Compare commits

..

5 Commits

Author SHA1 Message Date
e91acff698 Finish launch dataclasses 2023-10-06 14:07:23 -04:00
7642a84920 Bookmark 2023-10-05 15:41:30 -04:00
39ed4554a2 Futher along 2023-10-05 11:58:52 -04:00
d4debcea79 Working API 2023-10-05 10:45:03 -04:00
58a8198c5c Start of new CLI process method 2023-10-03 15:00:28 +00:00
96 changed files with 1542 additions and 3988 deletions

View File

@ -15,13 +15,13 @@ jobs:
outputs:
version: ${{ steps.step1.outputs.version }}
steps:
- uses: actions/checkout@v3.1.0
- uses: actions/checkout@v3
- id: step1
run: echo "version=$(python setup.py --version)" >> $GITHUB_OUTPUT
version-cpu:
name: "Latest Accelerate CPU [version]"
runs-on: [self-hosted, intel-cpu, 8-cpu, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
needs: get-version
steps:
- name: Set up Docker Buildx
@ -41,7 +41,7 @@ jobs:
version-cuda:
name: "Latest Accelerate GPU [version]"
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
needs: get-version
steps:
- name: Set up Docker Buildx

View File

@ -22,7 +22,7 @@ jobs:
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v41
uses: tj-actions/changed-files@v22.2
- name: Was setup changed
id: was_changed
@ -45,6 +45,6 @@ jobs:
uses: ./.github/workflows/run_merge_tests.yml
run-integration-tests:
needs: build-docker-containers
needs: run-merge-tests
if: always()
uses: ./.github/workflows/self_hosted_integration_tests.yml

View File

@ -11,9 +11,19 @@ concurrency:
cancel-in-progress: false
jobs:
clean-storage:
name: "Clean docker image storage"
runs-on: [self-hosted, docker-gpu, multi-gpu]
steps:
- name: Clean storage
run: |
docker image prune --all -f --filter "until=48h"
docker system prune --all -f --filter "until=48h"
latest-cpu:
name: "Latest Accelerate CPU [dev]"
runs-on: [self-hosted, intel-cpu, 8-cpu, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
needs: clean-storage
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
@ -31,7 +41,8 @@ jobs:
latest-cuda:
name: "Latest Accelerate GPU [dev]"
runs-on: [self-hosted, nvidia-gpu, t4, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
needs: clean-storage
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2

View File

@ -14,4 +14,5 @@ jobs:
commit_sha: ${{ github.sha }}
package: accelerate
secrets:
token: ${{ secrets.HUGGINGFACE_PUSH }}
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -0,0 +1,14 @@
name: Delete doc comment
on:
workflow_run:
workflows: ["Delete doc comment trigger"]
types:
- completed
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
secrets:
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

View File

@ -0,0 +1,12 @@
name: Delete doc comment trigger
on:
pull_request:
types: [ closed ]
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment_trigger.yml@main
with:
pr_number: ${{ github.event.number }}

View File

@ -25,6 +25,11 @@ jobs:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
transformers-version: [
pypi,
github
]
steps:
- uses: actions/checkout@v3.1.0
- name: Set up python 3.8
@ -42,6 +47,9 @@ jobs:
cd ..
git clone https://github.com/huggingface/transformers
cd transformers
if [[ ${{ matrix.transformers-version }} = pypi ]]; then
git checkout $(git describe --tags `git rev-list --tags --max-count=1`)
fi
pip install .[torch,testing]
- name: Show installed libraries

View File

@ -13,7 +13,7 @@ env:
jobs:
run_all_tests_single_gpu:
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
@ -22,25 +22,23 @@ jobs:
options: --gpus all --shm-size "16gb"
defaults:
run:
working-directory: accelerate/
shell: bash
steps:
- name: Update clone & pip install
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
git config --global --add safe.directory '*'
git fetch && git checkout ${{ github.sha }}
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Run test on GPUs
working-directory: accelerate
run: |
source activate accelerate
make test
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
@ -48,14 +46,13 @@ jobs:
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_all_tests_multi_gpu:
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
env:
CUDA_VISIBLE_DEVICES: "0,1"
TEST_TYPE: "multi_gpu"
@ -64,19 +61,18 @@ jobs:
options: --gpus all --shm-size "16gb"
defaults:
run:
working-directory: accelerate/
shell: bash
steps:
- name: Update clone
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
git config --global --add safe.directory '*'
git fetch && git checkout ${{ github.sha }}
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Run core and big modeling tests on GPUs
working-directory: accelerate
run: |
source activate accelerate
make test_core
@ -84,14 +80,12 @@ jobs:
make test_cli
- name: Run Integration tests on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
make test_integrations
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
@ -99,7 +93,6 @@ jobs:
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
@ -107,5 +100,6 @@ jobs:
run-integration-tests:
needs: [run_all_tests_single_gpu, run_all_tests_multi_gpu]
if: always()
uses: ./.github/workflows/self_hosted_integration_tests.yml

View File

@ -6,7 +6,7 @@ jobs:
quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3.1.0
- uses: actions/checkout@v2
- name: Set up Python 3.8
uses: actions/setup-python@v3
with:

View File

@ -10,7 +10,7 @@ env:
jobs:
run_all_tests_single_gpu:
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
env:
CUDA_VISIBLE_DEVICES: "0"
container:
@ -18,81 +18,72 @@ jobs:
options: --gpus all --shm-size "16gb"
defaults:
run:
working-directory: accelerate/
shell: bash
steps:
- name: Install accelerate
- name: Update clone & pip install
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate ;
source activate accelerate
git config --global --add safe.directory '*'
git fetch && git checkout ${{ github.sha }}
pip install -e .[testing,test_trackers] -U
pip install pytest-reportlog tabulate
- name: Run CLI tests (use make cli)
working-directory: accelerate
- name: Run CLI tests
run: |
source activate accelerate;
source activate accelerate
make test_cli
- name: Run test on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
source activate accelerate
make test
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
pip uninstall comet_ml -y;
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install tabulate;
pip install tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_all_tests_multi_gpu:
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
env:
CUDA_VISIBLE_DEVICES: 0,1
runs-on: [self-hosted, docker-gpu, multi-gpu]
container:
image: huggingface/accelerate-gpu:latest
options: --gpus all --shm-size "16gb"
defaults:
run:
working-directory: accelerate/
shell: bash
steps:
- name: Update clone
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
source activate accelerate
git config --global --add safe.directory '*'
git fetch && git checkout ${{ github.sha }}
pip install -e .[testing,test_trackers] -U
pip install pytest-reportlog tabulate
- name: Run test on GPUs
working-directory: accelerate
run: |
source activate accelerate;
source activate accelerate
make test
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
pip uninstall comet_ml -y;
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
source activate accelerate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
pip install tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@ -25,32 +25,37 @@ jobs:
container:
image: huggingface/accelerate-gpu:latest
options: --gpus all --shm-size "16gb"
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
strategy:
fail-fast: false
matrix:
transformers-version: [
pypi,
github
]
cuda_visible_devices: [
"0",
"0,1"
]
steps:
- name: Install transformers
run: |
- name: Update accelerate clone and pip install
working-directory: accelerate/
run:
source activate accelerate;
git clone https://github.com/huggingface/transformers --depth 1;
cd transformers;
pip install .[torch,deepspeed-testing];
cd ..;
git config --global --add safe.directory '*';
git checkout main && git fetch && git checkout ${{ github.sha }};
pip install -e .;
- name: Install accelerate
- name: Update transformers clone & pip install
working-directory: transformers/
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }} ;
pip install -e .[testing];
pip uninstall comet_ml wandb dvclive -y
cd ..;
source activate accelerate
git config --global --add safe.directory '*'
git checkout main && git pull
if [[ ${{ matrix.transformers-version }} = pypi ]]; then
git checkout $(git describe --tags `git rev-list --tags --max-count=1`)
fi
pip install .[torch,deepspeed-testing]
- name: Show installed libraries
run: |
@ -76,40 +81,36 @@ jobs:
source activate accelerate;
pytest -sv tests/deepspeed
- name: Run transformers examples tests
working-directory: transformers/
env:
CUDA_VISIBLE_DEVICES: ${{ matrix.cuda_visible_devices }}
WANDB_DISABLED: true
run: |
source activate accelerate
pip install -r examples/pytorch/_tests_requirements.txt
pytest -sv examples/pytorch/test_accelerate_examples.py examples/pytorch/test_pytorch_examples.py
run-skorch-tests:
container:
image: huggingface/accelerate-gpu:latest
options: --gpus all --shm-size "16gb"
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
runs-on: [self-hosted, docker-gpu, multi-gpu]
strategy:
fail-fast: false
matrix:
skorch-version: [
pypi,
github
]
steps:
- name: Install accelerate
- name: Update accelerate clone and pip install
working-directory: accelerate/
run:
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing];
cd ..
git config --global --add safe.directory '*';
git checkout main && git fetch && git checkout ${{ github.sha }};
pip install -e .;
- name: Install skorch
- name: Update skorch clone & pip install
working-directory: skorch/
run: |
source activate accelerate
git clone https://github.com/skorch-dev/skorch;
cd skorch;
git config --global --add safe.directory '*'
git checkout master && git pull
if [[ ${{ matrix.skorch-version }} = pypi ]]; then
git checkout $(git describe --tags `git rev-list --tags --max-count=1`)
fi
pip install .[testing]
pip install flaky

View File

@ -13,10 +13,10 @@ jobs:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v3.1.0
- uses: actions/checkout@v2
- name: Setup Python
uses: actions/setup-python@v3
uses: actions/setup-python@v1
with:
python-version: 3.8

View File

@ -220,7 +220,6 @@ You shouldn't use 🤗 Accelerate if you don't want to write a training loop you
If you like the simplicity of 🤗 Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of 🤗 Accelerate are listed below:
* [Amphion](https://github.com/open-mmlab/Amphion) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.
* [Animus](https://github.com/Scitator/animus) is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within [IExperiment](https://github.com/Scitator/animus/blob/main/animus/core.py#L76).
* [Catalyst](https://github.com/catalyst-team/catalyst#getting-started) is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a [Runner](https://catalyst-team.github.io/catalyst/api/core.html#runner) to connect all parts of the experiment: hardware backend, data transformations, model training, and inference logic.
* [fastai](https://github.com/fastai/fastai#installing) is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a [Learner](https://docs.fast.ai/learner.html#Learner) to handle the training, fine-tuning, and inference of deep learning algorithms.
@ -270,7 +269,7 @@ If you use 🤗 Accelerate in your publication, please cite it by using the foll
```bibtex
@Misc{accelerate,
title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
author = {Sylvain Gugger and Lysandre Debut and Thomas Wolf and Philipp Schmid and Zachary Mueller and Sourab Mangrulkar and Marc Sun and Benjamin Bossan},
author = {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar, Marc Sun, Benjamin Bossan},
howpublished = {\url{https://github.com/huggingface/accelerate}},
year = {2022}
}

View File

@ -28,7 +28,7 @@ RUN source activate accelerate && \
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Stage 2
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 AS build-image
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04 AS build-image
COPY --from=compile-image /opt/conda /opt/conda
ENV PATH /opt/conda/bin:$PATH

View File

@ -15,8 +15,6 @@
title: Launching distributed code
- local: basic_tutorials/notebook
title: Launching distributed training from Jupyter Notebooks
- local: basic_tutorials/troubleshooting
title: Troubleshooting guide
title: Tutorials
- sections:
- local: usage_guides/explore
@ -39,10 +37,12 @@
title: Saving and loading training states
- local: usage_guides/tracking
title: Using experiment trackers
- local: usage_guides/debug
title: Debugging timeout errors
- local: usage_guides/memory
title: How to avoid CUDA Out-of-Memory
- local: usage_guides/mps
title: How to use Apple Silicon M1 GPUs
- local: usage_guides/low_precision_training
title: How to train in low precision (FP8)
- local: usage_guides/deepspeed
title: How to use DeepSpeed
- local: usage_guides/fsdp
@ -65,8 +65,6 @@
title: Executing and deferring jobs
- local: concept_guides/gradient_synchronization
title: Gradient synchronization
- local: concept_guides/low_precision_training
title: How training in low-precision environments is possible (FP8)
- local: concept_guides/training_tpu
title: TPU best practices
title: Concepts and fundamentals

View File

@ -186,7 +186,7 @@ Here is a basic training loop for the animal classification problem:
<Tip>
The code has been split up to allow for explanations on each section. A full version that can be copy and pasted will be available at the end
The code has been split up to allow for explainations on each section. A full version that can be copy and pasted will be available at the end
</Tip>
@ -344,7 +344,7 @@ def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64):
mean = mean.to(accelerator.device)
std = std.to(accelerator.device)
# Instantiate the optimizer
# Intantiate the optimizer
optimizer = torch.optim.Adam(params=model.parameters(), lr=3e-2 / 25)
# Instantiate the learning rate scheduler

View File

@ -1,222 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Troubleshooting guide
This guide aims to provide you the tools and knowledge required to navigate some common issues. However,
as 🤗 Accelerate continuously evolves and the use cases and setups are diverse, you might encounter an issue not covered in this
guide. If the suggestions listed in this guide do not cover your such situation, please refer to the final section of
the guide, [Asking for Help](#ask-for-help), to learn where to find help with your specific issue.
## Logging
When facing an error, logging can help narrow down where it is coming from. In a distributed setup with multiple processes,
logging can be a challenge, but 🤗 Accelerate provides a utility that streamlines the logging process and ensures that
logs are synchronized and managed effectively across the distributed setup.
To troubleshoot an issue, use `accelerate.logging` instead of the standard Python `logging` module:
```diff
- import logging
+ from accelerate.logging import get_logger
- logger = logging.getLogger(__name__)
+ logger = get_logger(__name__)
```
To set the log level (`INFO`, `DEBUG`, `WARNING`, `ERROR`, `CRITICAL`), export it as the `ACCELERATE_LOG_LEVEL` environment,
or pass as `log_level` to `get_logger`:
```python
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
```
By default, the log is called on main processes only. To call it on all processes, pass `main_process_only=False`.
If a log should be called on all processes and in order, also pass `in_order=True`.
## Hanging code and timeout errors
### Mismatched tensor shapes
If your code seems to be hanging for a significant amount time on a distributed setup, a common cause is mismatched shapes of tensors on different
devices.
When running scripts in a distributed fashion, functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] are
necessary to grab tensors across devices to perform operations on them collectively. These (and other) functions rely on
`torch.distributed` performing a `gather` operation, which requires that tensors have the **exact same shape** across all processes.
When the tensor shapes don't match, you will experience handing code, and eventually hit a timeout exception.
If you suspect this to be the case, use Accelerate's operational debug mode to immediately catch the issue.
The recommended way to enable Accelerate's operational debug mode is during `accelerate config` setup.
Alternative ways to enable debug mode are:
* From the CLI:
```bash
accelerate launch --debug {my_script.py} --arg1 --arg2
```
* As an environmental variable (which avoids the need for `accelerate launch`):
```bash
ACCELERATE_DEBUG_MODE="1" torchrun {my_script.py} --arg1 --arg2
```
* Manually changing the `config.yaml` file:
```diff
compute_environment: LOCAL_MACHINE
+debug: true
```
Once you enable the debug mode, you should get a similar traceback that points to the tensor shape mismatch issue:
```py
Traceback (most recent call last):
File "/home/zach_mueller_huggingface_co/test.py", line 18, in <module>
main()
File "/home/zach_mueller_huggingface_co/test.py", line 15, in main
broadcast_tensor = broadcast(tensor)
File "/home/zach_mueller_huggingface_co/accelerate/src/accelerate/utils/operations.py", line 303, in wrapper
accelerate.utils.operations.DistributedOperationException:
Cannot apply desired operation due to shape mismatches. All shapes across devices must be valid.
Operation: `accelerate.utils.operations.broadcast`
Input shapes:
- Process 0: [1, 5]
- Process 1: [1, 2, 5]
```
### Early stopping leads to hanging
When doing early stopping in distributed training, if each process has a specific stopping condition (e.g. validation loss),
it may not be synchronized across all of them. As a result, a break can happen on process 0 but not on process 1.
This will cause the code to hang indefinitely until a timeout occurs.
If you have early stopping conditionals, use `set_breakpoint` and `check_breakpoint` methods to make sure all the processes
are ended correctly:
```py
# Assume `should_do_breakpoint` is a custom defined function that returns a conditional,
# and that conditional might be true only on process 1
if should_do_breakpoint(loss):
accelerator.set_breakpoint()
# Later in the training script when we need to check for the breakpoint
if accelerator.check_breakpoint():
break
```
### Hanging on low kernel versions on Linux
This is a known issue. On Linux with kernel version < 5.5, hanging processes have been reported. To avoid
encountering this problem, we recommend upgrading your system to a later kernel version.
## CUDA out of memory
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory",
as the entire script needs to be restarted, progress is lost, and typically a developer would want to simply
start their script and let it run.
To address this problem, `Accelerate` offers a utility `find_executable_batch_size` that is heavily based on [toma](https://github.com/BlackHC/toma).
The utility retries code that fails due to OOM (out-of-memory) conditions and lowers batch sizes automatically.
### find_executable_batch_size
This algorithm operates with exponential decay, decreasing the batch size in half after each failed run on some
training script. To use it, restructure your training function to include an inner function that includes this wrapper,
and build your dataloaders inside it. At a minimum, this could look like 4 new lines of code.
<Tip warning={true}>
The inner function *must* take in the batch size as the first parameter, but we do not pass one to it when called. The wrapper handles this for us.
</Tip>
It should also be noted that anything which will consume CUDA memory and passed to the `accelerator` **must** be declared inside the inner function,
such as models and optimizers.
```diff
def training_function(args):
accelerator = Accelerator()
+ @find_executable_batch_size(starting_batch_size=args.batch_size)
+ def inner_training_loop(batch_size):
+ nonlocal accelerator # Ensure they can be used in our context
+ accelerator.free_memory() # Free all lingering references
model = get_model()
model.to(accelerator.device)
optimizer = get_optimizer()
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
lr_scheduler = get_scheduler(
optimizer,
num_training_steps=len(train_dataloader)*num_epochs
)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
train(model, optimizer, train_dataloader, lr_scheduler)
validate(model, eval_dataloader)
+ inner_training_loop()
```
To find out more, check the documentation [here](../package_reference/utilities#accelerate.find_executable_batch_size).
## Non-reproducible results between device setups
If you have changed the device setup and are observing different model performance, this is likely due to the fact that
you have not updated your script when moving from one setup to another. The same script with the same batch size across TPU,
multi-GPU, and single-GPU with Accelerate will have different results.
For example, if you were previously training on a single GPU with a batch size of 16, when moving to two GPU setup,
you need to change the batch size to 8 to have the same effective batch size. This is because when training with Accelerate,
the batch size passed to the dataloader is the **batch size per GPU**.
To make sure you can reproduce the results between the setups, make sure to use the same seed, adjust the batch size
accordingly, consider scaling the learning rate.
For more details and a quick reference for batch sizes, check out the [Comparing performance between different device setups](../concept_guides/performance) guide.
## Performance issues on different GPUs
If your multi-GPU setup consists of different GPUs, you may hit some limitations:
- There may be an imbalance in GPU memory between the GPUs. In this case, the GPU with smaller memory will limit the batch size or the size of the model that can be loaded onto the GPUs.
- If you are using GPUs with different performance profiles, the performance will be driven by the slowest GPU that you are using as the other GPUs will have to wait for it to complete its workload.
Vastly different GPUs within the same setup can lead to performance bottlenecks.
## Ask for help
If the above troubleshooting tools and advice did not help you resolve your issue, reach out for help to the community
and the team.
### Forums
Ask for help on the Hugging Face forums - post your question in the [🤗Accelerate category](https://discuss.huggingface.co/c/accelerate/18)
Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
### Discord
Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you.
### GitHub Issues
Create an Issue on the 🤗 Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you suspect
to have found a bug related to the library. Include context regarding the bug and details about your distributed setup
to help us better figure out what's wrong and how we can fix it.

View File

@ -154,7 +154,7 @@ By passing `device_map="auto"`, we tell 🤗 Accelerate to determine automatical
#### `no_split_module_classes`
This parameter will indicate that some of the modules with the name `"Block"` should not be split across different devices. You should set here all blocks that
include a residual connection of some kind.
include a residutal connection of some kind.
#### The `device_map`
@ -295,44 +295,11 @@ device_map = {"block1": 0, "block2.linear1": 1, "block2.linear2": 1}
</Tip>
## CPU offload only
If you want to offload your model on CPU, you can use [`cpu_offload`]. As a result, all parameters of the model will be offloaded and only one copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that state dict and put on the execution device and passed as they are needed, then offloaded again.
```python
cpu_offload(model, execution_device)
```
You can also use [`cpu_offload_with_hook`]. This function will offloads a model on the CPU and puts it back to an execution device when executed. The difference with [`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when the `offload` method of the returned `hook` is called. Furthermore, [`cpu_offload_with_hook`] is more performant but less memory saving. It is useful for pipelines running a model in a loop:
```python
model_1, hook_1 = cpu_offload_with_hook(model_1, execution_device)
model_2, hook_2 = cpu_offload_with_hook(model_2, execution_device, prev_module_hook=hook_1)
model_3, hook_3 = cpu_offload_with_hook(model_3, execution_device, prev_module_hook=hook_2)
hid_1 = model_1(input)
for i in range(50):
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
hid_2 = model_2(hid_1)
# model2 is offloaded to the CPU just before this forward.
hid_3 = model_3(hid_3)
# For model3, you need to manually call the hook offload method.
hook_3.offload()
```
## Disk offload only
To perform disk offload, you can use [`disk_offload`]. As a result, all parameters of the model will be offloaded as memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and put on the execution device passed as they are needed, then offloaded again.
```python
disk_offload(model, offload_dir, execution_device)
```
## Limits and further development
We are aware of the current limitations in the API:
- While this could theoretically work on just one CPU with potential disk offload, you need at least one GPU to run this API. This will be fixed in further development.
- [`infer_auto_device_map`] (or `device_map="auto"` in [`load_checkpoint_and_dispatch`]) tries to maximize GPU and CPU RAM it sees available when you execute it. While PyTorch is very good at managing GPU RAM efficiently (and giving it back when not needed), it's not entirely true with Python and CPU RAM. Therefore, an automatically computed device map might be too intense on the CPU. Move a few modules to the disk device if you get crashes due to a lack of RAM.
- [`infer_auto_device_map`] (or `device_map="auto"` in [`load_checkpoint_and_dispatch`]) attributes devices sequentially (to avoid moving things back and forth) so if your first layer is bigger than the size of the GPU you have, it will end up with everything on the CPU/Disk.
- [`load_checkpoint_and_dispatch`] and [`load_checkpoint_in_model`] do not perform any check on the correctness of your state dict compared to your model at the moment (this will be fixed in a future version), so you may get some weird errors if trying to load a checkpoint with mismatched or missing keys.

View File

@ -55,8 +55,8 @@ their gradients computed, collated, and updated before moving on to the next
batch of data.
When performing gradient accumulation, you accumulate `n` loss gradients and
skip `optimizer.step()` until `n` batches have been reached. As all training
processes only need to synchronize by the time `optimizer.step()` is called,
without any modification to your training step, this needless inter-process
processes only need to sychronize by the time `optimizer.step()` is called,
without any modification to your training step, this neededless inter-process
communication can cause a significant slowdown.
How can you avoid this overhead?

View File

@ -1,74 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Low Precision Training Methods
The release of new kinds of hardware led to the emergence of new training paradigms that better utilize them. Currently, this is in the form of training
in 8-bit precision using packages such as [TransformersEngine](https://github.com/NVIDIA/TransformerEngine) (TE) or [MS-AMP](https://github.com/Azure/MS-AMP/tree/main).
For an introduction to the topics discussed today, we recommend reviewing the [low-precision usage guide](../usage_guides/low_precision_training.md) as this documentation will reference it regularly.
## A Quick Chart
Below is a quick chart from the MS-AMP documentation showing the different bit-precisions for each solution during training:
Optimization Level | Computation(GEMM) | Comm | Weight | Master Weight | Weight Gradient | Optimizer States
-- | -- | -- | -- | -- | -- | --
FP16 AMP | FP16 | FP32 | FP32 | N/A | FP32 | FP32+FP32
Nvidia TE | FP8 | FP32 | FP32 | N/A | FP32 | FP32+FP32
MS-AMP O1 | FP8 | FP8 | FP16 | N/A | FP8 | FP32+FP32
MS-AMP O2 | FP8 | FP8 | FP16 | N/A | FP8 | FP8+FP16
MS-AMP O3 | FP8 | FP8 | FP8 | FP16 | FP8 | FP8+FP16
## `TransformersEngine`
`TransformersEngine` is the first solution to trying to train in 8-bit floating point. It works by using drop-in replacement layers for certain ones in a model that utilize their FP8-engine to reduce the number of bits (such as 32 to 8) without degrading the final accuracy of the model.
Specifically, 🤗 Accelerate will find and replace the following layers with `TransformersEngine` versions:
* `nn.LayerNorm` for `te.LayerNorm`
* `nn.Linear` for `te.Linear`
As a result we wind up with a model that has most of its layers in BF16, while some layers are in FP8 reducing some of the memory.
Anecdotally, we have noticed that performance gains don't really start showing when using `TransformerEngine` until a large majority of the layers
in the model are made up of those two layers to replace. As a result, only larger models have shown performance improvements when the number of parameters is around and upwards of a few billion.
The `TransformerEngine` can receive many different arguments that customize how it performs FP8 calculations and what they do. A full list of the arguments is available below:
* `margin`: The margin to use for the gradient scaling.
* `interval`: The interval to use for how often the scaling factor is recomputed.
* `fp8_format``: The format to use for the FP8 recipe. Must be one of `E4M3` or `HYBRID`.
* `amax_history_len`: The length of the history to use for the scaling factor computation
* `amax_compute_algo`: The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`.
* `override_linear_precision`: Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
You can customize each of these as part of [`utils.FP8RecipeKwargs`] to help optimize performance of your models.
If we notice in the chart mentioned earlier, TE simply casts the computation layers into FP8, while everything else is in FP32. As a result this winds up utilizing the most memory but does so with the benefit of guaranteeing the least amount of loss in end accuracy during training.
## `MS-AMP`
MS-AMP takes a different approach to `TransformersEngine` by providing three different optimization levels to convert more operations in FP8 or FP16.
* The base optimization level (`O1`), passes communications of the weights (such as in DDP) in FP8, stores the weights of the model in FP16, and leaves the optimizer states in FP32. The main benefit of this optimization level is that we can reduce the communication bandwidth by essentially half. Additionally, more GPU memory is saved due to 1/2 of everything being cast in FP8, and the weights being cast to FP16. Notably, both the optimizer states remain in FP32.
* The second optimization level (`O2`) improves upon this by also reducing the precision of the optimizer states. One is in FP8 while the other is in FP16. Generally it's been shown that this will only provide a net-gain of no degraded end accuracy, increased training speed, and reduced memory as now every state is either in FP16 or FP8.
* Finally, MS-AMP has a third optimization level (`O3`) which helps during DDP scenarios such as DeepSpeed. The weights of the model in memory are fully cast to FP8, and the master weights are now stored in FP16. This fully reduces memory by the highest factor as now not only is almost everything in FP8, only two states are left in FP16. Currently, only DeepSpeed versions up through 0.9.2 are supported, so this capability is not included in the 🤗 Accelerate integration
## Combining the two
More experiments need to be performed but it's been noted that combining both MS-AMP and TransformersEngine can lead to the highest throughput by relying on NVIDIA's optimized FP8 operators and utilizing how MS-AMP reduces the memory overhead.

View File

@ -74,7 +74,7 @@ In this example, there are two GPUs for "Multi-GPU" and a TPU pod with 8 workers
## Learning Rates
As noted in multiple sources[[1](https://aws.amazon.com/blogs/machine-learning/scalable-multi-node-deep-learning-training-using-gpus-in-the-aws-cloud/)][[2](https://docs.nvidia.com/clara/clara-train-sdk/pt/model.html#classification-models-multi-gpu-training)], the learning rate should be scaled *linearly* based on the number of devices present. The below
As noted in multiple sources[[1](https://aws.amazon.com/blogs/machine-learning/scalable-multi-node-deep-learning-training-using-gpus-in-the-aws-cloud/)][[2](https://docs.nvidia.com/clara/tlt-mi_archive/clara-train-sdk-v2.0/nvmidl/appendix/training_with_multiple_gpus.html)], the learning rate should be scaled *linearly* based on the number of devices present. The below
snippet shows doing so with Accelerate:
<Tip>

View File

@ -36,7 +36,7 @@ Below is an example of a training function passed to the [`notebook_launcher`] i
<Tip>
This code snippet is based off the one from the `simple_nlp_example` notebook found [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb) with slight
This code snippet is based off the one from the `simple_nlp_example` notebook found [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate/simple_nlp_example.ipynb) with slight
modifications for the sake of simplicity
</Tip>

View File

@ -19,7 +19,6 @@ rendered properly in your Markdown viewer.
[[autodoc]] big_modeling.init_empty_weights
[[autodoc]] big_modeling.cpu_offload
[[autodoc]] big_modeling.cpu_offload_with_hook
[[autodoc]] big_modeling.disk_offload
[[autodoc]] big_modeling.dispatch_model
[[autodoc]] big_modeling.load_checkpoint_and_dispatch

View File

@ -199,7 +199,7 @@ The following arguments are only useful when `use_deepspeed` is passed or `deeps
**Fully Sharded Data Parallelism Arguments**:
The following arguments are only useful when `use_fsdp` is passed or Fully Sharded Data Parallelism is configured through `accelerate config`:
The following arguments are only useful when `use_fdsp` is passed or Fully Sharded Data Parallelism is configured through `accelerate config`:
* `--fsdp_offload_params` (`str`) -- Decides Whether (true|false) to offload parameters and gradients to CPU.
* `--fsdp_min_num_params` (`int`) -- FSDP's minimum number of parameters for Default Auto Wrapping.
@ -218,7 +218,7 @@ The following arguments are only useful when `use_megatron_lm` is passed or Mega
* `--megatron_lm_num_micro_batches` (``) -- Megatron-LM's number of micro batches when PP degree > 1.
* `--megatron_lm_sequence_parallelism` (``) -- Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1.
* `--megatron_lm_recompute_activations` (``) -- Decides Whether (true|false) to enable Selective Activation Recomputation.
* `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Parallel (DP) ranks.
* `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Pralellel (DP) ranks.
* `--megatron_lm_gradient_clipping` (``) -- Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable).
**AWS SageMaker Arguments**:

View File

@ -15,7 +15,23 @@ rendered properly in your Markdown viewer.
# Logging with Accelerate
Refer to the [Troubleshooting guide](../usage_guides/troubleshooting#logging) or to the example below to learn
how to use 🤗 Accelerate's logger.
Accelerate has its own logging utility to handle logging while in a distributed system.
To utilize this replace cases of `logging` with `accelerate.logging`:
```diff
- import logging
+ from accelerate.logging import get_logger
- logger = logging.getLogger(__name__)
+ logger = get_logger(__name__)
```
## Setting the log level
The log level can be set with the `ACCELERATE_LOG_LEVEL` environment variable or by passing
`log_level` to `get_logger`:
```python
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
```
[[autodoc]] logging.get_logger

View File

@ -31,5 +31,3 @@ rendered properly in your Markdown viewer.
- __init__
[[autodoc]] tracking.MLflowTracker
- __init__
[[autodoc]] tracking.ClearMLTracker
- __init__

View File

@ -40,12 +40,6 @@ The following are constants used when utilizing [`Accelerator.save_model`]
These are basic dataclasses used throughout 🤗 Accelerate and they can be passed in as parameters.
### Standalone
These are standalone dataclasses used for checks, such as the type of distributed system being used
[[autodoc]] utils.ComputeEnvironment
[[autodoc]] utils.DistributedType
[[autodoc]] utils.DynamoBackend
@ -54,30 +48,12 @@ These are standalone dataclasses used for checks, such as the type of distribute
[[autodoc]] utils.PrecisionType
[[autodoc]] utils.RNGType
[[autodoc]] utils.SageMakerDistributedType
### Kwargs
These are configurable arguments for specific interactions throughout the PyTorch ecosystem that Accelerate handles under the hood.
[[autodoc]] utils.AutocastKwargs
[[autodoc]] utils.DistributedDataParallelKwargs
[[autodoc]] utils.FP8RecipeKwargs
[[autodoc]] utils.GradScalerKwargs
[[autodoc]] utils.InitProcessGroupKwargs
[[autodoc]] utils.ProjectConfiguration
## Plugins
These are plugins that can be passed to the [`Accelerator`] object. While they are defined elsewhere in the documentation,
for convenience all of them are available to see here:
for convience all of them are available to see here:
[[autodoc]] utils.DeepSpeedPlugin
@ -89,22 +65,6 @@ for convenience all of them are available to see here:
[[autodoc]] utils.TorchDynamoPlugin
## Configurations
These are classes which can be configured and passed through to the appropriate integration
[[autodoc]] utils.BnbQuantizationConfig
[[autodoc]] utils.ProjectConfiguration
## Environmental Variables
These are environmental variables that can be enabled for different use cases
* `ACCELERATE_DEBUG_MODE` (`str`): Whether to run accelerate in debug mode. More info available [here](../usage_guides/debug.md).
## Data Manipulation and Operations
@ -112,30 +72,16 @@ These include data operations that mimic the same `torch` ops but can be used on
[[autodoc]] utils.broadcast
[[autodoc]] utils.broadcast_object_list
[[autodoc]] utils.concatenate
[[autodoc]] utils.convert_outputs_to_fp32
[[autodoc]] utils.convert_to_fp32
[[autodoc]] utils.gather
[[autodoc]] utils.gather_object
[[autodoc]] utils.listify
[[autodoc]] utils.pad_across_processes
[[autodoc]] utils.recursively_apply
[[autodoc]] utils.reduce
[[autodoc]] utils.send_to_device
[[autodoc]] utils.slice_tensors
## Environment Checks
These functionalities check the state of the current working environment including information about the operating system itself, what it can support, and if particular dependencies are installed.
@ -166,38 +112,20 @@ When setting up 🤗 Accelerate for the first time, rather than running `acceler
## Memory
[[autodoc]] utils.get_max_memory
[[autodoc]] utils.find_executable_batch_size
## Modeling
These utilities relate to interacting with PyTorch models
[[autodoc]] utils.calculate_maximum_sizes
[[autodoc]] utils.compute_module_sizes
[[autodoc]] utils.extract_model_from_parallel
[[autodoc]] utils.get_balanced_memory
[[autodoc]] utils.get_max_layer_size
[[autodoc]] utils.infer_auto_device_map
[[autodoc]] utils.load_checkpoint_in_model
[[autodoc]] utils.load_offloaded_weights
[[autodoc]] utils.load_state_dict
[[autodoc]] utils.offload_state_dict
[[autodoc]] utils.retie_parameters
[[autodoc]] utils.set_module_tensor_to_device
[[autodoc]] utils.shard_checkpoint
## Parallel
@ -238,3 +166,5 @@ These include utilities that are useful to load checkpoints.
These include utilities that are useful to quantize model.
[[autodoc]] utils.load_and_quantize_model
[[autodoc]] utils.BnbQuantizationConfig

View File

@ -52,7 +52,7 @@ will attempt to fill all the space in your GPU(s), then loading them to the CPU,
<Tip>
For more details on designing your own device map, see this section of the [concept guide](../concept_guide/big_model_inference#designing-a-device-map)
For more details on desigining your own device map, see this section of the [concept guide](../concept_guide/big_model_inference#desigining-a-device-map)
</Tip>
@ -90,7 +90,7 @@ What will happen now is each time the input gets passed through a layer, it will
<Tip>
Multiple GPUs can be utilized, however this is considered "model parallelism" and as a result only one GPU will be active at a given moment, waiting for the prior one to send it the output. You should launch your script normally with `python`
Multiple GPUs can be utilized, however this is considered "model parallism" and as a result only one GPU will be active at a given moment, waiting for the prior one to send it the output. You should launch your script normally with `python`
and not need `torchrun`, `accelerate launch`, etc.
</Tip>

View File

@ -0,0 +1,93 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Debugging Distributed Operations
When running scripts in a distributed fashion, often functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] (and others) are neccessary to grab tensors across devices and perform certain operations on them. However, if the tensors which are being grabbed are not the proper shapes then this will result in your code hanging forever. The only sign that exists of this truly happening is hitting a timeout exception from `torch.distributed`, but this can get quite costly as usually the timeout is 10 minutes.
Accelerate now has a `debug` mode which adds a neglible amount of time to each operation, but allows it to verify that the inputs you are bringing in can *actually* perform the operation you want **without** hitting this timeout problem!
## Visualizing the problem
To have a tangible example of this issue, let's take the following setup (on 2 GPUs):
```python
from accelerate import PartialState
state = PartialState()
if state.process_index == 0:
tensor = torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)
else:
tensor = torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)
broadcast_tensor = broadcast(tensor)
print(broadcast_tensor)
```
We've created a single tensor on each device, with two radically different shapes. With this setup if we want to perform an operation such as [`utils.broadcast`], we would forever hit a timeout because `torch.distributed` requires that these operations have the **exact same shape** across all processes for it to work.
If you run this yourself, you will find that `broadcast_tensor` can be printed on the main process, but its results won't quite be right, and then it will just hang never printing it on any of the other processes:
```
>>> tensor([[0, 1, 2, 3, 4]], device='cuda:0')
```
## The solution
By enabling Accelerate's operational debug mode, Accelerate will properly find and catch errors such as this and provide a very clear traceback immediatly:
```
Traceback (most recent call last):
File "/home/zach_mueller_huggingface_co/test.py", line 18, in <module>
main()
File "/home/zach_mueller_huggingface_co/test.py", line 15, in main
main()broadcast_tensor = broadcast(tensor)
File "/home/zach_mueller_huggingface_co/accelerate/src/accelerate/utils/operations.py", line 303, in wrapper
broadcast_tensor = broadcast(tensor)
accelerate.utils.operations.DistributedOperationException: Cannot apply desired operation due to shape mismatches. All shapes across devices must be valid.
Operation: `accelerate.utils.operations.broadcast`
Input shapes:
- Process 0: [1, 5]
- Process 1: [1, 2, 5]
```
This explains that the shapes across our devices were *not* the same, and that we should ensure that they match properly to be compatible. Typically this means that there is either an extra dimension, or certain dimensions are incompatible with the operation.
To enable this please do one of the following:
Enable it through the questionarre during `accelerate config` (recommended)
From the CLI:
```
accelerate launch --debug {my_script.py} --arg1 --arg2
```
As an environmental variable (which avoids the need for `accelerate launch`):
```
ACCELERATE_DEBUG_MODE="1" accelerate launch {my_script.py} --arg1 --arg2
```
Manually changing the `config.yaml` file:
```diff
compute_environment: LOCAL_MACHINE
+debug: true
```

View File

@ -13,9 +13,9 @@ specific language governing permissions and limitations under the License.
rendered properly in your Markdown viewer.
-->
# DeepSpeed
# DeepSpeed
[DeepSpeed](https://github.com/microsoft/DeepSpeed) implements everything described in the [ZeRO paper](https://arxiv.org/abs/1910.02054). Some of the salient optimizations are:
[DeepSpeed](https://github.com/microsoft/DeepSpeed) implements everything described in the [ZeRO paper](https://arxiv.org/abs/1910.02054). Currently, it provides full support for:
1. Optimizer state partitioning (ZeRO stage 1)
2. Gradient partitioning (ZeRO stage 2)
@ -23,7 +23,6 @@ rendered properly in your Markdown viewer.
4. Custom mixed precision training handling
5. A range of fast CUDA-extension-based optimizers
6. ZeRO-Offload to CPU and Disk/NVMe
7. Hierarchical partitioning of model parameters (ZeRO++)
ZeRO-Offload has its own dedicated paper: [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840). And NVMe-support is described in the paper [ZeRO-Infinity: Breaking the GPU
Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857).
@ -36,16 +35,16 @@ won't be possible on a single GPU.
🤗 Accelerate integrates [DeepSpeed](https://github.com/microsoft/DeepSpeed) via 2 options:
1. Integration of the DeepSpeed features via `deepspeed config file` specification in `accelerate config` . You just supply your custom config file or use our template. Most of
this document is focused on this feature. This supports all the core features of DeepSpeed and gives user a lot of flexibility.
this document is focused on this feature. This supports all the core features of DeepSpeed and gives user a lot of flexibility.
User may have to change a few lines of code depending on the config.
2. Integration via `deepspeed_plugin`.This supports subset of the DeepSpeed features and uses default options for the rest of the configurations.
2. Integration via `deepspeed_plugin`.This supports subset of the DeepSpeed features and uses default options for the rest of the configurations.
User need not change any code and is good for those who are fine with most of the default settings of DeepSpeed.
## What is integrated?
Training:
1. 🤗 Accelerate integrates all features of DeepSpeed ZeRO. This includes all the ZeRO stages 1, 2 and 3 as well as ZeRO-Offload, ZeRO-Infinity (which can offload to disk/NVMe) and ZeRO++.
1. DeepSpeed ZeRO training supports the full ZeRO stages 1, 2 and 3 as well as CPU/Disk offload of optimizer states, gradients and parameters.
Below is a short description of Data Parallelism using ZeRO - Zero Redundancy Optimizer along with diagram from this [blog post](https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/)
![ZeRO Data Parallelism](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/parallelism-zero.png)
@ -61,8 +60,6 @@ Below is a short description of Data Parallelism using ZeRO - Zero Redundancy Op
e. **Param Offload**: Offloads the model parameters to CPU/Disk building on top of ZERO Stage 3
f. **Hierarchical Partitioning**: Enables efficient multi-node training with data-parallel training across nodes and ZeRO-3 sharding within a node, built on top of ZeRO Stage 3.
<u>Note</u>: With respect to Disk Offload, the disk should be an NVME for decent speed but it technically works on any Disk
Inference:
@ -77,8 +74,8 @@ Inference:
**Pre-Requisites**: Install DeepSpeed version >=0.6.5. Please refer to the [DeepSpeed Installation details](https://github.com/microsoft/DeepSpeed#installation)
for more information.
We will first look at easy to use integration via `accelerate config`.
Followed by more flexible and feature rich `deepspeed config file` integration.
We will first look at easy to use integration via `accelerate config`.
Followed by more flexible and feature rich `deepspeed config file` integration.
### Accelerate DeepSpeed Plugin
On your machine(s) just run:
@ -160,7 +157,7 @@ Currently, `Accelerate` supports following config through the CLI:
`offload_param_device`: [none] Disable parameter offloading, [cpu] offload parameters to CPU, [nvme] offload parameters to NVMe SSD. Only applicable with ZeRO Stage-3.
`zero3_init_flag`: Decides whether to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with ZeRO Stage-3.
`zero3_save_16bit_model`: Decides whether to save 16-bit model weights when using ZeRO Stage-3.
`mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training.
`mixed_precision`: `no` for FP32 training, `fp16` for FP16 mixed-precision training and `bf16` for BF16 mixed-precision training.
```
To be able to tweak more options, you will need to use a DeepSpeed config file.
@ -171,8 +168,8 @@ On your machine(s) just run:
accelerate config
```
and answer the questions asked. It will ask whether you want to use a config file for deepspeed to which you answer yes
and provide the path to the deepspeed config file.
and answer the questions asked. It will ask whether you want to use a config file for deepspeed to which you answer yes
and provide the path to the deepspeed config file.
This will generate a config file that will be used automatically to properly set the
default options when doing
@ -352,38 +349,17 @@ accelerate launch examples/by_feature/deepspeed_with_config_support.py \
--report_to "wandb"\
```
**ZeRO++ Config Example**
You can use the the features of ZeRO++ by using the appropriate config parameters. Note that ZeRO++ is an extension for ZeRO Stage 3. Here is how the config file can be modified, from [DeepSpeed's ZeRO++ tutorial](https://www.deepspeed.ai/tutorials/zeropp/):
```json
{
"zero_optimization": {
"stage": 3,
"reduce_bucket_size": "auto",
"zero_quantized_weights": true,
"zero_hpz_partition_size": 8,
"zero_quantized_gradients": true,
"contiguous_gradients": true,
"overlap_comm": true
}
}
```
For hierarchical partitioning, the partition size `zero_hpz_partition_size` should ideally be set to the number of GPUs per node. (For example, the above config file assumes 8 GPUs per node)
**Important code changes when using DeepSpeed Config File**
1. DeepSpeed Optimizers and Schedulers. For more information on these,
1. DeepSpeed Optimizers and Schedulers. For more information on these,
see the [DeepSpeed Optimizers](https://deepspeed.readthedocs.io/en/latest/optimizers.html) and [DeepSpeed Schedulers](https://deepspeed.readthedocs.io/en/latest/schedulers.html) documentation.
We will look at the changes needed in the code when using these.
a. DS Optim + DS Scheduler: The case when both `optimizer` and `scheduler` keys are present in the DeepSpeed config file.
In this situation, those will be used and the user has to use `accelerate.utils.DummyOptim` and `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom optimizers and schedulers in their code.
Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this:
```python
# Creates Dummy Optimizer if `optimizer` was specified in the config file else creates Adam Optimizer
# Creates Dummy Optimizer if `optimizer` was spcified in the config file else creates Adam Optimizer
optimizer_cls = (
torch.optim.AdamW
if accelerator.state.deepspeed_plugin is None
@ -392,7 +368,7 @@ We will look at the changes needed in the code when using these.
)
optimizer = optimizer_cls(optimizer_grouped_parameters, lr=args.learning_rate)
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
# Creates Dummy Scheduler if `scheduler` was spcified in the config file else creates `args.lr_scheduler_type` Scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
@ -412,25 +388,16 @@ We will look at the changes needed in the code when using these.
In this situation, no code changes are needed from the user and this is the case when using integration via DeepSpeed Plugin.
In the above example we can see that the code remains unchanged if the `optimizer` and `scheduler` keys are absent in the DeepSpeed config file.
c. Custom Optim + DS Scheduler: The case when only `scheduler` key is present in the DeepSpeed config file.
In this situation, the user has to use `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom scheduler in their code.
c. Custom Optim + DS Scheduler: The case when only `scheduler` key is present in the DeepSpeed config file.
In this situation, the user has to use `accelerate.utils.DummyScheduler` to replace the PyTorch/Custom scheduler in their code.
d. DS Optim + Custom Scheduler: The case when only `optimizer` key is present in the DeepSpeed config file.
d. DS Optim + Custom Scheduler: The case when only `optimizer` key is present in the DeepSpeed config file.
This will result in an error because you can only use DS Scheduler when using DS Optim.
2. Notice the `auto` values in the above example DeepSpeed config files. These are automatically handled by `prepare` method
based on model, dataloaders, dummy optimizer and dummy schedulers provided to `prepare` method.
2. Notice the `auto` values in the above example DeepSpeed config files. These are automatically handled by `prepare` method
based on model, dataloaders, dummy optimizer and dummy schedulers provided to `prepare` method.
Only the `auto` fields specified in above examples are handled by `prepare` method and the rest have to be explicitly specified by the user.
The `auto` values are calculated as:
- `reduce_bucket_size`: `hidden_size * hidden_size`
- `stage3_prefetch_bucket_size`: `0.9 * hidden_size * hidden_size`
- `stage3_param_persistence_threshold`: `10 * hidden_size`
For the `auto` feature to work for these 3 config entries - Accelerate will use `model.config.hidden_size` or `max(model.config.hidden_sizes)` as `hidden_size`. If neither of these is available, the launching will fail and you will have to set these 3 config entries manually. Remember the first 2 config entries are the communication buffers - the larger they are the more efficient the comms will be, and the larger they are the more GPU memory they will consume, so it's a tunable performance trade-off.
**Things to note when using DeepSpeed Config File**
Below is a sample script using `deepspeed_config_file` in different scenarios.
@ -515,8 +482,8 @@ use_cpu: false
3. Output of `accelerate launch test.py`:
```bash
ValueError: When using `deepspeed_config_file`, the following accelerate config variables will be ignored:
['gradient_accumulation_steps', 'gradient_clipping', 'zero_stage', 'offload_optimizer_device', 'offload_param_device',
ValueError: When using `deepspeed_config_file`, the following accelerate config variables will be ignored:
['gradient_accumulation_steps', 'gradient_clipping', 'zero_stage', 'offload_optimizer_device', 'offload_param_device',
'zero3_save_16bit_model', 'mixed_precision'].
Please specify them appropriately in the DeepSpeed config file.
If you are using an accelerate config file, remove others config variables mentioned in the above specified list.
@ -532,15 +499,15 @@ It will only ask for the necessary config variables when using `deepspeed_config
$ accelerate config
-------------------------------------------------------------------------------------------------------------------------------
In which compute environment are you running?
This machine
This machine
-------------------------------------------------------------------------------------------------------------------------------
Which type of machine are you using?
multi-GPU
How many different machines will you use (use more than 1 for multi-node training)? [1]:
Do you wish to optimize your script with torch dynamo?[yes/NO]:
Do you want to use DeepSpeed? [yes/NO]: yes
Do you want to specify a json file to a DeepSpeed config? [yes/NO]: yes
Please enter the path to the json DeepSpeed config file: ds_config.json
Which type of machine are you using?
multi-GPU
How many different machines will you use (use more than 1 for multi-node training)? [1]:
Do you wish to optimize your script with torch dynamo?[yes/NO]:
Do you want to use DeepSpeed? [yes/NO]: yes
Do you want to specify a json file to a DeepSpeed config? [yes/NO]: yes
Please enter the path to the json DeepSpeed config file: ds_config.json
Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: yes
How many GPU(s) should be used for distributed training? [1]:4
accelerate configuration saved at ds_config_sample.yaml
@ -618,10 +585,10 @@ Mixed precision type: fp16
ds_config: {'bf16': {'enabled': False}, 'zero_optimization': {'stage': 3, 'stage3_gather_16bit_weights_on_model_save': True, 'offload_optimizer': {'device': 'nvme'}, 'offload_param': {'device': 'cpu'}}, 'gradient_clipping': 1.0, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'gradient_accumulation_steps': 5, 'steps_per_print': inf, 'fp16': {'enabled': True, 'auto_cast': True}}
```
**Note**:
1. Remaining `"auto"` values are handled in `accelerator.prepare()` call as explained in point 2 of
**Note**:
1. Remaining `"auto"` values are handled in `accelerator.prepare()` call as explained in point 2 of
`Important code changes when using DeepSpeed Config File`.
2. Only when `gradient_accumulation_steps` is `auto`, the value passed while creating `Accelerator` object via `Accelerator(gradient_accumulation_steps=k)` will be used. When using DeepSpeed Plugin, the value from it will be used and it will overwrite the value passed while creating Accelerator object.
2. Only when `gradient_accumulation_steps` is `auto`, the value passed while creating `Accelerator` object via `Accelerator(gradient_accumulation_steps=k)` will be used. When using DeepSpeed Plugin, the value from it will be used and it will overwrite the value passed while creating Accelerator object.
## Saving and loading
@ -632,7 +599,7 @@ ZeRO Stage-3 has 2 options:
a. Saving the entire 16bit model weights to directly load later on using `model.load_state_dict(torch.load(pytorch_model.bin))`.
For this, either set `zero_optimization.stage3_gather_16bit_weights_on_model_save` to True in DeepSpeed Config file or set
`zero3_save_16bit_model` to True in DeepSpeed Plugin.
`zero3_save_16bit_model` to True in DeepSpeed Plugin.
**Note that this option requires consolidation of the weights on one GPU it can be slow and memory demanding, so only use this feature when needed.**
Below is the snippet from `examples/by_feature/deepspeed_with_config_support.py` showing this:
```python
@ -661,10 +628,10 @@ ZeRO Stage-3 has 2 options:
logging.info(f"Success {status_msg}")
else:
logging.warning(f"Failure {status_msg}")
```
```
This will create ZeRO model and optimizer partitions along with `zero_to_fp32.py` script in checkpoint directory.
You can use this script to do offline consolidation.
It requires no configuration files or GPUs. Here is an example of its usage:
You can use this script to do offline consolidation.
It requires no configuration files or GPUs. Here is an example of its usage:
```bash
$ cd /path/to/checkpoint_dir
$ ./zero_to_fp32.py . pytorch_model.bin
@ -688,7 +655,7 @@ ZeRO Stage-3 has 2 options:
Note that all these functions require ~2x memory (general RAM) of the size of the final checkpoint.
## ZeRO Inference
DeepSpeed ZeRO Inference supports ZeRO stage 3 with ZeRO-Infinity.
DeepSpeed ZeRO Inference supports ZeRO stage 3 with ZeRO-Infinity.
It uses the same ZeRO protocol as training, but it doesn't use an optimizer and a lr scheduler and only stage 3 is relevant.
With accelerate integration, you just need to prepare the model and dataloader as shown below:
@ -696,11 +663,11 @@ With accelerate integration, you just need to prepare the model and dataloader a
model, eval_dataloader = accelerator.prepare(model, eval_dataloader)
```
## Few caveats to be aware of
## Few caveats to be aware of
1. Current integration doesnt support Pipeline Parallelism of DeepSpeed.
2. Current integration doesnt support `mpu`, limiting the tensor parallelism which is supported in Megatron-LM.
3. Current integration doesnt support multiple models.
2. Current integration doesnt support `mpu`, limiting the tensor parallelism which is supported in Megatron-LM.
3. Current integration doesnt support multiple models.
## DeepSpeed Resources
@ -716,8 +683,7 @@ Papers:
- [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054)
- [ZeRO-Offload: Democratizing Billion-Scale Model Training](https://arxiv.org/abs/2101.06840)
- [ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning](https://arxiv.org/abs/2104.07857)
- [ZeRO++: Extremely Efficient Collective Communication for Giant Model Training](https://arxiv.org/abs/2306.10209)
Finally, please, remember that 🤗 `Accelerate` only integrates DeepSpeed, therefore if you
have any problems or questions with regards to DeepSpeed usage, please, file an issue with [DeepSpeed GitHub](https://github.com/microsoft/DeepSpeed/issues).

