Compare commits

..

1 Commits

Author SHA1 Message Date
4e2c5117d7 Release: v0.14.0 2022-11-08 14:21:45 -05:00
131 changed files with 2349 additions and 8223 deletions

View File

@ -15,14 +15,10 @@
"remoteEnv": {
"PYTHONPATH": "${containerEnv:PATH}:${containerWorkspaceFolder}"
},
"customizations": {
"vscode": {
"extensions": [
// Ensure we have IntelliSense in VSCode when running inside container
"ms-python.python"
]
}
},
"extensions": [
// Ensure we have IntelliSense in VSCode when running inside container
"ms-python.python"
],
"workspaceFolder": "/workspaces/accelerate",
// Need git for VSCode to color code modifications. Only runs when building environment.
"onCreateCommand": "apt-get update && apt-get install -y git && pip install -e '.[dev]'"

View File

@ -55,3 +55,4 @@ body:
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."
render: Shell

View File

@ -9,8 +9,11 @@ concurrency:
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@use_hf_hub
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: accelerate
secrets:
token: ${{ secrets.HF_DOC_PUSH }}
comment_bot_token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@ -7,7 +7,10 @@ on:
jobs:
delete:
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@main
uses: huggingface/doc-builder/.github/workflows/delete_doc_comment.yml@use_hf_hub
with:
pr_number: ${{ github.event.number }}
package: accelerate
secrets:
token: ${{ secrets.HF_DOC_PUSH }}
comment_bot_token: ${{ secrets.HUGGINGFACE_PUSH }}

View File

@ -8,15 +8,12 @@ on:
env:
RUN_SLOW: "yes"
IS_GITHUB_CI: "1"
SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
jobs:
run_all_tests_single_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/accelerate-gpu:latest
options: --gpus all --shm-size "16gb"
@ -46,14 +43,12 @@ jobs:
- name: Generate Report
if: always()
run: |
pip install slack_sdk
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_all_tests_multi_gpu:
runs-on: [self-hosted, docker-gpu, multi-gpu]
env:
CUDA_VISIBLE_DEVICES: "0,1"
TEST_TYPE: "multi_gpu"
container:
image: huggingface/accelerate-gpu:latest
options: --gpus all --shm-size "16gb"
@ -90,5 +85,4 @@ jobs:
- name: Generate Report
if: always()
run: |
pip install slack_sdk
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@ -26,7 +26,7 @@ jobs:
source activate accelerate
git config --global --add safe.directory '*'
git fetch && git checkout ${{ github.sha }}
pip install -e .[testing,test_trackers] -U
pip install -e .[testing,test_trackers]
pip install pytest-reportlog
- name: Run CLI tests
@ -64,7 +64,7 @@ jobs:
source activate accelerate
git config --global --add safe.directory '*'
git fetch && git checkout ${{ github.sha }}
pip install -e .[testing,test_trackers] -U
pip install -e .[testing,test_trackers]
pip install pytest-reportlog
- name: Run CLI tests

5
.gitignore vendored
View File

@ -138,7 +138,4 @@ dmypy.json
.DS_Store
# More test things
wandb
# ruff
.ruff_cache
wandb

View File

@ -152,7 +152,7 @@ Follow these steps to start contributing:
$ make test
```
`accelerate` relies on `black` and `ruff` to format its source code
`accelerate` relies on `black` and `isort` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
@ -165,7 +165,7 @@ Follow these steps to start contributing:
$ make style
```
`accelerate` also uses a few custom scripts to check for coding mistakes. Quality
`accelerate` also uses `flake8` and a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
```bash

View File

@ -8,19 +8,20 @@ extra_quality_checks:
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_repo.py
doc-builder style src/accelerate docs/source --max_len 119
python utils/style_doc.py src/accelerate docs/source --max_len 119
# this target runs checks on all files
quality:
black --check $(check_dirs)
ruff $(check_dirs)
doc-builder style src/accelerate docs/source --max_len 119 --check_only
isort --check-only $(check_dirs)
flake8 $(check_dirs)
python utils/style_doc.py src/accelerate docs/source --max_len 119 --check_only
# Format source code automatically and check is there are any problems left that need manual fixing
style:
black $(check_dirs)
ruff $(check_dirs) --fix
doc-builder style src/accelerate docs/source --max_len 119
isort $(check_dirs)
python utils/style_doc.py src/accelerate docs/source --max_len 119
# Run tests for the library
test:

View File

@ -16,7 +16,7 @@ limitations under the License.
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/accelerate/main/docs/source/imgs/accelerate_logo.png" width="400"/>
<img src="docs/source/imgs/accelerate_logo.png" width="400"/>
<br>
<p>
@ -136,7 +136,7 @@ Want to learn more? Check out the [documentation](https://huggingface.co/docs/ac
## Launching script
🤗 Accelerate also provides an optional CLI tool that allows you to quickly configure and test your training environment before launching the scripts. No need to remember how to use `torch.distributed.run` or to write a specific launcher for TPU training!
🤗 Accelerate also provides an optional CLI tool that allows you to quickly configure and test your training environment before launching the scripts. No need to remember how to use `torch.distributed.launch` or to write a specific launcher for TPU training!
On your machine(s) just run:
```bash
@ -155,7 +155,7 @@ For instance, here is how you would run the GLUE example on the MRPC task (from
accelerate launch examples/nlp_example.py
```
This CLI tool is **optional**, and you can still use `python my_script.py` or `python -m torchrun my_script.py` at your convenance.
This CLI tool is **optional**, and you can still use `python my_script.py` or `python -m torch.distributed.launch my_script.py` at your convenance.
## Launching multi-CPU run using MPI
@ -171,12 +171,12 @@ mpirun -np 2 python examples/nlp_example.py
🤗 Accelerate supports training on single/multiple GPUs using DeepSpeed. To use it, you don't need to change anything in your training code; you can set everything using just `accelerate config`. However, if you desire to tweak your DeepSpeed related args from your python script, we provide you the `DeepSpeedPlugin`.
```python
from accelerate import Accelerator, DeepSpeedPlugin
from accelerator import Accelerator, DeepSpeedPlugin
# deepspeed needs to know your gradient accumulation steps before hand, so don't forget to pass it
# Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed
deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=2)
accelerator = Accelerator(mixed_precision='fp16', deepspeed_plugin=deepspeed_plugin)
accelerator = Accelerator(fp16=True, deepspeed_plugin=deepspeed_plugin)
# How to save your 🤗 Transformer?
accelerator.wait_for_everyone()
@ -208,17 +208,13 @@ You shouldn't use 🤗 Accelerate if you don't want to write a training loop you
## Frameworks using 🤗 Accelerate
If you like the simplicity of 🤗 Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of 🤗 Accelerate are listed below:
If you like the simplicity of 🤗 Accelerate but would prefer a higher-level abstraction around your training loop, some frameworks that are built on top of 🤗 Accelerate are listed below:
* [Animus](https://github.com/Scitator/animus) is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within [IExperiment](https://github.com/Scitator/animus/blob/main/animus/core.py#L76).
* [Catalyst](https://github.com/catalyst-team/catalyst#getting-started) is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a [Runner](https://catalyst-team.github.io/catalyst/api/core.html#runner) to connect all parts of the experiment: hardware backend, data transformations, model train, and inference logic.
* [fastai](https://github.com/fastai/fastai#installing) is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a [Learner](https://docs.fast.ai/learner.html#Learner) to handle the training, fine-tuning, and inference of deep learning algorithms.
* [Finetuner](https://github.com/jina-ai/finetuner) is a service that enables models to create higher-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses.
* [InvokeAI](https://github.com/invoke-ai/InvokeAI) is a creative engine for Stable Diffusion models, offering industry-leading WebUI, terminal usage support, and serves as the foundation for many commercial products.
* [Kornia](https://kornia.readthedocs.io/en/latest/get-started/introduction.html) is a differentiable library that allows classical computer vision to be integrated into deep learning models. Kornia provides a [Trainer](https://kornia.readthedocs.io/en/latest/x.html#kornia.x.Trainer) with the specific purpose to train and fine-tune the supported deep learning algorithms within the library.
* [Open Assistant](https://projects.laion.ai/Open-Assistant/) is a chat-based assistant that understands tasks, can interact with their party systems, and retrieve information dynamically to do so.
* [pytorch-accelerated](https://github.com/Chris-hughes10/pytorch-accelerated) is a lightweight training library, with a streamlined feature set centred around a general-purpose [Trainer](https://pytorch-accelerated.readthedocs.io/en/latest/trainer.html), that places a huge emphasis on simplicity and transparency; enabling users to understand exactly what is going on under the hood, but without having to write and maintain the boilerplate themselves!
* [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) is an open-source browser-based easy-to-use interface based on the Gradio library for Stable Diffusion.
## Installation

