear(self):
def clear(self, *objects):
"""
Alias for [`Accelerate.free_memory`], releases all references to the internal objects stored and call the
garbage collector. You should call this method between two trainings with different models/optimizers.
@ -3025,11 +3213,10 @@ class Accelerator:
>>> accelerator = Accelerator()
>>> model, optimizer, scheduler = ...
>>> model, optimizer, scheduler = accelerator.prepare(model, optimizer, scheduler)
>>> accelerator.free_memory()
>>> del model, optimizer, scheduler
>>> model, optimizer, scheduler = accelerator.clear(model, optimizer, scheduler)
```
"""
self.free_memory()
return self.free_memory(*objects)
def _get_named_parameters(self, *args):
named_parameters = {}
@ -3185,6 +3372,66 @@ class Accelerator:
yield
autocast_context.__exit__(*sys.exc_info())
@contextmanager
def profile(self, profile_handler: ProfileKwargs | None = None):
"""
Will profile the code inside the context manager. The profile will be saved to a Chrome Trace file if
`profile_handler.output_trace_dir` is set.
A different `profile_handler` can be passed in to override the one set in the `Accelerator` object.
Args:
profile_handler (`ProfileKwargs`, *optional*):
The profile handler to use for this context manager. If not passed, will use the one set in the
`Accelerator` object.
Example:
```python
# Profile with default settings
from accelerate import Accelerator
from accelerate.utils import ProfileKwargs
accelerator = Accelerator()
with accelerator.profile() as prof:
train()
accelerator.print(prof.key_averages().table())
# Profile with the custom handler
def custom_handler(prof):
print(prof.key_averages().table(sort_by="self_cpu_time_total", row_limit=10))
kwargs = ProfileKwargs(schedule_option=dict(wait=1, warmup=1, active=1), on_trace_ready=custom_handler)
accelerator = Accelerator(kwarg_handler=[kwargs])
with accelerator.profile() as prof:
for _ in range(10):
train_iteration()
prof.step()
# Profile and export to Chrome Trace
kwargs = ProfileKwargs(output_trace_dir="output_trace")
accelerator = Accelerator(kwarg_handler=[kwargs])
with accelerator.profile():
train()
```
"""
profile_handler = profile_handler or self.profile_handler or ProfileKwargs()
with profile_handler.build() as profiler:
yield profiler
if profile_handler.output_trace_dir is None:
return
os.makedirs(profile_handler.output_trace_dir, exist_ok=True)
profiler.export_chrome_trace(
os.path.join(profile_handler.output_trace_dir, PROFILE_PATTERN_NAME.format(suffix=self.process_index))
)
self.wait_for_everyone()
@property
def optimizer_step_was_skipped(self):
"""
@ -3242,3 +3489,27 @@ class Accelerator:
return True
return False
def lomo_backward(self, loss: torch.Tensor, learning_rate: float) -> None:
"""
Runs backward pass on LOMO optimizers.
"""
if is_lomo_available():
# We need to import locally to avoid circular imports since lomo imports stuff from
# transformers & accelerate
from lomo_optim import AdaLomo, Lomo
if learning_rate is None:
raise ValueError("A learning rate must be passed in order to call backward pass with LOMO optimizers.")
_backward_called = False
for optimizer in self._optimizers:
if isinstance(optimizer.optimizer, (Lomo, AdaLomo)):
optimizer.optimizer.fused_backward(loss, learning_rate)
_backward_called = True
if not _backward_called:
raise ValueError(
"Backward pass not properly called on LOMO optimizers. Are you sure you passed a LOMO optimizer in accelerator.prepare()?"
)

View File

@ -31,11 +31,14 @@ from .hooks import (
)
from .utils import (
OffloadedWeightsLoader,
check_cuda_p2p_ib_support,
check_device_map,
extract_submodules_state_dict,
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
is_mlu_available,
is_musa_available,
is_npu_available,
is_torch_version,
is_xpu_available,
@ -430,7 +433,7 @@ def dispatch_model(
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
)
if len(offloaded_devices_str) > 0:
logging.warning(
logger.warning(
f"Some parameters are on the meta device device because they were offloaded to the {offloaded_devices_str}."
)
@ -455,19 +458,36 @@ def dispatch_model(
return wrapper
# Make sure to update _accelerate_added_attributes in hooks.py if you add any hook
model.to = add_warning(model.to, model)
if is_npu_available():
model.npu = add_warning(model.npu, model)
elif is_mlu_available():
model.mlu = add_warning(model.mlu, model)
elif is_musa_available():
model.musa = add_warning(model.musa, model)
elif is_xpu_available():
model.xpu = add_warning(model.xpu, model)
else:
model.cuda = add_warning(model.cuda, model)
# Check if we are using multi-gpus with RTX 4000 series
use_multi_gpu = len([device for device in set(device_map.values()) if device not in ("cpu", "disk")]) > 1
if use_multi_gpu and not check_cuda_p2p_ib_support():
logger.warning(
"We've detected an older driver with an RTX 4000 series GPU. These drivers have issues with P2P. "
"This can affect the multi-gpu inference when using accelerate device_map."
"Please make sure to update your driver to the latest version which resolves this."
)
else:
device = list(device_map.values())[0]
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
elif is_mlu_available() and isinstance(device, int):
device = f"mlu:{device}"
elif is_musa_available() and isinstance(device, int):
device = f"musa:{device}"
elif is_xpu_available() and isinstance(device, int):
device = f"xpu:{device}"
if device != "disk":
@ -494,6 +514,7 @@ def load_checkpoint_and_dispatch(
skip_keys: Optional[Union[str, List[str]]] = None,
preload_module_classes: Optional[List[str]] = None,
force_hooks: bool = False,
strict: bool = False,
):
"""
Loads a (potentially sharded) checkpoint inside a model, potentially sending weights to a given device as they are
@ -540,6 +561,9 @@ def load_checkpoint_and_dispatch(
force_hooks (`bool`, *optional*, defaults to `False`):
Whether or not to force device hooks to be attached to the model even if all layers are dispatched to a
single device.
strict (`bool`, *optional*, defaults to `False`):
Whether to strictly enforce that the keys in the checkpoint state_dict match the keys of the model's
state_dict.