View File

@ -51,7 +51,7 @@ def run_inference(rank, world_size):
One will notice how we have to check the rank to know what prompt to send, which can be a bit tedious.
A user might then also think that with 🤗 Accelerate, using the `Accelerator` to prepare a dataloader for such a task might also be
a simple way to manage this. (To learn more, check out the relevant section in the [Quick Tour](../quicktour#distributed-evaluation))
a simple way to manage this. (To learn more, check out the relvent section in the [Quick Tour](../quicktour#distributed-evaluation))
Can it manage it? Yes. Does it add unneeded extra code however: also yes.

View File

@ -16,7 +16,7 @@ rendered properly in your Markdown viewer.
# Learning how to incorporate 🤗 Accelerate features quickly!
Please use the interactive tool below to help you get started with learning about a particular
feature of 🤗 Accelerate and how to utilize it! It will provide you with a code diff, an explanation
feature of 🤗 Accelerate and how to utilize it! It will provide you with a code diff, an explaination
towards what is going on, as well as provide you with some useful links to explore more within
the documentation!

View File

@ -36,34 +36,27 @@ default options when doing
accelerate launch my_script.py --args_to_my_script
```
For instance, here is how you would run `examples/nlp_example.py` (from the root of the repo) with FSDP enabled:
For instance, here is how you would run the NLP example (from the root of the repo) with FSDP enabled:
```bash
compute_environment: LOCAL_MACHINE
debug: false
deepspeed_config: {}
distributed_type: FSDP
downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch_policy: BACKWARD_PRE
fsdp_forward_prefetch: false
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: false
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_sync_module_states: true
fsdp_sharding_strategy: 1
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_transformer_layer_cls_to_wrap: BertLayer
fsdp_use_orig_params: true
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
mixed_precision: bf16
mixed_precision: 'no'
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
@ -73,30 +66,40 @@ accelerate launch examples/nlp_example.py
Currently, `Accelerate` supports the following config through the CLI:
`fsdp_sharding_strategy`: [1] FULL_SHARD (shards optimizer states, gradients and parameters), [2] SHARD_GRAD_OP (shards optimizer states and gradients), [3] NO_SHARD (DDP), [4] HYBRID_SHARD (shards optimizer states, gradients and parameters within each node while each node has full copy), [5] HYBRID_SHARD_ZERO2 (shards optimizer states and gradients within each node while each node has full copy)
```bash
`Sharding Strategy`: [1] FULL_SHARD (shards optimizer states, gradients and parameters), [2] SHARD_GRAD_OP (shards optimizer states and gradients), [3] NO_SHARD (DDP), [4] HYBRID_SHARD (shards optimizer states, gradients and parameters within each node while each node has full copy), [5] HYBRID_SHARD_ZERO2 (shards optimizer states and gradients within each node while each node has full copy)
`fsdp_offload_params` : Decides Whether to offload parameters and gradients to CPU
`Offload Params`: Decides Whether to offload parameters and gradients to CPU
`fsdp_auto_wrap_policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP
`Auto Wrap Policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP
`fsdp_transformer_layer_cls_to_wrap`: Only applicable for 🤗 Transformers. When using `fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP`, a user may provide a comma-separated string of transformer layer class names (case-sensitive) to wrap, e.g., `BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`. This is important because submodules that share weights (e.g., embedding layers) should not end up in different FSDP wrapped units. Using this policy, wrapping happens for each block containing Multi-Head Attention followed by a couple of MLP layers. Remaining layers including the shared embeddings are conveniently wrapped in same outermost FSDP unit. Therefore, use this for transformer-based models. You can use the `model._no_split_modules` for 🤗 Transformer models by answering `yes` to `Do you want to use the model's `_no_split_modules` to wrap. It will try to use `model._no_split_modules` when possible.
`Transformer Layer Class to Wrap`: When using `TRANSFORMER_BASED_WRAP`, user specifies comma-separated string of transformer layer class names (case-sensitive) to wrap ,e.g,
`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`...
This is important because submodules that share weights (e.g., embedding layer) should not end up in different FSDP wrapped units.
Using this policy, wrapping happens for each block containing Multi-Head Attention followed by couple of MLP layers.
Remaining layers including the shared embeddings are conveniently wrapped in same outermost FSDP unit.
Therefore, use this for transformer based models.
You can use the `model._no_split_modules` for 🤗 Transformer models by answering `yes` to
`Do you want to use the model's `_no_split_modules` to wrap. Only applicable for 🤗 Transformers`.
It will try to use `model._no_split_modules` when available.
`fsdp_min_num_params`: minimum number of parameters when using `fsdp_auto_wrap_policy=SIZE_BASED_WRAP`.
`Min Num Params`: minimum number of parameters when using `SIZE_BASED_WRAP`
`fsdp_backward_prefetch_policy`: [1] BACKWARD_PRE, [2] BACKWARD_POST, [3] NO_PREFETCH
`Backward Prefetch`: [1] BACKWARD_PRE, [2] BACKWARD_POST, [3] NO_PREFETCH
`fsdp_forward_prefetch`: if True, then FSDP explicitly prefetches the next upcoming all-gather while executing in the forward pass. Should only be used for static-graph models since the prefetching follows the first iterations execution order. i.e., if the sub-modules' order changes dynamically during the model's execution do not enable this feature.
`State Dict Type`: [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT
`fsdp_state_dict_type`: [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT
`Forward Prefetch`: if True, then FSDP explicitly prefetches the next upcoming
all-gather while executing in the forward pass. only use with Static graphs.
`fsdp_use_orig_params`: If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. This setting is useful in cases such as parameter-efficient fine-tuning as discussed in [this post](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). This option also allows one to have multiple optimizer param groups. This should be `True` when creating an optimizer before preparing/wrapping the model with FSDP.
`Use Orig Params`: If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres.
Useful in cases such as parameter-efficient fine-tuning.
Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019)
`fsdp_cpu_ram_efficient_loading`: Only applicable for 🤗 Transformers models. If True, only the first process loads the pretrained model checkpoint while all other processes have empty weights. This should be set to False if you experience errors when loading the pretrained 🤗 Transformers model via `from_pretrained` method. When this setting is True `fsdp_sync_module_states` also must to be True, otherwise all the processes except the main process would have random weights leading to unexpected behaviour during training.
`Sync Module States`: If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0
```
`fsdp_sync_module_states`: If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0.
For additional and more nuanced control, you can specify other FSDP parameters via `FullyShardedDataParallelPlugin`.
For additional and more nuanced control, you can specify other FSDP parameters via `FullyShardedDataParallelPlugin`.
When creating `FullyShardedDataParallelPlugin` object, pass it the parameters that weren't part of the accelerate config or if you want to override them.
The FSDP parameters will be picked based on the accelerate config file or launch command arguments and other parameters that you will pass directly through the `FullyShardedDataParallelPlugin` object will set/override that.
@ -123,9 +126,9 @@ Below is the code snippet to save using `save_state` utility of accelerate.
accelerator.save_state("ckpt")
```
Inspect the checkpoint folder to see model and optimizer as shards per process:
Inspect the ckeckpoint folder to see model and optimizer as shards per process:
```
ls ckpt
ls ckpt
# optimizer_0 pytorch_model_0 random_states_0.pkl random_states_1.pkl scheduler.bin
cd ckpt
@ -143,7 +146,7 @@ To load them back for resuming the training, use the `load_state` utility of acc
accelerator.load_state("ckpt")
```
When using transformers `save_pretrained`, pass `state_dict=accelerator.get_state_dict(model)` to save the model state dict.
When using transformers `save_pretrained`, pass `state_dict=accelerator.get_state_dict(model)` to save the model state dict.
Below is an example:
```diff
@ -151,19 +154,72 @@ When using transformers `save_pretrained`, pass `state_dict=accelerator.get_stat
args.output_dir,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
+ state_dict=accelerator.get_state_dict(model),
+ state_dict=accelerator.get_state_dict(model, unwrap=False),
)
```
### State Dict
`accelerator.get_state_dict` will call the underlying `model.state_dict` implementation using `FullStateDictConfig(offload_to_cpu=True, rank0_only=True)` context manager to get the state dict only for rank 0 and it will be offloaded to CPU.
`accelerator.get_state_dict` will call the underlying `model.state_dict` implementation. With a model wrapped by FSDP, the default behavior of `state_dict` is to gather all of the state in the rank 0 device. This can cause CUDA out of memory errors if the parameters don't fit on a single GPU.
To avoid this, PyTorch provides a context manager that adjusts the behavior of `state_dict`. To offload some of the state dict onto CPU, you can use the following code:
```
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType, FullStateDictConfig
full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(unwrapped_model, StateDictType.FULL_STATE_DICT, full_state_dict_config):
state = accelerator.get_state_dict(unwrapped_model)
```
You can then pass `state` into the `save_pretrained` method. There are several modes for `StateDictType` and `FullStateDictConfig` that you can use to control the behavior of `state_dict`. For more information, see the [PyTorch documentation](https://pytorch.org/docs/stable/fsdp.html).
## A few caveats to be aware of
- In case of multiple models, pass the optimizers to the prepare call in the same order as corresponding models else `accelerator.save_state()` and `accelerator.load_state()` will result in wrong/unexpected behaviour.
- PyTorch FSDP auto wraps sub-modules, flattens the parameters and shards the parameters in place.
Due to this, any optimizer created before model wrapping gets broken and occupies more memory.
Hence, it is highly recommended and efficient to prepare the model before creating the optimizer.
`Accelerate` will automatically wrap the model and create an optimizer for you in case of single model with a warning message.
> FSDP Warning: When using FSDP, it is efficient and recommended to call prepare for the model before creating the optimizer
However, below is the recommended way to prepare model and optimizer while using FSDP:
```diff
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=True)
+ model = accelerator.prepare(model)
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
- model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
- model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
- )
+ optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
+ optimizer, train_dataloader, eval_dataloader, lr_scheduler
+ )
```
- In case of a single model, if you have created the optimizer with multiple parameter groups and called prepare with them together,
then the parameter groups will be lost and the following warning is displayed:
> FSDP Warning: When using FSDP, several parameter groups will be conflated into
> a single one due to nested module wrapping and parameter flattening.
This is because parameter groups created before wrapping will have no meaning post wrapping due to parameter flattening of nested FSDP modules into 1D arrays (which can consume many layers).
For instance, below are the named parameters of an FSDP model on GPU 0 (When using 2 GPUs. Around 55M (110M/2) params in 1D arrays as this will have the 1st shard of the parameters).
Here, if one has applied no weight decay for [bias, LayerNorm.weight] the named parameters of an unwrapped BERT model,
it can't be applied to the below FSDP wrapped model as there are no named parameters with either of those strings and
the parameters of those layers are concatenated with parameters of various other layers.
```
{
'_fsdp_wrapped_module.flat_param': torch.Size([494209]),
'_fsdp_wrapped_module._fpw_module.bert.embeddings.word_embeddings._fsdp_wrapped_module.flat_param': torch.Size([11720448]),
'_fsdp_wrapped_module._fpw_module.bert.encoder._fsdp_wrapped_module.flat_param': torch.Size([42527232])
}
```
- In case of multiple models, it is necessary to prepare the models before creating optimizers or else it will throw an error.
Then pass the optimizers to the prepare call in the same order as corresponding models else `accelerator.save_state()` and `accelerator.load_state()` will result in wrong/unexpected behaviour.
- This feature is incompatible with `--predict_with_generate` in the `run_translation.py` script of 🤗 `Transformers` library.
For more control, users can leverage the `FullyShardedDataParallelPlugin`. After creating an instance of this class, users can pass it to the Accelerator class instantiation.

View File

@ -118,24 +118,8 @@ You can remove all the special checks for the step number and the loss adjustmen
As you can see the [`Accelerator`] is able to keep track of the batch number you are on and it will automatically know whether to step through the prepared optimizer and how to adjust the loss.
<Tip>
Typically with gradient accumulation, you would need to adjust the number of steps to reflect the change in total batches you are
training on. 🤗 Accelerate automagically does this for you by default. Behind the scenes we instantiate a [`GradientAccumulationPlugin`] configured to do this.
</Tip>
<Tip warning={true}>
The [`state.GradientState`] is sync'd with the active dataloader being iterated upon. As such it assumes naively that when we have reached the end of the dataloader everything will sync and a step will be performed. To disable this, set `sync_with_dataloader` to be `False` in the [`GradientAccumulationPlugin`]:
```{python}
from accelerate import Accelerator
from accelerate.utils import GradientAccumulationPlugin
plugin = GradientAccumulationPlugin(sync_with_dataloader=False)
accelerator = Accelerator(..., gradient_accumulation_plugin=plugin)
```
training on. 🤗 Accelerate automagically does this for you by default. Behind the scenes we instantiate a GradientAccumulationPlugin configured to do this.
</Tip>
## The finished code

View File

@ -1,92 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Low Precision Training Methods
🤗 Accelerate provides integrations to train on lower precision methods using specified supported hardware through the `TransformersEngine` and `MS-AMP` packages. This documentation will help guide you through what hardware is supported, how to configure your [`Accelerator`] to leverage the low precision methods, and what you can expect when training.
## What training on FP8 means
To explore more of the nitty-gritty in training in FP8 with PyTorch and 🤗 Accelerate, check out the [concept_guide](../concept_guides/low_precision_training.md) on why this can be difficult. But essentially rather than training in BF16, some (or all) aspects of training a model can be performed using 8 bits instead of 16. The challenge is doing so without degrading final performance.
This is only enabled on specific NVIDIA hardware, namely:
* Anything after the 3000 series consumer graphics cards (such as the 4090)
* Hopper-based GPU architectures (such as the `H100` and `H200`)
What this will result in is some gain in the memory used (as we've cut the needed memory in half for some parts of training) and an increase in throughput *should* be seen as well for larger models that can replace certain layers with FP8-enabled ones.
## Configuring the Accelerator
Currently two different backends for FP8 are supported (`TransformersEngine` and `MS-AMP`), each with different capabilities and configurations.
To use either, the same core API is used. Just pass `mixed_precision="fp8"` to either the [`Accelerator`], during `accelerate config` when prompted about mixed precision, or as part of your `config.yaml` file in the `mixed_precision` key:
```{python}
from accelerate import Accelerator
accelerator = Accelerator(mixed_precision="fp8")
```
By default, if `MS-AMP` is available in your environment, 🤗 Accelerate will automatically utilize it as a backend. To specify it yourself (and customize other parts of the FP8 mixed precision setup), you can utilize the [`utils.FP8RecipeKwargs`]:
```{python}
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = [FP8RecipeKwargs(backend="msamp")]
# Or to specify the backend as `TransformersEngine` even if MS-AMP is installed
# kwargs = [FP8RecipeKwargs(backend="te")]
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
```
## Configuring MS-AMP
Of the two, `MS-AMP` is traditionally the easier one to configure as there is only a single argument: the optimization level.
Currently two levels of optimization are supported in the 🤗 Accelerate integration, `"O1"` and `"O2"` (using the letter 'o', not zero).
* `"O1"` will cast the weight gradients and `all_reduce` communications to happen in 8-bit, while the rest are done in 16 bit. This reduces the general GPU memory usage and speeds up communication bandwidths.
* `"O2"` will also cast first-order optimizer states into 8 bit, while the second order states are in FP16. (Currently just the `Adam` optimizer is supported). This tries it's best to minimize final accuracy degradation and will save the highest potential memory.
To specify an optimization level, pass it to the `FP8KwargsHandler` by setting the `optimization_level` argument:
```{python}
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = [FP8RecipeKwargs(backend="msamp", optimization_level="O2")]
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
```
## Configuring TransformersEngine
TransformersEngine has much more available for customizing how and what FP8 calculations are performed. A full list of supported arguments and what they mean are available in [NVIDIA's documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html), however they are restated as part of [`FP8KwargsHandler`]'s docstring for your convience.
🤗 Accelerate tries to set sensible defaults, but exploring and tweaking the various parameters yourself can lead to better performance potentially.
To use it, specify `backend="te"` and modify any of the arguments you want as part of your kwarg handler:
```{python}
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = [FP8RecipeKwargs(backend="te", ...)]
accelerator = Accelerator(mixed_precision="fp8", kwarg_handlers=kwargs)
```
## Futher Reading
To learn more about training in FP8 please check out the following resources:
* [Our concept guide](../concept_guides/low_precision_training.md) detailing into more about both TransformersEngine and MS-AMP
* [The `transformers-engine` documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html)
* [The `MS-AMP` documentation](https://azure.github.io/MS-AMP/docs/)

View File

@ -113,7 +113,7 @@ pip install git+https://github.com/huggingface/Megatron-LM.git
## Accelerate Megatron-LM Plugin
Important features are directly supported via the `accelerate config` command.
An example of the corresponding questions for using Megatron-LM features is shown below:
An example of thr corresponding questions for using Megatron-LM features is shown below:
```bash
:~$ accelerate config --config_file "megatron_gpt_config.yaml"
@ -128,7 +128,7 @@ Do you want to enable Sequence Parallelism? [YES/no]:
What is the Pipeline Parallelism degree/size? [1]:2
What is the number of micro-batches? [1]:2
Do you want to enable selective activation recomputation? [YES/no]:
Do you want to use distributed optimizer which shards optimizer state and gradients across data parallel ranks? [YES/no]:
Do you want to use distributed optimizer which shards optimizer state and gradients across data pralellel ranks? [YES/no]:
What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]:
How many GPU(s) should be used for distributed training? [1]:4
Do you wish to use FP16 or BF16 (mixed precision)? [NO/fp16/bf16]: bf16
@ -355,8 +355,8 @@ def main():
2. For using the Megatron-LM datasets, a few more changes are required. Dataloaders for these datasets
are available only on rank 0 of each tensor parallel group. As such, there are rank where dataloader won't be
available and this requires tweaks to the training loop. Being able to do all this shows how
flexible and extensible 🤗 Accelerate is. The changes required are as follows.
avaiable and this requires tweaks to the training loop. Being able to do all this shows how
felixble and extensible 🤗 Accelerate is. The changes required are as follows.
a. For Megatron-LM indexed datasets, we need to use `MegatronLMDummyDataLoader`
and pass the required dataset args to it such as `data_path`, `seq_length` etc.
@ -547,7 +547,7 @@ The `model(**batch_data)` call return loss(es) averaged across the data parallel
This is fine for most cases wherein pre-training jobs are run using Megatron-LM features and
you can easily compute the `perplexity` using the loss.
For GPT model, returning logits in addition to loss(es) is supported.
These logits aren't gathered across data parallel ranks. Use `accelerator.utils.gather_across_data_parallel_groups`
These logits aren't gathered across data prallel ranks. Use `accelerator.utils.gather_across_data_parallel_groups`
to gather logits across data parallel ranks. These logits along with labels can be used for computing various
performance metrics.

View File

@ -0,0 +1,58 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Memory Utilities
One of the most frustrating errors when it comes to running training scripts is hitting "CUDA Out-of-Memory",
as the entire script needs to be restarted, progress is lost, and typically a developer would want to simply
start their script and let it run.
`Accelerate` provides a utility heavily based on [toma](https://github.com/BlackHC/toma) to give this capability.
## find_executable_batch_size
This algorithm operates with exponential decay, decreasing the batch size in half after each failed run on some
training script. To use it, restructure your training function to include an inner function that includes this wrapper,
and build your dataloaders inside it. At a minimum, this could look like 4 new lines of code.
> Note: The inner function *must* take in the batch size as the first parameter, but we do not pass one to it when called. The wrapper handles this for us
It should also be noted that anything which will consume CUDA memory and passed to the `accelerator` **must** be declared inside the inner function,
such as models and optimizers.
```diff
def training_function(args):
accelerator = Accelerator()
+ @find_executable_batch_size(starting_batch_size=args.batch_size)
+ def inner_training_loop(batch_size):
+ nonlocal accelerator # Ensure they can be used in our context
+ accelerator.free_memory() # Free all lingering references
model = get_model()
model.to(accelerator.device)
optimizer = get_optimizer()
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
lr_scheduler = get_scheduler(
optimizer,
num_training_steps=len(train_dataloader)*num_epochs
)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
train(model, optimizer, train_dataloader, lr_scheduler)
validate(model, eval_dataloader)
+ inner_training_loop()
```
To find out more, check the documentation [here](../package_reference/utilities#accelerate.find_executable_batch_size).

View File

@ -32,27 +32,6 @@ Currently we support searching for models that can be used in `timm` and `transf
</Tip>
## Gradio Demos
Below are a few gradio demos related to what was described above. The first is the official Hugging Face memory estimation space, utilizing Accelerate directly:
<div class="block dark:hidden">
<iframe
src="https://hf-accelerate-model-memory-usage.hf.space?__theme=light"
width="850"
height="1600"
></iframe>
</div>
<div class="hidden dark:block">
<iframe
src="https://hf-accelerate-model-memory-usage.hf.space?__theme=dark"
width="850"
height="1600"
></iframe>
</div>
A community member has taken the idea and expended it further, allowing you to filter models directly and see if you can run a particular LLM given GPU constraints and LoRA configurations. To play with it, see [here](https://huggingface.co/spaces/Vokturz/can-it-run-llm) for more details.
## The Command
When using `accelerate estimate-memory`, you need to pass in the name of the model you want to use, potentially the framework
@ -134,4 +113,9 @@ This calculator will tell you how much memory is needed to purely load the model
This calculation is accurate within a few % of the actual value, so it is a very good view of just how much memory it will take. For instance loading `bert-base-cased` actually takes `413.68 MB` when loaded on CUDA in full precision, and the calculator estimates `413.18 MB`.
When performing inference you can expect to add up to an additional 20% as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). We'll be conducting research into finding a more accurate estimate to these values, and will update
this calculator once done.
this calculator once done.
## Live Gradio Demo
Lastly, we invite you to try the [live Gradio demo](https://huggingface.co/spaces/hf-accelerate/model-memory-usage) of this utility,
which includes an option to post a discussion thread on a models repository with this data. Doing so will help provide access to these numbers in the community faster and help users know what you've learned!