View File

@ -16,12 +16,12 @@ import argparse
import time
import torch
import transformers
from accelerate.utils import compute_module_sizes
from measures_util import end_measure, log_measures, start_measure
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from accelerate.utils import compute_module_sizes
DEFAULT_MODELS = {
"gpt-j-6b": {"is_causal": True, "model": "sgugger/sharded-gpt-j-6B", "tokenizer": "EleutherAI/gpt-j-6B"},

View File

@ -2,9 +2,10 @@ import gc
import threading
import time
import psutil
import torch
import psutil
class PeakCPUMemory:
def __init__(self):

View File

@ -4,7 +4,7 @@
# Use base conda image to reduce time
FROM continuumio/miniconda3:latest AS compile-image
# Specify py version
ENV PYTHON_VERSION=3.8
ENV PYTHON_VERSION=3.7.3
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
@ -23,9 +23,7 @@ SHELL ["/bin/bash", "-c"]
RUN source activate accelerate && \
python3 -m pip install --no-cache-dir \
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers] \
--extra-index-url https://download.pytorch.org/whl/cu117
RUN python3 -m pip install --no-cache-dir bitsandbytes
--extra-index-url https://download.pytorch.org/whl/cu113
# Stage 2
FROM nvidia/cuda:11.2.2-cudnn8-devel-ubuntu20.04 AS build-image

View File

@ -1,267 +0,0 @@
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
pip install -e ".[docs]"
```
Then you need to install our special tool that builds the documentation:
```bash
pip install git+https://github.com/huggingface/doc-builder
```
---
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look before committing for instance). You don't have to commit the built documentation.
---
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
doc-builder build accelerate docs/source/ --build_dir ~/tmp/test-build
```
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview {package_name} {path_to_docs}
```
For example:
```bash
doc-builder preview accelerate docs/source/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
## Adding a new element to the navigation bar
Accepted files are Markdown (.md or .mdx).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/accelerate/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
```
Use the relative style to link to the new file so that the versioned docs continue to work.
## Writing Documentation - Specification
The `huggingface/accelerate` documentation follows the
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings,
although we can write them directly in Markdown.
### Adding a new tutorial
Adding a new tutorial or section is done in two steps:
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or
four.
### Writing source documentation
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None, or any strings should usually be put in `code`.
When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
If you want to create a link to some internal class or function, you need to
provide its path. For instance: \[\`utils.gather\`\]. This will be converted into a link with
`utils.gather` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~utils.gather\`\] will generate a link with `gather` in the description.
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
#### Defining arguments in a method
Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
description:
```
Args:
n_layers (`int`): The number of layers of the model.
```
If the description is too long to fit in one line (more than 119 characters in total), another indentation is necessary
before writing the description after the argument.
Finally, to maintain uniformity if any *one* description is too long to fit on one line, the
rest of the parameters should follow suit and have an indention before their description.
Here's an example showcasing everything so far:
```
Args:
gradient_accumulation_steps (`int`, *optional*, default to 1):
The number of steps that should pass before gradients are accumulated. A number > 1 should be combined with `Accelerator.accumulate`.
cpu (`bool`, *optional*):
Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force the execution on one process only.
```
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
following signature:
```
def my_function(x: str = None, a: float = 1):
```
then its documentation should look like this:
```
Args:
x (`str`, *optional*):
This argument controls ... and has a description longer than 119 chars.
a (`float`, *optional*, defaults to 1):
This argument is used to ... and has a description longer than 119 chars.
```
Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
however write as many lines as you want in the indented description (see the example above with `input_ids`).
#### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
```python
# first line of code
# second line
# etc
```
````
#### Writing a return block
The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation.
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
building the return.
Here's an example of a single value return:
```
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:
```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
## Styling the docstring
We have an automatic script running with the `make style` comment that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.
## Writing documentation examples
The syntax for Example docstrings can look as follows:
```
Example:
```python
>>> import time
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
>>> if accelerator.is_main_process:
... time.sleep(2)
>>> else:
... print("I'm waiting for the main process to finish its sleep...")
>>> accelerator.wait_for_everyone()
>>> # Should print on every process at the same time
>>> print("Everyone is here")
```
```
The docstring should give a minimal, clear example of how the respective function
is to be used in inference and also include the expected (ideally sensible)
output.
Often, readers will try out the example before even going through the function
or class definitions. Therefore, it is of utmost importance that the example
works as expected.