Example:
@ -578,7 +602,11 @@ def load_checkpoint_and_dispatch(
low_zero=(device_map == "balanced_low_0"),
)
device_map = infer_auto_device_map(
model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype
model,
max_memory=max_memory,
no_split_module_classes=no_split_module_classes,
dtype=dtype,
offload_buffers=offload_buffers,
)
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
offload_state_dict = True
@ -590,6 +618,7 @@ def load_checkpoint_and_dispatch(
dtype=dtype,
offload_state_dict=offload_state_dict,
offload_buffers=offload_buffers,
strict=strict,
)
if device_map is None:
return model

View File

@ -18,7 +18,7 @@ from typing import List
import numpy as np
import torch
from safetensors.torch import load_file
from safetensors.torch import load_model
from torch.cuda.amp import GradScaler
from .utils import (
@ -55,6 +55,7 @@ def save_accelerator_state(
schedulers: list,
dataloaders: list,
process_index: int,
step: int,
scaler: GradScaler = None,
save_on_each_node: bool = False,
safe_serialization: bool = True,
@ -82,6 +83,8 @@ def save_accelerator_state(
A list of dataloader instances to save their sampler states
process_index (`int`):
The current process index in the Accelerator state
step (`int`):
The current step in the internal step tracker
scaler (`torch.cuda.amp.GradScaler`, *optional*):
An optional gradient scaler instance to save
save_on_each_node (`bool`, *optional*):
@ -120,8 +123,7 @@ def save_accelerator_state(
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.sampler.sampler
sampler = dataloader.get_sampler()
if isinstance(sampler, SeedableRandomSampler):
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}")
@ -135,6 +137,7 @@ def save_accelerator_state(
# Random number generator states
states = {}
states_name = f"{RNG_STATE_NAME}_{process_index}.pkl"
states["step"] = step
states["random_state"] = random.getstate()
states["numpy_random_seed"] = np.random.get_state()
states["torch_manual_seed"] = torch.get_rng_state()
@ -181,7 +184,12 @@ def load_accelerator_state(
What device to load the optimizer state onto. Should be one of either "cpu" or "on_device".
load_model_func_kwargs (`dict`, *optional*):
Additional arguments that can be passed to the model's `load_state_dict` method.
Returns:
`dict`: Contains the `Accelerator` attributes to override while loading the state.
"""
# stores the `Accelerator` attributes to override
override_attributes = dict()
if map_location not in [None, "cpu", "on_device"]:
raise TypeError(
"Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`"
@ -197,12 +205,12 @@ def load_accelerator_state(
ending = f"_{i}" if i > 0 else ""
input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors")
if input_model_file.exists():
state_dict = load_file(input_model_file, device=str(map_location))
load_model(model, input_model_file, device=str(map_location), **load_model_func_kwargs)
else:
# Load with torch
input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin")
state_dict = torch.load(input_model_file, map_location=map_location)
models[i].load_state_dict(state_dict, **load_model_func_kwargs)
model.load_state_dict(state_dict, **load_model_func_kwargs)
logger.info("All model weights loaded successfully")
# Optimizer states
@ -227,10 +235,9 @@ def load_accelerator_state(
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.sampler.sampler
sampler = dataloader.get_sampler()
if isinstance(sampler, SeedableRandomSampler):
dataloader.sampler.sampler = torch.load(input_sampler_file)
sampler = dataloader.set_sampler(torch.load(input_sampler_file))
logger.info("All dataloader sampler states loaded successfully")
# GradScaler state
@ -242,6 +249,7 @@ def load_accelerator_state(
# Random states
try:
states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl"))
override_attributes["step"] = states["step"]
random.setstate(states["random_state"])
np.random.set_state(states["numpy_random_seed"])
torch.set_rng_state(states["torch_manual_seed"])
@ -255,6 +263,8 @@ def load_accelerator_state(
except Exception:
logger.info("Could not load random states")
return override_attributes
def save_custom_state(obj, path, index: int = 0, save_on_each_node: bool = False):
"""

View File

@ -0,0 +1,13 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

View File

@ -14,18 +14,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.estimate import estimate_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.merge import merge_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
from accelerate.commands.utils import CustomArgumentParser
def main():
parser = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
parser = CustomArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
subparsers = parser.add_subparsers(help="accelerate command helpers")
# Register commands
@ -33,6 +33,7 @@ def main():
estimate_command_parser(subparsers=subparsers)
env_command_parser(subparsers=subparsers)
launch_command_parser(subparsers=subparsers)
merge_command_parser(subparsers=subparsers)
tpu_command_parser(subparsers=subparsers)
test_command_parser(subparsers=subparsers)

View File

@ -20,7 +20,9 @@ from ...utils import (
ComputeEnvironment,
DistributedType,
is_deepspeed_available,
is_mlu_available,
is_mps_available,
is_musa_available,
is_npu_available,
is_transformers_available,
is_xpu_available,
@ -48,7 +50,16 @@ from .config_utils import (
def get_cluster_input():
distributed_type = _ask_options(
"Which type of machine are you using?",
["No distributed training", "multi-CPU", "multi-XPU", "multi-GPU", "multi-NPU", "TPU"],
[
"No distributed training",
"multi-CPU",
"multi-XPU",
"multi-GPU",
"multi-NPU",
"multi-MLU",
"multi-MUSA",
"TPU",
],
_convert_distributed_mode,
)
@ -64,6 +75,8 @@ def get_cluster_input():
if distributed_type in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
DistributedType.MULTI_CPU,
@ -116,6 +129,7 @@ def get_cluster_input():
use_cpu = False
ipex_config = {}
mpirun_config = {}
if use_cpu:
ipex_config["ipex"] = _ask_field(
"Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:",
@ -123,10 +137,32 @@ def get_cluster_input():
default=False,
error_message="Please enter yes or no.",
)
if distributed_type == DistributedType.MULTI_CPU:
use_mpirun = _ask_field(
"Do you want accelerate to launch mpirun? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_mpirun:
mpirun_hostfile = _ask_field(
"Please enter the path to the hostfile to use with mpirun [~/hostfile]: ",
str,
default="~/hostfile",
)
mpirun_config["mpirun_hostfile"] = os.path.expanduser(mpirun_hostfile.strip())
mpirun_config["mpirun_ccl"] = _ask_field("Enter the number of oneCCL worker threads [1]: ", default=1)
if (
not use_cpu
and is_xpu_available()
and distributed_type not in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.XLA]
and distributed_type
not in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_MLU,
DistributedType.XLA,
DistributedType.MULTI_MUSA,
]
):
ipex_config["use_xpu"] = _ask_field(
"Do you want to use XPU plugin to speed up training on XPU? [yes/NO]:",
@ -181,7 +217,14 @@ def get_cluster_input():
deepspeed_config = {}
if (
distributed_type
in [DistributedType.MULTI_GPU, DistributedType.MULTI_XPU, DistributedType.MULTI_NPU, DistributedType.NO]
in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_XPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.NO,
]
and not use_mps
):
use_deepspeed = _ask_field(
@ -273,6 +316,18 @@ def get_cluster_input():
"When `zero3_init_flag` is set, it requires Transformers to be installed. "
"Please run `pip3 install transformers`."
)
use_moe = _ask_field(
"Do you want to enable Mixture-of-Experts training (MoE)? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_moe:
deepspeed_config["deepspeed_moe_layer_cls_names"] = _ask_field(
"Specify the comma-separated list of transformers MoE layer class names (case-sensitive), e.g : "
" `MixtralSparseMoeBlock`, `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` ... : ",
str,
)
if num_machines > 1:
launcher_query = "Which Type of launcher do you want to use?"