View File

@ -20,15 +20,12 @@ There are a large number of experiment tracking API's available, however getting
## Integrated Trackers
Currently `Accelerate` supports seven trackers out-of-the-box:
Currently `Accelerate` supports four trackers out-of-the-box:
- TensorBoard
- WandB
- CometML
- Aim
- MLFlow
- ClearML
- DVCLive
To use any of them, pass in the selected type(s) to the `log_with` parameter in [`Accelerate`]:
```python

View File

@ -15,7 +15,7 @@ rendered properly in your Markdown viewer.
# Example Zoo
Below contains a non-exhaustive list of tutorials and scripts showcasing 🤗 Accelerate
Below contains a non-exhuastive list of tutorials and scripts showcasing 🤗 Accelerate
## Official Accelerate Examples:
@ -72,11 +72,6 @@ These are tutorials from libraries that integrate with 🤗 Accelerate:
> Don't find your integration here? Make a PR to include it!
### Amphion
- [Training Text-to-Speech Models with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/tts/README.md)
- [Training Singing Voice Conversion Models with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/svc/README.md)
- [Training Vocoders with Amphion](https://github.com/open-mmlab/Amphion/blob/main/egs/vocoder/README.md)
### Catalyst
- [Distributed training tutorial with Catalyst](https://catalyst-team.github.io/catalyst/tutorials/ddp.html)
@ -159,12 +154,12 @@ Below contains a non-exhaustive list of papers utilizing 🤗 Accelerate.
* Puijin Cheng, Li Lin, Yijin Huang, Huaqing He, Wenhan Luo, Xiaoying Tang: “Learning Enhancement From Degradation: A Diffusion Model For Fundus Image Enhancement”, 2023; [arXiv:2303.04603](http://arxiv.org/abs/2303.04603).
* Shun Shao, Yftah Ziser, Shay Cohen: “Erasure of Unaligned Attributes from Neural Representations”, 2023; [arXiv:2302.02997](http://arxiv.org/abs/2302.02997).
* Seonghyeon Ye, Hyeonbin Hwang, Sohee Yang, Hyeongu Yun, Yireun Kim, Minjoon Seo: “In-Context Instruction Learning”, 2023; [arXiv:2302.14691](http://arxiv.org/abs/2302.14691).
* Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: “Prismer: A Vision-Language Model with An Ensemble of Experts”, 2023; [arXiv:2303.02506](http://arxiv.org/abs/2303.02506).
* Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, Anima Anandkumar: “Prismer: A Vision-Language Model with An Ensemble of Experts”, 2023; [arXiv:2303.02506](http://arxiv.org/abs/2303.02506 ).
* Haoyu Chen, Zhihua Wang, Yang Yang, Qilin Sun, Kede Ma: “Learning a Deep Color Difference Metric for Photographic Images”, 2023; [arXiv:2303.14964](http://arxiv.org/abs/2303.14964).
* Van-Hoang Le, Hongyu Zhang: “Log Parsing with Prompt-based Few-shot Learning”, 2023; [arXiv:2302.07435](http://arxiv.org/abs/2302.07435).
* Keito Kudo, Yoichi Aoki, Tatsuki Kuribayashi, Ana Brassard, Masashi Yoshikawa, Keisuke Sakaguchi, Kentaro Inui: “Do Deep Neural Networks Capture Compositionality in Arithmetic Reasoning?”, 2023; [arXiv:2302.07866](http://arxiv.org/abs/2302.07866).
* Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, Prithviraj Ammanabrolu: “Behavior Cloned Transformers are Neurosymbolic Reasoners”, 2022; [arXiv:2210.07382](http://arxiv.org/abs/2210.07382).
* Martin Wessel, Tomáš Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: “Introducing MBIB -- the first Media Bias Identification Benchmark Task and Dataset Collection”, 2023; [arXiv:2304.13148](http://arxiv.org/abs/2304.13148). DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882].
* Martin Wessel, Tomáš Horych, Terry Ruas, Akiko Aizawa, Bela Gipp, Timo Spinde: “Introducing MBIB -- the first Media Bias Identification Benchmark Task and Dataset Collection”, 2023; [arXiv:2304.13148](http://arxiv.org/abs/2304.13148 ). DOI: [https://dx.doi.org/10.1145/3539618.3591882 10.1145/3539618.3591882].
* Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, Daniel Cohen-Or: “Attend-and-Excite: Attention-Based Semantic Guidance for Text-to-Image Diffusion Models”, 2023; [arXiv:2301.13826](http://arxiv.org/abs/2301.13826).
* Marcio Fonseca, Yftah Ziser, Shay B. Cohen: “Factorizing Content and Budget Decisions in Abstractive Summarization of Long Documents”, 2022; [arXiv:2205.12486](http://arxiv.org/abs/2205.12486).
* Elad Richardson, Gal Metzer, Yuval Alaluf, Raja Giryes, Daniel Cohen-Or: “TEXTure: Text-Guided Texturing of 3D Shapes”, 2023; [arXiv:2302.01721](http://arxiv.org/abs/2302.01721).
@ -177,4 +172,4 @@ Below contains a non-exhaustive list of papers utilizing 🤗 Accelerate.
* Zhiruo Wang, Shuyan Zhou, Daniel Fried, Graham Neubig: “Execution-Based Evaluation for Open-Domain Code Generation”, 2022; [arXiv:2212.10481](http://arxiv.org/abs/2212.10481).
* Minh-Long Luu, Zeyi Huang, Eric P. Xing, Yong Jae Lee, Haohan Wang: “Expeditious Saliency-guided Mix-up through Random Gradient Thresholding”, 2022; [arXiv:2212.04875](http://arxiv.org/abs/2212.04875).
* Jun Hao Liew, Hanshu Yan, Daquan Zhou, Jiashi Feng: “MagicMix: Semantic Mixing with Diffusion Models”, 2022; [arXiv:2210.16056](http://arxiv.org/abs/2210.16056).
* Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: “LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners”, 2021; [arXiv:2110.06274](http://arxiv.org/abs/2110.06274).
* Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, Jianfeng Gao: “LiST: Lite Prompted Self-training Makes Parameter-Efficient Few-shot Learners”, 2021; [arXiv:2110.06274](http://arxiv.org/abs/2110.06274).

View File

@ -64,9 +64,9 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on your server
accelerate launch ./nlp_example.py # This will run the script on your server
```
* With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`)
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
```bash
torchrun --nproc_per_node 2 ./nlp_example.py
python -m torchrun --nproc_per_node 2 --use_env ./nlp_example.py
```
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
* With Accelerate config and launcher, on each machine:
@ -74,15 +74,18 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on each server
accelerate launch ./nlp_example.py # This will run the script on each server
```
* With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node:
* With PyTorch launcher only (`torch.distributed.launch` can be used in older versions of PyTorch)
```bash
torchrun \ # python -m torch.distributed.run
--nproc_per_node 2 \
--nnodes 2 \
--rdzv_id 2299 \ # A unique job id
--rdzv_backend c10d \
--rdzv_endpoint master_node_ip_address:29500 \
./nlp_example.py
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 0 \
--master_addr master_node_ip_address \
./nlp_example.py # On the first server
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 1 \
--master_addr master_node_ip_address \
./nlp_example.py # On the second server
```
- (multi) TPUs
* With Accelerate config and launcher
@ -146,34 +149,37 @@ To run it in each of these various modes, use the following commands:
- multi GPUs (using PyTorch distributed mode)
* With Accelerate config and launcher
```bash
accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml`
accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on your server
accelerate config # This will create a config file on your server
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on your server
```
* With traditional PyTorch launcher (`python -m torch.distributed.run` can be used instead of `torchrun`)
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
```bash
torchrun --nproc_per_node 2 ./cv_example.py --data_dir path_to_data
python -m torchrun --nproc_per_node 2 --use_env ./cv_example.py --data_dir path_to_data
```
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
* With Accelerate config and launcher, on each machine:
```bash
accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml`
accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server
accelerate config # This will create a config file on each server
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
```
* With PyTorch launcher only (`python -m torch.distributed.run` can be used instead of `torchrun`). Run this command on each node:
* With PyTorch launcher only (`torch.distributed.launch` can be used with older versions of PyTorch)
```bash
torchrun \ # python -m torch.distributed.run
--nproc_per_node 2 \
--nnodes 2 \
--rdzv_id 2299 \ # A unique job id
--rdzv_backend c10d \
--rdzv_endpoint master_node_ip_address:29500 \
./cv_example.py --data_dir path_to_data
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 0 \
--master_addr master_node_ip_address \
./cv_example.py --data_dir path_to_data # On the first server
python -m torchrun --nproc_per_node 2 \
--use_env \
--node_rank 1 \
--master_addr master_node_ip_address \
./cv_example.py --data_dir path_to_data # On the second server
```
- (multi) TPUs
* With Accelerate config and launcher
```bash
accelerate config --config_file config.yaml # This will create a config file on your server to `config.yaml`
accelerate launch --config_file config.yaml ./cv_example.py --data_dir path_to_data # This will run the script on each server
accelerate config # This will create a config file on your TPU server
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
```
* In PyTorch:
Add an `xmp.spawn` line in your script as you usually do.
@ -200,13 +206,6 @@ with `pip install runhouse`, and you can refer to
for hardware setup instructions, or this
[Colab tutorial](https://colab.research.google.com/drive/1qVwYyLTCPYPSdz9ZX7BZl9Qm0A3j7RJe) for a more in-depth walkthrough.
## SLURM Scripts
In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) and [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we present two scripts for running the examples on a machine with [SLURM](https://slurm.schedmd.com/documentation.html) workload manager.
In [/slurm/submit_multigpu.sh](./slurm/submit_multigpu.sh) the only parameter in the launcher that needs to be modified is `--num_processes`, which determines the number of GPUs we will use. In this case, using the environment variable `$SLURM_GPUS`, we indicate that we want to utilize all the GPUs available on the node we have requested.
In [/slurm/submit_multinode.sh](./slurm/submit_multinode.sh) we must specify the number of nodes that will be part of the training (`--num_machines`), how many GPUs we will use in total (`--num_processes`), the [`backend`](https://pytorch.org/docs/stable/elastic/run.html#note-on-rendezvous-backend), `--main_process_ip` which will be the address the master node and the `--main_process_port`.
## Finer Examples
While the first two scripts are extremely barebones when it comes to what you can do with accelerate, more advanced features are documented in two other locations.

View File

@ -220,7 +220,7 @@ def parse_args():
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"`, and `"dvclive"`. Use `"all"` (default) to report to all integrations.'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)

View File

@ -247,19 +247,16 @@ def training_function(config, args):
args.model_name_or_path, return_dict=True, low_cpu_mem_usage=True
)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": 0.003,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
# New Code #
# For FSDP feature, it is highly recommended and efficient to prepare the model before creating optimizer
model = accelerator.prepare(model)
accelerator.print(model)
optimizer = torch.optim.AdamW(params=optimizer_grouped_parameters, lr=lr, weight_decay=2e-4)
# Instantiate optimizer
# New Code #
# For FSDP feature, at present it doesn't support multiple parameter groups,
# so we need to create a single parameter group for the whole model
optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr, weight_decay=2e-4)
# Instantiate scheduler
lr_scheduler = get_linear_schedule_with_warmup(
@ -268,8 +265,13 @@ def training_function(config, args):
num_training_steps=(len(train_dataloader) * num_epochs) // gradient_accumulation_steps,
)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
# New Code #
# For FSDP feature, prepare everything except the model as we have already prepared the model
# before creating the optimizer
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
overall_step = 0

View File

@ -216,7 +216,7 @@ def parse_args():
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"`, and `"dvclive"`. Use `"all"` (default) to report to all integrations.'
' `"wandb"` and `"comet_ml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)

View File

@ -11,7 +11,7 @@ def launch_train(*args):
num_processes = torch.cuda.device_count()
print(f"Device count: {num_processes}")
with patch_environment(
world_size=num_processes, master_addr="127.0.0.1", master_port="29500", mixed_precision=args[1].mixed_precision
world_size=num_processes, master_addr="127.0.01", master_port="29500", mixed_precision=args[1].mixed_precision
):
launcher = PrepareForLaunch(training_function, distributed_type="MULTI_GPU")
torch.multiprocessing.start_processes(launcher, args=args, nprocs=num_processes, start_method="spawn")

View File

@ -1,27 +0,0 @@
#!/bin/bash
#SBATCH --job-name=multigpu
#SBATCH -D .
#SBATCH --output=O-%x.%j
#SBATCH --error=E-%x.%j
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1 # number of MP tasks
#SBATCH --gres=gpu:4 # number of GPUs per node
#SBATCH --cpus-per-task=160 # number of cores per tasks
#SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS)
######################
### Set enviroment ###
######################
source activateEnviroment.sh
export GPUS_PER_NODE=4
######################
export SCRIPT=/accelerate/examples/complete_nlp_example.py
export SCRIPT_ARGS=" \
--mixed_precision fp16 \
--output_dir /accelerate/examples/output \
--with_tracking \
"
accelerate launch --num_processes $GPUS_PER_NODE $SCRIPT $SCRIPT_ARGS

View File

@ -1,41 +0,0 @@
#!/bin/bash
#SBATCH --job-name=multinode
#SBATCH -D .
#SBATCH --output=O-%x.%j
#SBATCH --error=E-%x.%j
#SBATCH --nodes=4 # number of nodes
#SBATCH --ntasks-per-node=1 # number of MP tasks
#SBATCH --gres=gpu:4 # number of GPUs per node
#SBATCH --cpus-per-task=160 # number of cores per tasks
#SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS)
######################
### Set enviroment ###
######################
source activateEnviroment.sh
export GPUS_PER_NODE=4
######################
######################
#### Set network #####
######################
head_node_ip=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
######################
export LAUNCHER="accelerate launch \
--num_processes $((SLURM_NNODES * GPUS_PER_NODE)) \
--num_machines $SLURM_NNODES \
--rdzv_backend c10d \
--main_process_ip $head_node_ip \
--main_process_port 29500 \
"
export SCRIPT="/accelerate/examples/complete_nlp_example.py"
export SCRIPT_ARGS=" \
--mixed_precision fp16 \
--output_dir /accelerate/examples/output \
"
# This step is necessary because accelerate launch does not handle multiline arguments properly
export CMD="$LAUNCHER $PYTHON_FILE $ARGS"
srun $CMD

View File

@ -19,13 +19,11 @@ extras = {}
extras["quality"] = ["black ~= 23.1", "ruff >= 0.0.241", "hf-doc-builder >= 0.3.0", "urllib3 < 2.0.0"]
extras["docs"] = []
extras["test_prod"] = ["pytest", "pytest-xdist", "pytest-subtests", "parameterized"]
extras["test_dev"] = [
"datasets", "evaluate", "transformers", "scipy", "scikit-learn", "deepspeed", "tqdm", "bitsandbytes", "timm"
]
extras["test_dev"] = ["datasets", "evaluate", "transformers", "scipy", "scikit-learn", "deepspeed", "tqdm", "bitsandbytes", "timm"]
extras["testing"] = extras["test_prod"] + extras["test_dev"]
extras["rich"] = ["rich"]
extras["test_trackers"] = ["wandb", "comet-ml", "tensorboard", "dvclive"]
extras["test_trackers"] = ["wandb", "comet-ml", "tensorboard"]
extras["dev"] = extras["quality"] + extras["testing"] + extras["rich"]
extras["sagemaker"] = [
@ -34,7 +32,7 @@ extras["sagemaker"] = [
setup(
name="accelerate",
version="0.27.0.dev0",
version="0.24.0.dev0",
description="Accelerate",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",
@ -54,7 +52,7 @@ setup(
]
},
python_requires=">=3.8.0",
install_requires=["numpy>=1.17", "packaging>=20.0", "psutil", "pyyaml", "torch>=1.10.0", "huggingface_hub", "safetensors>=0.3.1"],
install_requires=["numpy>=1.17", "packaging>=20.0", "psutil", "pyyaml", "torch>=1.10.0", "huggingface_hub"],
extras_require=extras,
classifiers=[
"Development Status :: 5 - Production/Stable",

View File

@ -1,4 +1,4 @@
__version__ = "0.27.0.dev0"
__version__ = "0.24.0.dev0"
from .accelerator import Accelerator
from .big_modeling import (

View File

@ -14,6 +14,7 @@
from __future__ import annotations
import collections
import contextlib
import functools
import json
@ -34,7 +35,6 @@ import torch.utils.hooks as hooks
from .checkpointing import load_accelerator_state, load_custom_state, save_accelerator_state, save_custom_state
from .data_loader import DataLoaderDispatcher, prepare_data_loader, skip_first_batches
from .hooks import AlignDevicesHook
from .logging import get_logger
from .optimizer import AcceleratedOptimizer
from .scheduler import AcceleratedScheduler
@ -63,8 +63,6 @@ from .utils import (
ProjectConfiguration,
RNGType,
TorchDynamoPlugin,
check_os_kernel,
clean_state_dict_for_safetensors,
compare_versions,
convert_model,
convert_outputs_to_fp32,
@ -74,13 +72,14 @@ from .utils import (
get_mixed_precision_context_manager,
get_pretty_name,
has_transformer_engine_layers,
id_tensor_storage,
is_bf16_available,
is_deepspeed_available,
is_fp8_available,
is_ipex_available,
is_megatron_lm_available,
is_msamp_available,
is_npu_available,
is_safetensors_available,
is_torch_version,
is_tpu_available,
is_xpu_available,
@ -98,7 +97,6 @@ from .utils import (
wait_for_everyone,
)
from .utils.constants import FSDP_PYTORCH_VERSION
from .utils.modeling import get_state_dict_offloaded_model
from .utils.other import is_compiled_module
@ -217,11 +215,6 @@ class Accelerator:
If set to `True`, in cases where the total batch size across all processes does not exactly divide the
dataset, samples at the start of the dataset will be duplicated so the batch can be divided equally among
all workers.
use_seedable_sampler (`bool`, *optional*, defaults to `False`):
Whether or not use a fully seedable random sampler ([`~data_loader.SeedableRandomSampler`]). Ensures
training results are fully reproducable using a different sampling technique. While seed-to-seed results
may differ, on average the differences are neglible when using multiple different seeds to compare. Should
also be ran with [`~utils.set_seed`] for the best results.
step_scheduler_with_optimizer (`bool`, *optional`, defaults to `True`):
Set `True` if the learning rate scheduler is stepped at the same time as the optimizer, `False` if only
done under certain circumstances (at the end of each epoch, for instance).
@ -267,12 +260,10 @@ class Accelerator:
gradient_accumulation_plugin: GradientAccumulationPlugin | None = None,
dispatch_batches: bool | None = None,
even_batches: bool = True,
use_seedable_sampler: bool = False,
step_scheduler_with_optimizer: bool = True,
kwargs_handlers: list[KwargsHandler] | None = None,
dynamo_backend: DynamoBackend | str | None = None,
):
self.trackers = []
if project_config is not None:
self.project_configuration = project_config
else:
@ -373,8 +364,6 @@ class Accelerator:
raise ValueError("You can only pass one `AutocastKwargs` in `kwargs_handler`.")
else:
self.autocast_handler = handler
if self.fp8_recipe_handler is None and mixed_precision == "fp8":
self.fp8_recipe_handler = FP8RecipeKwargs()
kwargs = self.init_handler.to_kwargs() if self.init_handler is not None else {}
self.state = AcceleratorState(
@ -423,7 +412,6 @@ class Accelerator:
self.split_batches = split_batches
self.dispatch_batches = dispatch_batches
self.even_batches = even_batches
self.use_seedable_sampler = use_seedable_sampler
self.step_scheduler_with_optimizer = step_scheduler_with_optimizer
# Mixed precision attributes
@ -481,8 +469,6 @@ class Accelerator:
# Set a flag tensor for early stopping and other breakpoints
self.flag_tensor = None
check_os_kernel()
@property
def use_distributed(self):
"""
@ -970,8 +956,8 @@ class Accelerator:
Args:
*models (list of `torch.nn.Module`):
PyTorch Modules that were prepared with `Accelerator.prepare`. Models passed to `accumulate()` will
skip gradient syncing during backward pass in distributed training
PyTorch Modules that was prepared with `Accelerator.prepare`. Models passed to `accumulate()` will skip
gradient syncing during backward pass in distributed training
Example:
@ -1112,6 +1098,52 @@ class Accelerator:
# Return the unprocessed object if previous criteria was not met
return obj
def _prepare_fsdp(self, *args):
result = []
for obj in args:
if isinstance(obj, torch.nn.Module):
model = obj
break
optimizers = []
self._schedulers = []
self._models = []
intermediate_result = []
for obj in args:
if isinstance(obj, torch.optim.Optimizer):
if len(obj.param_groups) > 1:
logger.warning(
"FSDP Warning: When using FSDP, several parameter groups will be conflated into "
"a single one due to nested module wrapping and parameter flattening."
)
try:
optimizer = obj.optimizer.__class__(model.parameters(), **obj.optimizer.defaults)
except TypeError:
if "differentiable" in obj.optimizer.defaults:
# https://github.com/huggingface/accelerate/issues/801
defaults = {k: v for k, v in obj.optimizer.defaults.items() if k != "differentiable"}
optimizer = obj.optimizer.__class__(model.parameters(), **defaults)
else:
raise
obj = self.prepare_optimizer(optimizer)
optimizers.append(obj)
elif isinstance(obj, torch.nn.Module):
self._models.append(obj)
intermediate_result.append(obj)
for obj in intermediate_result:
if isinstance(obj, AcceleratedScheduler):
obj.optimizer = optimizers
for i, opt in enumerate(self._optimizers):
if getattr(obj.scheduler, "optimizer", None) == opt.optimizer:
obj.scheduler.optimizer = optimizers[i]
obj.optimizers = [optimizers[i]]
break
self._schedulers.append(obj)
result.append(obj)
self._optimizers = optimizers
return tuple(result)
def prepare(self, *args, device_placement=None):
"""
Prepare all objects passed in `args` for distributed training and mixed precision, then return them in the same
@ -1180,6 +1212,35 @@ class Accelerator:
" Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`."
)
if self.distributed_type == DistributedType.FSDP:
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
model_count = 0
optimizer_present = False
is_type_fsdp = False
for obj in args:
if isinstance(obj, torch.nn.Module):
model_count += 1
# if the model is compiled using PyTorch 2.0,
# check that the wrapped model is FSDP or not;
# else check if it is FSDP or not;
is_type_fsdp = isinstance(obj, FSDP) or (
is_compiled_module(obj) and isinstance(obj._orig_mod, FSDP)
)
if isinstance(obj, torch.optim.Optimizer):
optimizer_present = True
if model_count > 1 and optimizer_present:
raise ValueError(
"For FSDP to work with multiple models (>1), "
"prepare must be called for all the models before optimizers are created. "
"Then pass the optimizers to the prepare call in the same order as corresponding models."
)
elif model_count == 1 and not is_type_fsdp and optimizer_present:
logger.warning(
"FSDP Warning: When using FSDP, "
"it is efficient and recommended to call prepare for the model before creating the optimizer"
)
if self.distributed_type == DistributedType.DEEPSPEED:
model_count = 0
for obj in args:
@ -1206,7 +1267,7 @@ class Accelerator:
# If we're dealing with device placement, this deals with that by...
tpu_should_fix_optimizer = self.device_placement and self.distributed_type == DistributedType.TPU
if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"):
if tpu_should_fix_optimizer or self.mixed_precision == "fp8":
# 1. grabbing old model parameters
old_named_params = self._get_named_parameters(*args)
@ -1220,16 +1281,12 @@ class Accelerator:
elif self.distributed_type == DistributedType.MEGATRON_LM:
result = self._prepare_megatron_lm(*args)
else:
if self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "MSAMP":
args = self._prepare_msamp(*args)
# MS-AMP will handle the device placement
device_placement = [False for _ in args]
result = tuple(
self._prepare_one(obj, first_pass=True, device_placement=d) for obj, d in zip(args, device_placement)
)
result = tuple(self._prepare_one(obj, device_placement=d) for obj, d in zip(result, device_placement))
if tpu_should_fix_optimizer or (self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE"):
if tpu_should_fix_optimizer or self.mixed_precision == "fp8":
# 2. grabbing new model parameters
new_named_params = self._get_named_parameters(*result)
# 3. building a map from the first to the second
@ -1239,6 +1296,14 @@ class Accelerator:
if isinstance(obj, torch.optim.Optimizer):
obj._switch_parameters(mapping)
if (
self.distributed_type == DistributedType.FSDP
and model_count == 1
and not is_type_fsdp
and optimizer_present
):
result = self._prepare_fsdp(*result)
for item in result:
if any(
item in container
@ -1288,29 +1353,6 @@ class Accelerator:
" Please rerun your script specifying `--num_processes=1` or by launching with `python {{myscript.py}}`."
)
if self.native_amp:
model._original_forward = model.forward
model_forward_func = model.forward.__func__ if hasattr(model.forward, "__func__") else model.forward
autocast_context = get_mixed_precision_context_manager(self.native_amp, self.autocast_handler)
new_forward = autocast_context(model_forward_func)
if hasattr(model.forward, "__func__"):
model.forward = MethodType(new_forward, model)
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
else:
model.forward = convert_outputs_to_fp32(new_forward)
elif self.mixed_precision == "fp8" and self.fp8_recipe_handler.backend == "TE":
if not has_transformer_engine_layers(model):
with torch.no_grad():
convert_model(model)
model._converted_to_transformer_engine = True
model._original_forward = model.forward
kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {}
if "fp8_format" in kwargs:
kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"])
fp8_recipe = te_recipe.DelayedScaling(**kwargs)
model.forward = fp8_autocast(enabled=True, fp8_recipe=fp8_recipe)(model.forward)
if (getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)) and getattr(
model, "hf_device_map", False
):
@ -1329,6 +1371,7 @@ class Accelerator:
if (self.device.index is not None) or (current_device_index != 0):
raise ValueError(
"You can't train a model that has been loaded in 8-bit precision on a different device than the one "
"you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device()}"
"you're training on. Make sure you loaded the model on the correct device using for example `device_map={'':torch.cuda.current_device() or device_map={'':torch.xpu.current_device()}"
)
@ -1338,6 +1381,37 @@ class Accelerator:
)
elif device_placement and not self.verify_device_map(model):
model = model.to(self.device)
if self.native_amp:
model._original_forward = model.forward
model_forward_func = model.forward.__func__ if hasattr(model.forward, "__func__") else model.forward
autocast_context = get_mixed_precision_context_manager(self.native_amp, self.autocast_handler)
new_forward = autocast_context(model_forward_func)
if hasattr(model.forward, "__func__"):
model.forward = MethodType(new_forward, model)
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
else:
model.forward = convert_outputs_to_fp32(new_forward)
elif self.mixed_precision == "fp8":
if not has_transformer_engine_layers(model):
with torch.no_grad():
convert_model(model)
model._converted_to_transformer_engine = True
model._original_forward = model.forward
kwargs = self.fp8_recipe_handler.to_kwargs() if self.fp8_recipe_handler is not None else {}
if "fp8_format" in kwargs:
kwargs["fp8_format"] = getattr(te_recipe.Format, kwargs["fp8_format"])
fp8_recipe = te_recipe.DelayedScaling(**kwargs)
cuda_device_capacity = torch.cuda.get_device_capability()
fp8_enabled = cuda_device_capacity >= (8, 9)
if not fp8_enabled:
logger.warn(
f"The current device has compute capability of {cuda_device_capacity} which is "
"insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace "
"or higher, compute capability of 8.9 or higher). Will use FP16 instead."
)
model.forward = fp8_autocast(enabled=fp8_enabled, fp8_recipe=fp8_recipe)(model.forward)
if not evaluation_mode:
if self.distributed_type in (
DistributedType.MULTI_GPU,
@ -1421,38 +1495,38 @@ class Accelerator:
deepspeed_plugin = self.state.deepspeed_plugin
is_dataloader_present = any(isinstance(obj, torch.utils.data.DataLoader) for obj in args)
result = [
self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj
for obj in args
]
if deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] == "auto" or is_dataloader_present:
result = [
self._prepare_one(obj, first_pass=True) if isinstance(obj, torch.utils.data.DataLoader) else obj
for obj in args
]
if deepspeed_plugin.is_auto("train_micro_batch_size_per_gpu"):
if is_dataloader_present:
batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")]
if any(bs is None for bs in batch_sizes):
raise ValueError(
"At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size. "
"Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file "
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
)
if self.split_batches:
batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes]
batch_sizes = [obj.batch_size for obj in args if hasattr(obj, "batch_size")]
if self.split_batches:
batch_sizes = [batch_size // self.num_processes for batch_size in batch_sizes]
batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes)
if len(batch_sizes) > 1:
logger.info(
"Since you passed both train and evaluation dataloader, `is_train_batch_min` (here "
f"{deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device})."
)
else:
if any(bs is None for bs in batch_sizes):
raise ValueError(
"When using DeepSpeed, `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders "
"with `batch_size` attribute returning an integer value "
"or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file "
"At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size."
"Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file"
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
)
if len(batch_sizes) == 0:
raise ValueError(
"When using DeepSpeed `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders "
"or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file"
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
)
batch_size_per_device = min(batch_sizes) if deepspeed_plugin.is_train_batch_min else max(batch_sizes)
if len(batch_sizes) > 1:
logger.info(
"Since you passed both train and evaluation dataloader, `is_train_batch_min` (here "
f"{deepspeed_plugin.is_train_batch_min} will decide the `train_batch_size` ({batch_size_per_device})."
)
else:
batch_size_per_device = deepspeed_plugin.get_value("train_micro_batch_size_per_gpu")
batch_size_per_device = deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"]
result = [obj for obj in args]
# handle `gradient_accumulation_steps` when the value is `auto`
deepspeed_plugin.fill_match(
@ -1464,7 +1538,7 @@ class Accelerator:
config_kwargs = {
"train_micro_batch_size_per_gpu": batch_size_per_device,
"train_batch_size": batch_size_per_device
* deepspeed_plugin.get_value("gradient_accumulation_steps")
* deepspeed_plugin.deepspeed_config["gradient_accumulation_steps"]
* self.num_processes,
"gradient_clipping": 1.0,
"zero_optimization.stage3_gather_16bit_weights_on_model_save": False,
@ -1523,40 +1597,21 @@ class Accelerator:
)
if model is not None:
# deal with config keys that use `auto` value and rely on model's hidden_size
hidden_size_based_keys = [
"zero_optimization.reduce_bucket_size",
"zero_optimization.stage3_prefetch_bucket_size",
"zero_optimization.stage3_param_persistence_threshold",
]
hidden_size_auto_keys = [x for x in hidden_size_based_keys if deepspeed_plugin.is_auto(x)]
if len(hidden_size_auto_keys) > 0:
reasoning = (
"therefore it's not possible to automatically fill out the following `auto` entries "
+ f"in the DeepSpeed config file: {hidden_size_auto_keys}. You can fix that by replacing "
+ "`auto` values for these keys with an integer value of your choice."
if hasattr(model, "config"):
hidden_size = (
max(model.config.hidden_sizes)
if getattr(model.config, "hidden_sizes", None)
else getattr(model.config, "hidden_size", None)
)
if not hasattr(model, "config"):
raise ValueError("Can't find `model.config` entry, " + reasoning)
if hasattr(model.config, "hidden_size"):
hidden_size = model.config.hidden_size
elif hasattr(model.config, "hidden_sizes"):
# if there are many hidden sizes pick the largest one
hidden_size = max(model.config.hidden_sizes)
else:
raise ValueError(
"Can find neither `model.config.hidden_size` nor `model.config.hidden_sizes`, " + reasoning
if hidden_size is not None:
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
}
)
config_kwargs.update(
{
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size,
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size,
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size,
}
)
if isinstance(optimizer, (DummyOptim)):
config_kwargs.update(
{"optimizer.params.lr": optimizer.lr, "optimizer.params.weight_decay": optimizer.weight_decay}
@ -1598,7 +1653,10 @@ class Accelerator:
optimizer = DeepSpeedCPUAdam(optimizer.param_groups, **defaults)
kwargs["optimizer"] = optimizer
if scheduler is not None:
if type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES:
if (
isinstance(scheduler, LRScheduler)
or type(scheduler).__name__ in deepspeed.runtime.lr_schedules.VALID_LR_SCHEDULES
):
kwargs["lr_scheduler"] = scheduler
engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs)
@ -1771,42 +1829,6 @@ class Accelerator:
result[i] = optimizer
return tuple(result)
def _prepare_msamp(self, *args):
if not is_msamp_available():
raise ImportError(
"MS-AMP was not found on your system. Please ensure that MS-AMP is available "
" or choose `'te'` as the backend for FP8 mixed precision training."
)
else:
import msamp
model, optimizer = None, None
num_models, num_optimizers = 0, 0
result = [obj for obj in args]
for obj in result:
if isinstance(obj, torch.nn.Module):
model = obj
num_models += 1
elif isinstance(obj, (torch.optim.Optimizer)):
optimizer = obj
num_optimizers += 1
if optimizer is None or model is None:
raise ValueError(
"You must pass a model and an optimizer together to `accelerate.prepare()` when using MS-AMP."
)
elif num_models > 1 or num_optimizers > 1:
raise ValueError(
f"You can't use multiple models ({num_models}) or optimizers {num_optimizers} with MS-AMP."
)
else:
model, optimizer = msamp.initialize(model, optimizer, opt_level=self.fp8_recipe_handler.opt_level)
for i in range(len(result)):
if isinstance(result[i], torch.nn.Module):
result[i] = model
elif isinstance(result[i], (torch.optim.Optimizer)):
result[i] = optimizer
return tuple(result)
def prepare_data_loader(
self, data_loader: torch.utils.data.DataLoader, device_placement=None, slice_fn_for_dispatch=None
):
@ -1854,7 +1876,6 @@ class Accelerator:
dispatch_batches=self.dispatch_batches,
even_batches=self.even_batches,
slice_fn_for_dispatch=slice_fn_for_dispatch,
use_seedable_sampler=self.use_seedable_sampler,
)
self._dataloaders.append(prepared_data_loader)
return prepared_data_loader
@ -2378,6 +2399,7 @@ class Accelerator:
... )
```
"""
self.trackers = []
for tracker in self.log_with:
if issubclass(type(tracker), GeneralTracker):
# Custom trackers are already initialized
@ -2419,7 +2441,7 @@ class Accelerator:
>>> tensorboard_tracker = accelerator.get_tracker("tensorboard")
```
"""
if len(self.trackers) > 0:
if len(getattr(self, "trackers", [])) > 0:
for tracker in self.trackers:
if tracker.name == name:
return tracker.tracker if unwrap else tracker
@ -2486,10 +2508,6 @@ class Accelerator:
f (`str` or `os.PathLike`): Where to save the content of `obj`.
safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save `obj` using `safetensors`
Note:
If `save_on_each_node` was passed in as a `ProjectConfiguration`, will save the object once per node,
rather than only once on the main node.
Example:
```python
@ -2500,19 +2518,14 @@ class Accelerator:
>>> accelerator.save(arr, "array.pkl")
```
"""
save(
obj,
f,
save_on_each_node=self.project_configuration.save_on_each_node,
safe_serialization=safe_serialization,
)
save(obj, f, safe_serialization=safe_serialization)
def save_model(
self,
model: torch.nn.Module,
save_directory: Union[str, os.PathLike],
max_shard_size: Union[int, str] = "10GB",
safe_serialization: bool = True,
safe_serialization: bool = False,
):
"""
Save a model so that it can be re-loaded using load_checkpoint_in_model
@ -2533,7 +2546,7 @@ class Accelerator:
</Tip>
safe_serialization (`bool`, *optional*, defaults to `True`):
safe_serialization (`bool`, *optional*, defaults to `False`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
Example:
@ -2547,6 +2560,9 @@ class Accelerator:
```
"""
if safe_serialization and not is_safetensors_available():
raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
@ -2554,21 +2570,38 @@ class Accelerator:
os.makedirs(save_directory, exist_ok=True)
# get the state_dict of the model
if any(
[
module._hf_hook.offload
for module in model.modules()
if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook)
]
):
state_dict = get_state_dict_offloaded_model(model)
else:
if any(param.device == torch.device("meta") for param in model.parameters()):
raise RuntimeError("You can't save the model since some parameters are on the meta device.")
state_dict = self.get_state_dict(model)
state_dict = self.get_state_dict(model)
if safe_serialization:
state_dict = clean_state_dict_for_safetensors(state_dict)
# Safetensors does not allow tensor aliasing.
# We're going to remove aliases before saving
ptrs = collections.defaultdict(list)
# when bnb serialization is used the weights in the state dict can be strings
for name, tensor in state_dict.items():
if not isinstance(tensor, str):
ptrs[id_tensor_storage(tensor)].append(name)
# These are all the pointers of shared tensors.
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
warn_names = set()
for names in shared_ptrs.values():
# When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
# If the link between tensors was done at runtime then `from_pretrained` will not get
# the key back leading to random tensor. A proper warning will be shown
# during reload (if applicable), but since the file is not necessarily compatible with
# the config, better show a proper warning.
found = 0
for name in names:
if name in state_dict:
found += 1
if found > 1:
del state_dict[name]
warn_names.add(name)
if len(warn_names) > 0:
logger.warning(
f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
)
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
# Shard the model if it is too big.
@ -2646,7 +2679,7 @@ class Accelerator:
self._save_model_state_pre_hook[handle.id] = hook
return handle
def save_state(self, output_dir: str = None, safe_serialization: bool = True, **save_model_func_kwargs):
def save_state(self, output_dir: str = None, **save_model_func_kwargs):
"""
Saves the current states of the model, optimizer, scaler, RNG generators, and registered objects to a folder.
@ -2667,8 +2700,6 @@ class Accelerator:
Args:
output_dir (`str` or `os.PathLike`):
The name of the folder to save all relevant weights and states.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
save_model_func_kwargs (`dict`, *optional*):
Additional keyword arguments for saving model which can be passed to the underlying save function, such
as optional arguments for DeepSpeed's `save_checkpoint` function.
@ -2739,7 +2770,7 @@ class Accelerator:
# Save the optimizers taking care of FSDP and DeepSpeed nuances
optimizers = []
if self.distributed_type == DistributedType.FSDP:
for i, opt in enumerate(self._optimizers):
for opt in self._optimizers:
logger.info("Saving FSDP Optimizer")
save_fsdp_optimizer(self.state.fsdp_plugin, self, opt, self._models[i], output_dir, i)
logger.info(f"FSDP Optimizer saved to output dir {output_dir}")
@ -2756,27 +2787,16 @@ class Accelerator:
elif self.distributed_type not in [DistributedType.MEGATRON_LM]:
schedulers = self._schedulers
# Save the samplers of the dataloaders
dataloaders = self._dataloaders
# Call model loading hooks that might have been registered with
# accelerator.register_model_state_hook
for hook in self._save_model_state_pre_hook.values():
hook(self._models, weights, output_dir)
save_location = save_accelerator_state(
output_dir,
weights,
optimizers,
schedulers,
dataloaders,
self.state.process_index,
self.scaler,
save_on_each_node=self.project_configuration.save_on_each_node,
safe_serialization=safe_serialization,
output_dir, weights, optimizers, schedulers, self.state.process_index, self.scaler
)
for i, obj in enumerate(self._custom_objects):
save_custom_state(obj, output_dir, i, save_on_each_node=self.project_configuration.save_on_each_node)
save_custom_state(obj, output_dir, i)
self.project_configuration.iteration += 1
return save_location
@ -2900,8 +2920,6 @@ class Accelerator:
elif self.distributed_type not in [DistributedType.MEGATRON_LM]:
schedulers = self._schedulers
dataloaders = self._dataloaders
# Call model loading hooks that might have been registered with
# accelerator.register_model_state_hook
for hook in self._load_model_state_pre_hook.values():
@ -2922,7 +2940,6 @@ class Accelerator:
models,
optimizers,
schedulers,
dataloaders,
self.state.process_index,
self.scaler,
map_location,
@ -3054,13 +3071,6 @@ class Accelerator:
from deepspeed.checkpoint.utils import clone_tensors_for_torch_save
state_dict = clone_tensors_for_torch_save(self.unwrap_model(model).state_dict())
elif self.distributed_type == DistributedType.FSDP:
from torch.distributed.fsdp import FullStateDictConfig, StateDictType
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(model, StateDictType.FULL_STATE_DICT, full_state_dict_config):
state_dict = model.state_dict()
else:
if unwrap:
model = self.unwrap_model(model)

View File

@ -36,7 +36,6 @@ from .utils import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
is_npu_available,
is_torch_version,
load_checkpoint_in_model,
offload_state_dict,
@ -73,8 +72,6 @@ def init_empty_weights(include_buffers: bool = None):
Any model created under this context manager has no weights. As such you can't do something like
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
Make sure to overwrite the default device_map param for [`load_checkpoint_and_dispatch`], otherwise dispatch is not
called.
</Tip>
"""
@ -405,16 +402,6 @@ def dispatch_model(
skip_keys=skip_keys,
preload_module_classes=preload_module_classes,
)
# warn if there is any params on the meta device
offloaded_devices_str = " and ".join(
[device for device in set(device_map.values()) if device in ("cpu", "disk")]
)
if len(offloaded_devices_str) > 0:
logging.warning(
f"Some parameters are on the meta device device because they were offloaded to the {offloaded_devices_str}."
)
# Attaching the hook may break tied weights, so we retie them
retie_parameters(model, tied_params)
@ -431,24 +418,17 @@ def dispatch_model(
return wrapper
model.to = add_warning(model.to, model)
if is_npu_available():
model.npu = add_warning(model.npu, model)
else:
model.cuda = add_warning(model.cuda, model)
model.cuda = add_warning(model.cuda, model)
else:
device = list(device_map.values())[0]
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
if device != "disk":
model.to(device)
else:
raise ValueError(
"You are trying to offload the whole model to the disk. Please use the `disk_offload` function instead."
)
# Convert OrderedDict back to dict for easier usage
model.hf_device_map = dict(device_map)
model.hf_device_map = device_map
return model
@ -482,8 +462,7 @@ def load_checkpoint_and_dispatch(
name, once a given module name is inside, every submodule of it will be sent to the same device.
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For more
information about each option see [here](../concept_guides/big_model_inference#designing-a-device-map).
Defaults to None, which means [`dispatch_model`] will not be called.
information about each option see [here](big_modeling#designing-a-device-map).
max_memory (`Dict`, *optional*):
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each GPU
and the available CPU RAM if unset.