View File

@ -17,40 +17,36 @@
title: Launching distributed training from Jupyter Notebooks
title: Tutorials
- sections:
- local: usage_guides/explore
title: Start Here!
- local: usage_guides/training_zoo
title: Example Zoo
- local: usage_guides/big_modeling
title: How perform inference on large models with small resources
- local: usage_guides/gradient_accumulation
title: Performing gradient accumulation
- local: usage_guides/fsdp
title: Fully Sharded Data Parallelism
- local: usage_guides/checkpoint
title: Saving and loading training states
- local: usage_guides/tracking
title: Using experiment trackers
- local: usage_guides/memory
title: How to avoid CUDA Out-of-Memory
- local: usage_guides/mps
title: How to use Apple Silicon M1 GPUs
- local: usage_guides/deepspeed
title: How to use DeepSpeed
- local: usage_guides/fsdp
title: How to use Fully Sharded Data Parallelism
- local: usage_guides/tracking
title: Using experiment trackers
- local: usage_guides/big_modeling
title: How to use large models with small resources
- local: usage_guides/memory
title: How to avoid CUDA Out-of-Memory
- local: usage_guides/sagemaker
title: Using 🤗 Accelerate on SageMaker
- local: usage_guides/mps
title: How to use Apple Silicon M1 GPUs
- local: usage_guides/megatron_lm
title: How to use Megatron-LM
- local: usage_guides/sagemaker
title: How to use 🤗 Accelerate with SageMaker
- local: usage_guides/ipex
title: How to use 🤗 Accelerate with Intel® Extension for PyTorch for cpu
- local: usage_guides/training_zoo
title: 🤗 Accelerate Example Zoo
title: How-To Guides
- sections:
- local: concept_guides/performance
title: Comparing performance across distributed setups
- local: concept_guides/deferring_execution
title: Executing and deferring jobs
- local: concept_guides/gradient_synchronization
title: Gradient synchronization
- local: concept_guides/deferring_execution
title: Executing and deferring jobs
- local: concept_guides/training_tpu
title: TPU best practices
title: Concepts and fundamentals

View File

@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Launching Multi-GPU Training from a Jupyter Environment
# Launching Multi-Node Training from a Jupyter Environment
This tutorial teaches you how to fine tune a computer vision model with 🤗 Accelerate from a Jupyter Notebook on a distributed system.
You will also learn how to setup a few requirements needed for ensuring your environment is configured properly, your data has been prepared properly, and finally how to launch training.
@ -35,7 +35,7 @@ The following code will restart Jupyter after writing the configuration, as CUDA
<Tip warning={true}>
CUDA can't be initialized more than once on a multi-GPU system. It's fine to debug in the notebook and have calls to CUDA, but in order to finally train a full cleanup and restart will need to be performed.
CUDA can't be initialized more than once on a multi-node system. It's fine to debug in the notebook and have calls to CUDA, but in order to finally train a full cleanup and restart will need to be performed.
</Tip>
@ -153,7 +153,7 @@ def get_dataloaders(batch_size: int = 64):
random_perm = np.random.permutation(len(fnames))
cut = int(0.8 * len(fnames))
train_split = random_perm[:cut]
eval_split = random_perm[cut:]
eval_split = random_perm[:cut]
# For training a simple RandomResizedCrop will be used
train_tfm = Compose([RandomResizedCrop((224, 224), scale=(0.5, 1.0)), ToTensor()])
@ -337,7 +337,7 @@ def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64):
mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None]
std = torch.tensor(model.default_cfg["std"])[None, :, None, None]
# To make these constants available on the active device, set it to the accelerator device
# To make this constant available on the active device, set it to the accelerator device
mean = mean.to(accelerator.device)
std = std.to(accelerator.device)
@ -426,4 +426,4 @@ This notebook showed how to perform distributed training from inside of a Jupyte
- Make sure to save any code that use CUDA (or CUDA imports) for the function passed to [`notebook_launcher`]
- Set the `num_processes` to be the number of devices used for training (such as number of GPUs, CPUs, TPUs, etc)
- If using the TPU, declare your model outside the training loop function
- If using the TPU, declare your model outside the training loop function