@ -317,7 +372,13 @@ def get_cluster_input():
)
fsdp_config = {}
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU]:
if distributed_type in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_XPU,
]:
use_fsdp = _ask_field(
"Do you want to use FullyShardedDataParallel? [yes/NO]: ",
_convert_yes_no_to_bool,
@ -404,6 +465,12 @@ def get_cluster_input():
default=True,
error_message="Please enter yes or no.",
)
fsdp_config["fsdp_activation_checkpointing"] = _ask_field(
"Do you want to enable FSDP activation checkpointing? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
megatron_lm_config = {}
if distributed_type in [DistributedType.MULTI_GPU]:
@ -480,12 +547,16 @@ def get_cluster_input():
DistributedType.MULTI_CPU,
DistributedType.MULTI_XPU,
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_NPU,
DistributedType.XLA,
]:
machine_type = str(distributed_type).split(".")[1].replace("MULTI_", "")
if machine_type == "TPU":
machine_type += " cores"
elif machine_type == "CPU":
machine_type = "processes"
else:
machine_type += "(s)"
num_processes = _ask_field(
@ -513,6 +584,8 @@ def get_cluster_input():
distributed_type
in [
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
DistributedType.NO,
@ -522,6 +595,10 @@ def get_cluster_input():
):
if is_npu_available():
machine_type = "NPU(s)"
elif is_mlu_available():
machine_type = "MLU(s)"
elif is_musa_available():
machine_type = "MUSA(s)"
else:
machine_type = "GPU(s)"
gpu_ids = _ask_field(
@ -529,6 +606,16 @@ def get_cluster_input():
default="all",
)
# CPU affinity is only supported on NVIDIA hardware for now
enable_cpu_affinity = False
if distributed_type in (DistributedType.NO, DistributedType.MULTI_GPU) and not use_cpu and not use_mps:
enable_cpu_affinity = _ask_field(
"Would you like to enable numa efficiency? (Currently only supported on NVIDIA hardware). [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if distributed_type == DistributedType.XLA:
mixed_precision = "no"
main_training_function = _ask_field(
@ -641,6 +728,7 @@ def get_cluster_input():
fsdp_config=fsdp_config,
megatron_lm_config=megatron_lm_config,
ipex_config=ipex_config,
mpirun_config=mpirun_config,
use_cpu=use_cpu,
rdzv_backend=rdzv_backend,
same_network=same_network,
@ -654,4 +742,5 @@ def get_cluster_input():
tpu_use_cluster=tpu_use_cluster,
dynamo_config=dynamo_config,
debug=debug,
enable_cpu_affinity=enable_cpu_affinity,
)

View File

@ -45,7 +45,7 @@ def load_config_from_file(config_file):
if not os.path.isfile(config_file):
raise FileNotFoundError(
f"The passed configuration file `{config_file}` does not exist. "
"Please pass an existing file to `accelerate launch`, or use the the default one "
"Please pass an existing file to `accelerate launch`, or use the default one "
"created through `accelerate config` and run `accelerate launch` "
"without the `--config_file` argument."
)
@ -109,6 +109,8 @@ class BaseConfig:
config_dict["use_cpu"] = False
if "debug" not in config_dict:
config_dict["debug"] = False
if "enable_cpu_affinity" not in config_dict:
config_dict["enable_cpu_affinity"] = False
extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys()))
if len(extra_keys) > 0:
raise ValueError(
@ -143,6 +145,8 @@ class BaseConfig:
config_dict["use_cpu"] = False
if "debug" not in config_dict:
config_dict["debug"] = False
if "enable_cpu_affinity" not in config_dict:
config_dict["enable_cpu_affinity"] = False
extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys()))
if len(extra_keys) > 0:
raise ValueError(
@ -163,7 +167,7 @@ class BaseConfig:
self.distributed_type = SageMakerDistributedType(self.distributed_type)
else:
self.distributed_type = DistributedType(self.distributed_type)
if self.dynamo_config is None:
if getattr(self, "dynamo_config", None) is None:
self.dynamo_config = {}
@ -178,6 +182,7 @@ class ClusterConfig(BaseConfig):
rdzv_backend: Optional[str] = "static"
same_network: Optional[bool] = False
main_training_function: str = "main"
enable_cpu_affinity: bool = False
# args for deepspeed_plugin
deepspeed_config: dict = None
@ -187,6 +192,8 @@ class ClusterConfig(BaseConfig):
megatron_lm_config: dict = None
# args for ipex
ipex_config: dict = None
# args for mpirun
mpirun_config: dict = None
# args for TPU
downcast_bf16: bool = False
@ -212,6 +219,8 @@ class ClusterConfig(BaseConfig):
self.megatron_lm_config = {}
if self.ipex_config is None:
self.ipex_config = {}
if self.mpirun_config is None:
self.mpirun_config = {}
return super().__post_init__()
@ -232,3 +241,4 @@ class SageMakerConfig(BaseConfig):
sagemaker_metrics_file: str = None
additional_args: dict = None
dynamo_config: dict = None
enable_cpu_affinity: bool = False

View File

@ -37,6 +37,8 @@ DYNAMO_BACKENDS = [
"FX2TRT",
"ONNXRT",
"TENSORRT",
"AOT_TORCHXLA_TRACE_ONCE",
"TORHCHXLA_TRACE_ONCE",
"IPEX",
"TVM",
]
@ -68,7 +70,9 @@ def _convert_compute_environment(value):
def _convert_distributed_mode(value):
value = int(value)
return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "XLA"][value])
return DistributedType(
["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "MULTI_MLU", "MULTI_MUSA", "XLA"][value]
)
def _convert_dynamo_backend(value):

View File

@ -18,7 +18,7 @@ from pathlib import Path
import torch
from ...utils import is_npu_available, is_xpu_available
from ...utils import is_mlu_available, is_musa_available, is_npu_available, is_xpu_available
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
@ -57,7 +57,23 @@ def write_basic_config(mixed_precision="no", save_location: str = default_json_c
"compute_environment": "LOCAL_MACHINE",
"mixed_precision": mixed_precision,
}
if torch.cuda.is_available():
if is_mlu_available():
num_mlus = torch.mlu.device_count()
config["num_processes"] = num_mlus
config["use_cpu"] = False
if num_mlus > 1:
config["distributed_type"] = "MULTI_MLU"
else:
config["distributed_type"] = "NO"
elif is_musa_available():
num_musas = torch.musa.device_count()
config["num_processes"] = num_musas
config["use_cpu"] = False
if num_musas > 1:
config["distributed_type"] = "MULTI_MUSA"
else:
config["distributed_type"] = "NO"
elif torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
config["num_processes"] = num_gpus
config["use_cpu"] = False
@ -87,6 +103,7 @@ def write_basic_config(mixed_precision="no", save_location: str = default_json_c
config["num_processes"] = 1
config["distributed_type"] = "NO"
config["debug"] = False
config["enable_cpu_affinity"] = False
config = ClusterConfig(**config)
config.to_json_file(path)
return path

View File

@ -17,6 +17,7 @@
import argparse
import os
import platform
import subprocess
import numpy as np
import psutil
@ -25,7 +26,7 @@ import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
from ..utils import is_mlu_available, is_musa_available, is_npu_available, is_xpu_available
def env_command_parser(subparsers=None):
@ -47,6 +48,8 @@ def env_command(args):
pt_version = torch.__version__
pt_cuda_available = torch.cuda.is_available()
pt_xpu_available = is_xpu_available()
pt_mlu_available = is_mlu_available()