View File

@ -12,25 +12,21 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
from pathlib import Path
from typing import List
import numpy as np
import torch
from safetensors.torch import load_file
from torch.cuda.amp import GradScaler
from .utils import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_MODEL_NAME,
SAFE_WEIGHTS_NAME,
SAMPLER_NAME,
SCALER_NAME,
SCHEDULER_NAME,
WEIGHTS_NAME,
get_pretty_name,
is_tpu_available,
is_xpu_available,
@ -53,22 +49,12 @@ def save_accelerator_state(
model_states: List[dict],
optimizers: list,
schedulers: list,
dataloaders: list,
process_index: int,
scaler: GradScaler = None,
save_on_each_node: bool = False,
safe_serialization: bool = True,
):
"""
Saves the current states of the models, optimizers, scaler, and RNG generators to a given directory.
<Tip>
If `safe_serialization` is `True`, models will be saved with `safetensors` while the rest are saved using native
`pickle`.
</Tip>
Args:
output_dir (`str` or `os.PathLike`):
The name of the folder to save all relevant weights and states.
@ -78,58 +64,35 @@ def save_accelerator_state(
A list of optimizer instances
schedulers (`List[torch.optim.lr_scheduler._LRScheduler]`):
A list of learning rate schedulers
dataloaders (`List[torch.utils.data.DataLoader]`):
A list of dataloader instances to save their sampler states
process_index (`int`):
The current process index in the Accelerator state
scaler (`torch.cuda.amp.GradScaler`, *optional*):
An optional gradient scaler instance to save
save_on_each_node (`bool`, *optional*):
Whether to save on every node, or only the main node.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
"""
output_dir = Path(output_dir)
# Model states
for i, state in enumerate(model_states):
weights_name = WEIGHTS_NAME if not safe_serialization else SAFE_WEIGHTS_NAME
if i > 0:
weights_name = weights_name.replace(".", f"_{i}.")
output_model_file = output_dir.joinpath(weights_name)
save(state, output_model_file, save_on_each_node=save_on_each_node, safe_serialization=safe_serialization)
weights_name = f"{MODEL_NAME}.bin" if i == 0 else f"{MODEL_NAME}_{i}.bin"
output_model_file = os.path.join(output_dir, weights_name)
save(state, output_model_file)
logger.info(f"Model weights saved in {output_model_file}")
# Optimizer states
for i, opt in enumerate(optimizers):
state = opt.state_dict()
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
output_optimizer_file = output_dir.joinpath(optimizer_name)
save(state, output_optimizer_file, save_on_each_node=save_on_each_node, safe_serialization=False)
output_optimizer_file = os.path.join(output_dir, optimizer_name)
save(state, output_optimizer_file)
logger.info(f"Optimizer state saved in {output_optimizer_file}")
# Scheduler states
for i, scheduler in enumerate(schedulers):
state = scheduler.state_dict()
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
output_scheduler_file = output_dir.joinpath(scheduler_name)
save(state, output_scheduler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
output_scheduler_file = os.path.join(output_dir, scheduler_name)
save(state, output_scheduler_file)
logger.info(f"Scheduler state saved in {output_scheduler_file}")
# DataLoader states
for i, dataloader in enumerate(dataloaders):
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
output_sampler_file = output_dir.joinpath(sampler_name)
# Only save if we have our custom sampler
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.sampler.sampler
if isinstance(sampler, SeedableRandomSampler):
save(sampler, output_sampler_file, save_on_each_node=save_on_each_node, safe_serialization=False)
logger.info(f"Sampler state for dataloader {i} saved in {output_sampler_file}")
# GradScaler state
if scaler is not None:
state = scaler.state_dict()
output_scaler_file = output_dir.joinpath(SCALER_NAME)
output_scaler_file = os.path.join(output_dir, SCALER_NAME)
torch.save(state, output_scaler_file)
logger.info(f"Gradient scaler state saved in {output_scaler_file}")
# Random number generator states
@ -144,7 +107,7 @@ def save_accelerator_state(
states["torch_cuda_manual_seed"] = torch.cuda.get_rng_state_all()
if is_tpu_available():
states["xm_seed"] = xm.get_rng_state()
output_states_file = output_dir.joinpath(states_name)
output_states_file = os.path.join(output_dir, states_name)
torch.save(states, output_states_file)
logger.info(f"Random states saved in {output_states_file}")
return output_dir
@ -155,7 +118,6 @@ def load_accelerator_state(
models,
optimizers,
schedulers,
dataloaders,
process_index,
scaler=None,
map_location=None,
@ -190,25 +152,17 @@ def load_accelerator_state(
map_location = "cpu"
elif map_location == "on_device":
map_location = PartialState().device
input_dir = Path(input_dir)
# Model states
for i, model in enumerate(models):
ending = f"_{i}" if i > 0 else ""
input_model_file = input_dir.joinpath(f"{SAFE_MODEL_NAME}{ending}.safetensors")
if input_model_file.exists():
state_dict = load_file(input_model_file, device=str(map_location))
else:
# Load with torch
input_model_file = input_dir.joinpath(f"{MODEL_NAME}{ending}.bin")
state_dict = torch.load(input_model_file, map_location=map_location)
models[i].load_state_dict(state_dict, **load_model_func_kwargs)
weights_name = f"{MODEL_NAME}.bin" if i == 0 else f"{MODEL_NAME}_{i}.bin"
input_model_file = os.path.join(input_dir, weights_name)
models[i].load_state_dict(torch.load(input_model_file, map_location=map_location), **load_model_func_kwargs)
logger.info("All model weights loaded successfully")
# Optimizer states
for i, opt in enumerate(optimizers):
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
input_optimizer_file = input_dir.joinpath(optimizer_name)
input_optimizer_file = os.path.join(input_dir, optimizer_name)
optimizer_state = torch.load(input_optimizer_file, map_location=map_location)
optimizers[i].load_state_dict(optimizer_state)
logger.info("All optimizer states loaded successfully")
@ -216,32 +170,19 @@ def load_accelerator_state(
# Scheduler states
for i, scheduler in enumerate(schedulers):
scheduler_name = f"{SCHEDULER_NAME}.bin" if i == 0 else f"{SCHEDULER_NAME}_{i}.bin"
input_scheduler_file = input_dir.joinpath(scheduler_name)
input_scheduler_file = os.path.join(input_dir, scheduler_name)
scheduler.load_state_dict(torch.load(input_scheduler_file))
logger.info("All scheduler states loaded successfully")
for i, dataloader in enumerate(dataloaders):
sampler_name = f"{SAMPLER_NAME}.bin" if i == 0 else f"{SAMPLER_NAME}_{i}.bin"
input_sampler_file = input_dir.joinpath(sampler_name)
# Only load if we have our custom sampler
from .data_loader import IterableDatasetShard, SeedableRandomSampler
if isinstance(dataloader.dataset, IterableDatasetShard):
sampler = dataloader.sampler.sampler
if isinstance(sampler, SeedableRandomSampler):
dataloader.sampler.sampler = torch.load(input_sampler_file)
logger.info("All dataloader sampler states loaded successfully")
# GradScaler state
if scaler is not None:
input_scaler_file = input_dir.joinpath(SCALER_NAME)
input_scaler_file = os.path.join(input_dir, SCALER_NAME)
scaler.load_state_dict(torch.load(input_scaler_file))
logger.info("GradScaler state loaded successfully")
# Random states
try:
states = torch.load(input_dir.joinpath(f"{RNG_STATE_NAME}_{process_index}.pkl"))
states = torch.load(os.path.join(input_dir, f"{RNG_STATE_NAME}_{process_index}.pkl"))
random.setstate(states["random_state"])
np.random.set_state(states["numpy_random_seed"])
torch.set_rng_state(states["torch_manual_seed"])
@ -256,14 +197,14 @@ def load_accelerator_state(
logger.info("Could not load random states")
def save_custom_state(obj, path, index: int = 0, save_on_each_node: bool = False):
def save_custom_state(obj, path, index: int = 0):
"""
Saves the state of `obj` to `{path}/custom_checkpoint_{index}.pkl`
"""
# Should this be the right way to get a qual_name type value from `obj`?
save_location = Path(path) / f"custom_checkpoint_{index}.pkl"
logger.info(f"Saving the state of {get_pretty_name(obj)} to {save_location}")
save(obj.state_dict(), save_location, save_on_each_node=save_on_each_node)
torch.save(obj.state_dict(), save_location)
def load_custom_state(obj, path, index: int = 0):

View File

@ -179,7 +179,7 @@ def get_cluster_input():
use_mps = not use_cpu and is_mps_available()
deepspeed_config = {}
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.NO] and not use_mps:
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.NO] and not use_mps:
use_deepspeed = _ask_field(
"Do you want to use DeepSpeed? [yes/NO]: ",
_convert_yes_no_to_bool,
@ -327,7 +327,8 @@ def get_cluster_input():
fsdp_config["fsdp_sharding_strategy"] = _ask_options(
sharding_strategy_query,
FSDP_SHARDING_STRATEGY,
lambda x: FSDP_SHARDING_STRATEGY[int(x)],
lambda x: int(x) + 1,
default=1,
)
fsdp_config["fsdp_offload_params"] = _ask_field(
"Do you want to offload parameters and gradients to CPU? [yes/NO]: ",
@ -361,7 +362,7 @@ def get_cluster_input():
default=100000000,
)
fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy?"
fsdp_config["fsdp_backward_prefetch"] = _ask_options(
fsdp_config["fsdp_backward_prefetch_policy"] = _ask_options(
fsdp_backward_prefetch_query,
FSDP_BACKWARD_PREFETCH,
lambda x: FSDP_BACKWARD_PREFETCH[int(x)],
@ -380,26 +381,17 @@ def get_cluster_input():
error_message="Please enter yes or no.",
)
fsdp_config["fsdp_use_orig_params"] = _ask_field(
"Do you want to enable FSDP's `use_orig_params` feature? [YES/no]: ",
"Do you want to enable FSDP's `use_orig_params` feature? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
fsdp_config["fsdp_sync_module_states"] = _ask_field(
"Do you want each individually wrapped FSDP unit to broadcast module parameters from rank 0 at the start? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
fsdp_config["fsdp_cpu_ram_efficient_loading"] = _ask_field(
"Do you want to enable CPU RAM efficient model loading? Only applicable for 🤗 Transformers models. [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
if fsdp_config["fsdp_cpu_ram_efficient_loading"]:
fsdp_config["fsdp_sync_module_states"] = True
else:
fsdp_config["fsdp_sync_module_states"] = _ask_field(
"Do you want each individually wrapped FSDP unit to broadcast module parameters from rank 0 at the start? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",
)
megatron_lm_config = {}
if distributed_type in [DistributedType.MULTI_GPU]:
@ -450,7 +442,7 @@ def get_cluster_input():
megatron_lm_config[prefix + "use_distributed_optimizer"] = _ask_field(
"Do you want to use distributed optimizer "
"which shards optimizer state and gradients across data parallel ranks? [YES/no]: ",
"which shards optimizer state and gradients across data pralellel ranks? [YES/no]: ",
_convert_yes_no_to_bool,
default=True,
error_message="Please enter yes or no.",

View File

@ -14,12 +14,15 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from dataclasses import dataclass
from typing import Literal
from huggingface_hub import model_info
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError
from accelerate import init_empty_weights
from accelerate.utils import (
Arguments,
calculate_maximum_sizes,
convert_bytes,
is_timm_available,
@ -107,7 +110,7 @@ def create_empty_model(model_name: str, library_name: str, trust_remote_code: bo
print(f"Loading pretrained config for `{model_name}` from `transformers`...")
auto_map = model_info.config.get("auto_map", False)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code, token=access_token)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=trust_remote_code)
with init_empty_weights():
# remote code could specify a specific `AutoModel` class in the `auto_map`
@ -177,6 +180,31 @@ def create_ascii_table(headers: list, rows: list, title: str):
return table
@dataclass
class EstimateArguments(Arguments):
"""
Arguments for the `accelerate estimate` command.
Args:
model_name (`str`):
The model name on the Hugging Face Hub.
library_name (`str`):
The library the model has an integration with, such as `transformers`, needed only if this information is
not stored on the Hub. Must be one of `timm` or `transformers`.
dtypes (`list[str]`, `optional`, defaults to `["float32", "float16", "int8", "int4"]`):
The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4`.
trust_remote_code (`bool`, `optional`, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This flag should
only be used for repositories you trust and in which you have read the code, as it will execute code
present on the Hub on your local machine.
"""
model_name: str
library_name: Literal["timm", "transformers"]
dtypes: list[str]
trust_remote_code: bool = False
def estimate_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("estimate-memory")
@ -207,11 +235,11 @@ def estimate_command_parser(subparsers=None):
)
if subparsers is not None:
parser.set_defaults(func=estimate_command)
parser.set_defaults(func=estimate_memory)
return parser
def gather_data(args):
def gather_data(args: EstimateArguments):
"Creates an empty model and gathers the data for the sizes"
try:
model = create_empty_model(
@ -246,7 +274,7 @@ def gather_data(args):
return data
def estimate_command(args):
def estimate_memory(args: EstimateArguments):
data = gather_data(args)
for row in data:
for i, item in enumerate(row):
@ -263,7 +291,7 @@ def estimate_command(args):
def main():
parser = estimate_command_parser()
args = parser.parse_args()
estimate_command(args)
estimate_memory(args)
if __name__ == "__main__":

View File

@ -20,21 +20,22 @@ import logging
import os
import subprocess
import sys
from dataclasses import dataclass, field
from pathlib import Path
from typing import ClassVar, Literal
import psutil
import torch
from accelerate.commands.config import default_config_file, load_config_from_file
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.commands.config.config_utils import DYNAMO_BACKENDS
from accelerate.state import get_int_from_env
from accelerate.utils import (
Arguments,
ComputeEnvironment,
DistributedType,
PrepareForLaunch,
_filter_args,
check_cuda_p2p_ib_support,
is_bf16_available,
is_deepspeed_available,
is_npu_available,
@ -50,7 +51,7 @@ from accelerate.utils import (
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from accelerate.utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS, TORCH_DYNAMO_MODES
from accelerate.utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS
if is_rich_available():
@ -126,6 +127,305 @@ class _CustomHelpAction(argparse._HelpAction):
super().__call__(parser, namespace, values, option_string)
@dataclass
class ResourceArguments(Arguments):
"""
Arguments for fine-tuning what and how available hardware should be used.
Args:
cpu (`bool`, *optional*, defaults to `False`):
Whether or not to force the training on the CPU.
multi_gpu (`bool`, *optional*, defaults to `False`):
Whether or not this should launch a distributed GPU training.
tpu (`bool`, *optional*, defaults to `False`):
Whether or not this should launch a TPU training.
ipex (`bool`, *optional*, defaults to `False`):
Whether or not this should launch a Intel PyTorch Extension (IPEX) training.
mixed_precision (`str`, *optional*, defaults to `no`):
Whether or not to use mixed precision training. Choose between FP16, BF16 (bfloat16) or FP8 training. BF16
training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.
num_processes (`int`, *optional*, defaults to `None`):
The total number of processes to be launched in parallel.
num_machines (`int`, *optional*, defaults to `None`):
The total number of machines used in this training.
num_cpu_threads_per_process (`int`, *optional*, defaults to `None`):
The number of CPU threads per process. Can be tuned for optimal performance.
use_deepspeed (`bool`, *optional*, defaults to `False`):
Whether to use deepspeed.
use_fsdp (`bool`, *optional*, defaults to `False`):
Whether to use fsdp.
use_megatron_lm (`bool`, *optional*, defaults to `False`):
Whether to use Megatron-LM.
use_xpu (`bool`, *optional*, defaults to `False`):
Whether to use IPEX plugin to speed up training on XPU specifically.
"""
cpu: bool = False
multi_gpu: bool = False
tpu: bool = False
ipex: bool = False
mixed_precision: Literal["no", "fp16", "bf16", "fp8"] = "no"
num_processes: int = None
num_machines: int = None
num_cpu_threads_per_process: int = None
use_deepspeed: bool = False
use_fsdp: bool = False
use_megatron_lm: bool = False
use_xpu: bool = False
@dataclass
class DynamoArguments(Arguments):
"""
Arguments related to `torchdynamo`
Args:
backend (`str`):
Backend to optimize your training with dynamo, see more at https://github.com/pytorch/torchdynamo.
mode (`str`, *optional*, defaults to "default"):
Mode to optimize your training with dynamo.
use_fullgraph (`bool`, *optional*):
Whether to use full graph mode for dynamo or it is ok to break model into several subgraphs.
use_dynamic (`bool`, *optional*):
Whether to enable dynamic shape tracing.
"""
prefix: ClassVar[str] = "dynamo_"
backend: Literal[
"no",
"eager",
"aot_eager",
"inductor",
"nvfuser",
"aot_nvfuser",
"aot_cudagraphs",
"ofi",
"fx2trt",
"onnxrt",
"ipex",
] = "no"
mode: Literal["default", "reduce-overhead", "max-autotune"] = "default"
use_fullgraph: bool = False
use_dynamic: bool = False
@dataclass
class CUDAArguments(Arguments):
"""
Arguments related to CUDA usage.
Args:
gpu_ids (`str`):
What GPUs (by id) should be used for training on this machine as a comma-seperated list.
same_network (`bool`):
Whether all machines used for multinode training exist on the same local network.
machine_rank (`int`):
The rank of the machine on which this script is launched.
main_process_ip (`str`):
The IP address of the machine of rank 0.
main_process_port (`int`):
The port to use to communicate with the machine of rank 0.
tee (`str`, *optional*, defaults to "0"):
Tee std streams into a log file and also to console.
role (`str`, *optional*, defaults to "default"):
User-defined role for the workers.
rdzv_backend (`str`, *optional*, defaults to "static"):
The rendezvous method to use, such as "static" or "c10d".
rdzv_conf (`str`, *optional*, defaults to ""):
Additional rendezvous configuration (<key1>=<value1>,<key2>=<value2>,...).
max_restarts (`int`, *optional*, defaults to 0):
Maximum number of worker group restarts before failing.
monitor_interval (`float`, *optional*, defaults to 5.0):
Interval, in seconds, to monitor the state of workers.
"""
gpu_ids: str = None
same_network: bool = False
machine_rank: int = None
main_process_ip: str = None
main_process_port: int = None
tee: str = "0"
role: str = "default"
rdzv_backend: Literal["static", "c10d"] = "static"
rdzv_conf: str = ""
max_restarts: int = 0
monitor_interval: float = 5.0
@dataclass
class TPUArguments(Arguments):
"""
Arguments related to TPU usage.
Args:
tpu_cluster (`bool`):
Whether to use a GCP TPU pod for training.
tpu_use_sudo (`bool`):
Whether to use `sudo` when running the TPU training script in each pod.
vm (list of `str`):
List of single Compute VM instance names. If not provided we assume usage of instance groups. For TPU pods.
env (list of `str`):
List of environment variables to set on the Compute VM instances. For TPU pods.
main_training_function (`str`):
The name of the main function to be executed in your script (only for TPU training).
downcast_bf16 (`bool`):
Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if
double tensors remain as float32.
"""
tpu_cluster: bool = False
tpu_use_sudo: bool = False
vm: list[str] = field(default_factory=list)
env: list[str] = field(default_factory=list)
main_training_function: str = None
downcast_bf16: bool = False
@dataclass
class DeepSpeedArguments(Arguments):
"""
Arguments related to DeepSpeed
Args:
deepspeed_config_file (`str`, *optional*):
DeepSpeed config file to use.
zero_stage (`int`, *optional*, defaults to 2):
DeepSpeed's ZeRO optimization stage.
offload_optimizer_device (`str`, *optional*, defaults to "none"):
Decides where (none|cpu|nvme) to offload optimizer states.
offload_param_device (`str`, *optional*, defaults to "none"):
Decides where (none|cpu|nvme) to offload parameters.
offload_optimizer_nvme_path (`str`, *optional*, defaults to "none"):
Decides Nvme Path to offload optimizer states.
offload_param_nvme_path (`str`, *optional*, defaults to "none"):
Decides Nvme Path to offload parameters.
gradient_accumulation_steps (`int`, *optional*, defaults to 1):
Number of gradient_accumulation_steps used in your training script when using deepspeed.
gradient_clipping (`float`, *optional*, defaults to 1.0):
Gradient clipping value used in your training script when using deepspeed.
zero3_init_flag (`bool`, *optional*):
Whether to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with DeepSpeed
ZeRO Stage-3.
zero3_save_16bit_model (`bool`, *optional*):
Whether to save 16-bit model weights when using ZeRO Stage-3. Only applicable with DeepSpeed ZeRO Stage-3.
deepspeed_hostfile (`str`, *optional*):
DeepSpeed hostfile for configuring multi-node compute resources.
deepspeed_exclusion_filter (`str`, *optional*):
DeepSpeed exclusion filter string when using mutli-node setup.
deepspeed_inclusion_filter (`str`, *optional*):
DeepSpeed inclusion filter string when using mutli-node setup.
deepspeed_multinode_launcher (`str`, *optional*, defaults to "pdsh"):
DeepSpeed multi-node launcher to use.
"""
config_file: str = None
zero_stage: int = 2
offload_optimizer_device: Literal["none", "cpu", "nvme"] = "none"
offload_param_device: Literal["none", "cpu", "nvme"] = "none"
offload_optimizer_nvme_path: str = "none"
offload_param_nvme_path: str = "none"
gradient_accumulation_steps: int = 1
gradient_clipping: float = 1.0
zero3_init_flag: bool = True
zero3_save_16bit_model: bool = False
deepspeed_hostfile: str = None
deepspeed_exclusion_filter: str = None
deepspeed_inclusion_filter: str = None
deepspeed_multinode_launcher: Literal["pdsh", "standard", "openmpi", "mvapich", "mpich"] = "pdsh"
@dataclass
class FSDPArguments(Arguments):
"""
Arguments related to Fully Shared Data Parallelism (FSDP)
Args:
offload_params (`bool`, *optional*):
Decides whether to offload parameters and gradients to CPU.
min_num_params (`int`, *optional*, defaults to 1e8):
FSDP's minimum number of parameters for Default Auto Wrapping.
sharding_strategy (`int`, *optional*, defaults to 1):
FSDP's Sharding Strategy.
auto_wrap_policy (`str`, *optional*):
FSDP's auto wrap policy.
transformer_layer_cls_to_wrap (`str`, *optional*):
Transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block` ....
backward_prefetch_policy (`str`, *optional*):
FSDP's backward prefetch policy.
state_dict_type (`str`, *optional*):
FSDP's state dict type.
forward_prefetch (`bool`, *optional*):
Whether to explicitly prefetch the next upcoming all-gather while executing in the forward pass.
use_orig_params (`bool`, *optional*):
Whether to allow non-uniform `requires_grad` during init, which means support for interspersed frozen and
trainable parameters.
sync_module_states (`bool`, *optional*, defaults to `True`):
Whether to broadcast module parameters from rank 0.
"""
prefix: ClassVar[str] = "fsdp_"
offload_params: bool = False
min_num_params: int = 1e8
sharding_strategy: int = 1
auto_wrap_policy: str = None
transformer_layer_cls_to_wrap: str = None
backward_prefetch_policy: str = None
state_dict_type: str = None
forward_prefetch: bool = False
use_orig_params: bool = False
sync_module_states: bool = True
@dataclass
class MegatronLMArguments(Arguments):
"""
Arguments related to MegaTron-LM
Args:
tp_degree (`int`, *optional*, defaults to 1):
Tensor Parallelism (TP) degree.
pp_degree (`int`, *optional*, defaults to 1):
Pipeline Parallelism (PP) degree.
num_micro_batches (`int`, *optional*):
Number of micro batches when `pp_degree` > 1.
sequence_parallelism (`bool`, *optional*):
Whether to enable Sequence Parallelism when `tp_degree` > 1.
recompute_activations (`bool`, *optional*):
Whether to enable Selective Activation Recomputation.
use_distributed_optimizer (`bool`, *optional*):
Whether to use distributed optimizer which shards optimizer state and gradients across Data Pralellel (DP)
ranks.
gradient_clipping (`float`, *optional*, defaults to 1.0):
Gradient clipping value based on global L2 Norm (0 to disable).
"""
prefix: ClassVar[str] = "megatron_lm_"
tp_degree: int = 1
pp_degree: int = 1
num_micro_batches: int = None
sequence_parallelism: bool = None
recompute_activations: bool = None
use_distributed_optimizer: bool = None
gradient_clipping: float = 1.0
@dataclass
class AWSArguments(Arguments):
"""
Arguments related to AWS
Args:
access_key_id (`str`, *optional*):
The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job.
secret_access_key (`str`, *optional*):
The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job.
"""
prefix: ClassVar[str] = "aws_"
access_key_id: str = None
secret_access_key: str = None
def launch_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("launch", add_help=False, allow_abbrev=False)
@ -136,182 +436,16 @@ def launch_command_parser(subparsers=None):
parser.add_argument("-h", "--help", action="help", help="Show this help message and exit.")
parser.add_argument(
"--config_file", default=None, help="The config file to use for the default values in the launching script."
"--config_file",
type=str,
default=None,
help="The config file to use for the default values in the launching script.",
)
parser.add_argument(
"--quiet",
"-q",
action="store_true",
help="Silence subprocess errors from the launch stack trace and only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations)",
)
# Hardware selection arguments
hardware_args = parser.add_argument_group(
"Hardware Selection Arguments", "Arguments for selecting the hardware to be used."
)
hardware_args.add_argument(
"--cpu", default=False, action="store_true", help="Whether or not to force the training on the CPU."
)
hardware_args.add_argument(
"--multi_gpu",
default=False,
action="store_true",
help="Whether or not this should launch a distributed GPU training.",
)
hardware_args.add_argument(
"--tpu", default=False, action="store_true", help="Whether or not this should launch a TPU training."
)
hardware_args.add_argument(
"--ipex",
default=False,
action="store_true",
help="Whether or not this should launch a Intel PyTorch Extension (IPEX) training.",
)
# Resource selection arguments
resource_args = parser.add_argument_group(
"Resource Selection Arguments", "Arguments for fine-tuning how available hardware should be used."
)
resource_args.add_argument(
"--mixed_precision",
type=str,
choices=["no", "fp16", "bf16", "fp8"],
help="Whether or not to use mixed precision training. "
"Choose between FP16 and BF16 (bfloat16) training. "
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.",
)
resource_args.add_argument(
"--num_processes", type=int, default=None, help="The total number of processes to be launched in parallel."
)
resource_args.add_argument(
"--num_machines", type=int, default=None, help="The total number of machines used in this training."
)
resource_args.add_argument(
"--num_cpu_threads_per_process",
type=int,
default=None,
help="The number of CPU threads per process. Can be tuned for optimal performance.",
)
# Dynamo arguments
resource_args.add_argument(
"--dynamo_backend",
type=str,
choices=["no"] + [b.lower() for b in DYNAMO_BACKENDS],
help="Choose a backend to optimize your training with dynamo, see more at "
"https://github.com/pytorch/torchdynamo.",
)
resource_args.add_argument(
"--dynamo_mode",
type=str,
default="default",
choices=TORCH_DYNAMO_MODES,
help="Choose a mode to optimize your training with dynamo.",
)
resource_args.add_argument(
"--dynamo_use_fullgraph",
default=False,
action="store_true",
help="Whether to use full graph mode for dynamo or it is ok to break model into several subgraphs",
)
resource_args.add_argument(
"--dynamo_use_dynamic",
default=False,
action="store_true",
help="Whether to enable dynamic shape tracing.",
)
# Training Paradigm arguments
paradigm_args = parser.add_argument_group(
"Training Paradigm Arguments", "Arguments for selecting which training paradigm to be used."
)
paradigm_args.add_argument(
"--use_deepspeed",
default=False,
action="store_true",
help="Whether to use deepspeed.",
)
paradigm_args.add_argument(
"--use_fsdp",
default=False,
action="store_true",
help="Whether to use fsdp.",
)
paradigm_args.add_argument(
"--use_megatron_lm",
default=False,
action="store_true",
help="Whether to use Megatron-LM.",
)
paradigm_args.add_argument(
"--use_xpu",
default=False,
action="store_true",
help="Whether to use IPEX plugin to speed up training on XPU specifically.",
)
# distributed GPU training arguments
distributed_args = parser.add_argument_group("Distributed GPUs", "Arguments related to distributed GPU training.")
distributed_args.add_argument(
"--gpu_ids",
default=None,
help="What GPUs (by id) should be used for training on this machine as a comma-seperated list",
)
distributed_args.add_argument(
"--same_network",
default=False,
action="store_true",
help="Whether all machines used for multinode training exist on the same local network.",
)
distributed_args.add_argument(
"--machine_rank", type=int, default=None, help="The rank of the machine on which this script is launched."
)
distributed_args.add_argument(
"--main_process_ip", type=str, default=None, help="The IP address of the machine of rank 0."
)
distributed_args.add_argument(
"--main_process_port",
type=int,
default=None,
help="The port to use to communicate with the machine of rank 0.",
)
distributed_args.add_argument(
"-t",
"--tee",
default="0",
type=str,
help="Tee std streams into a log file and also to console.",
)
distributed_args.add_argument(
"--role",
type=str,
default="default",
help="User-defined role for the workers.",
)
# Rendezvous related arguments
distributed_args.add_argument(
"--rdzv_backend",
type=str,
default="static",
help="The rendezvous method to use, such as 'static' (the default) or 'c10d'",
)
distributed_args.add_argument(
"--rdzv_conf",
type=str,
default="",
help="Additional rendezvous configuration (<key1>=<value1>,<key2>=<value2>,...).",
)
distributed_args.add_argument(
"--max_restarts",
type=int,
default=0,
help="Maximum number of worker group restarts before failing.",
)
distributed_args.add_argument(
"--monitor_interval",
type=float,
default=5,
help="Interval, in seconds, to monitor the state of workers.",
)
parser.add_argument(
"-m",
"--module",
@ -324,293 +458,44 @@ def launch_command_parser(subparsers=None):
help="Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script.",
)
# Resource selection arguments
resource_args = parser.add_argument_group(
"Resource Selection Arguments", "Arguments for fine-tuning how available hardware should be used."
)
ResourceArguments().add_to_parser(resource_args)
# Dynamo arguments
DynamoArguments().add_to_parser(resource_args)
# distributed GPU training arguments
distributed_args = parser.add_argument_group("Distributed GPUs", "Arguments related to distributed GPU training.")
CUDAArguments().add_to_parser(distributed_args)
# TPU arguments
tpu_args = parser.add_argument_group("TPU", "Arguments related to TPU.")
tpu_args.add_argument(
"--tpu_cluster",
action="store_true",
dest="tpu_use_cluster",
help="Whether to use a GCP TPU pod for training.",
)
TPUArguments().add_to_parser(tpu_args)
tpu_args.add_argument(
"--no_tpu_cluster",
action="store_false",
dest="tpu_use_cluster",
help="Should not be passed explicitly, this is for internal use only.",
)
tpu_args.add_argument(
"--tpu_use_sudo",
action="store_true",
help="Whether to use `sudo` when running the TPU training script in each pod.",
)
tpu_args.add_argument(
"--vm",
type=str,
action="append",
help=(
"List of single Compute VM instance names. "
"If not provided we assume usage of instance groups. For TPU pods."
),
)
tpu_args.add_argument(
"--env",
type=str,
action="append",
help="List of environment variables to set on the Compute VM instances. For TPU pods.",
)
tpu_args.add_argument(
"--main_training_function",
type=str,
default=None,
help="The name of the main function to be executed in your script (only for TPU training).",
)
tpu_args.add_argument(
"--downcast_bf16",
action="store_true",
help="Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32.",
)
# DeepSpeed arguments
deepspeed_args = parser.add_argument_group("DeepSpeed Arguments", "Arguments related to DeepSpeed.")
deepspeed_args.add_argument(
"--deepspeed_config_file",
default=None,
type=str,
help="DeepSpeed config file.",
)
deepspeed_args.add_argument(
"--zero_stage",
default=None,
type=int,
help="DeepSpeed's ZeRO optimization stage (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to `2`.",
)
deepspeed_args.add_argument(
"--offload_optimizer_device",
default=None,
type=str,
help="Decides where (none|cpu|nvme) to offload optimizer states (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to 'none'.",
)
deepspeed_args.add_argument(
"--offload_param_device",
default=None,
type=str,
help="Decides where (none|cpu|nvme) to offload parameters (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to 'none'.",
)
deepspeed_args.add_argument(
"--offload_optimizer_nvme_path",
default=None,
type=str,
help="Decides Nvme Path to offload optimizer states (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to 'none'.",
)
deepspeed_args.add_argument(
"--offload_param_nvme_path",
default=None,
type=str,
help="Decides Nvme Path to offload parameters (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to 'none'.",
)
deepspeed_args.add_argument(
"--gradient_accumulation_steps",
default=None,
type=int,
help="No of gradient_accumulation_steps used in your training script (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to `1`.",
)
deepspeed_args.add_argument(
"--gradient_clipping",
default=None,
type=float,
help="gradient clipping value used in your training script (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to `1.0`.",
)
deepspeed_args.add_argument(
"--zero3_init_flag",
default=None,
type=str,
help="Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. "
"Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `true`.",
)
deepspeed_args.add_argument(
"--zero3_save_16bit_model",
default=None,
type=str,
help="Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. "
"Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `false`.",
)
deepspeed_args.add_argument(
"--deepspeed_hostfile",
default=None,
type=str,
help="DeepSpeed hostfile for configuring multi-node compute resources.",
)
deepspeed_args.add_argument(
"--deepspeed_exclusion_filter",
default=None,
type=str,
help="DeepSpeed exclusion filter string when using mutli-node setup.",
)
deepspeed_args.add_argument(
"--deepspeed_inclusion_filter",
default=None,
type=str,
help="DeepSpeed inclusion filter string when using mutli-node setup.",
)
deepspeed_args.add_argument(
"--deepspeed_multinode_launcher",
default=None,
type=str,
help="DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.",
)
DeepSpeedArguments().add_to_parser(deepspeed_args)
# fsdp arguments
fsdp_args = parser.add_argument_group("FSDP Arguments", "Arguments related to Fully Shared Data Parallelism.")
fsdp_args.add_argument(
"--fsdp_offload_params",
default="false",
type=str,
help="Decides Whether (true|false) to offload parameters and gradients to CPU. (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_min_num_params",
type=int,
default=1e8,
help="FSDP's minimum number of parameters for Default Auto Wrapping. (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_sharding_strategy",
type=str,
default="FULL_SHARD",
help="FSDP's Sharding Strategy. (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_auto_wrap_policy",
type=str,
default=None,
help="FSDP's auto wrap policy. (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_transformer_layer_cls_to_wrap",
default=None,
type=str,
help="Transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block` .... "
"(useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_backward_prefetch_policy",
default=None,
type=str,
help="This argument is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use `fsdp_backward_prefetch` instead.",
)
fsdp_args.add_argument(
"--fsdp_backward_prefetch",
default=None,
type=str,
help="FSDP's backward prefetch policy. (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_state_dict_type",
default=None,
type=str,
help="FSDP's state dict type. (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_forward_prefetch",
default="false",
type=str,
help="If True, then FSDP explicitly prefetches the next upcoming "
"all-gather while executing in the forward pass (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_use_orig_params",
default="true",
type=str,
help="If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres."
" (useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_cpu_ram_efficient_loading",
default="true",
type=str,
help="If True, only the first process loads the pretrained model checkoint while all other processes have empty weights. "
"Only applicable for 🤗 Transformers. When using this, `--fsdp_sync_module_states` needs to True. "
"(useful only when `use_fsdp` flag is passed).",
)
fsdp_args.add_argument(
"--fsdp_sync_module_states",
default="true",
type=str,
help="If True, each individually wrapped FSDP unit will broadcast module parameters from rank 0."
" (useful only when `use_fsdp` flag is passed).",
)
FSDPArguments().add_to_parser(fsdp_args)
# megatron_lm args
megatron_lm_args = parser.add_argument_group("Megatron-LM Arguments", "Arguments related to Megatron-LM.")
megatron_lm_args.add_argument(
"--megatron_lm_tp_degree",
type=int,
default=1,
help="Megatron-LM's Tensor Parallelism (TP) degree. (useful only when `use_megatron_lm` flag is passed).",
)
megatron_lm_args.add_argument(
"--megatron_lm_pp_degree",
type=int,
default=1,
help="Megatron-LM's Pipeline Parallelism (PP) degree. (useful only when `use_megatron_lm` flag is passed).",
)
megatron_lm_args.add_argument(
"--megatron_lm_num_micro_batches",
type=int,
default=None,
help="Megatron-LM's number of micro batches when PP degree > 1. (useful only when `use_megatron_lm` flag is passed).",
)
megatron_lm_args.add_argument(
"--megatron_lm_sequence_parallelism",
default=None,
type=str,
help="Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1. "
"(useful only when `use_megatron_lm` flag is passed).",
)
megatron_lm_args.add_argument(
"--megatron_lm_recompute_activations",
default=None,
type=str,
help="Decides Whether (true|false) to enable Selective Activation Recomputation. "
"(useful only when `use_megatron_lm` flag is passed).",
)
megatron_lm_args.add_argument(
"--megatron_lm_use_distributed_optimizer",
default=None,
type=str,
help="Decides Whether (true|false) to use distributed optimizer "
"which shards optimizer state and gradients across Data Pralellel (DP) ranks. "
"(useful only when `use_megatron_lm` flag is passed).",
)
megatron_lm_args.add_argument(
"--megatron_lm_gradient_clipping",
default=1.0,
type=float,
help="Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable). "
"(useful only when `use_megatron_lm` flag is passed).",
)
MegatronLMArguments().add_to_parser(megatron_lm_args)
# AWS arguments
aws_args = parser.add_argument_group("AWS Arguments", "Arguments related to AWS.")
aws_args.add_argument(
"--aws_access_key_id",
type=str,
default=None,
help="The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job",
)
aws_args.add_argument(
"--aws_secret_access_key",
type=str,
default=None,
help="The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job.",
)
AWSArguments().add_to_parser(aws_args)
parser.add_argument(
"--debug",
action="store_true",
@ -649,17 +534,6 @@ def multi_gpu_launcher(args):
import torch.distributed.run as distrib_run
current_env = prepare_multi_gpu_env(args)
if not check_cuda_p2p_ib_support():
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
warn = False
if "NCCL_P2P_DISABLE" not in current_env:
current_env["NCCL_P2P_DISABLE"] = "1"
warn = True
if "NCCL_IB_DISABLE" not in current_env:
current_env["NCCL_IB_DISABLE"] = "1"
warn = True
if warn:
logger.warning(message)
debug = getattr(args, "debug", False)
args = _filter_args(
@ -686,17 +560,6 @@ def deepspeed_launcher(args):
raise ImportError("DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source.")
cmd, current_env = prepare_deepspeed_cmd_env(args)
if not check_cuda_p2p_ib_support():
message = "Using RTX 4000 series which doesn't support faster communication speedups. Ensuring P2P and IB communications are disabled."
warn = False
if "NCCL_P2P_DISABLE" not in current_env:
current_env["NCCL_P2P_DISABLE"] = "1"
warn = True
if "NCCL_IB_DISABLE" not in current_env:
current_env["NCCL_IB_DISABLE"] = "1"
warn = True
if warn:
logger.warning(message)
if args.num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
with open(".deepspeed_env", "a") as f:
@ -785,7 +648,7 @@ def tpu_pod_launcher(args):
"--tpu",
"--no_tpu_cluster",
"--num_machines",
"1",
str(1),
"--mixed_precision",
"no",
"--dynamo_backend",