View File

@ -116,38 +116,4 @@ for batch in dataloader:
accelerator.backward(loss)
```
As a result, you should either use *`accelerator.accumulate` or `accelerator.no_sync`* when it comes to API choice.
## Just how much of a slowdown is there, and easy mistakes you can make
To setup a realistic example, consider the following setup:
* Two single-GPU T4 nodes and one node with two GPUs
* Each GPU is a T4, and are hosted on GCP
* The script used is a modification of the [NLP Example](https://github.com/muellerzr/timing_experiments/blob/main/baseline.py) script
* Batch size per GPU is 16, and gradients are accumulated every 4 steps
All scripts are available in [this repository](https://github.com/muellerzr/timing_experiments).
If not careful about gradient synchronization and GPU communication, a *large* amount of time can be wasted
from when these GPUs communicate to each other during unnessisary periods.
By how much?
Reference:
- Baseline: uses no synchronization practices discussed here
- `no_sync` improperly: `no_sync` only around the `backward` call, not the `forward`
- `no_sync`: using the `no_sync` pattern properly
- `accumulate`: using [`~Accelerator.accumulate`] properly
Below are the average seconds per batch iterating over 29 batches of data for each setup on both a single node and on the dual-node setup:
| | Baseline | `no_sync` improperly | `no_sync` | `accumulate`|
| :---------: | :-------: | :------------------: | :-------: | :---------: |
| Multi-Node | 2±0.01s | 2.13±0.08s | **0.91±0.11s** | **0.91±0.11s** |
| Single Node | 0.50±0.01s | 0.50±0.01s | **0.41±0.015s** | **0.41±0.015s** |
As you can see, if you are not careful about how you setup your gradient synchronization, you can get upwards of more than a 2x slowdown during training!
If you are worried about making sure everything is done properly, we highly recommend utilizing the [`~Accelerator.accumulate`] function and passing in
`gradient_accumulation_steps` to the [`Accelerator`] object so Accelerate can handle this for you.
As a result, you should either use *`accelerator.accumulate` or `accelerator.no_sync`* when it comes to API choice.

View File

@ -29,7 +29,7 @@ There's three reasons for this that this tutorial will cover:
While this issue has not come up as much, make sure to use [`utils.set_seed`] to fully set the seed in all distributed cases so training will be reproducable:
```python
from accelerate.utils import set_seed
from accelerate import set_seed
set_seed(42)
```
@ -89,12 +89,3 @@ learning_rate *= accelerator.num_processes
optimizer = AdamW(params=model.parameters(), lr=learning_rate)
```
You will also find that `accelerate` will step the learning rate based on the number of processes being trained on. This is because
of the observed batch size noted earlier. So in a case of 2 GPUs, the learning rate will be stepped twice as often as a single GPU
to account for the batch size being twice as large (if no changes to the batch size on the single GPU instance are made).
## Gradient Accumulation and Mixed Precision
When using gradient accumulation and mixed precision, due to how gradient averaging works (accumulation) and the precision loss (mixed precision),
some degredation in performance is expected. This will be explicitly seen when comparing the batch-wise loss between different compute
setups. However, the overall loss, metric, and general performance at the end of training should be _roughly_ the same.

View File

@ -55,7 +55,7 @@ accelerate launch {my_script.py}
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div>
<p class="text-gray-700">Learn the basics and become familiar with using 🤗 Accelerate. Start here if you are using 🤗 Accelerate for the first time!</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./usage_guides/explore"
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./usage_guides/gradient_accumulation"
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div>
<p class="text-gray-700">Practical guides to help you achieve a specific goal. Take a look at these guides to learn how to use 🤗 Accelerate to solve real-world problems.</p>
</a>

View File

@ -13,7 +13,7 @@ specific language governing permissions and limitations under the License.
# Accelerator
The [`Accelerator`] is the main class provided by 🤗 Accelerate.
It serves at the main entry point for the API.
It serves at the main entrypoint for the API.
## Quick adaptation of your code
@ -45,7 +45,7 @@ you should search for and replace by the corresponding methods of your `accelera
### Printing
`print` statements should be replaced by [`~Accelerator.print`] to be printed once per process:
`print` statements should be replaced by [`~Accelerator.print`] to be printed once per process
```diff
- print("My thing I want to print!")
@ -113,7 +113,7 @@ def do_my_thing():
### Synchronicity control
Use [`~Accelerator.wait_for_everyone`] to make sure all processes join that point before continuing. (Useful before a model save for instance).
Use [`~Accelerator.wait_for_everyone`] to make sure all processes join that point before continuing. (Useful before a model save for instance)
### Saving and loading
@ -160,4 +160,4 @@ multi-device training, check if the step should actually be performed, and auto-
## Overall API documentation:
[[autodoc]] Accelerator
[[autodoc]] Accelerator

View File

@ -35,50 +35,6 @@ accelerate config [arguments]
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit
## accelerate config default
**Command**:
`accelerate config default` or `accelerate-config default`
Create a default config file for Accelerate with only a few flags set.
**Usage**:
```bash
accelerate config default [arguments]
```
**Optional Arguments**:
* `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content
of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit
* `--mixed_precision {no,fp16,bf16}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.
## accelerate config update
**Command**:
`accelerate config update` or `accelerate-config update`
Update an existing config file with the latest defaults while maintaining the old configuration.
**Usage**:
```bash
accelerate config update [arguments]
```
**Optional Arguments**:
* `--config_file CONFIG_FILE` (`str`) -- The path to the config file to update. Will default to a file named default_config.yaml in the cache location, which is the content
of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit
## accelerate env
**Command**:
@ -125,8 +81,6 @@ accelerate launch [arguments] {training_script} --{training_script-argument-1} -
* `-m`, `--module` (`bool`) -- Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'.
* `--no_python` (`bool`) -- Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script.
* `--debug` (`bool`) -- Whether to print out the torch.distributed stack trace when something fails.
* `-q`, `--quiet` (`bool`) -- Silence subprocess errors from the launch stack trace to only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations).
The rest of these arguments are configured through `accelerate config` and are read in from the specified `--config_file` (or default configuration) for their
values. They can also be passed in manually.
@ -135,6 +89,7 @@ values. They can also be passed in manually.
* `--cpu` (`bool`) -- Whether or not to force the training on the CPU.
* `--multi_gpu` (`bool`) -- Whether or not this should launch a distributed GPU training.
* `--mps` (`bool`) -- Whether or not this should use MPS-enabled GPU device on MacOS machines.
* `--tpu` (`bool`) -- Whether or not this should launch a TPU training.
**Resource Selection Arguments**:

View File

@ -21,14 +21,4 @@ To utilize this replace cases of `logging` with `accelerate.logging`:
+ logger = get_logger(__name__)
```
## Setting the log level
The log level can be set with the `ACCELERATE_LOG_LEVEL` environment variable or by passing
`log_level` to `get_logger`:
```python
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="INFO")
```
[[autodoc]] logging.get_logger

View File

@ -18,8 +18,6 @@ instances share the same state, which is initialized on the first instantiation.
These classes are immutable and store information about certain configurations or
states.
[[autodoc]] state.PartialState
[[autodoc]] state.AcceleratorState
[[autodoc]] state.GradientState