pt_musa_available = is_musa_available()
pt_npu_available = is_npu_available()
accelerate_config = "Not found"
@ -54,18 +57,32 @@ def env_command(args):
if args.config_file is not None or os.path.isfile(default_config_file):
accelerate_config = load_config_from_file(args.config_file).to_dict()
# if we can run which, get it
command = None
bash_location = "Not found"
if os.name == "nt":
command = ["where", "accelerate"]
elif os.name == "posix":
command = ["which", "accelerate"]
if command is not None:
bash_location = subprocess.check_output(command, text=True, stderr=subprocess.STDOUT).strip()
info = {
"`Accelerate` version": version,
"Platform": platform.platform(),
"`accelerate` bash location": bash_location,
"Python version": platform.python_version(),
"Numpy version": np.__version__,
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"PyTorch XPU available": str(pt_xpu_available),
"PyTorch NPU available": str(pt_npu_available),
"PyTorch MLU available": str(pt_mlu_available),
"PyTorch MUSA available": str(pt_musa_available),
"System RAM": f"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB",
}
if pt_cuda_available:
info["GPU type"] = torch.cuda.get_device_name()
if pt_npu_available:
info["CANN version"] = torch.version.cann
print("\nCopy-and-paste the text below in your GitHub issue\n")
print("\n".join([f"- {prop}: {val}" for prop, val in info.items()]))

View File

@ -13,12 +13,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from huggingface_hub import model_info
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
from accelerate import init_empty_weights
from accelerate.commands.utils import CustomArgumentParser
from accelerate.utils import (
calculate_maximum_sizes,
convert_bytes,
@ -110,7 +109,6 @@ def create_empty_model(model_name: str, library_name: str, trust_remote_code: bo
auto_map = model_info.config.get("auto_map", False)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=access_token)
with init_empty_weights():
# remote code could specify a specific `AutoModel` class in the `auto_map`
constructor = AutoModel
@ -183,7 +181,7 @@ def estimate_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("estimate-memory")
else:
parser = argparse.ArgumentParser(description="Model size estimator for fitting a model onto CUDA memory.")
parser = CustomArgumentParser(description="Model size estimator for fitting a model onto CUDA memory.")
parser.add_argument("model_name", type=str, help="The model name on the Hugging Face Hub.")
parser.add_argument(
@ -206,6 +204,7 @@ def estimate_command_parser(subparsers=None):
help="""Whether or not to allow for custom models defined on the Hub in their own modeling files. This flag
should only be used for repositories you trust and in which you have read the code, as it will execute
code present on the Hub on your local machine.""",
default=False,
)
if subparsers is not None:
@ -213,6 +212,41 @@ def estimate_command_parser(subparsers=None):
return parser
def estimate_training_usage(bytes: int, mixed_precision: str, msamp_config: str = None) -> dict:
"""
Given an amount of `bytes` and `mixed_precision`, calculates how much training memory is needed for a batch size of
1.
Args:
bytes (`int`):
The size of the model being trained.
mixed_precision (`str`):
The mixed precision that would be ran.
msamp_config (`str`):
The msamp config to estimate the training memory for if `mixed_precision` is set to `"fp8"`.
"""
memory_sizes = {"model": -1, "optimizer": -1, "gradients": -1, "step": -1}
fp32_size = bytes
fp16_size = bytes // 2
if mixed_precision == "float32":
memory_sizes["model"] = fp32_size
memory_sizes["gradients"] = fp32_size
memory_sizes["optimizer"] = fp32_size * 2
memory_sizes["step"] = fp32_size * 4
elif mixed_precision in ("float16", "bfloat16") or (mixed_precision == "fp8" and msamp_config is None):
# With native `TransformersEngine`, there is no memory savings with FP8
# With mixed precision training, the model has weights stored
# in FP16 and FP32
memory_sizes["model"] = fp32_size
# 1.5 from weight gradient + computation (GEMM)
memory_sizes["gradients"] = fp32_size + fp16_size
# 2x from optimizer states
memory_sizes["optimizer"] = fp32_size * 2 # Optimizer states
memory_sizes["step"] = memory_sizes["optimizer"]
return memory_sizes
def gather_data(args):
"Creates an empty model and gathers the data for the sizes"
try:
@ -234,6 +268,7 @@ def gather_data(args):
for dtype in args.dtypes:
dtype_total_size = total_size
dtype_largest_layer = largest_layer[0]
dtype_training_size = estimate_training_usage(dtype_total_size, dtype)
if dtype == "float16":
dtype_total_size /= 2
dtype_largest_layer /= 2
@ -243,7 +278,6 @@ def gather_data(args):
elif dtype == "int4":
dtype_total_size /= 8
dtype_largest_layer /= 8
dtype_training_size = dtype_total_size * 4
data.append([dtype, dtype_largest_layer, dtype_total_size, dtype_training_size])
return data
@ -254,6 +288,9 @@ def estimate_command(args):
for i, item in enumerate(row):
if isinstance(item, (int, float)):
row[i] = convert_bytes(item)
elif isinstance(item, dict):
training_usage = max(item.values())
row[i] = convert_bytes(training_usage) if training_usage != -1 else "N/A"
headers = ["dtype", "Largest Layer", "Total Size", "Training using Adam"]

View File

@ -28,6 +28,7 @@ import torch
from accelerate.commands.config import default_config_file, load_config_from_file
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.commands.config.config_utils import DYNAMO_BACKENDS
from accelerate.commands.utils import CustomArgumentParser
from accelerate.state import get_int_from_env
from accelerate.utils import (
ComputeEnvironment,
@ -35,8 +36,11 @@ from accelerate.utils import (
PrepareForLaunch,
_filter_args,
check_cuda_p2p_ib_support,
convert_dict_to_env_variables,
is_bf16_available,
is_deepspeed_available,
is_mlu_available,
is_musa_available,
is_npu_available,
is_rich_available,
is_sagemaker_available,
@ -63,80 +67,93 @@ if is_rich_available():
logger = logging.getLogger(__name__)
options_to_group = {
"--multi-gpu": "Distributed GPUs",
"--tpu": "TPU",
"--use_deepspeed": "DeepSpeed Arguments",
"--use_fsdp": "FSDP Arguments",
"--use_megatron_lm": "Megatron-LM Arguments",
"multi_gpu": "Distributed GPUs",
"tpu": "TPU",
"use_deepspeed": "DeepSpeed Arguments",
"use_fsdp": "FSDP Arguments",
"use_megatron_lm": "Megatron-LM Arguments",
}
def clean_option(option):
"Finds all cases of - after the first two characters and changes them to _"
if option.startswith("--"):
return option[:3] + option[3:].replace("-", "_")
return option[2:].replace("-", "_")
class _CustomHelpAction(argparse._HelpAction):
class CustomHelpFormatter(argparse.HelpFormatter):
"""
This is a custom help action that will hide all arguments that are not used in the command line when the help is
This is a custom help formatter that will hide all arguments that are not used in the command line when the help is
called. This is useful for the case where the user is using a specific platform and only wants to see the arguments
for that platform.