View File

@ -17,7 +17,7 @@ from contextlib import suppress
from typing import Callable, List, Optional, Union
import torch
from torch.utils.data import BatchSampler, DataLoader, IterableDataset, RandomSampler
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from .logging import get_logger
from .state import AcceleratorState, DistributedType, GradientState, is_tpu_available
@ -64,38 +64,6 @@ for v, additional_kwargs in _PYTORCH_DATALOADER_ADDITIONAL_KWARGS.items():
_PYTORCH_DATALOADER_KWARGS.update(additional_kwargs)
class SeedableRandomSampler(RandomSampler):
"""
Same as a random sampler, except that in `__iter__` a seed can be used.
Needed specifically in distributed cases, when the random generator for each GPU needs to start from the same seed
and be fully reproducable on multiple iterations.
If a custom `generator` is passed, it will rely on its initial seed as well as the current iteration it is on
(stored in `self.epoch`).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.epoch = 0
self.seed = torch.random.initial_seed()
def __iter__(self):
if self.generator is None:
self.generator = torch.Generator()
else:
self.seed = self.generator.initial_seed()
# Allow `self.epoch` to modify the seed of the generator
seed = self.epoch + self.seed
self.generator.manual_seed(seed)
yield from super().__iter__()
self.set_epoch(self.epoch + 1)
def set_epoch(self, epoch: int):
"Sets the current iteration of the sampler."
self.epoch = epoch
class BatchSamplerShard(BatchSampler):
"""
Wraps a PyTorch `BatchSampler` to generate batches for one of the processes only. Instances of this class will
@ -152,10 +120,7 @@ class BatchSamplerShard(BatchSampler):
self.batch_size = getattr(batch_sampler, "batch_size", None)
self.drop_last = getattr(batch_sampler, "drop_last", False)
if self.batch_size is None and self.even_batches:
raise ValueError(
"You need to use `even_batches=False` when the batch sampler has no batch size. If you "
"are not calling this method directly, set `accelerator.even_batches=False` instead."
)
raise ValueError("You need to use `even_batches=False` when the batch sampler has no batch size.")
@property
def total_length(self):
@ -306,25 +271,7 @@ class IterableDatasetShard(IterableDataset):
self.process_index = process_index
self.split_batches = split_batches
def set_epoch(self, epoch):
self.epoch = epoch
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(epoch)
def __len__(self):
# We will just raise the downstream error if the underlying dataset is not sized
if self.drop_last:
return (len(self.dataset) // (self.batch_size * self.num_processes)) * self.batch_size
else:
return math.ceil(len(self.dataset) / (self.batch_size * self.num_processes)) * self.batch_size
def __iter__(self):
if (
not hasattr(self.dataset, "set_epoch")
and hasattr(self.dataset, "generator")
and isinstance(self.dataset.generator, torch.Generator)
):
self.dataset.generator.manual_seed(self.epoch)
real_batch_size = self.batch_size if self.split_batches else (self.batch_size * self.num_processes)
process_batch_size = (self.batch_size // self.num_processes) if self.split_batches else self.batch_size
process_slice = range(self.process_index * process_batch_size, (self.process_index + 1) * process_batch_size)
@ -377,9 +324,8 @@ class DataLoaderStateMixin:
"Prepares the gradient state for the current dataloader"
self.reset()
with suppress(Exception):
if not self._drop_last:
length = getattr(self.dataset, "total_dataset_length", len(self.dataset))
self.remainder = length % self.total_batch_size
length = getattr(self.dataset, "total_dataset_length", len(self.dataset))
self.remainder = length % self.total_batch_size
self.gradient_state._add_dataloader(self)
def end(self):
@ -406,7 +352,7 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
- `"generator"`: an optional `torch.Generator`
synchronized_generator (`torch.Generator`, *optional*):
A random number generator to keep synchronized across processes.
skip_batches (`int`, *optional*, defaults to 0):
split_batches (`int`, *optional*, defaults to 0):
The number of batches to skip at the beginning.
kwargs:
All other keyword arguments to pass to the regular `DataLoader` initialization.
@ -420,31 +366,18 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
"""
def __init__(
self,
dataset,
device=None,
rng_types=None,
synchronized_generator=None,
skip_batches=0,
_drop_last: bool = False,
**kwargs,
):
def __init__(self, dataset, device=None, rng_types=None, synchronized_generator=None, skip_batches=0, **kwargs):
super().__init__(dataset, **kwargs)
self.device = device
self.rng_types = rng_types
self.synchronized_generator = synchronized_generator
self.skip_batches = skip_batches
self.gradient_state = GradientState()
self._drop_last = _drop_last
self.iteration = 0
def __iter__(self):
if self.rng_types is not None:
synchronize_rng_states(self.rng_types, self.synchronized_generator)
self.begin()
self.set_epoch(self.iteration)
dataloader_iter = super().__iter__()
# We iterate one batch ahead to check when we are at the end
try:
@ -468,21 +401,8 @@ class DataLoaderShard(DataLoader, DataLoaderStateMixin):
if batch_index >= self.skip_batches:
yield current_batch
break
self.iteration += 1
self.end()
def set_epoch(self, epoch: int):
# In case it is manually passed in, the user can set it to what they like
if self.iteration != epoch:
self.iteration = epoch
if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, "set_epoch"):
self.batch_sampler.sampler.set_epoch(epoch)
# We support if a custom `Dataset` implementation has `set_epoch`
# or in general HF datasets `Datasets`
elif hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(epoch)
@property
def total_batch_size(self):
batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler
@ -539,10 +459,6 @@ if is_tpu_available(check_device=False):
def total_dataset_length(self):
return self._loader.total_dataset_length
@property
def batch_sampler(self):
return self._loader.batch_sampler
class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
"""
@ -590,7 +506,6 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
self.skip_batches = skip_batches
self.slice_fn = slice_tensors if slice_fn is None else slice_fn
self.iteration = 0
def _fetch_batches(self, iterator):
batches, batch = None, None
@ -606,15 +521,7 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
batches = []
for _ in range(self.state.num_processes):
batches.append(next(iterator))
try:
batch = concatenate(batches, dim=0)
except RuntimeError as e:
raise RuntimeError(
"You can't use batches of different size with `dispatch_batches=True` or when using an `IterableDataset`."
"either pass `dispatch_batches=False` and have each process fetch its own batch "
" or pass `split_batches=True`. By doing so, the main process will fetch a full batch and "
"slice it into `num_processes` batches for each process."
) from e
batch = concatenate(batches, dim=0)
# In both cases, we need to get the structure of the batch that we will broadcast on other
# processes to initialize the tensors with the right shape.
# data_structure, stop_iteration
@ -639,7 +546,6 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
def __iter__(self):
self.begin()
self.set_epoch(self.iteration)
main_iterator = None
if is_torch_version(">=", "2.0.1"):
# NOTE PyTorch DataLoader adds forward compatibilities for DataPipes, which broadcasts
@ -709,18 +615,8 @@ class DataLoaderDispatcher(DataLoader, DataLoaderStateMixin):
if batch_index >= self.skip_batches:
yield batch
batch_index += 1
self.iteration += 1
self.end()
def set_epoch(self, epoch: int):
# In case it is manually passed in, the user can set it to what they like
if self.iteration != epoch:
self.iteration = epoch
if hasattr(self.batch_sampler.sampler, "set_epoch"):
self.batch_sampler.sampler.set_epoch(epoch)
elif hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(epoch)
def __len__(self):
whole_length = super().__len__()
if self.split_batches:
@ -752,7 +648,6 @@ def prepare_data_loader(
dispatch_batches: Optional[bool] = None,
even_batches: bool = True,
slice_fn_for_dispatch: Optional[Callable] = None,
use_seedable_sampler: bool = False,
) -> DataLoader:
"""
Wraps a PyTorch `DataLoader` to generate batches for one of the processes only.
@ -806,10 +701,6 @@ def prepare_data_loader(
If passed, this function will be used to slice tensors across `num_processes`. Will default to
[`~utils.slice_tensors`]. This argument is used only when `dispatch_batches` is set to `True` and will be
ignored otherwise.
use_seedable_sampler (`bool`, *optional*, defaults to `False`):
Whether to use the [`~data_loader.SeedableRandomSampler`] instead of a `RandomSampler` for better
reproducability. Comes at a cost of potentially different performances due to different shuffling
algorithms but ensures results will be the *exact* same.
Returns:
`torch.utils.data.dataloader.DataLoader`: A new data loader that will yield the portion of the batches
@ -837,8 +728,7 @@ def prepare_data_loader(
process_index = state.process_index
# Sanity check
batch_size = dataloader.batch_size if dataloader.batch_size is not None else dataloader.batch_sampler.batch_size
if split_batches and batch_size > 1 and batch_size % num_processes != 0:
if split_batches and dataloader.batch_size > 1 and dataloader.batch_size % num_processes != 0:
raise ValueError(
f"To use a `DataLoader` in `split_batches` mode, the batch size ({dataloader.batch_size}) "
f"needs to be a round multiple of the number of processes ({num_processes})."
@ -849,23 +739,6 @@ def prepare_data_loader(
new_batch_sampler = dataloader.batch_sampler if not isinstance(new_dataset, IterableDataset) else None
sampler_is_batch_sampler = False
synchronized_generator = None
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
if sampler_is_batch_sampler:
sampler = getattr(dataloader.sampler, "sampler", None)
else:
sampler = getattr(dataloader.batch_sampler, "sampler", None)
if isinstance(sampler, RandomSampler) and use_seedable_sampler:
# When iterating through the dataloader during distributed processes
# we want to ensure that on each process we are iterating through the same
# samples in the same order if a seed is set. This requires a tweak
# to the `torch.utils.data.RandomSampler` class (if used).
sampler = SeedableRandomSampler(
data_source=sampler.data_source,
replacement=sampler.replacement,
num_samples=sampler._num_samples,
generator=getattr(sampler, "generator", torch.Generator()),
)
# No change if no multiprocess
if (num_processes != 1 or state.distributed_type == DistributedType.MEGATRON_LM) and not dispatch_batches:
if isinstance(new_dataset, IterableDataset):
@ -880,6 +753,17 @@ def prepare_data_loader(
split_batches=split_batches,
)
else:
# New batch sampler for the current process.
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
if sampler_is_batch_sampler:
sampler = dataloader.sampler.sampler
else:
sampler = dataloader.batch_sampler.sampler
if hasattr(sampler, "generator"):
if sampler.generator is None:
sampler.generator = torch.Generator()
synchronized_generator = sampler.generator
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
new_batch_sampler = BatchSamplerShard(
batch_sampler,
@ -913,11 +797,7 @@ def prepare_data_loader(
kwargs["batch_size"] = (
dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size
)
if isinstance(sampler, SeedableRandomSampler) and use_seedable_sampler:
if sampler_is_batch_sampler:
dataloader.sampler.sampler = sampler
else:
dataloader.batch_sampler.sampler = sampler
if dispatch_batches:
kwargs.pop("generator")
dataloader = DataLoaderDispatcher(
@ -935,7 +815,6 @@ def prepare_data_loader(
sampler=new_batch_sampler,
batch_size=dataloader.batch_size,
rng_types=rng_types,
_drop_last=dataloader.drop_last,
synchronized_generator=synchronized_generator,
**kwargs,
)
@ -946,7 +825,6 @@ def prepare_data_loader(
batch_sampler=new_batch_sampler,
rng_types=rng_types,
synchronized_generator=synchronized_generator,
_drop_last=dataloader.drop_last,
**kwargs,
)

View File

@ -26,7 +26,6 @@ from .utils import (
send_to_device,
set_module_tensor_to_device,
)
from .utils.modeling import get_non_persistent_buffers
class ModelHook:
@ -263,17 +262,14 @@ class AlignDevicesHook(ModelHook):
module, include_buffers=self.offload_buffers, recurse=self.place_submodules
)
}
for name, _ in named_module_tensors(
module, include_buffers=self.offload_buffers, recurse=self.place_submodules, remove_non_persistent=True
module, include_buffers=self.offload_buffers, recurse=self.place_submodules
):
set_module_tensor_to_device(module, name, "meta")
if not self.offload_buffers and self.execution_device is not None:
for name, _ in module.named_buffers(recurse=self.place_submodules):
set_module_tensor_to_device(module, name, self.execution_device)
elif self.offload_buffers and self.execution_device is not None:
for name in get_non_persistent_buffers(module, recurse=self.place_submodules):
set_module_tensor_to_device(module, name, self.execution_device)
return module
def pre_forward(self, module, *args, **kwargs):
@ -281,10 +277,7 @@ class AlignDevicesHook(ModelHook):
self.input_device = find_device([args, kwargs])
if self.offload:
for name, _ in named_module_tensors(
module,
include_buffers=self.offload_buffers,
recurse=self.place_submodules,
remove_non_persistent=True,
module, include_buffers=self.offload_buffers, recurse=self.place_submodules
):
fp16_statistics = None
if "weight" in name and name.replace("weight", "SCB") in self.weights_map.keys():
@ -301,10 +294,7 @@ class AlignDevicesHook(ModelHook):
def post_forward(self, module, output):
if self.offload:
for name, _ in named_module_tensors(
module,
include_buffers=self.offload_buffers,
recurse=self.place_submodules,
remove_non_persistent=True,
module, include_buffers=self.offload_buffers, recurse=self.place_submodules
):
set_module_tensor_to_device(module, name, "meta")
if type(module).__name__ == "Linear8bitLt":

View File

@ -1,98 +0,0 @@
import math
from types import MethodType
from typing import Literal
from pippy.IR import Pipe, PipeSplitWrapper, annotate_split_points
from pippy.PipelineStage import PipelineStage
from .state import PartialState
from .utils import (
calculate_maximum_sizes,
convert_bytes,
infer_auto_device_map,
send_to_device,
)
ParallelMode = Literal["sequential", "pipeline_parallel"]
def generate_device_map(model, num_processes: int = 1, no_split_module_classes=None):
"""
Calculates the device map for `model` with an offset for PiPPy
"""
if num_processes == 1:
return infer_auto_device_map(model, no_split_module_classes=no_split_module_classes, clean_result=False)
model_size, shared = calculate_maximum_sizes(model)
# Split into `n` chunks for each GPU
memory = (model_size + shared[0]) / num_processes
memory = convert_bytes(memory)
value, ending = memory.split(" ")
# Add a chunk to deal with potential extra shared memory instances
memory = math.ceil(float(value)) * 1.1
memory = f"{memory} {ending}"
device_map = infer_auto_device_map(
model,
max_memory={i: memory for i in range(num_processes)},
no_split_module_classes=no_split_module_classes,
clean_result=False,
)
return device_map
def build_pipeline(model, split_points, args, kwargs) -> PipelineStage:
"""
Attaches the split points to the model based on `self.device_map` and generates a `PipelineStage`. Requires passing
in needed `args` and `kwargs` as the model needs on the CPU.
"""
# We need to annotate the split points in the model for PiPPy
state = PartialState()
annotate_split_points(model, {split_point: PipeSplitWrapper.SplitPoint.BEGINNING for split_point in split_points})
pipe = Pipe.from_tracing(model, num_chunks=state.num_processes, example_args=args, example_kwargs=kwargs)
stage = PipelineStage(pipe, state.local_process_index, device=state.device)
return stage
def pippy_forward(forward, *args, **kwargs):
state = PartialState()
output = None
if state.num_processes == 1:
output = forward(*args, **kwargs)
elif state.is_local_main_process:
forward(*args, **kwargs)
elif state.is_last_process:
output = forward()
else:
forward()
return output
def prepare_pippy(model, split_points="auto", no_split_module_classes=[], example_args=(), example_kwargs={}):
"""
Wraps `model` for PipelineParallelism
"""
state = PartialState()
example_args = send_to_device(example_args, "cpu")
example_kwargs = send_to_device(example_kwargs, "cpu")
if split_points == "auto":
device_map = generate_device_map(model, state.num_processes, no_split_module_classes=no_split_module_classes)
split_points = []
for i in range(1, state.num_processes):
split_points.append(next(k for k, v in device_map.items() if v == i))
stage = build_pipeline(model, split_points, example_args, example_kwargs)
model._original_forward = model.forward
model._original_call = model.__call__
model.pippy_stage = stage
model.hf_split_points = split_points
def forward(*args, **kwargs):
return pippy_forward(stage.forward, *args, **kwargs)
# To act like a decorator so that it can be popped when doing `extract_model_from_parallel`
# model_forward = MethodType(forward, model)
# forward.__wrapped__ = model_forward
model.forward = forward
return model

View File

@ -19,14 +19,7 @@ import tempfile
import torch
from .state import AcceleratorState, PartialState
from .utils import (
PrecisionType,
PrepareForLaunch,
are_libraries_initialized,
check_cuda_p2p_ib_support,
is_mps_available,
patch_environment,
)
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def test_launch():
@ -149,34 +142,16 @@ def notebook_launcher(
"inside your training function. Restart your notebook and make sure no cells initializes an "
"`Accelerator`."
)
# Check for specific libraries known to initialize CUDA that users constantly use
problematic_imports = are_libraries_initialized("bitsandbytes")
if len(problematic_imports) > 0:
err = (
"Could not start distributed process. Libraries known to initialize CUDA upon import have been "
"imported already. Please keep these imports inside your training function to try and help with this:"
)
for lib_name in problematic_imports:
err += f"\n\t* `{lib_name}`"
raise RuntimeError(err)
patched_env = dict(
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
nproc=num_processes,
node_rank=node_rank,
world_size=num_nodes * num_processes,
master_addr=master_addr,
master_port=use_port,
mixed_precision=mixed_precision,
)
# Check for CUDA P2P and IB issues
if not check_cuda_p2p_ib_support():
patched_env["nccl_p2p_disable"] = "1"
patched_env["nccl_ib_disable"] = "1"
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(**patched_env):
):
# First dummy launch
if os.environ.get("ACCELERATE_DEBUG_MODE", "false").lower() == "true":
launcher = PrepareForLaunch(test_launch, distributed_type="MULTI_GPU")
@ -247,7 +222,7 @@ def debug_launcher(function, args=(), num_processes=2):
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=num_processes,
master_addr="127.0.0.1",
master_addr="127.0.01",
master_port="29500",
accelerate_mixed_precision="no",
accelerate_debug_rdv_file=tmp_file.name,