View File

@ -24,7 +24,3 @@ specific language governing permissions and limitations under the License.
- __init__
[[autodoc]] tracking.CometMLTracker
- __init__
[[autodoc]] tracking.AimTracker
- __init__
[[autodoc]] tracking.MLflowTracker
- __init__

View File

@ -24,8 +24,6 @@ These are basic dataclasses used throughout 🤗 Accelerate and they can be pass
[[autodoc]] utils.PrecisionType
[[autodoc]] utils.ProjectConfiguration
## Data Manipulation and Operations
These include data operations that mimic the same `torch` ops but can be used on distributed processes.
@ -95,10 +93,3 @@ These utilities relate to setting and synchronizing of all the random states.
[[autodoc]] utils.synchronize_rng_state
[[autodoc]] utils.synchronize_rng_states
## PyTorch XLA
These include utilities that are useful while using PyTorch with XLA.
[[autodoc]] utils.install_xla

View File

@ -67,9 +67,9 @@ use `shuffle=True` or any kind of random sampler).
</Tip>
Alternatively, you can use the option `split_batches=True` when creating and initializing your
[`Accelerator`], in which case the batch size will always stay the same, whether you run your
script on 1, 2, 4, or 64 GPUs.
Alternatively, you can use the option `split_batches=True` when creating initializing your
[`Accelerator`], in which case the batch size will always stay the same, whether your run your
script on 1, 2, 4 or 64 GPUs.
You should execute this instruction as soon as all objects for training are created, before starting your actual
training loop.
@ -164,8 +164,9 @@ should be calculated through the [`~Accelerator.gather_for_metrics`] method to a
## Launching your distributed script
You can use the regular commands to launch your distributed training (like `torch.distributed.run` for
PyTorch), they are fully compatible with 🤗 Accelerate.
You can use the regular commands to launch your distributed training (like `torch.distributed.launch` for
PyTorch), they are fully compatible with 🤗 Accelerate. The only caveat here is that 🤗 Accelerate uses the environment
to determine all useful information, so `torch.distributed.launch` should be used with the flag `--use_env`.
🤗 Accelerate also provides a CLI tool that unifies all launchers, so you only have to remember one command. To use it,
just run:
@ -205,7 +206,7 @@ Now that this is done, you can run your script with the following command:
accelerate launch path_to_script.py --args_for_the_script
```
If you stored the config file in a non-default location, you can indicate it to the launcher like this:
If you stored the config file in a non-default location, you can indicate it to the launcher like his:
```bash
accelerate launch --config_file path_to_config.yaml path_to_script.py --args_for_the_script
@ -369,11 +370,7 @@ Note that since all the model parameters are references to tensors, this will lo
## Saving/loading entire states
When training your model, you may want to save the current state of the model, optimizer, random generators, and potentially LR schedulers to be restored in the _same script_.
You can use [`~Accelerator.save_state`] and [`~Accelerator.load_state`] respectively to do so.
To further customize where and how states saved through [`~Accelerator.save_state`] the [`~utils.ProjectConfiguration`] class can be used. For example
if `automatic_checkpoint_naming` is enabled each saved checkpoint will be located then at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`.
You can use [`~Accelerator.save_state`] and [`~Accelerator.load_state`] respectively to do so, just by simply passing in a save location.
If you have registered any other stateful items to be stored through [`~Accelerator.register_for_checkpointing`] they will also be saved and/or loaded.
<Tip>