"""
def __call__(self, parser, namespace, values, option_string=None):
if "accelerate" in sys.argv[0] and "launch" in sys.argv[1:]:
args = sys.argv[2:]
else:
args = sys.argv[1:]
opts = parser._actions
titles = [
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.titles = [
"Hardware Selection Arguments",
"Resource Selection Arguments",
"Training Paradigm Arguments",
"positional arguments",
"optional arguments",
]
if len(args) > 1:
used_platforms = [arg for arg in args if arg in options_to_group.keys()]
args = list(map(clean_option, args))
used_titles = [options_to_group[o] for o in used_platforms]
for i, arg in enumerate(opts):
# If the argument's container is outside of the used titles, hide it
if arg.container.title not in titles + used_titles:
opts[i].help = argparse.SUPPRESS
# If the argument is hardware selection, but not being passed, hide it
elif arg.container.title == "Hardware Selection Arguments":
if set(arg.option_strings).isdisjoint(set(args)):
opts[i].help = argparse.SUPPRESS
else:
opts[i].help = arg.help + " (currently selected)"
# If the argument is a training paradigm, but not being passed, hide it
elif arg.container.title == "Training Paradigm Arguments":
if set(arg.option_strings).isdisjoint(set(used_platforms)):
opts[i].help = argparse.SUPPRESS
else:
opts[i].help = arg.help + " (currently selected)"
for i, group in enumerate(list(parser._action_groups)):
# If all arguments in the group are hidden, hide the group
if all([arg.help == argparse.SUPPRESS for arg in group._group_actions]):
parser._action_groups.remove(group)
super().__call__(parser, namespace, values, option_string)
def add_argument(self, action: argparse.Action):
if "accelerate" in sys.argv[0] and "launch" in sys.argv[1:]:
args = sys.argv[2:]
else:
args = sys.argv[1:]
if len(args) > 1:
args = list(map(clean_option, args))
used_platforms = [arg for arg in args if arg in options_to_group.keys()]
used_titles = [options_to_group[o] for o in used_platforms]
if action.container.title not in self.titles + used_titles:
action.help = argparse.SUPPRESS
elif action.container.title == "Hardware Selection Arguments":
if set(action.option_strings).isdisjoint(set(args)):
action.help = argparse.SUPPRESS
else:
action.help = action.help + " (currently selected)"
elif action.container.title == "Training Paradigm Arguments":
if set(action.option_strings).isdisjoint(set(args)):
action.help = argparse.SUPPRESS
else:
action.help = action.help + " (currently selected)"
action.option_strings = [s for s in action.option_strings if "-" not in s[2:]]
super().add_argument(action)
def end_section(self):
if len(self._current_section.items) < 2:
self._current_section.items = []
self._current_section.heading = ""
super().end_section()
def launch_command_parser(subparsers=None):
description = "Launch a python script in a distributed scenario. Arguments can be passed in with either hyphens (`--num-processes=2`) or underscores (`--num_processes=2`)"
if subparsers is not None:
parser = subparsers.add_parser("launch", add_help=False, allow_abbrev=False)
parser = subparsers.add_parser(
"launch", description=description, add_help=False, allow_abbrev=False, formatter_class=CustomHelpFormatter
)
else:
parser = argparse.ArgumentParser("Accelerate launch command", add_help=False, allow_abbrev=False)
parser = CustomArgumentParser(
"Accelerate launch command",
description=description,
add_help=False,
allow_abbrev=False,
formatter_class=CustomHelpFormatter,
)
parser.register("action", "help", _CustomHelpAction)
parser.add_argument("-h", "--help", action="help", help="Show this help message and exit.")
parser.add_argument(
"--config_file", default=None, help="The config file to use for the default values in the launching script."
"--config_file",
default=None,
help="The config file to use for the default values in the launching script.",
)
parser.add_argument(
"--quiet",
@ -191,6 +208,12 @@ def launch_command_parser(subparsers=None):
default=None,
help="The number of CPU threads per process. Can be tuned for optimal performance.",
)
resource_args.add_argument(
"--enable_cpu_affinity",
default=False,
action="store_true",
help="Whether or not CPU affinity and balancing should be enabled. Currently only supported on NVIDIA hardware.",
)
# Dynamo arguments
resource_args.add_argument(
@ -281,6 +304,15 @@ def launch_command_parser(subparsers=None):
type=str,
help="Tee std streams into a log file and also to console.",
)
distributed_args.add_argument(
"--log_dir",
type=str,
default=None,
help=(
"Base directory to use for log files when using torchrun/torch.distributed.run as launcher. "
"Use with --tee to redirect std streams info log files."
),
)
distributed_args.add_argument(
"--role",
type=str,
@ -309,7 +341,7 @@ def launch_command_parser(subparsers=None):
distributed_args.add_argument(
"--monitor_interval",
type=float,
default=5,
default=0.1,
help="Interval, in seconds, to monitor the state of workers.",
)
parser.add_argument(
@ -465,6 +497,13 @@ def launch_command_parser(subparsers=None):
type=str,
help="DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.",
)
deepspeed_args.add_argument(
"--deepspeed_moe_layer_cls_names",
default=None,
type=str,
help="comma-separated list of transformer MoE layer class names (case-sensitive) to wrap ,e.g, `MixtralSparseMoeBlock`, `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock` ..."
" (useful only when `use_deepspeed` flag is passed).",
)
# fsdp arguments
fsdp_args = parser.add_argument_group("FSDP Arguments", "Arguments related to Fully Shared Data Parallelism.")
@ -546,6 +585,12 @@ def launch_command_parser(subparsers=None):
help="If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0."
" (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_activation_checkpointing",
default="false",
type=str,
help="Decides Whether (true|false) intermediate activations are freed during the forward pass, and a checkpoint is left as a placeholder. (useful only when `use_fsdp` flag is passed).",
)
# megatron_lm args
megatron_lm_args = parser.add_argument_group("Megatron-LM Arguments", "Arguments related to Megatron-LM.")
@ -625,6 +670,22 @@ def launch_command_parser(subparsers=None):
),
)
# MPI arguments
mpirun_args = parser.add_argument_group("MPI Arguments", "Arguments related to mpirun for Multi-CPU")
mpirun_args.add_argument(
"--mpirun_hostfile",
type=str,
default=None,
help="Location for a hostfile for using Accelerate to launch a multi-CPU training job with mpirun. This will "
"get passed to the MPI --hostfile or -f parameter, depending on which MPI program is installed.",
)
mpirun_args.add_argument(
"--mpirun_ccl",
type=int,
default=1,
help="The number of oneCCL worker threads when using Accelerate to launch multi-CPU training with mpirun.",
)
# Other arguments of the training scripts
parser.add_argument("training_script_args", nargs=argparse.REMAINDER, help="Arguments of the training script.")