View File

@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import logging
import os
@ -68,17 +67,6 @@ class MultiProcessAdapter(logging.LoggerAdapter):
self.logger.log(level, msg, *args, **kwargs)
state.wait_for_everyone()
@functools.lru_cache(None)
def warning_once(self, *args, **kwargs):
"""
This method is identical to `logger.warning()`, but will emit the warning with the same message only once
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the
cache. The assumption here is that all warning messages are unique across the code. If they aren't then need to
switch to another type of cache that includes the caller frame information in the hashing function.
"""
self.warning(*args, **kwargs)
def get_logger(name: str, log_level: str = None):
"""
@ -97,11 +85,9 @@ def get_logger(name: str, log_level: str = None):
```python
>>> from accelerate.logging import get_logger
>>> from accelerate import Accelerator
>>> logger = get_logger(__name__)
>>> accelerator = Accelerator()
>>> logger.info("My log", main_process_only=False)
>>> logger.debug("My log", main_process_only=True)
@ -109,6 +95,9 @@ def get_logger(name: str, log_level: str = None):
>>> logger.info("My log")
>>> logger.debug("My second log")
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
>>> array = ["a", "b", "c", "d"]
>>> letter_at_rank = array[accelerator.process_index]
>>> logger.info(letter_at_rank, in_order=True)

View File

@ -14,7 +14,6 @@
from __future__ import annotations
import logging
import math
import os
import threading
@ -29,8 +28,6 @@ from .utils import (
DistributedType,
DynamoBackend,
GradientAccumulationPlugin,
check_cuda_p2p_ib_support,
check_fp8_capability,
get_ccl_version,
get_int_from_env,
is_ccl_available,
@ -54,8 +51,6 @@ if is_tpu_available(check_device=False):
if is_npu_available(check_device=False):
import torch_npu # noqa: F401
logger = logging.getLogger(__name__)
def is_initialized() -> bool:
"""
@ -180,8 +175,6 @@ class PartialState:
if is_xpu_available and is_ccl_available():
# Set DeepSpeed backend to ccl for xpu
self.backend = "ccl"
elif is_npu_available():
self.backend = "hccl"
else:
self.backend = "nccl"
dist.init_distributed(dist_backend=self.backend, auto_mpi_discovery=False, **kwargs)
@ -194,21 +187,10 @@ class PartialState:
self.device = torch.device("xpu", self.local_process_index)
if self.device is not None:
torch.xpu.set_device(self.device)
elif is_npu_available():
self.device = torch.device("npu", self.local_process_index)
if self.device is not None:
torch.npu.set_device(self.device)
else:
self.device = torch.device("cuda", self.local_process_index)
if self.device is not None:
torch.cuda.set_device(self.device)
if self.device.type == "cuda" and not check_cuda_p2p_ib_support():
if "NCCL_P2P_DISABLE" not in os.environ or "NCCL_IB_DISABLE" not in os.environ:
raise NotImplementedError(
"Using RTX 4000 series doesn't support faster communication broadband via P2P or IB. "
'Please set `NCCL_P2P_DISABLE="1"` and `NCCL_IB_DISABLE="1" or use `accelerate launch` which '
"will do this automatically."
)
self._mixed_precision = "no" # deepspeed handles mixed_precision using deepspeed_config
elif int(os.environ.get("LOCAL_RANK", -1)) != -1 and not cpu and torch.cuda.is_available():
self.distributed_type = DistributedType.MULTI_GPU
@ -218,13 +200,6 @@ class PartialState:
if self.backend is None:
self.backend = "nccl"
torch.distributed.init_process_group(backend=self.backend, **kwargs)
if not check_cuda_p2p_ib_support():
if "NCCL_P2P_DISABLE" not in os.environ or "NCCL_IB_DISABLE" not in os.environ:
raise NotImplementedError(
"Using RTX 4000 series doesn't support faster communication broadband via P2P or IB. "
'Please set `NCCL_P2P_DISABLE="1"` and `NCCL_IB_DISABLE="1" or use `accelerate launch` which '
"will do this automatically."
)
self.num_processes = torch.distributed.get_world_size()
self.process_index = torch.distributed.get_rank()
self.local_process_index = int(os.environ.get("LOCAL_RANK", -1))
@ -312,11 +287,7 @@ class PartialState:
else:
self.device = self.default_device
else:
self.distributed_type = (
DistributedType.NO
if os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "false"
else DistributedType.DEEPSPEED
)
self.distributed_type = DistributedType.NO
self.num_processes = 1
self.process_index = self.local_process_index = 0
@ -769,19 +740,8 @@ class AcceleratorState:
if mixed_precision is None
else mixed_precision.lower()
)
if mixed_precision == "fp8":
if not is_fp8_available():
raise ValueError(
"Using `fp8` precision requires `transformer_engine` or `MS-AMP` to be installed."
)
elif not check_fp8_capability():
logger.warning(
f"The current device has compute capability of {torch.cuda.get_device_capability()} which is "
"insufficient for FP8 mixed precision training (requires a GPU Hopper/Ada Lovelace "
"or higher, compute capability of 8.9 or higher). Will use FP16 instead."
)
mixed_precision = "fp16"
if mixed_precision == "fp8" and not is_fp8_available():
raise ValueError("Using `fp8` precision requires `transformer_engine` to be installed.")
self.dynamo_plugin = dynamo_plugin
if not _from_accelerator:
raise ValueError(

View File

@ -1,18 +1,15 @@
from .testing import (
are_the_same_tensors,
assert_exception,
device_count,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_device,
require_multi_gpu,
require_multi_xpu,
require_non_cpu,
require_single_device,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
@ -20,7 +17,6 @@ from .testing import (
require_xpu,
skip,
slow,
torch_device,
)
from .training import RegressionDataset, RegressionModel, RegressionModel4XPU

View File

@ -27,8 +27,8 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.data_loader import DataLoaderDispatcher
from accelerate.test_utils import RegressionDataset, RegressionModel, torch_device
from accelerate.utils import set_seed
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
@ -87,10 +87,7 @@ def get_mrpc_setup(dispatch_batches, split_batches):
"hf-internal-testing/mrpc-bert-base-cased", return_dict=True
)
ddp_model, ddp_dataloader = accelerator.prepare(model, dataloader)
return {
"ddp": [ddp_model, ddp_dataloader, torch_device],
"no": [model, dataloader, accelerator.device],
}, accelerator
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def generate_predictions(model, dataloader, accelerator):
@ -222,25 +219,6 @@ def test_gather_for_metrics_with_iterable_dataset():
logger.removeHandler(list_handler)
def test_gather_for_metrics_drop_last():
accelerator = Accelerator()
per_device_batch_size = 5
num_items = (10 * accelerator.num_processes) + 1
dataloader = DataLoader(range(num_items), batch_size=per_device_batch_size, drop_last=True)
dataloader = accelerator.prepare(dataloader)
iterator = iter(dataloader)
next(iterator) # Skip first batch tensor([0, 1, 2, 3, 4], device='cuda:0')
batch = next(iterator)
gathered_items = accelerator.gather_for_metrics(batch)
# Should return a full set of complete batches from each GPU
num_expected_items = per_device_batch_size * accelerator.num_processes
assert gathered_items.size(0) == (
num_expected_items
), f"Expected number of items: {num_expected_items}, Actual: {gathered_items.size(0)}"
def main():
accelerator = Accelerator(split_batches=False, dispatch_batches=False)
if accelerator.is_local_main_process:
@ -250,7 +228,7 @@ def main():
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if accelerator.device.type != "cpu":
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("**Testing gather_for_metrics**")
for split_batches in [True, False]:
@ -277,10 +255,6 @@ def main():
accelerator = Accelerator()
test_torch_metrics(accelerator, 512)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test that `drop_last` is taken into account**")
test_gather_for_metrics_drop_last()
accelerator.state._reset_state()
def _mp_fn(index):

View File

@ -102,10 +102,15 @@ def training_function(config, args):
)
optimizer = optimizer_cls(params=model.parameters(), lr=lr)
max_training_steps = len(train_dataloader) * num_epochs
if accelerator.state.deepspeed_plugin is not None:
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
else:
gradient_accumulation_steps = 1
max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
linear_decay_scheduler = False
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
@ -115,7 +120,6 @@ def training_function(config, args):
num_warmup_steps=0,
num_training_steps=max_training_steps,
)
linear_decay_scheduler = True
else:
lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0)
@ -126,6 +130,8 @@ def training_function(config, args):
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# We need to keep track of how many total steps we have iterated over
overall_step = 0
# We also need to keep track of the stating epoch so files are named properly
starting_epoch = 0
@ -133,32 +139,19 @@ def training_function(config, args):
metric = evaluate.load("glue", "mrpc")
best_performance = 0
performance_metric = {}
expected_lr_after_first_optim_step = lr * (
1 - 1 / (max_training_steps / accelerator.num_processes / accelerator.gradient_accumulation_steps)
)
lr_scheduler_check_completed = False
for epoch in range(starting_epoch, num_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
outputs = model(**batch)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# assert the learning rate after first optimizer step
if (
accelerator.sync_gradients
and not lr_scheduler_check_completed
and linear_decay_scheduler
and accelerator.state.mixed_precision == "no"
):
assert (
lr_scheduler.get_last_lr()[0] == expected_lr_after_first_optim_step
), f"Wrong lr found at second step, expected {expected_lr_after_first_optim_step}, got {lr_scheduler.get_last_lr()[0]}"
lr_scheduler_check_completed = True
overall_step += 1
model.eval()
samples_seen = 0
@ -191,12 +184,6 @@ def training_function(config, args):
if best_performance < eval_metric["accuracy"]:
best_performance = eval_metric["accuracy"]
# check that the LR is 0
if linear_decay_scheduler and accelerator.state.mixed_precision == "no":
assert (
lr_scheduler.get_last_lr()[0] == 0
), f"Wrong lr found at last step, expected 0, got {lr_scheduler.get_last_lr()[0]}"
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance

View File

@ -1,97 +0,0 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from transformers import (
BertConfig,
BertForMaskedLM,
GPT2Config,
GPT2ForSequenceClassification,
T5Config,
T5ForConditionalGeneration,
)
from accelerate import PartialState
from accelerate.inference import prepare_pippy
from accelerate.utils import DistributedType, send_to_device, set_seed
model_to_config = {
"t5": (T5ForConditionalGeneration, T5Config, 1024),
"bert": (BertForMaskedLM, BertConfig, 512),
"gpt2": (GPT2ForSequenceClassification, GPT2Config, 1024),
}
def get_model_and_data(model_name, device, num_processes: int = 2):
initializer, config, seq_len = model_to_config[model_name]
config = config()
model = initializer(config)
return model, torch.randint(
low=0,
high=config.vocab_size,
size=(num_processes, seq_len),
device=device,
dtype=torch.int64,
requires_grad=False,
)
def test_gpt2():
set_seed(42)
state = PartialState()
model, inputs = get_model_and_data("gpt2", "cpu", state.num_processes)
model = prepare_pippy(model, example_args=(inputs,), no_split_module_classes=model._no_split_modules)
# For inference args need to be a tuple
inputs = inputs.to("cuda")
with torch.no_grad():
output = model(inputs)
# Zach: Check that we just grab the real outputs we need at the end
if not state.is_last_process:
assert output is None, "Output was not generated on just the last process!"
else:
assert output is not None, "Output was not generated in the last process!"
def test_t5():
set_seed(42)
state = PartialState()
model, inputs = get_model_and_data("t5", "cpu", state.num_processes)
example_inputs = {"input_ids": inputs, "decoder_input_ids": inputs}
model = prepare_pippy(
model,
no_split_module_classes=model._no_split_modules,
example_kwargs=example_inputs,
)
# For inference args need to be a tuple
inputs = send_to_device(example_inputs, "cuda:0")
with torch.no_grad():
output = model(*inputs.values())
# Zach: Check that we just grab the real outputs we need at the end
if not state.is_last_process:
assert output is None, "Output was not generated on just the last process!"
else:
assert output is not None, "Output was not generated in the last process!"
if __name__ == "__main__":
state = PartialState()
state.print("Testing pippy integration...")
if state.distributed_type == DistributedType.MULTI_GPU:
state.print("Testing GPT2...")
test_gpt2()
state.print("Testing T5...")
test_t5()
else:
print("Less than two GPUs found, not running tests!")

View File

@ -1,40 +1,17 @@
# Test file to ensure that in general certain situational setups for notebooks work.
import os
from pytest import raises
import argparse
from accelerate import PartialState, notebook_launcher
from accelerate.test_utils import require_bnb
from accelerate.utils import is_bnb_available
def basic_function():
# Just prints the PartialState
parser = argparse.ArgumentParser()
parser.add_argument("--num_processes", type=int, default=1)
args = parser.parse_args()
def function():
print(f"PartialState:\n{PartialState()}")
NUM_PROCESSES = int(os.environ.get("ACCELERATE_NUM_PROCESSES", 1))
def test_can_initialize():
notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES)
@require_bnb
def test_problematic_imports():
with raises(RuntimeError, match="Please keep these imports"):
import bitsandbytes as bnb # noqa: F401
notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES)
def main():
print("Test basic notebook can be ran")
test_can_initialize()
if is_bnb_available():
print("Test problematic imports (bnb)")
test_problematic_imports()
if __name__ == "__main__":
main()
notebook_launcher(function, num_processes=int(args.num_processes))

View File

@ -21,12 +21,11 @@ import time
from copy import deepcopy
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from torch.utils.data import DataLoader
from accelerate import Accelerator
from accelerate.data_loader import SeedableRandomSampler, prepare_data_loader
from accelerate.data_loader import prepare_data_loader
from accelerate.state import AcceleratorState
from accelerate.test_utils import RegressionDataset, are_the_same_tensors
from accelerate.utils import (
@ -289,68 +288,11 @@ def central_dl_preparation_check():
print("Shuffled central dataloader passing.")
def custom_sampler_check():
state = AcceleratorState()
class CustomDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
class CustomBatchSampler:
def __init__(self, dataset_length: int, batch_size: int, shuffle: bool = True):
self.batch_size = batch_size
self.data_index = np.arange(dataset_length)
self.shuffle = shuffle
def __iter__(self):
num_batches = len(self)
if self.shuffle:
index = np.random.permutation(self.data_index)
else:
index = self.data_index
output = np.array_split(index, num_batches)
yield from output
def __len__(self):
return math.ceil(len(self.data_index) / self.batch_size)
dataset = CustomDataset(range(32 * state.num_processes))
sampler = CustomBatchSampler(len(dataset), batch_size=8)
dl = DataLoader(dataset, batch_sampler=sampler)
dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index)
# We need just ensure that `dl.batch_sampler` (or `dl.batch_sampler.batch_sampler` is indeed the old batch sampler
if hasattr(dl.batch_sampler, "batch_sampler"):
assert isinstance(
dl.batch_sampler.batch_sampler, CustomBatchSampler
), "Custom sampler was changed after calling `prepare_data_loader`"
else:
assert isinstance(
dl.batch_sampler, CustomBatchSampler
), "Custom sampler was changed after calling `prepare_data_loader`"
def mock_training(length, batch_size, generator, use_seedable_sampler=False):
def mock_training(length, batch_size, generator):
set_seed(42)
generator.manual_seed(42)
train_set = RegressionDataset(length=length, seed=42)
if use_seedable_sampler:
# The SeedableRandomSampler is needed during distributed setups
# for full reproducability across processes with the `DataLoader`
sampler = SeedableRandomSampler(
generator=generator,
data_source=train_set,
num_samples=len(train_set),
)
train_dl = DataLoader(train_set, batch_size=batch_size, sampler=sampler)
else:
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
for epoch in range(3):
@ -363,28 +305,18 @@ def mock_training(length, batch_size, generator, use_seedable_sampler=False):
return train_set, model
def training_check(use_seedable_sampler=False):
def training_check():
state = AcceleratorState()
generator = torch.Generator()
batch_size = 8
length = batch_size * 4 * state.num_processes
train_set, old_model = mock_training(length, batch_size * state.num_processes, generator, use_seedable_sampler)
train_set, old_model = mock_training(length, batch_size * state.num_processes, generator)
assert are_the_same_tensors(old_model.a), "Did not obtain the same model on both processes."
assert are_the_same_tensors(old_model.b), "Did not obtain the same model on both processes."
accelerator = Accelerator()
if use_seedable_sampler:
# The SeedableRandomSampler is needed during distributed setups
# for full reproducability across processes with the `DataLoader`
sampler = SeedableRandomSampler(
generator=generator,
data_source=train_set,
num_samples=len(train_set),
)
train_dl = DataLoader(train_set, batch_size=batch_size, sampler=sampler)
else:
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -405,7 +337,7 @@ def training_check(use_seedable_sampler=False):
accelerator.print("Training yielded the same results on one CPU or distributed setup with no batch split.")
accelerator = Accelerator(split_batches=True, use_seedable_sampler=use_seedable_sampler)
accelerator = Accelerator(split_batches=True)
train_dl = DataLoader(train_set, batch_size=batch_size * state.num_processes, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -431,7 +363,7 @@ def training_check(use_seedable_sampler=False):
# Mostly a test that FP16 doesn't crash as the operation inside the model is not converted to FP16
print("FP16 training check.")
AcceleratorState._reset_state()
accelerator = Accelerator(mixed_precision="fp16", use_seedable_sampler=use_seedable_sampler)
accelerator = Accelerator(mixed_precision="fp16")
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -471,7 +403,7 @@ def training_check(use_seedable_sampler=False):
# Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16
print("BF16 training check.")
AcceleratorState._reset_state()
accelerator = Accelerator(mixed_precision="bf16", use_seedable_sampler=use_seedable_sampler)
accelerator = Accelerator(mixed_precision="bf16")
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -495,7 +427,7 @@ def training_check(use_seedable_sampler=False):
if is_ipex_available():
print("ipex BF16 training check.")
AcceleratorState._reset_state()
accelerator = Accelerator(mixed_precision="bf16", cpu=True, use_seedable_sampler=use_seedable_sampler)
accelerator = Accelerator(mixed_precision="bf16", cpu=True)
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -519,7 +451,7 @@ def training_check(use_seedable_sampler=False):
if is_xpu_available():
print("xpu BF16 training check.")
AcceleratorState._reset_state()
accelerator = Accelerator(mixed_precision="bf16", cpu=False, use_seedable_sampler=use_seedable_sampler)
accelerator = Accelerator(mixed_precision="bf16", cpu=False)
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -666,7 +598,6 @@ def main():
dl_preparation_check()
if state.distributed_type != DistributedType.TPU:
central_dl_preparation_check()
custom_sampler_check()
# Trainings are not exactly the same in DeepSpeed and CPU mode
if state.distributed_type == DistributedType.DEEPSPEED:
@ -674,8 +605,7 @@ def main():
if state.local_process_index == 0:
print("\n**Training integration test**")
training_check(use_seedable_sampler=False)
training_check(use_seedable_sampler=True)
training_check()
if state.local_process_index == 0:
print("\n**Breakpoint trigger test**")

View File

@ -31,15 +31,11 @@ from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_clearml_available,
is_comet_ml_available,
is_cuda_available,
is_datasets_available,
is_deepspeed_available,
is_dvclive_available,
is_mps_available,
is_npu_available,
is_pandas_available,
is_safetensors_available,
is_tensorboard_available,
is_timm_available,
is_torch_version,
@ -51,22 +47,6 @@ from ..utils import (
)
def get_backend():
if is_cuda_available():
return "cuda", torch.cuda.device_count()
elif is_mps_available():
return "mps", 1
elif is_npu_available():
return "npu", torch.npu.device_count()
elif is_xpu_available():
return "xpu", torch.xpu.device_count()
else:
return "cpu", 1
torch_device, device_count = get_backend()
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
@ -103,22 +83,14 @@ def require_cpu(test_case):
"""
Decorator marking a test that must be only ran on the CPU. These tests are skipped when a GPU is available.
"""
return unittest.skipUnless(torch_device == "cpu", "test requires only a CPU")(test_case)
def require_non_cpu(test_case):
"""
Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no
hardware accelerator available.
"""
return unittest.skipUnless(torch_device != "cpu", "test requires a GPU")(test_case)
return unittest.skipUnless(not torch.cuda.is_available(), "test requires only a CPU")(test_case)
def require_cuda(test_case):
"""
Decorator marking a test that requires CUDA. These tests are skipped when there are no GPU available.
"""
return unittest.skipUnless(is_cuda_available(), "test requires a GPU")(test_case)
return unittest.skipUnless(torch.cuda.is_available(), "test requires a GPU")(test_case)
def require_xpu(test_case):
@ -173,16 +145,6 @@ def require_tpu(test_case):
return unittest.skipUnless(is_tpu_available(), "test requires TPU")(test_case)
def require_single_device(test_case):
"""
Decorator marking a test that requires a single device. These tests are skipped when there is no hardware
accelerator available or number of devices is more than one.
"""
return unittest.skipUnless(torch_device != "cpu" and device_count == 1, "test requires a hardware accelerator")(
test_case
)
def require_single_gpu(test_case):
"""
Decorator marking a test that requires CUDA on a single GPU. These tests are skipped when there are no GPU
@ -199,14 +161,6 @@ def require_single_xpu(test_case):
return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU")(test_case)
def require_multi_device(test_case):
"""
Decorator marking a test that requires a multi-device setup. These tests are skipped on a machine without multiple
devices.
"""
return unittest.skipUnless(device_count > 1, "test requires multiple hardware accelerators")(test_case)
def require_multi_gpu(test_case):
"""
Decorator marking a test that requires a multi-GPU setup. These tests are skipped on a machine without multiple
@ -223,6 +177,14 @@ def require_multi_xpu(test_case):
return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs")(test_case)
def require_safetensors(test_case):
"""
Decorator marking a test that requires safetensors installed. These tests are skipped when safetensors isn't
installed
"""
return unittest.skipUnless(is_safetensors_available(), "test requires safetensors")(test_case)
def require_deepspeed(test_case):
"""
Decorator marking a test that requires DeepSpeed installed. These tests are skipped when DeepSpeed isn't installed
@ -269,27 +231,6 @@ def require_comet_ml(test_case):
return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(test_case)
def require_clearml(test_case):
"""
Decorator marking a test that requires clearml installed. These tests are skipped when clearml isn't installed
"""
return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case)
def require_dvclive(test_case):
"""
Decorator marking a test that requires dvclive installed. These tests are skipped when dvclive isn't installed
"""
return unittest.skipUnless(is_dvclive_available(), "test requires dvclive")(test_case)
def require_pandas(test_case):
"""
Decorator marking a test that requires pandas installed. These tests are skipped when pandas isn't installed
"""
return unittest.skipUnless(is_pandas_available(), "test requires pandas")(test_case)
_atleast_one_tracker_available = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
@ -475,15 +416,13 @@ class SubprocessCallException(Exception):
pass
def run_command(command: List[str], return_stdout=False, env=None):
def run_command(command: List[str], return_stdout=False):
"""
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
if an error occured while running `command`
"""
if env is None:
env = os.environ.copy()
try:
output = subprocess.check_output(command, stderr=subprocess.STDOUT, env=env)
output = subprocess.check_output(command, stderr=subprocess.STDOUT)
if return_stdout:
if hasattr(output, "decode"):
output = output.decode("utf-8")

View File

@ -28,9 +28,7 @@ from .state import PartialState
from .utils import (
LoggerType,
is_aim_available,
is_clearml_available,
is_comet_ml_available,
is_dvclive_available,
is_mlflow_available,
is_tensorboard_available,
is_wandb_available,
@ -55,12 +53,6 @@ if is_aim_available():
if is_mlflow_available():
_available_trackers.append(LoggerType.MLFLOW)
if is_clearml_available():
_available_trackers.append(LoggerType.CLEARML)
if is_dvclive_available():
_available_trackers.append(LoggerType.DVCLIVE)
logger = get_logger(__name__)
@ -373,11 +365,11 @@ class WandBTracker(GeneralTracker):
Args:
table_name (`str`):
The name to give to the logged table on the wandb workspace
columns (list of `str`, *optional*):
columns (List of `str`'s *optional*):
The name of the columns on the table
data (List of List of Any data type, *optional*):
data (List of List of Any data type *optional*):
The data to be logged in the table
dataframe (Any data type, *optional*):
dataframe (Any data type *optional*):
The data to be logged in the table
step (`int`, *optional*):
The run step. If included, the log will be affiliated with this step.
@ -536,38 +528,6 @@ class AimTracker(GeneralTracker):
for key, value in values.items():
self.writer.track(value, name=key, step=step, **kwargs)
@on_main_process
def log_images(self, values: dict, step: Optional[int] = None, kwargs: Optional[Dict[str, dict]] = None):
"""
Logs `images` to the current run.
Args:
values (`Dict[str, Union[np.ndarray, PIL.Image, Tuple[np.ndarray, str], Tuple[PIL.Image, str]]]`):
Values to be logged as key-value pairs. The values need to have type `np.ndarray` or PIL.Image. If a
tuple is provided, the first element should be the image and the second element should be the caption.
step (`int`, *optional*):
The run step. If included, the log will be affiliated with this step.
kwargs (`Dict[str, dict]`):
Additional key word arguments passed along to the `Run.Image` and `Run.track` method specified by the
keys `aim_image` and `track`, respectively.
"""
import aim
aim_image_kw = {}
track_kw = {}
if kwargs is not None:
aim_image_kw = kwargs.get("aim_image", {})
track_kw = kwargs.get("track", {})
for key, value in values.items():
if isinstance(value, tuple):
img, caption = value
else:
img, caption = value, ""
aim_image = aim.Image(img, caption=caption, **aim_image_kw)
self.writer.track(aim_image, name=key, step=step, **track_kw)
@on_main_process
def finish(self):
"""
@ -672,8 +632,8 @@ class MLflowTracker(GeneralTracker):
for name, value in list(values.items()):
# internally, all values are converted to str in MLflow
if len(str(value)) > mlflow.utils.validation.MAX_PARAM_VAL_LENGTH:
logger.warning_once(
f'Accelerate is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
logger.warning(
f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s'
f" log_param() only accepts values no longer than {mlflow.utils.validation.MAX_PARAM_VAL_LENGTH} characters so we dropped this attribute."
)
del values[name]
@ -702,7 +662,7 @@ class MLflowTracker(GeneralTracker):
if isinstance(v, (int, float)):
metrics[k] = v
else:
logger.warning_once(
logger.warning(
f'MLflowTracker is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. '
"MLflow's log_metric() only accepts float and int types so we dropped this attribute."
)
@ -721,256 +681,17 @@ class MLflowTracker(GeneralTracker):
mlflow.end_run()
class ClearMLTracker(GeneralTracker):
"""
A `Tracker` class that supports `clearml`. Should be initialized at the start of your script.
Args:
run_name (`str`, *optional*):
Name of the experiment. Environment variables `CLEARML_PROJECT` and `CLEARML_TASK` have priority over this
argument.
kwargs:
Kwargs passed along to the `Task.__init__` method.
"""
name = "clearml"
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: str = None, **kwargs):
from clearml import Task
current_task = Task.current_task()
self._initialized_externally = False
if current_task:
self._initialized_externally = True
self.task = current_task
return
kwargs.setdefault("project_name", os.environ.get("CLEARML_PROJECT", run_name))
kwargs.setdefault("task_name", os.environ.get("CLEARML_TASK", run_name))
self.task = Task.init(**kwargs)
@property
def tracker(self):
return self.task
@on_main_process
def store_init_configuration(self, values: dict):
"""
Connect configuration dictionary to the Task object. Should be run at the beginning of your experiment.
Args:
values (`dict`):
Values to be stored as initial hyperparameters as key-value pairs.
"""
return self.task.connect_configuration(values)
@on_main_process
def log(self, values: Dict[str, Union[int, float]], step: Optional[int] = None, **kwargs):
"""
Logs `values` dictionary to the current run. The dictionary keys must be strings. The dictionary values must be
ints or floats
Args:
values (`Dict[str, Union[int, float]]`):
Values to be logged as key-value pairs. If the key starts with 'eval_'/'test_'/'train_', the value will
be reported under the 'eval'/'test'/'train' series and the respective prefix will be removed.
Otherwise, the value will be reported under the 'train' series, and no prefix will be removed.
step (`int`, *optional*):
If specified, the values will be reported as scalars, with the iteration number equal to `step`.
Otherwise they will be reported as single values.
kwargs:
Additional key word arguments passed along to the `clearml.Logger.report_single_value` or
`clearml.Logger.report_scalar` methods.
"""
clearml_logger = self.task.get_logger()
for k, v in values.items():
if not isinstance(v, (int, float)):
logger.warning_once(
"Accelerator is attempting to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of ClearML logger's report_scalar() "
"is incorrect so we dropped this attribute."
)
continue
if step is None:
clearml_logger.report_single_value(name=k, value=v, **kwargs)
continue
title, series = ClearMLTracker._get_title_series(k)
clearml_logger.report_scalar(title=title, series=series, value=v, iteration=step, **kwargs)
@on_main_process
def log_images(self, values: dict, step: Optional[int] = None, **kwargs):
"""
Logs `images` to the current run.
Args:
values (`Dict[str, List[Union[np.ndarray, PIL.Image]]`):
Values to be logged as key-value pairs. The values need to have type `List` of `np.ndarray` or
step (`int`, *optional*):
The run step. If included, the log will be affiliated with this step.
kwargs:
Additional key word arguments passed along to the `clearml.Logger.report_image` method.
"""
clearml_logger = self.task.get_logger()
for k, v in values.items():
title, series = ClearMLTracker._get_title_series(k)
clearml_logger.report_image(title=title, series=series, iteration=step, image=v, **kwargs)
@on_main_process
def log_table(
self,
table_name: str,
columns: List[str] = None,
data: List[List[Any]] = None,
dataframe: Any = None,
step: Optional[int] = None,
**kwargs,
):
"""
Log a Table to the task. Can be defined eitherwith `columns` and `data` or with `dataframe`.
Args:
table_name (`str`):
The name of the table
columns (list of `str`, *optional*):
The name of the columns on the table
data (List of List of Any data type, *optional*):
The data to be logged in the table. If `columns` is not specified, then the first entry in data will be
the name of the columns of the table
dataframe (Any data type, *optional*):
The data to be logged in the table
step (`int`, *optional*):
The run step. If included, the log will be affiliated with this step.
kwargs:
Additional key word arguments passed along to the `clearml.Logger.report_table` method.
"""
to_report = dataframe
if dataframe is None:
if data is None:
raise ValueError(
"`ClearMLTracker.log_table` requires that `data` to be supplied if `dataframe` is `None`"
)
to_report = [columns] + data if columns else data
title, series = ClearMLTracker._get_title_series(table_name)
self.task.get_logger().report_table(title=title, series=series, table_plot=to_report, iteration=step, **kwargs)
@on_main_process
def finish(self):
"""
Close the ClearML task. If the task was initialized externally (e.g. by manually calling `Task.init`), this
function is a noop
"""
if self.task and not self._initialized_externally:
self.task.close()
@staticmethod
def _get_title_series(name):
for prefix in ["eval", "test", "train"]:
if name.startswith(prefix + "_"):
return name[len(prefix) + 1 :], prefix
return name, "train"
class DVCLiveTracker(GeneralTracker):
"""
A `Tracker` class that supports `dvclive`. Should be initialized at the start of your script.
Args:
run_name (`str`, *optional*):
Ignored for dvclive. See `kwargs` instead.
kwargs:
Additional key word arguments passed along to [`dvclive.Live()`](https://dvc.org/doc/dvclive/live).
Example:
```py
from accelerate import Accelerator
accelerator = Accelerator(log_with="dvclive")
accelerator.init_trackers(project_name="my_project", init_kwargs={"dvclive": {"dir": "my_directory"}})
```
"""
name = "dvclive"
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: Optional[str] = None, live: Optional[Any] = None, **kwargs):
from dvclive import Live
super().__init__()
self.live = live if live is not None else Live(**kwargs)
@property
def tracker(self):
return self.live
@on_main_process
def store_init_configuration(self, values: dict):
"""
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment. Stores the
hyperparameters in a yaml file for future use.
Args:
values (Dictionary `str` to `bool`, `str`, `float`, `int`, or a List or Dict of those types):
Values to be stored as initial hyperparameters as key-value pairs. The values need to have type `bool`,
`str`, `float`, or `int`.
"""
self.live.log_params(values)
@on_main_process
def log(self, values: dict, step: Optional[int] = None, **kwargs):
"""
Logs `values` to the current run.
Args:
values (Dictionary `str` to `str`, `float`, or `int`):
Values to be logged as key-value pairs. The values need to have type `str`, `float`, or `int`.
step (`int`, *optional*):
The run step. If included, the log will be affiliated with this step.
kwargs:
Additional key word arguments passed along to `dvclive.Live.log_metric()`.
"""
from dvclive.plots import Metric
if step is not None:
self.live.step = step
for k, v in values.items():
if Metric.could_log(v):
self.live.log_metric(k, v, **kwargs)
else:
logger.warning_once(
"Accelerator attempted to log a value of "
f'"{v}" of type {type(v)} for key "{k}" as a scalar. '
"This invocation of DVCLive's Live.log_metric() "
"is incorrect so we dropped this attribute."
)
self.live.next_step()
@on_main_process
def finish(self):
"""
Closes `dvclive.Live()`.
"""
self.live.end()
LOGGER_TYPE_TO_CLASS = {
"aim": AimTracker,
"comet_ml": CometMLTracker,
"mlflow": MLflowTracker,
"tensorboard": TensorBoardTracker,
"wandb": WandBTracker,
"clearml": ClearMLTracker,
"dvclive": DVCLiveTracker,
}
def filter_trackers(
log_with: List[Union[str, LoggerType, GeneralTracker]],
logging_dir: Union[str, os.PathLike] = None,
log_with: List[Union[str, LoggerType, GeneralTracker]], logging_dir: Union[str, os.PathLike] = None
):
"""
Takes in a list of potential tracker types and checks that:
@ -988,7 +709,6 @@ def filter_trackers(
- `"wandb"`
- `"comet_ml"`
- `"mlflow"`
- `"dvclive"`
If `"all"` is selected, will pick up all available trackers in the environment and initialize them. Can
also accept implementations of `GeneralTracker` for custom trackers, and can be combined with `"all"`.
logging_dir (`str`, `os.PathLike`, *optional*):

View File

@ -2,10 +2,8 @@ from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_MODEL_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAMPLER_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_DISTRIBUTED_OPERATION_TYPES,
@ -14,6 +12,7 @@ from .constants import (
WEIGHTS_NAME,
)
from .dataclasses import (
Arguments,
AutocastKwargs,
BnbQuantizationConfig,
ComputeEnvironment,
@ -37,15 +36,7 @@ from .dataclasses import (
TensorInformation,
TorchDynamoPlugin,
)
from .environment import (
are_libraries_initialized,
check_cuda_p2p_ib_support,
check_fp8_capability,
get_int_from_env,
parse_choice_from_env,
parse_flag_from_env,
str_to_bool,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env, str_to_bool
from .imports import (
get_ccl_version,
is_4bit_bnb_available,
@ -55,27 +46,22 @@ from .imports import (
is_bnb_available,
is_boto3_available,
is_ccl_available,
is_clearml_available,
is_comet_ml_available,
is_cuda_available,
is_datasets_available,
is_deepspeed_available,
is_dvclive_available,
is_fp8_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_msamp_available,
is_npu_available,
is_pandas_available,
is_pippy_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_timm_available,
is_tpu_available,
is_transformer_engine_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
@ -113,7 +99,6 @@ from .offload import (
save_offload_index,
)
from .operations import (
CannotPadNestedTensorWarning,
broadcast,
broadcast_object_list,
concatenate,
@ -180,8 +165,6 @@ from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
check_os_kernel,
clean_state_dict_for_safetensors,
clear_environment,
convert_bytes,
extract_model_from_parallel,

View File

@ -17,15 +17,13 @@ import operator as op
SCALER_NAME = "scaler.pt"
MODEL_NAME = "pytorch_model"
SAFE_MODEL_NAME = "model"
RNG_STATE_NAME = "random_states"
OPTIMIZER_NAME = "optimizer"
SCHEDULER_NAME = "scheduler"
SAMPLER_NAME = "sampler"
WEIGHTS_NAME = f"{MODEL_NAME}.bin"
WEIGHTS_INDEX_NAME = f"{WEIGHTS_NAME}.index.json"
SAFE_WEIGHTS_NAME = f"{SAFE_MODEL_NAME}.safetensors"
SAFE_WEIGHTS_INDEX_NAME = f"{SAFE_WEIGHTS_NAME}.index.json"
WEIGHTS_NAME = "pytorch_model.bin"
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
SAFE_WEIGHTS_NAME = "model.safetensors"
SAFE_WEIGHTS_INDEX_NAME = "model.safetensors.index.json"
SAGEMAKER_PYTORCH_VERSION = "1.10.2"
SAGEMAKER_PYTHON_VERSION = "py38"
SAGEMAKER_TRANSFORMERS_VERSION = "4.17.0"
@ -34,8 +32,7 @@ FSDP_SHARDING_STRATEGY = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHA
FSDP_AUTO_WRAP_POLICY = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"]
FSDP_BACKWARD_PREFETCH = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"]
FSDP_STATE_DICT_TYPE = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"]
FSDP_PYTORCH_VERSION = "2.1.0"
FSDP_MODEL_NAME = "pytorch_model_fsdp"
FSDP_PYTORCH_VERSION = "2.0.1"
DEEPSPEED_MULTINODE_LAUNCHERS = ["pdsh", "standard", "openmpi", "mvapich", "mpich"]
TORCH_DYNAMO_MODES = ["default", "reduce-overhead", "max-autotune"]

View File

@ -20,19 +20,21 @@ import argparse
import copy
import enum
import functools
import inspect
import os
import re
import typing
import warnings
from contextlib import contextmanager
from dataclasses import dataclass, field
from dataclasses import dataclass, field, fields
from datetime import timedelta
from typing import Any, Callable, Dict, Iterable, List, Literal, Optional, Tuple, get_args
from typing import Any, Callable, ClassVar, Dict, Iterable, List, Optional, Tuple
import torch
from .constants import FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE
from .constants import FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_STATE_DICT_TYPE
from .environment import str_to_bool
from .imports import is_cuda_available, is_npu_available, is_xpu_available
from .imports import is_xpu_available
from .versions import compare_versions
@ -169,93 +171,36 @@ class InitProcessGroupKwargs(KwargsHandler):
timeout: timedelta = timedelta(seconds=1800)
# Literals
Backend = Literal["msamp", "te"]
OptLevel = Literal["O1", "O2"]
FP8Format = Literal["E4M3", "HYBRID"]
AmaxComputeAlgorithm = Literal["max", "most_recent"]
@dataclass
class FP8RecipeKwargs(KwargsHandler):
"""
Use this object in your [`Accelerator`] to customize the initialization of the recipe for FP8 mixed precision
training with `transformer-engine` or `ms-amp`.
<Tip>
For more information on `transformer-engine` args, please refer to the API
[documentation](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html).
For more information on the `ms-amp` args, please refer to the Optimization Level
[documentation](https://azure.github.io/MS-AMP/docs/user-tutorial/optimization-level).
</Tip>
training. Please refer to the documentation of this
[class](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html#transformer_engine.common.recipe.DelayedScaling)
for more information on each argument.
```python
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = FP8RecipeKwargs(backend="te", fp8_format="HYBRID")
kwargs = FP8RecipeKwargs(fp8_format="HYBRID")
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[kwargs])
```
To use MS-AMP as an engine, pass `backend="msamp"` and the `optimization_level`:
```python
kwargs = FP8RecipeKwargs(backend="msamp", optimization_level="02")
```
Args:
backend (`str`, *optional*, defaults to "msamp"):
Which FP8 engine to use. Must be one of `"msamp"` (MS-AMP) or `"te"` (TransformerEngine).
margin (`int`, *optional*, default to 0):
The margin to use for the gradient scaling.
interval (`int`, *optional*, default to 1):
The interval to use for how often the scaling factor is recomputed.
fp8_format (`str`, *optional*, default to "E4M3"):
The format to use for the FP8 recipe. Must be one of `E4M3` or `HYBRID`.
amax_history_len (`int`, *optional*, default to 1024):
The length of the history to use for the scaling factor computation
amax_compute_algo (`str`, *optional*, default to "most_recent"):
The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`.
override_linear_precision (`tuple` of three `bool`, *optional*, default to `(False, False, False)`):
Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
optimization_level (`str`), one of `O1`, `O2`. (default is `O2`):
What level of 8-bit collective communication should be used with MS-AMP. In general:
* O1: Weight gradients and `all_reduce` communications are done in fp8, reducing GPU
memory usage and communication bandwidth
* O2: First-order optimizer states are in 8-bit, and second order states are in FP16.
Only available when using Adam or AdamW. This maintains accuracy and can potentially save the
highest memory.
* 03: Specifically for DeepSpeed, implements capabilities so weights and master weights of models
are stored in FP8. If `fp8` is selected and deepspeed is enabled, will be used by default. (Not
available currently).
"""
backend: Backend = "msamp"
opt_level: OptLevel = "O2"
margin: int = 0
interval: int = 1
fp8_format: FP8Format = "E4M3"
fp8_format: str = "E4M3"
amax_history_len: int = 1
amax_compute_algo: AmaxComputeAlgorithm = "most_recent"
amax_compute_algo: str = "most_recent"
override_linear_precision: Tuple[bool, bool, bool] = (False, False, False)
def __post_init__(self):
self.backend = self.backend.upper()
if self.backend not in get_args(Backend):
raise ValueError("`backend` must be 'MSAMP' or 'TE' (TransformerEngine).")
# Check TE args
if self.backend == "TE":
self.fp8_format = self.fp8_format.upper()
if self.fp8_format not in get_args(FP8Format):
raise ValueError(f"`fp8_format` must be one of {' or '.join(get_args(FP8Format))}.")
if self.amax_compute_algo not in get_args(AmaxComputeAlgorithm):
raise ValueError(f"`amax_compute_algo` must be one of {' or '.join(get_args(AmaxComputeAlgorithm))}")
elif self.backend == "MSAMP":
if self.opt_level not in get_args(OptLevel):
raise ValueError(f"`optimization_level` must be one of {' or '.join(get_args(OptLevel))}")
self.fp8_format = self.fp8_format.upper()
if self.fp8_format not in ["E4M3", "HYBRID"]:
raise ValueError("`fp8_format` must be 'E4M3' or 'HYBRID'.")
if self.amax_compute_algo not in ["max", "most_recent"]:
raise ValueError("`amax_compute_algo` must be 'max' or 'most_recent'")
class EnumWithContains(enum.EnumMeta):
@ -397,7 +342,6 @@ class LoggerType(BaseEnum):
- **TENSORBOARD** -- TensorBoard as an experiment tracker
- **WANDB** -- wandb as an experiment tracker
- **COMETML** -- comet_ml as an experiment tracker
- **DVCLIVE** -- dvclive as an experiment tracker
"""
ALL = "all"
@ -406,8 +350,6 @@ class LoggerType(BaseEnum):
WANDB = "wandb"
COMETML = "comet_ml"
MLFLOW = "mlflow"
CLEARML = "clearml"
DVCLIVE = "dvclive"
class PrecisionType(BaseEnum):
@ -439,7 +381,6 @@ class CustomDtype(enum.Enum):
r"""
An enum that contains multiple custom dtypes that can be used for `infer_auto_device_map`.
"""
FP8 = "fp8"
INT4 = "int4"
@ -481,16 +422,6 @@ class ProjectConfiguration:
metadata={"help": "The current save iteration."},
)
save_on_each_node: bool = field(
default=False,
metadata={
"help": (
"When doing multi-node distributed training, whether to save models and checkpoints on each node, or"
" only on the main one"
)
},
)
def set_directories(self, project_dir: str = None):
"Sets `self.project_dir` and `self.logging_dir` to the appropriate values."
self.project_dir = project_dir
@ -730,7 +661,7 @@ class DeepSpeedPlugin:
else:
raise ValueError(
f"`{ds_key_long}` not found in kwargs. "
f"Please specify `{ds_key_long}` without `auto` (set to correct value) in the DeepSpeed config file or "
f"Please specify `{ds_key_long}` without `auto`(set to correct value) in the DeepSpeed config file or "
"pass it in kwargs."
)
@ -742,16 +673,6 @@ class DeepSpeedPlugin:
if ds_val != kwargs[ds_key_long]:
mismatches.append(f"- ds {ds_key_long}={ds_val} vs arg {ds_key_long}={kwargs[ds_key_long]}")
def is_auto(self, ds_key_long):
val = self.hf_ds_config.get_value(ds_key_long)
if val is None:
return False
else:
return val == "auto"
def get_value(self, ds_key_long, default=None):
return self.hf_ds_config.get_value(ds_key_long, default)
def deepspeed_config_process(self, prefix="", mismatches=None, config=None, must_match=True, **kwargs):
"""Process the DeepSpeed config with the values from the kwargs."""
mismatches = [] if mismatches is None else mismatches
@ -813,7 +734,7 @@ class DeepSpeedPlugin:
or ds_config["train_micro_batch_size_per_gpu"] == "auto"
):
ds_config["train_micro_batch_size_per_gpu"] = 1
if ds_config.get("train_batch_size", None) == "auto":
if ds_config["train_batch_size"] == "auto":
del ds_config["train_batch_size"]
if compare_versions("transformers", "<", "4.33"):
@ -929,7 +850,7 @@ class FullyShardedDataParallelPlugin:
},
)
limit_all_gathers: bool = field(
default=True,
default=False,
metadata={
"help": "If False, then FSDP allows the CPU thread to schedule all-gathers "
"without any extra synchronization. If True, then FSDP explicitly synchronizes the CPU thread to prevent "
@ -938,12 +859,11 @@ class FullyShardedDataParallelPlugin:
},
)
use_orig_params: bool = field(
default=True,
default=False,
metadata={
"help": "If `True`, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable parameters. "
"help": "If True, allows non-uniform `requires_grad` during init, which means support for interspersed frozen and trainable paramteres. "
"Useful in cases such as parameter-efficient fine-tuning. "
"Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019). "
"This also enables multiple optimizer param groups. This should be `True` when creating an optimizer object before preparing/wrapping the model with FSDP."
"Please refer this [blog](https://dev-discuss.pytorch.org/t/rethinking-pytorch-fully-sharded-data-parallel-fsdp-from-first-principles/1019)"
},
)
param_init_fn: Optional[Callable[[torch.nn.Module], None]] = field(
@ -981,13 +901,7 @@ class FullyShardedDataParallelPlugin:
prefix = "FSDP_"
if self.sharding_strategy is None:
sharding_strategy = os.environ.get(prefix + "SHARDING_STRATEGY", "FULL_SHARD")
sharding_strategy = (
FSDP_SHARDING_STRATEGY.index(sharding_strategy) + 1
if not sharding_strategy.isdigit()
else int(sharding_strategy)
)
self.sharding_strategy = ShardingStrategy(sharding_strategy)
self.sharding_strategy = ShardingStrategy(int(os.environ.get(prefix + "SHARDING_STRATEGY", 1)))
if self.cpu_offload is None:
if str_to_bool(os.environ.get(prefix + "OFFLOAD_PARAMS", "False")) == 1:
@ -1009,16 +923,7 @@ class FullyShardedDataParallelPlugin:
self.activation_checkpointing = str_to_bool(os.environ.get(prefix + "ACTIVATION_CHECKPOINTING", "False")) == 1
if self.sync_module_states:
if is_npu_available():
device = torch.npu.current_device()
elif is_cuda_available():
device = torch.cuda.current_device()
elif is_xpu_available():
device = torch.xpu.current_device()
else:
raise RuntimeError(
"There are currently no available devices found, must be one of 'XPU', 'CUDA', or 'NPU'."
)
device = torch.cuda.current_device() if not is_xpu_available() else torch.xpu.current_device()
self.param_init_fn = lambda x: x.to_empty(device=device, recurse=False)
@staticmethod
@ -1118,7 +1023,7 @@ class MegatronLMPlugin:
default=None,
metadata={"help": "enable sequence parallelism"},
)
recompute_activations: bool = field(
recompute_activation: bool = field(
default=None,
metadata={"help": "enable selective activation recomputation"},
)
@ -1271,8 +1176,8 @@ class MegatronLMPlugin:
self.num_micro_batches = int(os.environ.get(prefix + "NUM_MICRO_BATCHES", 1))
if self.gradient_clipping is None:
self.gradient_clipping = float(os.environ.get(prefix + "GRADIENT_CLIPPING", 1.0))
if self.recompute_activations is None:
self.recompute_activations = str_to_bool(os.environ.get(prefix + "RECOMPUTE_ACTIVATIONS", "False")) == 1
if self.recompute_activation is None:
self.recompute_activation = str_to_bool(os.environ.get(prefix + "RECOMPUTE_ACTIVATION", "False")) == 1
if self.use_distributed_optimizer is None:
self.use_distributed_optimizer = (
str_to_bool(os.environ.get(prefix + "USE_DISTRIBUTED_OPTIMIZER", "False")) == 1
@ -1309,7 +1214,7 @@ class MegatronLMPlugin:
"eval_iters": self.eval_iters,
"eval_interval": self.eval_interval,
}
if self.recompute_activations:
if self.recompute_activation:
self.megatron_lm_default_args["recompute_granularity"] = "selective"
if self.tensorboard_dir is not None:
self.megatron_lm_default_args["tensorboard_dir"] = self.tensorboard_dir
@ -1605,3 +1510,75 @@ class BnbQuantizationConfig:
if not isinstance(self.torch_dtype, torch.dtype):
raise ValueError("torch_dtype must be a torch.dtype")
class Arguments:
"""
Base dataclass for CLI arguments. Contains methods for type validation and conversion to argparse afterwards.
Allows for compatibility between raw python and using argparse.
A `prefix` can be set which will be prepended to each argument name when converting to argparse
"""
prefix: ClassVar[str] = ""
def __post_init__(self):
self.validate_types()
def validate_types(self):
for arg in fields(self):
parameter_type = typing.get_origin(arg.type)
if parameter_type == typing.Literal:
if self.__dict__[arg.name] not in arg.type.__args__:
raise ValueError(
f"Invalid value for `{arg.name}`. Must be one of {list(arg.type.__args__)} not {self.__dict__[arg.name]}"
)
def to_argparse(self):
command = []
for arg in fields(self):
parameter_type = typing.get_origin(arg.type)
if parameter_type != typing.Literal:
command.append(f"{self.__dict__[arg.name]}")
else:
command.append(f"--{self.prefix}{arg.name}={self.__dict__[arg.name]}")
return command
def add_to_parser(self, parser: argparse.ArgumentParser = None):
"""
Creates an argparse.ArgumentParser from the dataclass with `help` based on the docstring of the class.
"""
param_to_docstring = {}
docstring = inspect.getdoc(self)
args = docstring.split("Args:\n")[1]
args = inspect.cleandoc(args)
args = re.split(r"\n(?=[^\s])", args)
for arg in args:
arg = arg.replace("\n ", " ")
param = arg.split(" ")[0]
docstring = arg.split(": ")[1]
param_to_docstring[param] = docstring
for arg in fields(self):
name = arg.name
docstring = param_to_docstring[name]
if not isinstance(arg.type, type):
parameter_type = typing.get_origin(arg.type)
else:
parameter_type = arg.type
arg_dict = {}
if arg.default is not None:
arg_dict["default"] = arg.default
if arg.default is False:
arg_dict["action"] = "store_true"
arg_dict["help"] = docstring
if parameter_type == typing.Literal:
arg_dict["choices"] = arg.type.__args__
arg_dict["type"] = str
elif parameter_type == list:
arg_dict["action"] = "append"
arg_dict["type"] = str
elif arg_dict.get("action", "store_true") != "store_true":
arg_dict["type"] = parameter_type
parser.add_argument(f"--{self.prefix}{name}", **arg_dict)

View File

@ -13,13 +13,6 @@
# limitations under the License.
import os
import platform
import subprocess
import sys
from distutils import spawn
from typing import Dict
import torch
def str_to_bool(value) -> int:
@ -55,69 +48,3 @@ def parse_flag_from_env(key, default=False):
def parse_choice_from_env(key, default="no"):
value = os.environ.get(key, str(default))
return value
def are_libraries_initialized(*library_names: str) -> Dict[str, bool]:
"""
Checks if any of `library_names` are imported in the environment. Will return results as a `key:bool` pair.
"""
return [lib_name for lib_name in library_names if lib_name in sys.modules.keys()]
def get_gpu_info():
"""
Gets GPU count and names using `nvidia-smi` instead of torch to not initialize CUDA.
Largely based on the `gputil` library.
"""
if platform.system() == "Windows":
# If platform is Windows and nvidia-smi can't be found in path
# try from systemd rive with default installation path
command = spawn.find_executable("nvidia-smi")
if command is None:
command = "%s\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe" % os.environ["systemdrive"]
else:
command = "nvidia-smi"
# Returns as list of `n` GPUs and their names
output = subprocess.check_output(
[command, "--query-gpu=count,name", "--format=csv,noheader"], universal_newlines=True
)
output = output.strip()
gpus = output.split(os.linesep)
# Get names from output
gpu_count = len(gpus)
gpu_names = [gpu.split(",")[1].strip() for gpu in gpus]
return gpu_names, gpu_count
def check_cuda_p2p_ib_support():
"""
Checks if the devices being used have issues with P2P and IB communications, namely any consumer GPU hardware after
the 3090.
Noteably uses `nvidia-smi` instead of torch to not initialize CUDA.
"""
try:
device_names, device_count = get_gpu_info()
# As new consumer GPUs get released, add them to `unsupported_devices``
unsupported_devices = {"RTX 40"}
if device_count > 1:
if any(
unsupported_device in device_name
for device_name in device_names
for unsupported_device in unsupported_devices
):
return False
except Exception:
pass
return True
def check_fp8_capability():
"""
Checks if all the current GPUs available support FP8.
Notably must initialize `torch.cuda` to check.
"""
cuda_device_capacity = torch.cuda.get_device_capability()
return cuda_device_capacity >= (8, 9)

View File

@ -16,7 +16,7 @@ import os
import torch
from ..logging import get_logger
from .constants import FSDP_MODEL_NAME, FSDP_PYTORCH_VERSION, OPTIMIZER_NAME
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .imports import is_torch_distributed_available
from .versions import is_torch_version
@ -47,7 +47,7 @@ def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0):
):
state_dict = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin"
weights_name = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin"
output_model_file = os.path.join(output_dir, weights_name)
if accelerator.process_index == 0:
logger.info(f"Saving model to {output_model_file}")
@ -55,16 +55,16 @@ def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0):
logger.info(f"Model saved to {output_model_file}")
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
weights_name = (
f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin"
f"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
output_model_file = os.path.join(output_dir, weights_name)
logger.info(f"Saving model to {output_model_file}")
torch.save(state_dict, output_model_file)
logger.info(f"Model saved to {output_model_file}")
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
ckpt_dir = os.path.join(output_dir, f"{FSDP_MODEL_NAME}_{model_index}")
ckpt_dir = os.path.join(output_dir, f"{MODEL_NAME}_{model_index}")
os.makedirs(ckpt_dir, exist_ok=True)
logger.info(f"Saving model to {ckpt_dir}")
state_dict = {"model": state_dict}
@ -96,16 +96,16 @@ def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0):
"initializing FSDP object"
)
return
weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin"
weights_name = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin"
input_model_file = os.path.join(input_dir, weights_name)
logger.info(f"Loading model from {input_model_file}")
state_dict = torch.load(input_model_file)
logger.info(f"Model loaded from {input_model_file}")
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
weights_name = (
f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin"
f"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
else f"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
input_model_file = os.path.join(input_dir, weights_name)
logger.info(f"Loading model from {input_model_file}")
@ -113,8 +113,8 @@ def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0):
logger.info(f"Model loaded from {input_model_file}")
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
ckpt_dir = (
os.path.join(input_dir, f"{FSDP_MODEL_NAME}_{model_index}")
if f"{FSDP_MODEL_NAME}" not in input_dir
os.path.join(input_dir, f"{MODEL_NAME}_{model_index}")
if f"{MODEL_NAME}" not in input_dir
else input_dir
)
logger.info(f"Loading model from {ckpt_dir}")
@ -164,14 +164,16 @@ def load_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, input_dir, o
):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
optim_state = None
if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
optimizer_name = (
f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
input_optimizer_file = os.path.join(input_dir, optimizer_name)
logger.info(f"Loading Optimizer state from {input_optimizer_file}")
optim_state = torch.load(input_optimizer_file)
logger.info(f"Optimizer state loaded from {input_optimizer_file}")
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
optimizer_name = (
f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
input_optimizer_file = os.path.join(input_dir, optimizer_name)
logger.info(f"Loading Optimizer state from {input_optimizer_file}")
optim_state = torch.load(input_optimizer_file)
logger.info(f"Optimizer state loaded from {input_optimizer_file}")
else:
ckpt_dir = (
os.path.join(input_dir, f"{OPTIMIZER_NAME}_{optimizer_index}")

View File

@ -72,24 +72,8 @@ def get_ccl_version():
return importlib.metadata.version("oneccl_bind_pt")
def is_msamp_available():
package_exists = importlib.util.find_spec("msamp") is not None
if package_exists:
try:
# MS-AMP has a different metadata name
_ = importlib.metadata.metadata("ms-amp")
return True
except importlib.metadata.PackageNotFoundError:
return False
return False
def is_transformer_engine_available():
return _is_package_available("transformer_engine")
def is_fp8_available():
return is_msamp_available() or is_transformer_engine_available()
return _is_package_available("transformer_engine")
def is_cuda_available():
@ -126,15 +110,11 @@ def is_deepspeed_available():
return _is_package_available("deepspeed")
def is_pippy_available():
return _is_package_available("torchpippy")
def is_bf16_available(ignore_tpu=False):
"Checks if bf16 is supported, optionally ignoring the TPU"
if is_tpu_available():
return not ignore_tpu
if is_cuda_available():
if torch.cuda.is_available():
return torch.cuda.is_bf16_supported()
return True
@ -171,6 +151,10 @@ def is_megatron_lm_available():
return False
def is_safetensors_available():
return _is_package_available("safetensors")
def is_transformers_available():
return _is_package_available("transformers")
@ -226,14 +210,6 @@ def is_tqdm_available():
return _is_package_available("tqdm")
def is_clearml_available():
return _is_package_available("clearml")
def is_pandas_available():
return _is_package_available("pandas")
def is_mlflow_available():
if _is_package_available("mlflow"):
return True
@ -317,7 +293,3 @@ def is_xpu_available(check_device=False):
except RuntimeError:
return False
return hasattr(torch, "xpu") and torch.xpu.is_available()
def is_dvclive_available():
return _is_package_available("dvclive")

View File

@ -15,7 +15,6 @@
import argparse
import os
import sys
import warnings
from ast import literal_eval
from typing import Any, Dict, List, Tuple
@ -129,10 +128,7 @@ def prepare_multi_gpu_env(args: argparse.Namespace) -> Dict[str, str]:
if main_process_port is None:
main_process_port = 29500
# only need to check port availability in main process, in case we have to start multiple launchers on the same machine
# for some reasons like splitting log files.
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0
if need_port_check and is_port_in_use(main_process_port):
if is_port_in_use(main_process_port):
raise ConnectionError(
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. "
"Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)"
@ -178,9 +174,6 @@ def prepare_multi_gpu_env(args: argparse.Namespace) -> Dict[str, str]:
if args.use_fsdp:
current_env["ACCELERATE_USE_FSDP"] = "true"
if args.fsdp_cpu_ram_efficient_loading and not args.fsdp_sync_module_states:
raise ValueError("When using `--fsdp_cpu_ram_efficient_loading` set `--fsdp_sync_module_states` to `True`")
current_env["FSDP_SHARDING_STRATEGY"] = str(args.fsdp_sharding_strategy)
current_env["FSDP_OFFLOAD_PARAMS"] = str(args.fsdp_offload_params).lower()
current_env["FSDP_MIN_NUM_PARAMS"] = str(args.fsdp_min_num_params)
@ -189,19 +182,11 @@ def prepare_multi_gpu_env(args: argparse.Namespace) -> Dict[str, str]:
if args.fsdp_transformer_layer_cls_to_wrap is not None:
current_env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = str(args.fsdp_transformer_layer_cls_to_wrap)
if args.fsdp_backward_prefetch_policy is not None:
warnings.warn(
"`fsdp_backward_prefetch_policy` is deprecated and will be removed in version 0.27.0 of 🤗 Accelerate. Use"
" `fsdp_backward_prefetch` instead",
FutureWarning,
)
args.fsdp_backward_prefetch = args.fsdp_backward_prefetch_policy
if args.fsdp_backward_prefetch is not None:
current_env["FSDP_BACKWARD_PREFETCH"] = str(args.fsdp_backward_prefetch)
current_env["FSDP_BACKWARD_PREFETCH"] = str(args.fsdp_backward_prefetch_policy)
if args.fsdp_state_dict_type is not None:
current_env["FSDP_STATE_DICT_TYPE"] = str(args.fsdp_state_dict_type)
current_env["FSDP_FORWARD_PREFETCH"] = str(args.fsdp_forward_prefetch).lower()
current_env["FSDP_USE_ORIG_PARAMS"] = str(args.fsdp_use_orig_params).lower()
current_env["FSDP_CPU_RAM_EFFICIENT_LOADING"] = str(args.fsdp_cpu_ram_efficient_loading).lower()
current_env["FSDP_SYNC_MODULE_STATES"] = str(args.fsdp_sync_module_states).lower()
if args.use_megatron_lm:
@ -283,10 +268,7 @@ def prepare_deepspeed_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict
if main_process_port is None:
main_process_port = 29500
# only need to check port availability in main process, in case we have to start multiple launchers on the same machine
# for some reasons like splitting log files.
need_port_check = num_machines <= 1 or int(args.machine_rank) == 0
if need_port_check and is_port_in_use(main_process_port):
if is_port_in_use(main_process_port):
raise ConnectionError(
f"Tried to launch distributed communication on port `{main_process_port}`, but another process is utilizing it. "
"Please specify a different port (such as using the `----main_process_port` flag or specifying a different `main_process_port` in your config file)"
@ -305,12 +287,10 @@ def prepare_deepspeed_cmd_env(args: argparse.Namespace) -> Tuple[List[str], Dict
current_env["ACCELERATE_DEBUG_MODE"] = "true"
gpu_ids = getattr(args, "gpu_ids", "all")
if gpu_ids != "all" and args.gpu_ids is not None:
if is_xpu_available():
current_env["ZE_AFFINITY_MASK"] = gpu_ids
elif is_npu_available():
current_env["ASCEND_RT_VISIBLE_DEVICES"] = gpu_ids
else:
if not is_xpu_available():
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids
else:
current_env["ZE_AFFINITY_MASK"] = gpu_ids
try:
mixed_precision = PrecisionType(args.mixed_precision.lower())
except ValueError:

View File

@ -21,7 +21,7 @@ import os
import re
import shutil
import tempfile
from collections import OrderedDict, defaultdict
from collections import defaultdict
from typing import Dict, List, Optional, Tuple, Union
import torch
@ -30,7 +30,7 @@ import torch.nn as nn
from ..state import AcceleratorState
from .constants import SAFE_WEIGHTS_NAME, WEIGHTS_NAME
from .dataclasses import AutocastKwargs, CustomDtype, DistributedType
from .imports import is_mps_available, is_npu_available, is_xpu_available
from .imports import is_mps_available, is_npu_available, is_safetensors_available, is_xpu_available
from .offload import load_offloaded_weight, offload_weight, save_offload_index
from .tqdm import is_tqdm_available, tqdm
@ -38,42 +38,17 @@ from .tqdm import is_tqdm_available, tqdm
if is_npu_available(check_device=False):
import torch_npu # noqa: F401
from safetensors import safe_open
from safetensors.torch import load_file as safe_load_file
if is_safetensors_available():
from safetensors import safe_open
from safetensors.torch import load_file as safe_load_file
WEIGHTS_INDEX_NAME = "pytorch_model.bin.index.json"
logger = logging.getLogger(__name__)
def check_device_same(first_device, second_device):
"""
Utility method to check if two `torch` devices are similar. When dealing with CUDA devices, torch throws `False`
for `torch.device("cuda") == torch.device("cuda:0")` whereas they should be the same
Args:
first_device (`torch.device`):
First device to check
second_device (`torch.device`):
Second device to check
"""
if first_device.type != second_device.type:
return False
if first_device.type == "cuda" and first_device.index is None:
# In case the first_device is a cuda device and have
# the index attribute set to `None`, default it to `0`
first_device = torch.device("cuda", index=0)
if second_device.type == "cuda" and second_device.index is None:
# In case the second_device is a cuda device and have
# the index attribute set to `None`, default it to `0`
second_device = torch.device("cuda", index=0)
return first_device == second_device
def convert_file_size_to_int(size: Union[int, str]):
"""
Converts a size expressed as a string with digits an unit (like `"5MB"`) to an integer (in bytes).
@ -246,7 +221,7 @@ def shard_checkpoint(
weight_map = {}
shards = {}
for idx, shard in enumerate(sharded_state_dicts):
shard_file = weights_name.replace(".bin", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.bin")
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
shard_file = shard_file.replace(
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
)
@ -275,7 +250,7 @@ def set_module_tensor_to_device(
Args:
module (`torch.nn.Module`):
The module in which the tensor we want to move lives.
tensor_name (`str`):
param_name (`str`):
The full name of the parameter/buffer.
device (`int`, `str` or `torch.device`):
The device on which to set the tensor.
@ -328,19 +303,14 @@ def set_module_tensor_to_device(
param is not None
and param.device.type != "cuda"
and torch.device(device).type == "cuda"
and param_cls.__name__ in ["Int8Params", "FP4Params", "Params4bit"]
and param_cls.__name__ in ["Int8Params", "FP4Params"]
):
device_quantization = device
device = "cpu"
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
if value is None:
new_value = old_value.to(device)
if dtype is not None and device in ["meta", torch.device("meta")]:
if not str(old_value.dtype).startswith(("torch.uint", "torch.int", "torch.bool")):
new_value = new_value.to(dtype)
new_value = new_value.to(dtype)
if not is_buffer:
module._parameters[tensor_name] = param_cls(new_value, requires_grad=old_value.requires_grad)
elif isinstance(value, torch.Tensor):
@ -351,7 +321,7 @@ def set_module_tensor_to_device(
device = device_quantization
if is_buffer:
module._buffers[tensor_name] = new_value
elif value is not None or not check_device_same(torch.device(device), module._parameters[tensor_name].device):
elif value is not None or torch.device(device) != module._parameters[tensor_name].device:
param_cls = type(module._parameters[tensor_name])
kwargs = module._parameters[tensor_name].__dict__
if param_cls.__name__ in ["Int8Params", "FP4Params"]:
@ -392,15 +362,10 @@ def set_module_tensor_to_device(
if not getattr(module.weight, "quant_state", None) and device_index is not None:
module.weight = module.weight.cuda(device_index)
# clean pre and post foward hook
if is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
torch.cuda.empty_cache()
def named_module_tensors(
module: nn.Module, include_buffers: bool = True, recurse: bool = False, remove_non_persistent: bool = False
):
def named_module_tensors(module: nn.Module, include_buffers: bool = True, recurse: bool = False):
"""
A helper function that gathers all the tensors (parameters + buffers) of a given module. If `include_buffers=True`
it's the same as doing `module.named_parameters(recurse=recurse) + module.named_buffers(recurse=recurse)`.
@ -412,40 +377,13 @@ def named_module_tensors(
Whether or not to include the buffers in the result.
recurse (`bool`, *optional`, defaults to `False`):
Whether or not to go look in every submodule or just return the direct parameters and buffers.
remove_non_persistent (`bool`, *optional*, defaults to `False`):
Whether or not to remove the non persistent buffer from the buffers. Useful only when include_buffers =
True
"""
for named_parameter in module.named_parameters(recurse=recurse):
yield named_parameter
if include_buffers:
non_persistent_buffers = set()
if remove_non_persistent:
non_persistent_buffers = get_non_persistent_buffers(module, recurse=recurse)
for named_buffer in module.named_buffers(recurse=recurse):
name, _ = named_buffer
if name not in non_persistent_buffers:
yield named_buffer
def get_non_persistent_buffers(module: nn.Module, recurse: bool = False):
"""
Gather all non persistent buffers of a given modules into a set
Args:
module (`nn.Module`):
The module we want the non persistent buffers on.
recurse (`bool`, *optional*, defaults to `False`):
Whether or not to go look in every submodule or just return the direct non persistent buffers.
"""
non_persistent_buffers_set = module._non_persistent_buffers_set
if recurse:
for _, m in module.named_modules():
non_persistent_buffers_set |= m._non_persistent_buffers_set
return non_persistent_buffers_set
yield named_buffer
class FindTiedParametersResult(list):
@ -597,22 +535,15 @@ def retie_parameters(model, tied_params):
"""
for tied_group in tied_params:
param_to_tie = None
# two loops : the first one to set param_to_tie , the second one to change the values of tied_group
# First iteration of the loop will set param_to_tie, next ones will tie it to the others
for param_name in tied_group:
module = model
splits = param_name.split(".")
for split in splits[:-1]:
module = getattr(module, split)
param = getattr(module, splits[-1])
if param_to_tie is None and param.device != torch.device("meta"):
param_to_tie = param
break
if param_to_tie is not None:
for param_name in tied_group:
module = model
splits = param_name.split(".")
for split in splits[:-1]:
module = getattr(module, split)
if param_to_tie is None:
param_to_tie = getattr(module, splits[-1])
else:
setattr(module, splits[-1], param_to_tie)
@ -702,23 +633,19 @@ def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]]
import psutil
if max_memory is None:
if not (torch.cuda.is_available() or is_npu_available() or is_xpu_available()):
if not (torch.cuda.is_available() or is_xpu_available()):
max_memory = {}
else:
# Make sure CUDA is initialized on each GPU to have the right memory info.
if is_npu_available():
for i in range(torch.npu.device_count()):
_ = torch.tensor(0, device=torch.device("npu", i))
max_memory = {i: torch.npu.mem_get_info(i)[0] for i in range(torch.npu.device_count())}
elif is_xpu_available():
for i in range(torch.xpu.device_count()):
_ = torch.tensor(0, device=torch.device("xpu", i))
max_memory = {i: torch.xpu.max_memory_allocated(i) for i in range(torch.xpu.device_count())}
else:
if not is_xpu_available():
for i in range(torch.cuda.device_count()):
_ = torch.tensor([0], device=i)
max_memory = {i: torch.cuda.mem_get_info(i)[0] for i in range(torch.cuda.device_count())}
else:
for i in range(torch.xpu.device_count()):
_ = torch.tensor(0, device=torch.device("xpu", i))
max_memory = {i: torch.xpu.max_memory_allocated(i) for i in range(torch.xpu.device_count())}
# allocate everything in the mps device as the RAM is shared
if is_mps_available():
max_memory["mps"] = psutil.virtual_memory().available
@ -731,16 +658,11 @@ def get_max_memory(max_memory: Optional[Dict[Union[int, str], Union[int, str]]]
max_memory[key] = convert_file_size_to_int(max_memory[key])
# Need to sort the device by type to make sure that we allocate the gpu first.
# As gpu/npu/xpu are represented by int, we need to sort them first.
# As gpu/xpu are represented by int, we need to sort them first.
gpu_devices = [k for k in max_memory.keys() if isinstance(k, int)]
gpu_devices.sort()
# check if gpu/npu/xpu devices are available and if not, throw a warning
if is_npu_available():
num_devices = torch.npu.device_count()
elif is_xpu_available():
num_devices = torch.xpu.device_count()
else:
num_devices = torch.cuda.device_count()
# check if gpu/xgpu devices are available and if not, throw a warning
num_devices = torch.xpu.device_count() if is_xpu_available() else torch.cuda.device_count()
for device in gpu_devices:
if device >= num_devices or device < 0:
logger.warning(f"Device {device} is not available, available devices are {list(range(num_devices))}")
@ -848,9 +770,9 @@ def get_balanced_memory(
user_not_set_max_memory = max_memory is None
max_memory = get_max_memory(max_memory)
if is_npu_available():
num_devices = len([d for d in max_memory if torch.device(d).type == "npu" and max_memory[d] > 0])
elif is_xpu_available():
if not is_xpu_available():
num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0])
else:
num_devices = len(
[
d
@ -862,8 +784,6 @@ def get_balanced_memory(
and max_memory[d] > 0
]
)
else:
num_devices = len([d for d in max_memory if torch.device(d).type == "cuda" and max_memory[d] > 0])
if num_devices == 0:
return max_memory
@ -965,7 +885,6 @@ def infer_auto_device_map(
dtype: Optional[Union[str, torch.dtype]] = None,
special_dtypes: Optional[Dict[str, Union[str, torch.dtype]]] = None,
verbose: bool = False,
clean_result: bool = True,
):
"""
Compute a device map for a given model giving priority to GPUs, then offload on CPU and finally offload to disk,
@ -999,8 +918,6 @@ def infer_auto_device_map(
all weights).
verbose (`bool`, *optional*, defaults to `False`):
Whether or not to provide debugging statements as the function builds the device_map.
clean_result (`bool`, *optional*, defaults to `True`):
Clean the resulting device_map by grouping all submodules that go on the same device together.
"""
# Get default / clean up max_memory
max_memory = get_max_memory(max_memory)
@ -1030,7 +947,7 @@ def infer_auto_device_map(
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
)
device_map = OrderedDict()
device_map = {}
current_device = 0
current_memory_used = 0
@ -1061,22 +978,15 @@ def infer_auto_device_map(
# We keep relevant tied parameters only: one of the tied parameters in the group is inside the current module
# and the other is not.
# Note: If we are currently processing the name `compute.weight`, an other parameter named e.g. `compute.weight_submodule.parameter`
# needs to be considered outside the current module, hence the check with additional dots.
tied_param_goups = [
tied_group
for tied_group in tied_parameters
if any(name + "." in k + "." for k in tied_group) and not all(name + "." in k + "." for k in tied_group)
if any(name in k for k in tied_group) and not all(name in k for k in tied_group)
]
if verbose and len(tied_param_goups) > 0:
print(f" Found the relevant tied param groups {tied_param_goups}")
# Then we keep track of all the parameters that are tied to the current module, but not in the current module
tied_params = sum(
[[p for p in tied_group if name + "." not in p + "."] for tied_group in tied_param_goups], []
)
tied_params = sum([[p for p in tied_group if name not in p] for tied_group in tied_param_goups], [])
if verbose and len(tied_params) > 0:
print(f" So those parameters need to be taken into account {tied_params}")
@ -1092,7 +1002,7 @@ def infer_auto_device_map(
if verbose:
print(
f"Not enough space on {devices[current_device]} to put {name} (space available "
f"{current_max_size - current_memory_used}, module size {module_size})."
f"{current_max_size-current_memory_used}, module size {module_size})."
)
if len(modules_children) == 0 or module.__class__.__name__ in no_split_module_classes:
# -> no split, we go to the next device
@ -1155,7 +1065,7 @@ def infer_auto_device_map(
if verbose:
print(
f"Not enough space on {devices[current_device]} to put {name} and {tied_module_names} (space "
f"available {current_max_size - current_memory_used}, needed size {module_size_with_ties})."
f"available {current_max_size-current_memory_used}, needed size {module_size_with_ties})."
)
split_happened = False
for tied_module_name, tied_module in zip(tied_module_names, tied_modules):
@ -1200,14 +1110,12 @@ def infer_auto_device_map(
else:
print(
f"Putting {name} (size={module_size}) on {devices[current_device]} "
f"(available={current_max_size - current_memory_used})."
f"(available={current_max_size-current_memory_used})."
)
current_memory_used += module_size
device_map[name] = devices[current_device]
if clean_result:
device_map = clean_device_map(device_map)
return device_map
return clean_device_map(device_map)
def check_device_map(model: nn.Module, device_map: Dict[str, Union[int, str, torch.device]]):
@ -1248,6 +1156,10 @@ def load_state_dict(checkpoint_file, device_map=None):
name, once a given module name is inside, every submodule of it will be sent to the same device.
"""
if checkpoint_file.endswith(".safetensors"):
if not is_safetensors_available():
raise ImportError(
f"To load {checkpoint_file}, the `safetensors` library is necessary `pip install safetensors`."
)
with safe_open(checkpoint_file, framework="pt") as f:
metadata = f.metadata()
weight_names = f.keys()
@ -1316,54 +1228,6 @@ def load_state_dict(checkpoint_file, device_map=None):
return torch.load(checkpoint_file, map_location=torch.device("cpu"))
def get_state_dict_offloaded_model(model: nn.Module):
"""
Returns the state dictionary for an offloaded model via iterative onloading
Args:
model (`torch.nn.Module`):
The offloaded model we want to save
"""
from ..hooks import AlignDevicesHook
state_dict = {}
placeholders = set()
for name, module in model.named_modules():
if name == "":
continue
if hasattr(module, "_hf_hook") and isinstance(module._hf_hook, AlignDevicesHook) and module._hf_hook.offload:
original_device = module._hf_hook.execution_device
# assign hook execution device to cpu
module._hf_hook.execution_device = "cpu"
# onload meta tensors to execution device
try:
module._hf_hook.pre_forward(module)
except MemoryError:
raise MemoryError("Offloaded module must fit in CPU memory to call save_model!") from None
module_state_dict = module.state_dict()
# offload meta tensors from cpu
module._hf_hook.post_forward(module, torch.tensor([]))
# re-assign hook to original execution device
module._hf_hook.execution_device = original_device
else:
module_state_dict = module.state_dict()
for key in module_state_dict:
# ignore placeholder parameters that are still on the meta device
if module_state_dict[key].device == torch.device("meta"):
placeholders.add(name + f".{key}")
continue
params = module_state_dict[key]
state_dict[name + f".{key}"] = params
for key in placeholders.copy():
if key in state_dict:
placeholders.remove(key)
if placeholders:
logger.warning(f"The following tensors were not saved because they were still on meta device: {placeholders}")
return state_dict
def load_checkpoint_in_model(
model: nn.Module,
checkpoint: Union[str, os.PathLike],
@ -1422,8 +1286,8 @@ def load_checkpoint_in_model(
logger.warn(
"The model weights are not tied. Please use the `tie_weights` method before using the `infer_auto_device` function."
)
if device_map is not None:
check_tied_parameters_on_same_device(tied_params, device_map)
check_tied_parameters_on_same_device(tied_params, device_map)
if offload_folder is None and device_map is not None and "disk" in device_map.values():
raise ValueError(
@ -1594,7 +1458,6 @@ def get_mixed_precision_context_manager(native_amp: bool = False, autocast_kwarg
DistributedType.MULTI_GPU,
DistributedType.MULTI_NPU,
DistributedType.MULTI_XPU,
DistributedType.FSDP,
]:
return torch.autocast(device_type=state.device.type, dtype=torch.bfloat16, **autocast_kwargs)
else:

View File

@ -19,7 +19,8 @@ from typing import Dict, List, Optional, Union
import numpy as np
import torch
from safetensors import safe_open
from .imports import is_safetensors_available
def offload_weight(weight, weight_name, offload_folder, index=None):
@ -164,22 +165,19 @@ class OffloadedWeightsLoader(Mapping):
return self.state_dict[key]
weight_info = self.index[key]
if weight_info.get("safetensors_file") is not None:
if not is_safetensors_available():
raise ImportError("These offloaded weights require the use of safetensors: `pip install safetensors`.")
from safetensors import safe_open
device = "cpu" if self.device is None else self.device
tensor = None
try:
with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f:
tensor = f.get_tensor(weight_info.get("weight_name", key))
except TypeError:
# if failed to get_tensor on the device, such as bf16 on mps, try to load it on CPU first
with safe_open(weight_info["safetensors_file"], framework="pt", device="cpu") as f:
tensor = f.get_tensor(weight_info.get("weight_name", key))
with safe_open(weight_info["safetensors_file"], framework="pt", device=device) as f:
tensor = f.get_tensor(weight_info.get("weight_name", key))
if "dtype" in weight_info:
tensor = tensor.to(getattr(torch, weight_info["dtype"]))
if tensor.device != torch.device(device):
tensor = tensor.to(device)
return tensor
return tensor.to(getattr(torch, weight_info["dtype"]))
else:
return tensor
weight_file = os.path.join(self.save_folder, f"{key}.dat")
return load_offloaded_weight(weight_file, weight_info)

View File

@ -17,7 +17,6 @@ A set of basic tensor ops compatible with tpu, gpu, and multigpu
"""
import pickle
import warnings
from functools import update_wrapper, wraps
from typing import Any, Mapping
@ -26,7 +25,7 @@ import torch
from ..state import PartialState
from .constants import TORCH_DISTRIBUTED_OPERATION_TYPES
from .dataclasses import DistributedType, TensorInformation
from .imports import is_npu_available, is_torch_distributed_available, is_torch_version, is_tpu_available
from .imports import is_torch_distributed_available, is_tpu_available
if is_tpu_available(check_device=False):
@ -164,9 +163,6 @@ def send_to_device(tensor, device, non_blocking=False, skip_keys=None):
}
)
elif hasattr(tensor, "to"):
# `torch.Tensor.to(<int num>)` is not supported by `torch_npu` (see this [issue](https://github.com/Ascend/pytorch/issues/16)).
if is_npu_available() and isinstance(device, int):
device = f"npu:{device}"
try:
return tensor.to(device, non_blocking=non_blocking)
except TypeError: # .to() doesn't accept non_blocking as kwarg
@ -235,9 +231,6 @@ def find_batch_size(data):
Returns:
`int`: The batch size.
"""
if isinstance(data, (tuple, list, Mapping)) and (len(data) == 0):
raise ValueError(f"Cannot find the batch size from empty {type(data)}.")
if isinstance(data, (tuple, list)):
return find_batch_size(data[0])
elif isinstance(data, Mapping):
@ -287,12 +280,6 @@ def _tpu_gather(tensor):
def _gpu_gather(tensor):
state = PartialState()
if is_torch_version(">=", "1.13"):
gather_op = torch.distributed.all_gather_into_tensor
else:
gather_op = torch.distributed._all_gather_base
def _gpu_gather_one(tensor):
if tensor.ndim == 0:
tensor = tensor.clone()[None]
@ -300,26 +287,9 @@ def _gpu_gather(tensor):
# Can only gather contiguous tensors
if not tensor.is_contiguous():
tensor = tensor.contiguous()
if state.backend is not None and state.backend != "gloo":
# We use `empty` as `all_gather_into_tensor` slightly
# differs from `all_gather` for better efficiency,
# and we rely on the number of items in the tensor
# rather than its direct shape
output_tensors = torch.empty(
state.num_processes * tensor.numel(),
dtype=tensor.dtype,
device=state.device,
)
gather_op(output_tensors, tensor)
return output_tensors.view(-1, *tensor.size()[1:])
else:
# a backend of `None` is always CPU
# also gloo does not support `all_gather_into_tensor`,
# which will result in a larger memory overhead for the op
output_tensors = [torch.empty_like(tensor) for _ in range(state.num_processes)]
torch.distributed.all_gather(output_tensors, tensor)
return torch.cat(output_tensors, dim=0)
output_tensors = [torch.empty_like(tensor) for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(output_tensors, tensor)
return torch.cat(output_tensors, dim=0)
return recursively_apply(_gpu_gather_one, tensor, error_on_other_type=True)
@ -347,11 +317,6 @@ def verify_operation(function):
tensor = kwargs["tensor"]
else:
tensor = args[0]
if PartialState().device.type != find_device(tensor).type:
raise DistributedOperationException(
f"One or more of the tensors passed to {operation} were not on the {tensor.device.type} while the `Accelerator` is configured for {PartialState().device.type}. "
f"Please move it to the {PartialState().device.type} before calling {operation}."
)
shapes = get_shape(tensor)
output = gather_object([shapes])
if output[0] is not None:
@ -534,10 +499,6 @@ def concatenate(data, dim=0):
return torch.cat(data, dim=dim)
class CannotPadNestedTensorWarning(UserWarning):
pass
@chained_operation
def pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
"""
@ -556,12 +517,6 @@ def pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
"""
def _pad_across_processes(tensor, dim=0, pad_index=0, pad_first=False):
if getattr(tensor, "is_nested", False):
warnings.warn(
"Cannot pad nested tensors without more information. Leaving unprocessed.",
CannotPadNestedTensorWarning,
)
return tensor
if dim >= len(tensor.shape):
return tensor
@ -615,13 +570,7 @@ def reduce(tensor, reduction="mean", scale=1.0):
if state.distributed_type == DistributedType.NO:
return cloned_tensor
if state.distributed_type == DistributedType.TPU:
# Some processes may have different HLO graphs than other
# processes, for example in the breakpoint API
# accelerator.set_trigger(). Use mark_step to make HLOs
# the same on all processes.
xm.mark_step()
xm.all_reduce(xm.REDUCE_SUM, [cloned_tensor], scale)
xm.mark_step()
xm.all_reduce("sum", cloned_tensor, scale)
elif state.distributed_type.value in TORCH_DISTRIBUTED_OPERATION_TYPES:
torch.distributed.all_reduce(cloned_tensor, ReduceOp.SUM)
if reduction == "mean":

View File

@ -12,37 +12,28 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import platform
import re
import socket
from contextlib import contextmanager
from functools import partial
from types import MethodType
from typing import OrderedDict
import torch
from packaging.version import Version
from safetensors.torch import save_file as safe_save_file
from ..commands.config.default import write_basic_config # noqa: F401
from ..logging import get_logger
from ..state import PartialState
from .constants import FSDP_PYTORCH_VERSION
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_torch_distributed_available, is_tpu_available
from .modeling import id_tensor_storage
from .imports import is_deepspeed_available, is_safetensors_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
logger = get_logger(__name__)
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
if is_safetensors_available():
from safetensors.torch import save_file as safe_save_file
def is_compiled_module(module):
"""
@ -78,7 +69,7 @@ def extract_model_from_parallel(model, keep_fp32_wrapper: bool = True):
options += (DeepSpeedEngine,)
if is_torch_version(">=", FSDP_PYTORCH_VERSION) and is_torch_distributed_available():
if is_torch_version(">=", FSDP_PYTORCH_VERSION):
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
options += (FSDP,)
@ -118,69 +109,22 @@ def wait_for_everyone():
PartialState().wait_for_everyone()
def clean_state_dict_for_safetensors(state_dict: dict):
"""
Cleans the state dictionary from a model and removes tensor aliasing if present.
Args:
state_dict (`dict`):
The state dictionary from a model
"""
ptrs = collections.defaultdict(list)
# When bnb serialization is used, weights in state dict can be strings
for name, tensor in state_dict.items():
if not isinstance(tensor, str):
ptrs[id_tensor_storage(tensor)].append(name)
# These are all pointers of tensors with shared memory
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
warn_names = set()
for names in shared_ptrs.values():
# When not all duplicates have been cleaned, we still remove those keys but put a clear warning.
# If the link between tensors was done at runtime then `from_pretrained` will not get
# the key back leading to random tensor. A proper warning will be shown
# during reload (if applicable), but since the file is not necessarily compatible with
# the config, better show a proper warning.
found_names = [name for name in names if name in state_dict]
warn_names.update(found_names[1:])
for name in found_names[1:]:
del state_dict[name]
if len(warn_names) > 0:
logger.warning(
f"Removed shared tensor {warn_names} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading",
)
state_dict = {k: v.contiguous() if isinstance(v, torch.Tensor) else v for k, v in state_dict.items()}
return state_dict
def save(obj, f, save_on_each_node: bool = False, safe_serialization: bool = False):
def save(obj, f, safe_serialization=False):
"""
Save the data to disk. Use in place of `torch.save()`.
Args:
obj:
The data to save
f:
The file (or file-like object) to use to save the data
save_on_each_node (`bool`, *optional*, defaults to `False`):
Whether to only save on the global main process
safe_serialization (`bool`, *optional*, defaults to `False`):
Whether to save `obj` using `safetensors` or the traditional PyTorch way (that uses `pickle`).
obj: The data to save
f: The file (or file-like object) to use to save the data
safe_serialization (`bool`, *optional*, defaults to `False`): Whether to save `obj` using `safetensors`
"""
# Check if it's a model and remove duplicates
if safe_serialization:
save_func = partial(safe_save_file, metadata={"format": "pt"})
if isinstance(obj, OrderedDict):
obj = clean_state_dict_for_safetensors(obj)
else:
save_func = torch.save
if PartialState().distributed_type == DistributedType.TPU:
xm.save(obj, f)
elif PartialState().is_main_process and not save_on_each_node:
save_func(obj, f)
elif PartialState().is_local_main_process and save_on_each_node:
save_func(obj, f)
elif PartialState().local_process_index == 0:
if safe_serialization:
safe_save_file(obj, f, metadata={"format": "pt"})
else:
torch.save(obj, f)
@contextmanager
@ -302,21 +246,3 @@ def convert_bytes(size):
size /= 1024.0
return f"{round(size, 2)} PB"
def check_os_kernel():
"""Warns if the kernel version is below the recommended minimum on Linux."""
# see issue #1929
info = platform.uname()