View File

@ -10,7 +10,7 @@ an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express o
specific language governing permissions and limitations under the License.
-->
# Handling big models for inference
# Handling big models
When loading a pretrained model in PyTorch, the usual workflow looks like this:
@ -102,7 +102,7 @@ Here is how we can use this to load the [GPT-J-6B](https://huggingface.co/Eleuth
git clone https://huggingface.co/sgugger/sharded-gpt-j-6B
cd sharded-gpt-j-6B
git-lfs install
git lfs pull
git pull
```
then we can initialize the model with
@ -118,15 +118,7 @@ with init_empty_weights():
model = AutoModelForCausalLM.from_config(config)
```
Note that loading the model with `from_config` in Transformers does not tie the weights, which may cause issue when
loading a checkpoint that does not contain duplicate keys for the tied weights. So you should tie the weights before
loading the checkpoint.
```py
model.tie_weights()
```
Then load the checkpoint we just downloaded with:
and load the checkpoint we just downloaded with:
```py
from accelerate import load_checkpoint_and_dispatch
@ -299,4 +291,4 @@ We are aware of the current limitations in the API:
- [`load_checkpoint_and_dispatch`] and [`load_checkpoint_in_model`] do not perform any check on the correctness of your state dict compared to your model at the moment (this will be fixed in a future version), so you may get some weird errors if trying to load a checkpoint with mismatched or missing keys.
- The model parallelism used when your model is split on several GPUs is naive and not optimized, meaning that only one GPU works at a given time and the other sits idle.
- When weights are offloaded on the CPU/hard drive, there is no pre-fetching (yet, we will work on this for future versions) which means the weights are put on the GPU when they are needed and not before.
- Hard-drive offloading might be very slow if the hardware you run on does not have fast communication between disk and CPU (like NVMes).
- Hard-drive offloading might be very slow if the hardware you run on does not have fast communication between disk and CPU (like NVMes).

View File

@ -17,31 +17,27 @@ saving and loading the model, optimizer, RNG generators, and the GradScaler. Ins
- Use [`~Accelerator.save_state`] for saving everything mentioned above to a folder location
- Use [`~Accelerator.load_state`] for loading everything stored from an earlier `save_state`
To further customize where and how states saved through [`~Accelerator.save_state`] the [`~utils.ProjectConfiguration`] class can be used. For example
if `automatic_checkpoint_naming` is enabled each saved checkpoint will be located then at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`.
It should be noted that the expectation is that those states come from the same training script, they should not be from two separate scripts.
- By using [`~Accelerator.register_for_checkpointing`], you can register custom objects to be automatically stored or loaded from the two prior functions,
so long as the object has a `state_dict` **and** a `load_state_dict` functionality. This could include objects such as a learning rate scheduler.
Below is a brief example using checkpointing to save and reload a state during training:
```python
from accelerate import Accelerator
import torch
accelerator = Accelerator(project_dir="my/save/path")
accelerator = Accelerator()
my_scheduler = torch.optim.lr_scheduler.StepLR(my_optimizer, step_size=1, gamma=0.99)
my_model, my_optimizer, my_training_dataloader = accelerator.prepare(my_model, my_optimizer, my_training_dataloader)
my_model, my_optimizer, my_training_dataloader = accelerate.prepare(my_model, my_optimizer, my_training_dataloader)
# Register the LR scheduler
accelerator.register_for_checkpointing(my_scheduler)
accelerate.register_for_checkpointing(my_scheduler)
# Save the starting state
accelerator.save_state()
accelerate.save_state("my/save/path")
device = accelerator.device
my_model.to(device)
@ -60,22 +56,5 @@ for epoch in range(num_epochs):
my_scheduler.step()
# Restore previous state
accelerator.load_state("my/save/path/checkpointing/checkpoint_0")
accelerate.load_state("my/save/path")
```
## Restoring the state of the DataLoader
After resuming from a checkpoint, it may also be desireable to resume from a particular point in the active `DataLoader` if
the state was saved during the middle of an epoch. You can use [`~Accelerator.skip_first_batches`] to do so.
```python
from accelerate import Accelerator
accelerator = Accelerator(project_dir="my/save/path")
train_dataloader = accelerator.prepare(train_dataloader)
accelerator.load_state("my_state")
# Assume the checkpoint was saved 100 steps into the epoch
accelerator.skip_first_batches(train_dataloader, 100)
```

View File

@ -395,196 +395,6 @@ We will look at the changes needed in the code when using these.
based on model, dataloaders, dummy optimizer and dummy schedulers provided to `prepare` method.
Only the `auto` fields specified in above examples are handled by `prepare` method and the rest have to be explicitly specified by the user.
**Things to note when using DeepSpeed Config File**
Below is a sample script using `deepspeed_config_file` in different scenarios.
Code `test.py`:
```python
from accelerate import Accelerator
from accelerate.state import AcceleratorState
def main():
accelerator = Accelerator()
accelerator.print(f"{AcceleratorState()}")
if __name__ == "__main__":
main()
```
**Scenario 1**: Manually tampered accelerate config file having `deepspeed_config_file` along with other entries.
1. Content of the `accelerate` config:
```yaml
command_file: null
commands: null
compute_environment: LOCAL_MACHINE
deepspeed_config:
gradient_accumulation_steps: 1
gradient_clipping: 1.0
offload_optimizer_device: 'cpu'
offload_param_device: 'cpu'
zero3_init_flag: true
zero3_save_16bit_model: true
zero_stage: 3
deepspeed_config_file: 'ds_config.json'
distributed_type: DEEPSPEED
downcast_bf16: 'no'
dynamo_backend: 'NO'
fsdp_config: {}
gpu_ids: null
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
megatron_lm_config: {}
num_machines: 1
num_processes: 2
rdzv_backend: static
same_network: true
tpu_name: null
tpu_zone: null
use_cpu: false
```
2. `ds_config.json`:
```json
{
"bf16": {
"enabled": true
},
"zero_optimization": {
"stage": 3,
"stage3_gather_16bit_weights_on_model_save": false,
"offload_optimizer": {
"device": "none"
},
"offload_param": {
"device": "none"
}
},
"gradient_clipping": 1.0,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": 10,
"steps_per_print": 2000000
}
```
3. Output of `accelerate launch test.py`:
```bash
ValueError: When using `deepspeed_config_file`, the following accelerate config variables will be ignored:
['gradient_accumulation_steps', 'gradient_clipping', 'zero_stage', 'offload_optimizer_device', 'offload_param_device',
'zero3_save_16bit_model', 'mixed_precision'].
Please specify them appropriately in the DeepSpeed config file.
If you are using an accelerate config file, remove others config variables mentioned in the above specified list.
The easiest method is to create a new config following the questionnaire via `accelerate config`.
It will only ask for the necessary config variables when using `deepspeed_config_file`.