@ -667,6 +728,7 @@ def multi_gpu_launcher(args):
distrib_run.get_args_parser(),
["--training_script", args.training_script, "--training_script_args", args.training_script_args],
)
with patch_environment(**current_env):
try:
distrib_run.run(args)
@ -684,6 +746,8 @@ def deepspeed_launcher(args):
if not is_deepspeed_available():
raise ImportError("DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source.")
else:
from deepspeed.launcher.runner import DEEPSPEED_ENVIRONMENT_NAME
cmd, current_env = prepare_deepspeed_cmd_env(args)
if not check_cuda_p2p_ib_support():
@ -699,11 +763,10 @@ def deepspeed_launcher(args):
logger.warning(message)
if args.num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
with open(".deepspeed_env", "a") as f:
for key, value in current_env.items():
if ";" in value or " " in value:
continue
f.write(f"{key}={value}\n")
with open(DEEPSPEED_ENVIRONMENT_NAME, "a") as f:
valid_env_items = convert_dict_to_env_variables(current_env)
if len(valid_env_items) > 1:
f.writelines(valid_env_items)
process = subprocess.Popen(cmd, env=current_env)
process.wait()
@ -868,7 +931,13 @@ def _validate_launch_command(args):
args.multi_gpu = (
True
if defaults.distributed_type
in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_XPU)
in (
DistributedType.MULTI_GPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_XPU,
)
else False
)
args.tpu = defaults.distributed_type == DistributedType.XLA
@ -906,6 +975,8 @@ def _validate_launch_command(args):
setattr(args, k, defaults.dynamo_config[k])
for k in defaults.ipex_config:
setattr(args, k, defaults.ipex_config[k])
for k in defaults.mpirun_config:
setattr(args, k, defaults.mpirun_config[k])
continue
# Those args are handled separately
@ -942,6 +1013,10 @@ def _validate_launch_command(args):
if args.num_processes is None:
if args.use_xpu and is_xpu_available():
args.num_processes = torch.xpu.device_count()
elif is_mlu_available():
args.num_processes = torch.mlu.device_count()
elif is_musa_available():
args.num_processes = torch.musa.device_count()
elif is_npu_available():
args.num_processes = torch.npu.device_count()
else:
@ -949,10 +1024,16 @@ def _validate_launch_command(args):
warned.append(f"\t`--num_processes` was set to a value of `{args.num_processes}`")
if args.debug is None:
args.debug = False
if not args.multi_gpu and (
(args.use_xpu and is_xpu_available() and torch.xpu.device_count() > 1)
or (is_npu_available() and torch.npu.device_count() > 1)
or (torch.cuda.device_count() > 1)
if (
not args.multi_gpu
and args.num_processes > 1
and (
(args.use_xpu and is_xpu_available() and torch.xpu.device_count() > 1)
or (is_mlu_available() and torch.mlu.device_count() > 1)
or (is_musa_available() and torch.musa.device_count() > 1)
or (is_npu_available() and torch.npu.device_count() > 1)
or (torch.cuda.device_count() > 1)
)
):
warned.append(
"\t\tMore than one GPU was found, enabling multi-GPU training.\n"
@ -977,8 +1058,8 @@ def _validate_launch_command(args):
defaults is not None and defaults.compute_environment != ComputeEnvironment.AMAZON_SAGEMAKER
)
if is_aws_env_disabled and args.num_cpu_threads_per_process is None:
args.num_cpu_threads_per_process = 1
if args.use_cpu and args.num_processes >= 1:
args.num_cpu_threads_per_process = get_int_from_env(["OMP_NUM_THREADS"], 1)
if args.use_cpu and args.num_processes >= 1 and get_int_from_env(["OMP_NUM_THREADS"], 0) == 0:
local_size = get_int_from_env(
["MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"], 1
)

View File

@ -1 +1,14 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .selection_menu import BulletMenu

View File

@ -16,7 +16,6 @@
Utilities relating to parsing raw characters from the keyboard, based on https://github.com/bchao1/bullet
"""
import os
import string
import sys

View File

@ -15,6 +15,7 @@
"""
Main driver for the selection menu, based on https://github.com/bchao1/bullet
"""
import builtins
import sys

View File

@ -0,0 +1,69 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from accelerate.commands.utils import CustomArgumentParser
from accelerate.utils import merge_fsdp_weights
description = """Utility to merge the weights from multiple FSDP checkpoints into a single combined checkpoint. Should be used if
`SHARDED_STATE_DICT` was used for the model. Weights will be saved to `{output_path}`.
This is a CPU-bound process and requires enough RAM to load the entire model state dict."""
def merge_command(args):
merge_fsdp_weights(
args.checkpoint_directory, args.output_path, not args.unsafe_serialization, args.remove_checkpoint_dir
)
def merge_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("merge-weights", description=description)
else:
parser = CustomArgumentParser(description=description)
parser.add_argument("checkpoint_directory", type=str, help="A directory containing sharded weights saved by FSDP.")
parser.add_argument(
"output_path",
type=str,
help="The path to save the merged weights. Defaults to the current directory. ",
)
parser.add_argument(
"--unsafe_serialization",
action="store_false",
default=False,
help="Whether to save the merged weights as `.bin` rather than `.safetensors` (not recommended).",
)
parser.add_argument(
"--remove_checkpoint_dir",
action="store_true",
help="Whether to remove the checkpoint directory after merging.",
default=False,
)
if subparsers is not None:
parser.set_defaults(func=merge_command)
return parser
def main():
parser = merge_command_parser()
args = parser.parse_args()
merge_command(args)
if __name__ == "__main__":
main()

View File

@ -15,7 +15,6 @@
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async, path_in_accelerate_package
@ -51,7 +50,7 @@ def test_command(args):
test_args = f"--config_file={args.config_file} {script_name}".split()
cmd = ["accelerate-launch"] + test_args
result = execute_subprocess_async(cmd, env=os.environ.copy())
result = execute_subprocess_async(cmd)
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!")

View File

@ -0,0 +1,120 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
class _StoreAction(argparse.Action):
"""
Custom action that allows for `-` or `_` to be passed in for an argument.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
new_option_strings = []
for option_string in self.option_strings:
new_option_strings.append(option_string)
if "_" in option_string[2:]:
# Add `-` version to the option string
new_option_strings.append(option_string.replace("_", "-"))
self.option_strings = new_option_strings
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, values)
class _StoreConstAction(_StoreAction):
"""
Same as `argparse._StoreConstAction` but uses the custom `_StoreAction`.
"""
def __init__(self, option_strings, dest, const, default=None, required=False, help=None):
super().__init__(
option_strings=option_strings,
dest=dest,
nargs=0,
const=const,
default=default,
required=required,
help=help,
)
def __call__(self, parser, namespace, values, option_string=None):
setattr(namespace, self.dest, self.const)
class _StoreTrueAction(_StoreConstAction):
"""
Same as `argparse._StoreTrueAction` but uses the custom `_StoreConstAction`.
"""
def __init__(
self,
option_strings,
dest,
default=None,
required=False,
help=None,
):
super().__init__(
option_strings=option_strings, dest=dest, const=True, default=default, required=required, help=help
)
class CustomArgumentGroup(argparse._ArgumentGroup):
"""
Custom argument group that allows for the use of `-` or `_` in arguments passed and overrides the help for each
when applicable.