system = info.system
if system != "Linux":
return
_, version, *_ = re.split(r"(\d+\.\d+\.\d+)", info.release)
min_version = "5.5.0"
if Version(version) < Version(min_version):
msg = (
f"Detected kernel version {version}, which is below the recommended minimum of {min_version}; this can "
"cause the process to hang. It is recommended to upgrade the kernel to the minimum version or higher."
)
logger.warning(msg, main_process_only=True)

View File

@ -33,5 +33,5 @@ def tqdm(main_process_only: bool = True, *args, **kwargs):
raise ImportError("Accelerate's `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.")
disable = False
if main_process_only:
disable = PartialState().local_process_index != 0
disable = PartialState().local_process_index == 0
return _tqdm(*args, **kwargs, disable=disable)

View File

@ -36,15 +36,15 @@ def convert_model(model, to_transformer_engine=True, _convert_linear=True, _conv
te_module = te.Linear(
module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype
)
te_module.weight.copy_(module.weight)
te_module.weight.data = module.weight.data.clone()
if has_bias:
te_module.bias.copy_(module.bias)
te_module.bias.data = module.bias.data.clone()
setattr(model, name, te_module)
elif isinstance(module, nn.LayerNorm) and to_transformer_engine and _convert_ln:
te_module = te.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype)
te_module.weight.copy_(module.weight)
te_module.bias.copy_(module.bias)
te_module.weight.data = module.weight.data.clone()
te_module.bias.data = module.bias.data.clone()
setattr(model, name, te_module)
elif isinstance(module, te.Linear) and not to_transformer_engine and _convert_linear:
@ -52,15 +52,15 @@ def convert_model(model, to_transformer_engine=True, _convert_linear=True, _conv
new_module = nn.Linear(
module.in_features, module.out_features, bias=has_bias, params_dtype=module.weight.dtype
)
new_module.weight.copy_(module.weight)
new_module.weight.data = module.weight.data.clone()
if has_bias:
new_module.bias.copy_(module.bias)
new_module.bias.data = module.bias.data.clone()
setattr(model, name, new_module)
elif isinstance(module, te.LayerNorm) and not to_transformer_engine and _convert_ln:
new_module = nn.LayerNorm(module.normalized_shape[0], eps=module.eps, params_dtype=module.weight.dtype)
new_module.weight.copy_(module.weight)
new_module.bias.copy_(module.bias)
new_module.weight.data = module.weight.data.clone()
new_module.bias.data = module.bias.data.clone()
setattr(model, name, new_module)
else:
@ -79,6 +79,6 @@ def has_transformer_engine_layers(model):
if not is_fp8_available():
raise ImportError("Using `has_transformer_engine_layers` requires transformer_engine to be installed.")
for m in model.modules():
if isinstance(m, (te.LayerNorm, te.Linear, te.TransformerLayer)):
if isinstance(m, (te.LayerNorm, te.Linear)):
return True
return False

View File

@ -23,26 +23,25 @@ from pathlib import Path
import torch
from parameterized import parameterized
from torch.utils.data import BatchSampler, DataLoader, RandomSampler, SequentialSampler
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM, get_scheduler
from torch.utils.data import DataLoader
from transformers import AutoModel, AutoModelForCausalLM, get_scheduler
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
from transformers.utils import is_torch_bf16_available
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.scheduler import AcceleratedScheduler
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_deepspeed,
require_multi_device,
require_non_cpu,
require_multi_gpu,
slow,
)
from accelerate.test_utils.training import RegressionDataset, RegressionModel
from accelerate.test_utils.training import RegressionDataset
from accelerate.utils.dataclasses import DeepSpeedPlugin
from accelerate.utils.deepspeed import (
DeepSpeedEngineWrapper,
@ -56,8 +55,9 @@ from accelerate.utils.other import patch_environment
set_seed(42)
T5_SMALL = "t5-small"
T5_TINY = "patrickvonplaten/t5-tiny-random"
GPT2_TINY = "sshleifer/tiny-gpt2"
MOBILEVIT = "apple/mobilevit-xx-small"
ZERO2 = "zero2"
ZERO3 = "zero3"
@ -70,15 +70,9 @@ CUSTOM_SCHEDULER = "custom_scheduler"
DS_OPTIMIZER = "deepspeed_optimizer"
DS_SCHEDULER = "deepspeed_scheduler"
NO_CONFIG = "no_config"
CONFIG_WITH_NO_HIDDEN_SIZE = "config_with_no_hidden_size"
CONFIG_WITH_HIDDEN_SIZE = "config_with_hidden_size"
CONFIG_WITH_HIDDEN_SIZES = "config_with_hidden_sizes"
stages = [ZERO2, ZERO3]
optims = [CUSTOM_OPTIMIZER, DS_OPTIMIZER]
schedulers = [CUSTOM_SCHEDULER, DS_SCHEDULER]
model_types = [NO_CONFIG, CONFIG_WITH_NO_HIDDEN_SIZE, CONFIG_WITH_HIDDEN_SIZE, CONFIG_WITH_HIDDEN_SIZES]
if is_torch_bf16_available():
dtypes = [FP16, BF16]
else:
@ -97,13 +91,8 @@ params = list(itertools.product(stages, dtypes))
optim_scheduler_params = list(itertools.product(optims, schedulers))
class DummyConfig:
def __init__(self):
self._name_or_path = "dummy"
@require_deepspeed
@require_non_cpu
@require_cuda
class DeepSpeedConfigIntegration(AccelerateTestCase):
def setUp(self):
super().setUp()
@ -350,9 +339,8 @@ class DeepSpeedConfigIntegration(AccelerateTestCase):
with self.assertRaises(ValueError) as cm:
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
self.assertTrue(
"When using DeepSpeed, `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders "
"with `batch_size` attribute returning an integer value "
"or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file "
"When using DeepSpeed `accelerate.prepare()` requires you to pass at least one of training or evaluation dataloaders "
"or alternatively set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file"
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
in str(cm.exception)
)
@ -364,7 +352,7 @@ class DeepSpeedConfigIntegration(AccelerateTestCase):
self.assertTrue(accelerator.deepspeed_config["train_batch_size"], 16)
self.assertEqual(type(model), DeepSpeedEngine)
self.assertEqual(type(optimizer), DeepSpeedOptimizerWrapper)
self.assertEqual(type(lr_scheduler), AcceleratedScheduler)
self.assertEqual(type(lr_scheduler), DeepSpeedSchedulerWrapper)
self.assertEqual(type(accelerator.deepspeed_engine_wrapped), DeepSpeedEngineWrapper)
elif optim_type == DS_OPTIMIZER and scheduler_type == DS_SCHEDULER:
@ -520,47 +508,6 @@ class DeepSpeedConfigIntegration(AccelerateTestCase):
model, dummy_optimizer, train_dataloader, eval_dataloader, dummy_lr_scheduler
)
def test_dataloader_with_batch_sampler(self):
deepspeed_plugin = DeepSpeedPlugin(
gradient_accumulation_steps=1,
gradient_clipping=1.0,
zero_stage=2,
offload_optimizer_device="cpu",
offload_param_device="cpu",
zero3_save_16bit_model=False,
zero3_init_flag=False,
)
with mockenv_context(**self.dist_env):
accelerator = Accelerator(mixed_precision="fp16", deepspeed_plugin=deepspeed_plugin)
train_set = RegressionDataset(length=80)
eval_set = RegressionDataset(length=20)
train_dataloader = DataLoader(
train_set, batch_sampler=BatchSampler(RandomSampler(train_set), batch_size=10, drop_last=False)
)
eval_dataloader = DataLoader(
eval_set, batch_sampler=BatchSampler(SequentialSampler(eval_set), batch_size=10, drop_last=False)
)
model = AutoModel.from_pretrained(GPT2_TINY)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
lr_scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=1000,
)
with self.assertRaises(ValueError) as cm:
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
self.assertTrue(
"At least one of the dataloaders passed to `accelerate.prepare()` has `None` as batch size. "
"Please set an integer value in `train_micro_batch_size_per_gpu` in the deepspeed config file "
"or assign integer value to `AcceleratorState().deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu']`."
in str(cm.exception)
)
def test_save_checkpoints(self):
deepspeed_plugin = DeepSpeedPlugin(
hf_ds_config=self.ds_config_file[ZERO3],
@ -659,70 +606,6 @@ class DeepSpeedConfigIntegration(AccelerateTestCase):
accelerator.deepspeed_config["zero_optimization"]["stage3_gather_16bit_weights_on_model_save"]
)
@parameterized.expand(model_types, name_func=parameterized_custom_name_func)
def test_autofill_comm_buffers_dsconfig(self, model_type):
deepspeed_plugin = DeepSpeedPlugin(
hf_ds_config=self.ds_config_file[ZERO3],
zero3_init_flag=True,
)
del deepspeed_plugin.deepspeed_config["bf16"]
del deepspeed_plugin.deepspeed_config["fp16"]
del deepspeed_plugin.deepspeed_config["optimizer"]
del deepspeed_plugin.deepspeed_config["scheduler"]
with mockenv_context(**self.dist_env):
accelerator = Accelerator(mixed_precision="fp16", deepspeed_plugin=deepspeed_plugin)
train_set = RegressionDataset(length=80)
eval_set = RegressionDataset(length=20)
train_dataloader = DataLoader(train_set, batch_size=16, shuffle=True)
eval_dataloader = DataLoader(eval_set, batch_size=32, shuffle=False)
model = RegressionModel()
if model_type == CONFIG_WITH_NO_HIDDEN_SIZE:
model.config = DummyConfig()
elif model_type == CONFIG_WITH_HIDDEN_SIZE:
model.config = AutoConfig.from_pretrained(GPT2_TINY)
hidden_size = model.config.hidden_size
elif model_type == CONFIG_WITH_HIDDEN_SIZES:
model.config = AutoConfig.from_pretrained(MOBILEVIT)
hidden_size = max(model.config.hidden_sizes)
optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5)
lr_scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=1000,
)
if model_type == NO_CONFIG:
with self.assertRaises(ValueError) as cm:
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
msg = "Can't find `model.config` entry"
self.assertTrue(msg in str(cm.exception))
elif model_type == CONFIG_WITH_NO_HIDDEN_SIZE:
with self.assertRaises(ValueError) as cm:
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
msg = "Can find neither `model.config.hidden_size` nor `model.config.hidden_sizes`"
self.assertTrue(msg in str(cm.exception))
else:
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
self.assertEqual(
accelerator.deepspeed_config["zero_optimization"]["reduce_bucket_size"], hidden_size * hidden_size
)
self.assertEqual(
accelerator.deepspeed_config["zero_optimization"]["stage3_prefetch_bucket_size"],
0.9 * hidden_size * hidden_size,
)
self.assertEqual(
accelerator.deepspeed_config["zero_optimization"]["stage3_param_persistence_threshold"],
10 * hidden_size,
)
@parameterized.expand([FP16, BF16], name_func=parameterized_custom_name_func)
def test_autofill_dsconfig_from_ds_plugin(self, dtype):
ds_config = self.ds_config_dict["zero3"]
@ -870,7 +753,7 @@ class DeepSpeedConfigIntegration(AccelerateTestCase):
@require_deepspeed
@require_multi_device
@require_multi_gpu
@slow
class DeepSpeedIntegrationTest(TempDirTestCase):
def setUp(self):
@ -1062,27 +945,3 @@ class DeepSpeedIntegrationTest(TempDirTestCase):
)
with patch_environment(omp_num_threads=1):
execute_subprocess_async(cmd_stage, env=os.environ.copy())
def test_lr_scheduler(self):
self.test_file_path = os.path.join(self.test_scripts_folder, "test_performance.py")
cmd = [
"accelerate",
"launch",
"--num_processes=2",
"--num_machines=1",
"--machine_rank=0",
"--mixed_precision=no",
"--use_deepspeed",
"--gradient_accumulation_steps=1",
"--gradient_clipping=1",
"--zero3_init_flag=True",
"--zero3_save_16bit_model=True",
"--zero_stage=3",
"--offload_optimizer_device=none",
"--offload_param_device=none",
self.test_file_path,
f"--output_dir={self.tmpdir}",
f"--performance_lower_bound={self.performance_lower_bound}",
]
with patch_environment(omp_num_threads=1):
execute_subprocess_async(cmd, env=os.environ.copy())

View File

@ -28,9 +28,9 @@ from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_device,
require_non_cpu,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
@ -52,7 +52,7 @@ dtypes = [FP16, BF16]
@require_fsdp
@require_non_cpu
@require_cuda
class FSDPPluginIntegration(AccelerateTestCase):
def setUp(self):
super().setUp()
@ -69,18 +69,10 @@ class FSDPPluginIntegration(AccelerateTestCase):
def test_sharding_strategy(self):
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
# check that giving enums works fine
for i, strategy in enumerate(FSDP_SHARDING_STRATEGY):
env = self.dist_env.copy()
env["FSDP_SHARDING_STRATEGY"] = f"{i + 1}"
with mockenv_context(**env):
fsdp_plugin = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1))
# check that giving names works fine
for i, strategy in enumerate(FSDP_SHARDING_STRATEGY):
env = self.dist_env.copy()
env["FSDP_SHARDING_STRATEGY"] = strategy
env["FSDP_SHARDING_STRATEGY_NAME"] = strategy
with mockenv_context(**env):
fsdp_plugin = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1))
@ -178,7 +170,7 @@ class FSDPPluginIntegration(AccelerateTestCase):
@require_fsdp
@require_multi_device
@require_multi_gpu
@slow
class FSDPIntegrationTest(TempDirTestCase):
def setUp(self):
@ -209,7 +201,7 @@ class FSDPIntegrationTest(TempDirTestCase):
cmd_config = cmd.copy()
for i, strategy in enumerate(FSDP_SHARDING_STRATEGY):
if strategy.lower() in config:
cmd_config.append(f"--fsdp_sharding_strategy={strategy}")
cmd_config.append(f"--fsdp_sharding_strategy={i+1}")
break
if "fp32" in config:
@ -255,16 +247,11 @@ class FSDPIntegrationTest(TempDirTestCase):
for i, strategy in enumerate(FSDP_SHARDING_STRATEGY):
cmd_config = cmd.copy()
cmd_config.append(f"--fsdp_sharding_strategy={strategy}")
cmd_config.append(f"--fsdp_sharding_strategy={i+1}")
if strategy != "FULL_SHARD":
continue
state_dict_config_index = len(cmd_config)
for state_dict_type in FSDP_STATE_DICT_TYPE:
# Todo: Currently failing for `LOCAL_STATE_DICT` with error
# Unexpected key(s) in state_dict: "_fsdp_wrapped_module._flat_param".
if state_dict_type == "LOCAL_STATE_DICT":
continue
cmd_config = cmd_config[:state_dict_config_index]
cmd_config.append(f"--fsdp_state_dict_type={state_dict_type}")
cmd_config.extend(
@ -309,7 +296,7 @@ class FSDPIntegrationTest(TempDirTestCase):
cmd_config.extend(["--use_fsdp"])
for i, strategy in enumerate(FSDP_SHARDING_STRATEGY):
if strategy.lower() in spec:
cmd_config.append(f"--fsdp_sharding_strategy={strategy}")
cmd_config.append(f"--fsdp_sharding_strategy={i+1}")
break
if "cpu_offload" in spec:

View File

@ -5,13 +5,12 @@ import tempfile
from unittest.mock import patch
import torch
from parameterized import parameterized
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights, load_checkpoint_and_dispatch
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils import require_bnb, require_multi_gpu, require_safetensors, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
from accelerate.utils.modeling import load_checkpoint_in_model
@ -27,17 +26,6 @@ def create_components():
return model, optimizer, scheduler, train_dl, valid_dl
class ModelForTest(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(3, 4)
self.batchnorm = torch.nn.BatchNorm1d(4)
self.linear2 = torch.nn.Linear(4, 5)
def forward(self, x):
return self.linear2(self.batchnorm(self.linear1(x)))
def get_signature(model):
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
@ -47,13 +35,6 @@ def load_random_weights(model):
model.load_state_dict(state)
def parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = "use_safetensors" if param.args[0] is True else "use_pytorch"
return f"{func.__name__}_{param_based_name}"
class AcceleratorTester(AccelerateTestCase):
@require_cuda
def test_accelerator_can_be_reinstantiated(self):
@ -116,8 +97,7 @@ class AcceleratorTester(AccelerateTestCase):
accelerator = Accelerator()
self.assertEqual(str(accelerator.state.device), "cuda:64")
@parameterized.expand((True, False), name_func=parameterized_custom_name_func)
def test_save_load_model(self, use_safetensors):
def test_save_load_model(self):
accelerator = Accelerator()
model, optimizer, scheduler, train_dl, valid_dl = create_components()
accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl)
@ -125,7 +105,7 @@ class AcceleratorTester(AccelerateTestCase):
model_signature = get_signature(model)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(tmpdirname, safe_serialization=use_safetensors)
accelerator.save_state(tmpdirname)
# make sure random weights don't match
load_random_weights(model)
@ -135,40 +115,31 @@ class AcceleratorTester(AccelerateTestCase):
accelerator.load_state(tmpdirname)
self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3)
@parameterized.expand([True, False], name_func=parameterized_custom_name_func)
def test_save_model(self, use_safetensors):
def test_save_model_pytorch(self):
accelerator = Accelerator()
model = torch.nn.Linear(10, 10)
model_signature = get_signature(model)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_model(model, tmpdirname, safe_serialization=use_safetensors)
accelerator.save_model(model, tmpdirname, safe_serialization=False)
# make sure loaded weights match
load_checkpoint_in_model(model, tmpdirname)
self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3)
@parameterized.expand([True, False], name_func=parameterized_custom_name_func)
def test_save_model_offload(self, use_safetensors):
@require_safetensors
def test_save_model_safetensors(self):
accelerator = Accelerator()
model = torch.nn.Linear(10, 10)
device_map = {"linear1": "cpu", "batchnorm": "disk", "linear2": "cpu"}
model_signature = get_signature(model)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_model(model, tmpdirname, safe_serialization=True)
inputs = torch.randn(3, 3)
model = ModelForTest()
expected = model(inputs)
with tempfile.TemporaryDirectory() as tmp_dir:
accelerator.save_model(model, tmp_dir, safe_serialization=use_safetensors)
# load and save offloaded model
load_checkpoint_and_dispatch(model, tmp_dir, device_map=device_map, offload_folder=tmp_dir)
accelerator.save_model(model, tmp_dir, safe_serialization=use_safetensors)
# make sure loaded weights match
load_checkpoint_in_model(model, tmpdirname)
self.assertTrue(abs(model_signature - get_signature(model)) < 1e-3)
# load weights that were saved from the offloaded model
load_checkpoint_and_dispatch(model, tmp_dir)
output = model(inputs)
self.assertTrue(torch.allclose(expected, output, atol=1e-5))
@parameterized.expand([True, False], name_func=parameterized_custom_name_func)
def test_save_load_model_with_hooks(self, use_safetensors):
def test_save_load_model_with_hooks(self):
accelerator = Accelerator()
model, optimizer, scheduler, train_dl, valid_dl = create_components()
accelerator.prepare(model, optimizer, scheduler, train_dl, valid_dl)
@ -193,7 +164,7 @@ class AcceleratorTester(AccelerateTestCase):
load_hook = accelerator.register_load_state_pre_hook(load_config)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(tmpdirname, safe_serialization=use_safetensors)
accelerator.save_state(tmpdirname)
# make sure random weights don't match with hooks
load_random_weights(model)
@ -214,7 +185,7 @@ class AcceleratorTester(AccelerateTestCase):
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(tmpdirname, safe_serialization=use_safetensors)
accelerator.save_state(tmpdirname)
# make sure random weights don't match with hooks removed
load_random_weights(model)

View File

@ -45,33 +45,6 @@ class ModelForTest(nn.Module):
return self.linear2(self.batchnorm(self.linear1(x)))
class LinearWithNonPersistentBuffers(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer("weight", torch.ones((out_features, in_features), **factory_kwargs))
if bias:
self.register_buffer("bias", torch.ones(out_features, **factory_kwargs), persistent=False)
else:
self.register_buffer("bias", None)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.linear(input, self.weight, self.bias)
class ModelForTestNonPersistentBuffers(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = LinearWithNonPersistentBuffers(3, 4)
self.batchnorm = nn.BatchNorm1d(4)
self.linear2 = LinearWithNonPersistentBuffers(4, 5)
def forward(self, x):
return self.linear2(self.batchnorm(self.linear1(x)))
class ModelForTestCopy(nn.Module):
def __init__(self, id: int):
super().__init__()
@ -329,18 +302,6 @@ class BigModelingTester(unittest.TestCase):
output = model(x)
self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5))
@require_cuda
def test_dispatch_model_with_non_persistent_buffers(self):
model = ModelForTestNonPersistentBuffers()
device_map = {"linear1": 0, "batchnorm": "cpu", "linear2": "disk"}
x = torch.randn(2, 3)
expected = model(x)
with TemporaryDirectory() as tmp_dir:
dispatch_model(model, device_map, offload_dir=tmp_dir, offload_buffers=True)
output = model(x)
self.assertTrue(torch.allclose(expected, output.cpu(), atol=1e-5))
@require_mps
def test_dispatch_model_mps(self):
model = ModelForTest()

View File

@ -24,7 +24,6 @@ import accelerate
from accelerate.commands.estimate import estimate_command, estimate_command_parser, gather_data
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import (
require_multi_gpu,
require_timm,
require_transformers,
run_command,
@ -41,7 +40,6 @@ class AccelerateLauncherTester(unittest.TestCase):
mod_file = inspect.getfile(accelerate.test_utils)
test_file_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_cli.py"])
notebook_launcher_path = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_notebook.py"])
base_cmd = ["accelerate", "launch"]
config_folder = Path.home() / ".cache/huggingface/accelerate"
@ -89,16 +87,6 @@ class AccelerateLauncherTester(unittest.TestCase):
def test_accelerate_test(self):
execute_subprocess_async(["accelerate", "test"], env=os.environ.copy())
@require_multi_gpu
def test_notebook_launcher(self):
"""
This test checks a variety of situations and scenarios
with the `notebook_launcher`
"""
cmd = ["python", self.notebook_launcher_path]
with patch_environment(omp_num_threads=1, accelerate_num_processes=2):
run_command(cmd, env=os.environ.copy())
class TpuConfigTester(unittest.TestCase):
"""
@ -281,8 +269,8 @@ class ModelEstimatorTester(unittest.TestCase):
estimate_command(args)
def test_gated(self):
with self.assertRaises(GatedRepoError, msg="Repo for model `meta-llama/Llama-2-7b-hf` is gated"):
args = self.parser.parse_args(["meta-llama/Llama-2-7b-hf"])
with self.assertRaises(GatedRepoError, msg="Repo for model `meta-llama/Llama-2-7b` is gated"):
args = self.parser.parse_args(["meta-llama/Llama-2-7b"])
with patch_environment(hf_hub_disable_implicit_token="1"):
estimate_command(args)

View File

@ -205,7 +205,7 @@ class FeatureExamplesTests(TempDirTestCase):
run_command(self._launch_args + testargs)
@require_trackers
@mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"})
@mock.patch.dict(os.environ, {"WANDB_MODE": "offline"})
def test_tracking(self):
with tempfile.TemporaryDirectory() as tmpdir:
testargs = f"""

View File

@ -16,15 +16,16 @@ import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
device_count,
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_device,
require_single_device,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@ -49,13 +50,13 @@ class MetricTester(unittest.TestCase):
def test_metric_cpu_multi(self):
debug_launcher(self.test_metrics.main)
@require_single_device
def test_metric_accelerator(self):
@require_single_gpu
def test_metric_gpu(self):
self.test_metrics.main()
@require_multi_device
def test_metric_accelerator_multi(self):
print(f"Found {device_count} devices.")
cmd = ["torchrun", f"--nproc_per_node={device_count}", self.test_file_path]
@require_multi_gpu
def test_metric_gpu_multi(self):
print(f"Found {torch.cuda.device_count()} devices.")
cmd = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1, ACCELERATE_LOG_LEVEL="INFO"):
execute_subprocess_async(cmd, env=os.environ.copy())

View File

@ -20,10 +20,9 @@ from collections import OrderedDict
import torch
import torch.nn as nn
from safetensors.torch import save_file
from accelerate import init_empty_weights
from accelerate.test_utils import require_cuda, require_huggingface_suite, require_multi_gpu
from accelerate.test_utils import require_cuda, require_huggingface_suite, require_multi_gpu, require_safetensors
from accelerate.utils.modeling import (
check_device_map,
clean_device_map,
@ -51,32 +50,6 @@ class ModelForTest(nn.Module):
return self.linear2(self.batchnorm(self.linear1(x)))
class LinearWithNonPersistentBuffers(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.register_buffer("weight", torch.empty((out_features, in_features), **factory_kwargs))
if bias:
self.register_buffer("bias", torch.empty(out_features, **factory_kwargs), persistent=False)
else:
self.register_buffer("bias", None)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.linear(input, self.weight, self.bias)
class ModelSeveralDtypes(nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("int_param", torch.randint(high=10, size=(15, 30)))
self.register_parameter("float_param", torch.nn.Parameter(torch.rand(10, 5)))
def forward(self, x):
return x + 2
def sequential_model(num_layers):
layers = OrderedDict([(f"linear{i}", nn.Linear(1000, 1000)) for i in range(1, num_layers + 1)])
return nn.Sequential(layers)
@ -213,14 +186,6 @@ class ModelingUtilsTester(unittest.TestCase):
["linear1.weight", "linear1.bias", "batchnorm.weight", "batchnorm.bias", "linear2.weight", "linear2.bias"],
)
model = LinearWithNonPersistentBuffers(10, 10)
named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=False)
self.assertListEqual([name for name, _ in named_tensors], ["weight", "bias"])
named_tensors = named_module_tensors(model, include_buffers=True, remove_non_persistent=True)
self.assertListEqual([name for name, _ in named_tensors], ["weight"])
def test_find_tied_parameters(self):
model = sequential_model(4)
self.assertListEqual(find_tied_parameters(model), [])
@ -435,19 +400,6 @@ class ModelingUtilsTester(unittest.TestCase):
self.assertEqual(model.batchnorm.weight.device, torch.device("cpu"))
self.assertEqual(model.linear2.weight.device, torch.device(1))
def test_load_checkpoint_in_model_dtype(self):
with tempfile.NamedTemporaryFile(suffix=".pt") as tmpfile:
model = ModelSeveralDtypes()
torch.save(model.state_dict(), tmpfile.name)
new_model = ModelSeveralDtypes()
load_checkpoint_in_model(
new_model, tmpfile.name, offload_state_dict=True, dtype=torch.float16, device_map={"": "cpu"}
)
self.assertEqual(new_model.int_param.dtype, torch.int64)
self.assertEqual(new_model.float_param.dtype, torch.float16)
def test_clean_device_map(self):
# Regroup everything if all is on the same device
self.assertDictEqual(clean_device_map({"a": 0, "b": 0, "c": 0}), {"": 0})
@ -545,36 +497,6 @@ class ModelingUtilsTester(unittest.TestCase):
expected = {"linear1": 0, "linear2": 1, "linear3": 0, "linear4": 1}
self.assertDictEqual(device_map, expected)
# With tied weights sharing a same prefix name (`compute.weight` vs `compute.weight_submodule.parameter`)
class SubModule(torch.nn.Module):
def __init__(self, ref_to_parameter):
super().__init__()
self.parameter = ref_to_parameter
def forward(self, x):
return self.x + torch.max(self.parameter)
class LinearModuleAndSubModule(torch.nn.Linear):
def __init__(self, in_features, out_features):
super().__init__(in_features, out_features)
self.weight_submodule = SubModule(self.weight)
def forward(self, x):
return torch.nn.functional.linear(self.weight_submodule(x), self.weight)
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.compute = LinearModuleAndSubModule(3, 8)
def forward(self, x):
return self.compute(x)
model = Model()
device_memory = {0: 4, "cpu": 96000} # Low memory device, just to force splitting and trigger the error
infer_auto_device_map(model, device_memory)
@require_huggingface_suite
def test_infer_auto_device_map_on_t0pp(self):
from transformers import AutoConfig, AutoModelForSeq2SeqLM
@ -630,7 +552,10 @@ class ModelingUtilsTester(unittest.TestCase):
self.assertDictEqual({0: 0, "cpu": 100}, max_memory)
@require_cuda
@require_safetensors
def test_load_state_dict(self):
from safetensors.torch import save_file
state_dict = {k: torch.randn(4, 5) for k in ["a", "b", "c"]}
device_maps = [{"a": "cpu", "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": "disk"}, {"a": 0, "b": 0, "c": 0}]

View File

@ -21,7 +21,7 @@ import torch
import accelerate
from accelerate import Accelerator
from accelerate.big_modeling import dispatch_model
from accelerate.test_utils import assert_exception, execute_subprocess_async, require_multi_gpu
from accelerate.test_utils import assert_exception, execute_subprocess_async, require_multi_gpu, skip
from accelerate.utils import patch_environment
@ -66,6 +66,24 @@ class MultiGPUTester(unittest.TestCase):
with patch_environment(omp_num_threads=1, cuda_visible_devices="0,1"):
execute_subprocess_async(cmd, env=os.environ.copy())
# Need to see why this test raises forking issues when ran as a suite
@skip
@require_multi_gpu
def test_notebook_launcher(self):
"""
This test checks that the `notebook_launcher` will be able to intialize
a `PartialState` without issue
"""
cmd = [
"python",
"-m",
"accelerate.test_utils.scripts.test_notebook",
"--num_processes",
str(torch.cuda.device_count()),
]
with patch_environment(omp_num_threads=1):
execute_subprocess_async(cmd, env=os.environ.copy())
if __name__ == "__main__":
accelerator = Accelerator()

View File

@ -444,7 +444,7 @@ class MixedInt8EmptyModelTest(unittest.TestCase):
model_8bit_from_saved = load_and_quantize_model(
model_8bit_from_saved,
bnb_quantization_config,
weights_location=tmpdirname,
weights_location=tmpdirname + "/pytorch_model.bin",
device_map=device_map,
no_split_module_classes=["BloomBlock"],
offload_folder=tmpdirname + "/tmp",

View File

@ -24,12 +24,11 @@ from contextlib import contextmanager
import pytest
import torch
from parameterized import parameterized_class
from torch import nn
from torch.utils.data import DataLoader, TensorDataset
from accelerate import Accelerator
from accelerate.test_utils import device_count, execute_subprocess_async, require_non_cpu
from accelerate.test_utils import execute_subprocess_async, require_cuda
from accelerate.utils import ProjectConfiguration, set_seed
@ -81,14 +80,6 @@ class DummyModel(nn.Module):
return x * self.a + self.b
def parameterized_custom_name_func(func, param_num, param):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
param_based_name = "use_safetensors" if param["use_safetensors"] is True else "use_pytorch"
return f"{func.__name__}_{param_based_name}"
@parameterized_class(("use_safetensors",), [[True], [False]], class_name_func=parameterized_custom_name_func)
class CheckpointTest(unittest.TestCase):
def test_with_save_limit(self):
with tempfile.TemporaryDirectory() as tmpdir:
@ -103,10 +94,10 @@ class CheckpointTest(unittest.TestCase):
model, optimizer, train_dataloader, valid_dataloader
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
# Save second state
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
self.assertEqual(len(os.listdir(accelerator.project_dir)), 1)
def test_can_resume_training_with_folder(self):
@ -122,7 +113,7 @@ class CheckpointTest(unittest.TestCase):
)
# Save initial
initial = os.path.join(tmpdir, "initial")
accelerator.save_state(initial, safe_serialization=self.use_safetensors)
accelerator.save_state(initial)
(a, b) = model.a.item(), model.b.item()
opt_state = optimizer.state_dict()
ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
@ -148,7 +139,7 @@ class CheckpointTest(unittest.TestCase):
test_rands = train(2, model, train_dataloader, optimizer, accelerator)
# Save everything
checkpoint = os.path.join(tmpdir, "checkpoint")
accelerator.save_state(checkpoint, safe_serialization=self.use_safetensors)
accelerator.save_state(checkpoint)
# Load everything back in and make sure all states work
accelerator.load_state(checkpoint)
@ -174,7 +165,7 @@ class CheckpointTest(unittest.TestCase):
model, optimizer, train_dataloader, valid_dataloader
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
(a, b) = model.a.item(), model.b.item()
opt_state = optimizer.state_dict()
ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
@ -200,7 +191,7 @@ class CheckpointTest(unittest.TestCase):
test_rands = train(2, model, train_dataloader, optimizer, accelerator)
# Save everything
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1"))
@ -239,7 +230,7 @@ class CheckpointTest(unittest.TestCase):
model, optimizer, train_dataloader, valid_dataloader
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
(a, b) = model.a.item(), model.b.item()
opt_state = optimizer.state_dict()
ground_truth_rands = train(3, model, train_dataloader, optimizer, accelerator)
@ -265,7 +256,7 @@ class CheckpointTest(unittest.TestCase):
test_rands = train(2, model, train_dataloader, optimizer, accelerator)
# Save everything
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
# Load everything back in and make sure all states work
accelerator.load_state(os.path.join(tmpdir, "checkpoints", "checkpoint_1"))
@ -305,7 +296,7 @@ class CheckpointTest(unittest.TestCase):
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
scheduler_state = scheduler.state_dict()
train(3, model, train_dataloader, optimizer, accelerator, scheduler)
self.assertNotEqual(scheduler_state, scheduler.state_dict())
@ -328,11 +319,11 @@ class CheckpointTest(unittest.TestCase):
model, optimizer, train_dataloader, valid_dataloader, scheduler
)
# Save initial
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
train(2, model, train_dataloader, optimizer, accelerator, scheduler)
(a2, b2) = model.a.item(), model.b.item()
# Save a first time
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
train(1, model, train_dataloader, optimizer, accelerator, scheduler)
(a3, b3) = model.a.item(), model.b.item()
@ -353,22 +344,18 @@ class CheckpointTest(unittest.TestCase):
model = accelerator.prepare(model)
# Save 3 states:
for _ in range(11):
accelerator.save_state(safe_serialization=self.use_safetensors)
accelerator.save_state()
self.assertTrue(not os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_0")))
self.assertTrue(os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_9")))
self.assertTrue(os.path.exists(os.path.join(tmpdir, "checkpoints", "checkpoint_10")))
@require_non_cpu
@require_cuda
def test_map_location(self):
cmd = ["torchrun", f"--nproc_per_node={device_count}", inspect.getfile(self.__class__)]
env = os.environ.copy()
env["USE_SAFETENSORS"] = str(self.use_safetensors)
env["OMP_NUM_THREADS"] = "1"
execute_subprocess_async(cmd, env=env)
cmd = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__)]
execute_subprocess_async(cmd, env=os.environ.copy())
if __name__ == "__main__":
use_safetensors = os.environ.get("USE_SAFETENSORS", "False") == "True"
savedir = "/tmp/accelerate/state_checkpointing"
model = DummyModel()
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-3)
@ -393,7 +380,7 @@ if __name__ == "__main__":
assert param_device.type == accelerator.device.type
model = model.cpu()
accelerator.wait_for_everyone()
accelerator.save_state(safe_serialization=use_safetensors)
accelerator.save_state()
accelerator.wait_for_everyone()
# Check CPU state

View File

@ -25,7 +25,6 @@ from pathlib import Path
from typing import Optional
from unittest import mock
import numpy as np
import torch
# We use TF to parse the logs
@ -33,21 +32,13 @@ from accelerate import Accelerator
from accelerate.test_utils.testing import (
MockingTestCase,
TempDirTestCase,
require_clearml,
require_comet_ml,
require_dvclive,
require_pandas,
require_tensorboard,
require_wandb,
skip,
)
from accelerate.tracking import CometMLTracker, GeneralTracker
from accelerate.utils import (
ProjectConfiguration,
is_comet_ml_available,
is_dvclive_available,
is_tensorboard_available,
)
from accelerate.utils import ProjectConfiguration, is_comet_ml_available, is_tensorboard_available
if is_comet_ml_available():
@ -58,11 +49,6 @@ if is_tensorboard_available():
import tensorboard.compat.proto.event_pb2 as event_pb2
if is_dvclive_available():
from dvclive.plots.metric import Metric
from dvclive.serialize import load_yaml
from dvclive.utils import parse_metrics
logger = logging.getLogger(__name__)
@ -264,147 +250,6 @@ class CometMLTest(unittest.TestCase):
self.assertEqual(self.get_value_from_key(list_of_json, "my_text"), "some_value")
@require_clearml
class ClearMLTest(TempDirTestCase, MockingTestCase):
def setUp(self):
super().setUp()
# ClearML offline session location is stored in CLEARML_CACHE_DIR
self.add_mocks(mock.patch.dict(os.environ, {"CLEARML_CACHE_DIR": self.tmpdir}))
@staticmethod
def _get_offline_dir(accelerator):
from clearml.config import get_offline_dir
return get_offline_dir(task_id=accelerator.get_tracker("clearml", unwrap=True).id)
@staticmethod
def _get_metrics(offline_dir):
metrics = []
with open(os.path.join(offline_dir, "metrics.jsonl")) as f:
json_lines = f.readlines()
for json_line in json_lines:
metrics.extend(json.loads(json_line))
return metrics
def test_init_trackers(self):
from clearml import Task
from clearml.utilities.config import text_to_config_dict
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
config = {"num_iterations": 12, "learning_rate": 1e-2, "some_boolean": False, "some_string": "some_value"}
accelerator.init_trackers("test_project_with_config", config)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
with open(os.path.join(offline_dir, "task.json")) as f:
offline_session = json.load(f)
clearml_offline_config = text_to_config_dict(offline_session["configuration"]["General"]["value"])
self.assertDictEqual(config, clearml_offline_config)
def test_log(self):
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log")
values_with_iteration = {"should_be_under_train": 1, "eval_value": 2, "test_value": 3.1, "train_value": 4.1}
accelerator.log(values_with_iteration, step=1)
single_values = {"single_value_1": 1.1, "single_value_2": 2.2}
accelerator.log(single_values)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
metrics = ClearMLTest._get_metrics(offline_dir)
self.assertEqual(len(values_with_iteration) + len(single_values), len(metrics))
for metric in metrics:
if metric["metric"] == "Summary":
self.assertIn(metric["variant"], single_values)
self.assertEqual(metric["value"], single_values[metric["variant"]])
elif metric["metric"] == "should_be_under_train":
self.assertEqual(metric["variant"], "train")
self.assertEqual(metric["iter"], 1)
self.assertEqual(metric["value"], values_with_iteration["should_be_under_train"])
else:
values_with_iteration_key = metric["variant"] + "_" + metric["metric"]
self.assertIn(values_with_iteration_key, values_with_iteration)
self.assertEqual(metric["iter"], 1)
self.assertEqual(metric["value"], values_with_iteration[values_with_iteration_key])
def test_log_images(self):
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log_images")
base_image = np.eye(256, 256, dtype=np.uint8) * 255
base_image_3d = np.concatenate((np.atleast_3d(base_image), np.zeros((256, 256, 2), dtype=np.uint8)), axis=2)
images = {
"base_image": base_image,
"base_image_3d": base_image_3d,
}
accelerator.get_tracker("clearml").log_images(images, step=1)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
images_saved = Path(os.path.join(offline_dir, "data")).rglob("*.jpeg")
self.assertEqual(len(list(images_saved)), len(images))
def test_log_table(self):
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log_table")
accelerator.get_tracker("clearml").log_table(
"from lists with columns", columns=["A", "B", "C"], data=[[1, 3, 5], [2, 4, 6]]
)
accelerator.get_tracker("clearml").log_table("from lists", data=[["A2", "B2", "C2"], [7, 9, 11], [8, 10, 12]])
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
metrics = ClearMLTest._get_metrics(offline_dir)
self.assertEqual(len(metrics), 2)
for metric in metrics:
self.assertIn(metric["metric"], ["from lists", "from lists with columns"])
plot = json.loads(metric["plot_str"])
if metric["metric"] == "from lists with columns":
print(plot["data"][0])
self.assertCountEqual(plot["data"][0]["header"]["values"], ["A", "B", "C"])
self.assertCountEqual(plot["data"][0]["cells"]["values"], [[1, 2], [3, 4], [5, 6]])
else:
self.assertCountEqual(plot["data"][0]["header"]["values"], ["A2", "B2", "C2"])
self.assertCountEqual(plot["data"][0]["cells"]["values"], [[7, 8], [9, 10], [11, 12]])
@require_pandas
def test_log_table_pandas(self):
import pandas as pd
from clearml import Task
Task.set_offline(True)
accelerator = Accelerator(log_with="clearml")
accelerator.init_trackers("test_project_with_log_table_pandas")
accelerator.get_tracker("clearml").log_table(
"from df", dataframe=pd.DataFrame({"A": [1, 2], "B": [3, 4], "C": [5, 6]}), step=1
)
offline_dir = ClearMLTest._get_offline_dir(accelerator)
accelerator.end_training()
metrics = ClearMLTest._get_metrics(offline_dir)
self.assertEqual(len(metrics), 1)
self.assertEqual(metrics[0]["metric"], "from df")
plot = json.loads(metrics[0]["plot_str"])
self.assertCountEqual(plot["data"][0]["header"]["values"], [["A"], ["B"], ["C"]])
self.assertCountEqual(plot["data"][0]["cells"]["values"], [[1, 2], [3, 4], [5, 6]])
class MyCustomTracker(GeneralTracker):
"Basic tracker that writes to a csv for testing"
_col_names = [
@ -484,48 +329,3 @@ class CustomTrackerTestCase(unittest.TestCase):
"some_string": "",
}
self.assertDictEqual(data, truth)
@require_dvclive
@mock.patch("dvclive.live.get_dvc_repo", return_value=None)
class DVCLiveTrackingTest(unittest.TestCase):
def test_init_trackers(self, mock_repo):
project_name = "test_project_with_config"
with tempfile.TemporaryDirectory() as dirpath:
accelerator = Accelerator(log_with="dvclive")
config = {
"num_iterations": 12,
"learning_rate": 1e-2,
"some_boolean": False,
"some_string": "some_value",
}
init_kwargs = {"dvclive": {"dir": dirpath, "save_dvc_exp": False, "dvcyaml": None}}
accelerator.init_trackers(project_name, config, init_kwargs)
accelerator.end_training()
live = accelerator.trackers[0].live
params = load_yaml(live.params_file)
assert params == config
def test_log(self, mock_repo):
project_name = "test_project_with_log"
with tempfile.TemporaryDirectory() as dirpath:
accelerator = Accelerator(log_with="dvclive", project_dir=dirpath)
init_kwargs = {"dvclive": {"dir": dirpath, "save_dvc_exp": False, "dvcyaml": None}}
accelerator.init_trackers(project_name, init_kwargs=init_kwargs)
values = {"total_loss": 0.1, "iteration": 1, "my_text": "some_value"}
# Log step 0
accelerator.log(values)
# Log step 1
accelerator.log(values)
# Log step 3 (skip step 2)
accelerator.log(values, step=3)
accelerator.end_training()
live = accelerator.trackers[0].live
logs, latest = parse_metrics(live)
assert latest.pop("step") == 3
assert latest == values
scalars = os.path.join(live.plots_dir, Metric.subfolder)
for val in values.keys():
val_path = os.path.join(scalars, f"{val}.tsv")
steps = [int(row["step"]) for row in logs[val_path]]
assert steps == [0, 1, 3]

View File

@ -14,29 +14,20 @@
import os
import pickle
import tempfile
import unittest
import warnings
from collections import UserDict, namedtuple
from unittest.mock import Mock, patch
import torch
from torch import nn
from accelerate.state import PartialState
from accelerate.test_utils.testing import require_cuda, require_torch_min_version
from accelerate.test_utils.training import RegressionModel
from accelerate.utils import (
CannotPadNestedTensorWarning,
check_os_kernel,
convert_outputs_to_fp32,
extract_model_from_parallel,
find_device,
listify,
pad_across_processes,
patch_environment,
recursively_apply,
save,
send_to_device,
)
@ -45,10 +36,6 @@ ExampleNamedTuple = namedtuple("ExampleNamedTuple", "a b c")
class UtilsTester(unittest.TestCase):
def setUp(self):
# logging requires initialized state
PartialState()
def test_send_to_device(self):
tensor = torch.randn(5, 2)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
@ -186,54 +173,3 @@ class UtilsTester(unittest.TestCase):
self.assertEqual(find_device([1, "a", torch.tensor([1, 2, 3])]), torch.device("cpu"))
self.assertEqual(find_device({"a": 1, "b": torch.tensor([1, 2, 3])}), torch.device("cpu"))
self.assertIsNone(find_device([1, "a"]))
def test_check_os_kernel_no_warning_when_release_gt_min(self):
# min version is 5.5
with patch("platform.uname", return_value=Mock(release="5.15.0-35-generic", system="Linux")):
with warnings.catch_warnings(record=True) as w:
check_os_kernel()
self.assertEqual(len(w), 0)
def test_check_os_kernel_no_warning_when_not_linux(self):
# system must be Linux
with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Darwin")):
with warnings.catch_warnings(record=True) as w:
check_os_kernel()
self.assertEqual(len(w), 0)
def test_check_os_kernel_warning_when_release_lt_min(self):
# min version is 5.5
with patch("platform.uname", return_value=Mock(release="5.4.0-35-generic", system="Linux")):
with self.assertLogs() as ctx:
check_os_kernel()
self.assertEqual(len(ctx.records), 1)
self.assertEqual(ctx.records[0].levelname, "WARNING")
self.assertIn("5.4.0", ctx.records[0].msg)
self.assertIn("5.5.0", ctx.records[0].msg)
def test_save_safetensor_shared_memory(self):
class Model(nn.Module):
def __init__(self):
super().__init__()
self.a = nn.Linear(100, 100)
self.b = self.a
def forward(self, x):
return self.b(self.a(x))
model = Model()
with tempfile.TemporaryDirectory() as tmp_dir:
save_path = os.path.join(tmp_dir, "model.safetensors")
with self.assertLogs(level="WARNING") as log:
save(model.state_dict(), save_path, safe_serialization=True)
self.assertEqual(len(log.records), 1)
self.assertIn("Removed shared tensor", log.output[0])
@require_torch_min_version(version="1.12")
def test_pad_across_processes(self):
from torch.nested import nested_tensor
nt = nested_tensor([[1, 2, 3], [1], [1, 2]])
with self.assertWarns(CannotPadNestedTensorWarning):
nt2 = pad_across_processes(nt)
self.assertIs(nt, nt2)

View File

@ -17,7 +17,6 @@ https://github.com/allenai/allennlp.
"""
import os
from datetime import datetime as dt
from datetime import timezone
from github import Github
@ -37,7 +36,7 @@ def main():
for issue in open_issues:
comments = sorted([comment for comment in issue.get_comments()], key=lambda i: i.created_at, reverse=True)
last_comment = comments[0] if len(comments) > 0 else None
current_time = dt.now(timezone.utc)
current_time = dt.utcnow()
days_since_updated = (current_time - issue.updated_at).days
days_since_creation = (current_time - issue.created_at).days
if (