```
**Scenario 2**: Use the solution of the error to create new accelerate config and check that no ambiguity error is now thrown.
1. Run `accelerate config`:
```bash
$ accelerate config
-------------------------------------------------------------------------------------------------------------------------------
In which compute environment are you running?
This machine
-------------------------------------------------------------------------------------------------------------------------------
Which type of machine are you using?
multi-GPU
How many different machines will you use (use more than 1 for multi-node training)? [1]:
Do you wish to optimize your script with torch dynamo?[yes/NO]:
Do you want to use DeepSpeed? [yes/NO]: yes
Do you want to specify a json file to a DeepSpeed config? [yes/NO]: yes
Please enter the path to the json DeepSpeed config file: ds_config.json
Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: yes
How many GPU(s) should be used for distributed training? [1]:4
accelerate configuration saved at ds_config_sample.yaml
```
2. Content of the `accelerate` config:
```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config:
deepspeed_config_file: ds_config.json
zero3_init_flag: true
distributed_type: DEEPSPEED
downcast_bf16: 'no'
dynamo_backend: 'NO'
fsdp_config: {}
machine_rank: 0
main_training_function: main
megatron_lm_config: {}
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
use_cpu: false
```
3. Output of `accelerate launch test.py`:
```bash
Distributed environment: DEEPSPEED Backend: nccl
Num processes: 4
Process index: 0
Local process index: 0
Device: cuda:0
Mixed precision type: bf16
ds_config: {'bf16': {'enabled': True}, 'zero_optimization': {'stage': 3, 'stage3_gather_16bit_weights_on_model_save': False, 'offload_optimizer': {'device': 'none'}, 'offload_param': {'device': 'none'}}, 'gradient_clipping': 1.0, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'gradient_accumulation_steps': 10, 'steps_per_print': inf, 'fp16': {'enabled': False}}
```
**Scenario 3**: Setting the `accelerate launch` command arguments related to DeepSpeed as `"auto"` in the DeepSpeed` configuration file and check that things work as expected.
1. New `ds_config.json` with `"auto"` for the `accelerate launch` DeepSpeed command arguments:
```json
{
"bf16": {
"enabled": "auto"
},
"zero_optimization": {
"stage": "auto",
"stage3_gather_16bit_weights_on_model_save": "auto",
"offload_optimizer": {
"device": "auto"
},
"offload_param": {
"device": "auto"
}
},
"gradient_clipping": "auto",
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"steps_per_print": 2000000
}
```
2. Output of `accelerate launch --mixed_precision="fp16" --zero_stage=3 --gradient_accumulation_steps=5 --gradient_clipping=1.0 --offload_param_device="cpu" --offload_optimizer_device="nvme" --zero3_save_16bit_model="true" test.py`:
```bash
Distributed environment: DEEPSPEED Backend: nccl
Num processes: 4
Process index: 0
Local process index: 0
Device: cuda:0
Mixed precision type: fp16
ds_config: {'bf16': {'enabled': False}, 'zero_optimization': {'stage': 3, 'stage3_gather_16bit_weights_on_model_save': True, 'offload_optimizer': {'device': 'nvme'}, 'offload_param': {'device': 'cpu'}}, 'gradient_clipping': 1.0, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'gradient_accumulation_steps': 5, 'steps_per_print': inf, 'fp16': {'enabled': True, 'auto_cast': True}}
```
**Note**: Remaining `"auto"` values are handled in `accelerator.prepare()` call as explained in point 2 of
`Important code changes when using DeepSpeed Config File`.
## Saving and loading
1. Saving and loading of models is unchanged for ZeRO Stage-1 and Stage-2.

View File

@ -1,48 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Learning how to incorporate 🤗 Accelerate features quickly!
Please use the interactive tool below to help you get started with learning about a particular
feature of 🤗 Accelerate and how to utilize it! It will provide you with a code diff, an explaination
towards what is going on, as well as provide you with some useful links to explore more within
the documentation!
Most code examples start from the following python code before integrating 🤗 Accelerate in some way:
```python
for batch in dataloader:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
scheduler.step()
```
<div class="block dark:hidden">
<iframe
src="https://muellerzr-accelerate-examples.hf.space?__theme=light"
width="850"
height="1600"
></iframe>
</div>
<div class="hidden dark:block">
<iframe
src="https://muellerzr-accelerate-examples.hf.space?__theme=dark"
width="850"
height="1600"
></iframe>
</div>

View File

@ -67,43 +67,12 @@ Currently, `Accelerate` supports the following config through the CLI:
`Sharding Strategy`: [1] FULL_SHARD (shards optimizer states, gradients and parameters), [2] SHARD_GRAD_OP (shards optimizer states and gradients), [3] NO_SHARD
`Offload Params`: Decides Whether to offload parameters and gradients to CPU
`Auto Wrap Policy`: [1] TRANSFORMER_BASED_WRAP, [2] SIZE_BASED_WRAP, [3] NO_WRAP
`Transformer Layer Class to Wrap`: When using `TRANSFORMER_BASED_WRAP`, user specifies comma-separated string of transformer layer class names (case-sensitive) to wrap ,e.g,
`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput`...
`Transformer Layer Class to Wrap`: When using `TRANSFORMER_BASED_WRAP`, user specifies transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block`...
`Min Num Params`: minimum number of parameters when using `SIZE_BASED_WRAP`
`Backward Prefetch`: [1] BACKWARD_PRE, [2] BACKWARD_POST, [3] NO_PREFETCH
`State Dict Type`: [1] FULL_STATE_DICT, [2] LOCAL_STATE_DICT, [3] SHARDED_STATE_DICT
```
## Saving and loading
1. When using transformers `save_pretrained`, pass `state_dict=accelerator.get_state_dict(model)` to save the model state dict.
Below is an example:
```diff
unwrapped_model.save_pretrained(
args.output_dir,
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
+ state_dict=accelerator.get_state_dict(model),
)
```
### State Dict
`accelerator.get_state_dict` will call the underlying `model.state_dict` implementation. With a model wrapped by FSDP, the default behavior of `state_dict` is to gather all of the state in the rank 0 device. This can cause CUDA out of memory errors if the parameters don't fit on a single GPU.
To avoid this, PyTorch provides a context manager that adjusts the behavior of `state_dict`. To offload some of the state dict onto CPU, you can use the following code:
```
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP, StateDictType, FullStateDictConfig
full_state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
with FSDP.state_dict_type(unwrapped_model, StateDictType.FULL_STATE_DICT, full_state_dict_config):
state = accelerator.get_state_dict(unwrapped_model)
```
You can then pass `state` into the `save_pretrained` method. There are several modes for `StateDictType` and `FullStateDictConfig` that you can use to control the behavior of `state_dict`. For more information, see the [PyTorch documentation](https://pytorch.org/docs/stable/fsdp.html).
## A few caveats to be aware of
- PyTorch FSDP auto wraps sub-modules, flattens the parameters and shards the parameters in place.