"""
def _add_action(self, action):
args = vars(action)
if isinstance(action, argparse._StoreTrueAction):
action = _StoreTrueAction(
args["option_strings"], args["dest"], args["default"], args["required"], args["help"]
)
elif isinstance(action, argparse._StoreConstAction):
action = _StoreConstAction(
args["option_strings"],
args["dest"],
args["const"],
args["default"],
args["required"],
args["help"],
)
elif isinstance(action, argparse._StoreAction):
action = _StoreAction(**args)
action = super()._add_action(action)
return action
class CustomArgumentParser(argparse.ArgumentParser):
"""
Custom argument parser that allows for the use of `-` or `_` in arguments passed and overrides the help for each
when applicable.
"""
def add_argument(self, *args, **kwargs):
if "action" in kwargs:
# Translate action -> class
if kwargs["action"] == "store_true":
kwargs["action"] = _StoreTrueAction
else:
kwargs["action"] = _StoreAction
super().add_argument(*args, **kwargs)
def add_argument_group(self, *args, **kwargs):
group = CustomArgumentGroup(self, *args, **kwargs)
self._action_groups.append(group)
return group

View File

@ -409,7 +409,7 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
A random number generator to keep synchronized across processes.
skip_batches (`int`, *optional*, defaults to 0):
The number of batches to skip at the beginning.
kwargs:
**kwargs (additional keyword arguments, *optional*):
All other keyword arguments to pass to the regular `DataLoader` initialization.
**Available attributes:**
@ -429,6 +429,7 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
synchronized_generator=None,
skip_batches=0,
_drop_last: bool = False,
_non_blocking: bool = False,
**kwargs,
):
super().__init__(dataset, **kwargs)
@ -438,6 +439,7 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
self.skip_batches = skip_batches
self.gradient_state = GradientState()
self._drop_last = _drop_last
self._non_blocking = _non_blocking
self.iteration = 0
def __iter__(self):
@ -458,7 +460,7 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
try:
# But we still move it to the device so it is done before `StopIteration` is reached
if self.device is not None:
current_batch = send_to_device(current_batch, self.device)
current_batch = send_to_device(current_batch, self.device, non_blocking=self._non_blocking)
next_batch = next(dataloader_iter)
if batch_index >= self.skip_batches:
yield current_batch
@ -500,6 +502,18 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
else:
return len(self.dataset)
def get_sampler(self):
return get_sampler(self)
def set_sampler(self, sampler):
sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
if sampler_is_batch_sampler:
self.sampler.sampler = sampler
else:
self.batch_sampler.sampler = sampler
if hasattr(self.batch_sampler, "batch_sampler"):
self.batch_sampler.batch_sampler.sampler = sampler
if is_torch_xla_available():
import torch_xla.distributed.parallel_loader as xpl
@ -571,7 +585,14 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
"""
def __init__(
self, dataset, split_batches: bool = False, skip_batches=0, _drop_last: bool = False, slice_fn=None, **kwargs
self,
dataset,
split_batches: bool = False,
skip_batches=0,
_drop_last: bool = False,
_non_blocking: bool = False,
slice_fn=None,
**kwargs,
):
shuffle = False
if is_torch_version(">=", "1.11.0"):
@ -588,6 +609,7 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
self.gradient_state = GradientState()
self.state = AcceleratorState()
self._drop_last = _drop_last
self._non_blocking = _non_blocking
self.skip_batches = skip_batches
self.slice_fn = slice_tensors if slice_fn is None else slice_fn
@ -660,7 +682,7 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
if self.state.process_index != 0:
# Initialize tensors on other processes than process 0.
batch = initialize_tensors(batch_info[0])
batch = send_to_device(batch, self.state.device)
batch = send_to_device(batch, self.state.device, non_blocking=self._non_blocking)
# Broadcast the batch before splitting it.
batch = broadcast(batch, from_process=0)
@ -741,6 +763,36 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
def total_dataset_length(self):
return len(self.dataset)
def get_sampler(self):
return get_sampler(self)
def set_sampler(self, sampler):
sampler_is_batch_sampler = isinstance(self.sampler, BatchSampler)
if sampler_is_batch_sampler:
self.sampler.sampler = sampler
else:
self.batch_sampler.sampler = sampler
if hasattr(self.batch_sampler, "batch_sampler"):
self.batch_sampler.batch_sampler.sampler = sampler
def get_sampler(dataloader):
"""
Get the sampler associated to the dataloader
Args:
dataloader (`torch.utils.data.dataloader.DataLoader`):
The data loader to split across several devices.
Returns:
`torch.utils.data.Sampler`: The sampler associated to the dataloader
"""
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
if sampler_is_batch_sampler:
sampler = getattr(dataloader.sampler, "sampler", None)
else:
sampler = getattr(dataloader.batch_sampler, "sampler", None)
return sampler
def prepare_data_loader(
dataloader: DataLoader,
@ -754,6 +806,7 @@ def prepare_data_loader(
even_batches: bool = True,
slice_fn_for_dispatch: Optional[Callable] = None,
use_seedable_sampler: bool = False,
non_blocking: bool = False,
) -> DataLoader:
"""
Wraps a PyTorch `DataLoader` to generate batches for one of the processes only.
@ -812,6 +865,10 @@ def prepare_data_loader(
reproducability. Comes at a cost of potentially different performances due to different shuffling
algorithms but ensures results will be the *exact* same. Should be paired with `set_seed()` at every
`self.set_epoch`
non_blocking (`bool`, *optional*, defaults to `False`):
If set to `True`, dataloader will utilize non-blocking host-to-device transfers. If the dataloader has
`pin_memory` set to `True`, this will help to increase overlap between data transfer and computations.
Returns:
`torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches
@ -863,13 +920,10 @@ def prepare_data_loader(
new_dataset = dataloader.dataset
# Iterable dataset doesn't like batch_sampler, but data_loader creates a default one for it
new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None
sampler_is_batch_sampler = False
synchronized_generator = None
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
if sampler_is_batch_sampler:
sampler = getattr(dataloader.sampler, "sampler", None)
else:
sampler = getattr(dataloader.batch_sampler, "sampler", None)
synchronized_generator = None
sampler = get_sampler(dataloader)
if isinstance(sampler, RandomSampler) and use_seedable_sampler:
# When iterating through the dataloader during distributed processes
# we want to ensure that on each process we are iterating through the same
@ -882,6 +936,11 @@ def prepare_data_loader(
generator=getattr(sampler, "generator", torch.Generator()),
)
if isinstance(dataloader.sampler, RandomSampler) and state.distributed_type == DistributedType.XLA:
# isinstance(dataloader.sampler, RandomSampler) indicates the original dataloader has `shuffle` enabled.
generator = torch.Generator().manual_seed(42)
dataloader.generator = generator
dataloader.sampler.generator = generator
# No change if no multiprocess
if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches:
if isinstance(new_dataset, IterableDataset):
@ -896,6 +955,10 @@ def prepare_data_loader(
split_batches=split_batches,
)
else:
if not use_seedable_sampler and hasattr(sampler, "generator"):
if sampler.generator is None:
sampler.generator = torch.Generator()
synchronized_generator = sampler.generator
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
new_batch_sampler = BatchSamplerShard(
batch_sampler,
@ -936,6 +999,7 @@ def prepare_data_loader(
split_batches=split_batches,
batch_sampler=new_batch_sampler,
_drop_last=dataloader.drop_last,
_non_blocking=non_blocking,
slice_fn=slice_fn_for_dispatch,
**kwargs,
)
@ -947,6 +1011,7 @@ def prepare_data_loader(
batch_size=dataloader.batch_size,
rng_types=rng_types,
_drop_last=dataloader.drop_last,
_non_blocking=non_blocking,
synchronized_generator=synchronized_generator,
**kwargs,
)
@ -958,14 +1023,12 @@ def prepare_data_loader(
rng_types=rng_types,
synchronized_generator=synchronized_generator,
_drop_last=dataloader.drop_last,
_non_blocking=non_blocking,
**kwargs,
)
if isinstance(sampler, SeedableRandomSampler) and use_seedable_sampler:
if sampler_is_batch_sampler:
dataloader.sampler.sampler = sampler
else:
dataloader.batch_sampler.sampler = sampler
dataloader.set_sampler(sampler)
if state.distributed_type == DistributedType.XLA:
return MpDeviceLoaderWrapper(dataloader, device)
return dataloader

View File

@ -30,6 +30,9 @@ from .utils.modeling import get_non_persistent_buffers
from .utils.other import recursive_getattr
_accelerate_added_attributes = ["to", "cuda", "npu", "xpu", "mlu", "musa"]
class ModelHook:
"""
A hook that contains callbacks to be executed just before and after the forward method of a model. The difference
@ -202,6 +205,10 @@ def remove_hook_from_module(module: nn.Module, recurse=False):
module.forward = module._old_forward
delattr(module, "_old_forward")
# Remove accelerate added warning hooks from dispatch_model
for attr in _accelerate_added_attributes:
module.__dict__.pop(attr, None)
if recurse:
for child in module.children():
remove_hook_from_module(child, recurse)

View File

@ -1,3 +1,16 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from types import MethodType
from typing import Any, Dict, List, Optional, Tuple, Union
@ -15,11 +28,6 @@ from .utils import (
)
if is_pippy_available():
from pippy.IR import Pipe, PipeSplitWrapper, annotate_split_points
from pippy.PipelineStage import PipelineStage
def generate_device_map(model, num_processes: int = 1, no_split_module_classes=None, max_memory: dict = None):
"""
Calculates the device map for `model` with an offset for PiPPy
@ -70,6 +78,10 @@ def build_pipeline(model, split_points, args, kwargs, num_chunks):
Users can pass in custom `num_chunks` as an optional hyper-parameter. By default will use
`AcceleratorState.num_processes`
"""
# Note: We import here to reduce import time from general modules, and isolate outside dependencies
from pippy.IR import Pipe, PipeSplitWrapper, annotate_split_points
from pippy.PipelineStage import PipelineStage
# We need to annotate the split points in the model for PiPPy
state = PartialState()
annotate_split_points(model, {split_point: PipeSplitWrapper.SplitPoint.BEGINNING for split_point in split_points})

View File

@ -24,9 +24,12 @@ from .utils import (
PrepareForLaunch,
are_libraries_initialized,
check_cuda_p2p_ib_support,
get_gpu_info,
is_mps_available,
is_torch_version,
patch_environment,
)
from .utils.constants import ELASTIC_LOG_LINE_PREFIX_TEMPLATE_PYTORCH_VERSION
def test_launch():
@ -43,6 +46,13 @@ def notebook_launcher(
master_addr="127.0.0.1",
node_rank=0,
num_nodes=1,
rdzv_backend="static",
rdzv_endpoint="",
rdzv_conf=None,
rdzv_id="none",
max_restarts=0,
monitor_interval=0.1,
log_line_prefix_template=None,
):
"""
Launches a training function, using several processes or multiple nodes if it's possible in the current environment
@ -77,6 +87,20 @@ def notebook_launcher(
The rank of the current node.
num_nodes (`int`, *optional*, defaults to 1):
The number of nodes to use for training.
rdzv_backend (`str`, *optional*, defaults to `"static"`):
The rendezvous method to use, such as 'static' (the default) or 'c10d'
rdzv_endpoint (`str`, *optional*, defaults to `""`):
The endpoint of the rdzv sync. storage.
rdzv_conf (`Dict`, *optional*, defaults to `None`):
Additional rendezvous configuration.
rdzv_id (`str`, *optional*, defaults to `"none"`):
The unique run id of the job.
max_restarts (`int`, *optional*, defaults to 0):
The maximum amount of restarts that elastic agent will conduct on workers before failure.
monitor_interval (`float`, *optional*, defaults to 0.1):
The interval in seconds that is used by the elastic_agent as a period of monitoring workers.
log_line_prefix_template (`str`, *optional*, defaults to `None`):
The prefix template for elastic launch logging. Available from PyTorch 2.2.0.
Example:
@ -124,7 +148,7 @@ def notebook_launcher(
launcher = PrepareForLaunch(function, distributed_type="TPU")
print(f"Launching a training on {num_processes} TPU cores.")
xmp.spawn(launcher, args=args, nprocs=num_processes, start_method="fork")
elif in_colab:
elif in_colab and get_gpu_info()[1] < 2:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print("Launching training on one GPU.")
@ -140,6 +164,7 @@ def notebook_launcher(
raise ValueError("The node_rank must be less than the number of nodes.")
if num_processes > 1:
# Multi-GPU launch
from torch.distributed.launcher.api import LaunchConfig, elastic_launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
@ -197,7 +222,27 @@ def notebook_launcher(
launcher = PrepareForLaunch(function, distributed_type="MULTI_GPU")
print(f"Launching training on {num_processes} GPUs.")
try:
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
if rdzv_conf is None:
rdzv_conf = {}
if rdzv_backend == "static":
rdzv_conf["rank"] = node_rank
if not rdzv_endpoint:
rdzv_endpoint = f"{master_addr}:{use_port}"
launch_config_kwargs = dict(
min_nodes=num_nodes,
max_nodes=num_nodes,
nproc_per_node=num_processes,
run_id=rdzv_id,
rdzv_endpoint=rdzv_endpoint,
rdzv_backend=rdzv_backend,
rdzv_configs=rdzv_conf,
max_restarts=max_restarts,
monitor_interval=monitor_interval,
start_method="fork",
)
if is_torch_version(">=", ELASTIC_LOG_LINE_PREFIX_TEMPLATE_PYTORCH_VERSION):
launch_config_kwargs["log_line_prefix_template"] = log_line_prefix_template
elastic_launch(config=LaunchConfig(**launch_config_kwargs), entrypoint=function)(*args)
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(

View File

@ -69,6 +69,8 @@ class LocalSGD:
DistributedType.NO,
DistributedType.MULTI_CPU,
DistributedType.MULTI_GPU,
DistributedType.MULTI_MLU,
DistributedType.MULTI_MUSA,
DistributedType.MULTI_NPU,
]:
raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)")

Some files were not shown because too many files have changed in this diff Show More