View File

@ -72,7 +72,7 @@ First the code shown earlier will be converted to utilize 🤗 Accelerate withou
<Tip warning={true}>
In its current state, this code is not going to perform gradient accumulation efficiently due to a process called gradient synchronization. Read more about that in the [Concepts tutorial](../concept_guides/gradient_synchronization)!
In its current state, this code is not going to perform gradient accumulation efficiently due to a process called gradient synchronization. Read more about that in the [Concepts tutorial](concept_guides/gradient_synchronization)!
</Tip>
@ -111,13 +111,6 @@ You can remove all the special checks for the step number and the loss adjustmen
As you can see the [`Accelerator`] is able to keep track of the batch number you are on and it will automatically know whether to step through the prepared optimizer and how to adjust the loss.
<Tip>
Typically with gradient accumulation, you would need to adjust the number of steps to reflect the change in total batches you are
training on. 🤗 Accelerate will automatically do this for you, so long as you pass `adjust_scheduler_to_accumulation` to the [`Accelerator`] object's `__init__`.
</Tip>
## The finished code
Below is the finished implementation for performing gradient accumulation with 🤗 Accelerate
@ -134,4 +127,4 @@ for batch in training_dataloader:
optimizer.zero_grad()
```
To learn more about what magic this wraps around, read the [Gradient Synchronization concept guide](../concept_guides/gradient_synchronization)
To learn more about what magic this wraps around, read the [Gradient Synchronization concept guide](/concept_guides/gradient_synchronization)

View File

@ -1,171 +0,0 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# Intel® Extension for PyTorch
[IPEX](https://github.com/intel/intel-extension-for-pytorch) is optimized for CPUs with AVX-512 or above, and functionally works for CPUs with only AVX2. So, it is expected to bring performance benefit for Intel CPU generations with AVX-512 or above while CPUs with only AVX2 (e.g., AMD CPUs or older Intel CPUs) might result in a better performance under IPEX, but not guaranteed. IPEX provides performance optimizations for CPU training with both Float32 and BFloat16. The usage of BFloat16 is the main focus of the following sections.
Low precision data type BFloat16 has been natively supported on the 3rd Generation Xeon® Scalable Processors (aka Cooper Lake) with AVX512 instruction set and will be supported on the next generation of Intel® Xeon® Scalable Processors with Intel® Advanced Matrix Extensions (Intel® AMX) instruction set with further boosted performance. The Auto Mixed Precision for CPU backend has been enabled since PyTorch-1.10. At the same time, the support of Auto Mixed Precision with BFloat16 for CPU and BFloat16 optimization of operators has been massively enabled in Intel® Extension for PyTorch, and partially upstreamed to PyTorch master branch. Users can get better performance and user experience with IPEX Auto Mixed Precision.
## IPEX installation:
IPEX release is following PyTorch, to install via pip:
| PyTorch Version | IPEX version |
| :---------------: | :----------: |
| 2.0 | 2.0.0 |
| 1.13 | 1.13.0 |
| 1.12 | 1.12.300 |
| 1.11 | 1.11.200 |
| 1.10 | 1.10.100 |
```
pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu
```
Check more approaches for [IPEX installation](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html).
## How It Works For Training optimization in CPU
🤗 Accelerate has integrated [IPEX](https://github.com/intel/intel-extension-for-pytorch), all you need to do is enabling it through the config.
**Scenario 1**: Acceleration of No distributed CPU training
Run <u>accelerate config</u> on your machine:
```bash
$ accelerate config
-----------------------------------------------------------------------------------------------------------------------------------------------------------
In which compute environment are you running?
This machine
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Which type of machine are you using?
No distributed training
Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:yes
Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
Do you want to use DeepSpeed? [yes/NO]: NO
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Do you wish to use FP16 or BF16 (mixed precision)?
bf16
```
This will generate a config file that will be used automatically to properly set the
default options when doing
```bash
accelerate launch my_script.py --args_to_my_script
```
For instance, here is how you would run the NLP example `examples/nlp_example.py` (from the root of the repo) with IPEX enabled.
default_config.yaml that is generated after `accelerate config`
```bash
compute_environment: LOCAL_MACHINE
distributed_type: 'NO'
downcast_bf16: 'no'
ipex_config:
ipex_enabled: true
machine_rank: 0
main_training_function: main
mixed_precision: bf16
num_machines: 1
num_processes: 1
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: true
```
```bash
accelerate launch examples/nlp_example.py
```
**Scenario 2**: Acceleration of distributed CPU training
we use Intel oneCCL for communication, combined with Intel® MPI library to deliver flexible, efficient, scalable cluster messaging on Intel® architecture. you could refer the [here](https://huggingface.co/docs/transformers/perf_train_cpu_many) for the installation guide
Run <u>accelerate config</u> on your machine(node0):
```bash
$ accelerate config
-----------------------------------------------------------------------------------------------------------------------------------------------------------
In which compute environment are you running?
This machine
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Which type of machine are you using?
multi-CPU
How many different machines will you use (use more than 1 for multi-node training)? [1]: 4
-----------------------------------------------------------------------------------------------------------------------------------------------------------
What is the rank of this machine?
0
What is the IP address of the machine that will host the main process? 36.112.23.24
What is the port you will use to communicate with the main process? 29500
Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: yes
Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:yes
Do you wish to optimize your script with torch dynamo?[yes/NO]:NO
How many CPU(s) should be used for distributed training? [1]:16
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Do you wish to use FP16 or BF16 (mixed precision)?
bf16
```
For instance, here is how you would run the NLP example `examples/nlp_example.py` (from the root of the repo) with IPEX enabled for distributed CPU training.
default_config.yaml that is generated after `accelerate config`
```bash
compute_environment: LOCAL_MACHINE
distributed_type: MULTI_CPU
downcast_bf16: 'no'
ipex_config:
ipex_enabled: true
machine_rank: 0
main_process_ip: 36.112.23.24
main_process_port: 29500
main_training_function: main
mixed_precision: bf16
num_machines: 4
num_processes: 16
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: true
```
Set following env and using intel MPI to launch the training
In node0, you need to create a configuration file which contains the IP addresses of each node (for example hostfile) and pass that configuration file path as an argument.
```bash
$ cat hostfile
xxx.xxx.xxx.xxx #node0 ip
xxx.xxx.xxx.xxx #node1 ip
xxx.xxx.xxx.xxx #node2 ip
xxx.xxx.xxx.xxx #node3 ip
```
Now, run the following command in node0 and **16DDP** will be enabled in node0,node1,node2,node3 with BF16 mixed precision:
```bash
oneccl_bindings_for_pytorch_path=$(python -c "from oneccl_bindings_for_pytorch import cwd; print(cwd)")
source $oneccl_bindings_for_pytorch_path/env/setvars.sh
export CCL_WORKER_COUNT=1
export MASTER_ADDR=xxx.xxx.xxx.xxx #node0 ip
export CCL_ATL_TRANSPORT=ofi
mpirun -f hostfile -n 16 -ppn 4 accelerate launch examples/nlp_example.py
```
## Related Resources
- [Project's github](https://github.com/intel/intel-extension-for-pytorch)
- [API docs](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/api_doc.html)
- [Tuning guide](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/performance_tuning/tuning_guide.html)
- [Blogs & Publications](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/blogs_publications.html)

View File

@ -115,7 +115,7 @@ An example of thr corresponding questions for using Megatron-LM features is show
```bash
:~$ accelerate config --config_file "megatron_gpt_config.yaml"
In which compute environment are you running? ([0] This machine, [1] AWS (Amazon SageMaker)): 0
Which type of machine are you using? ([0] No distributed training, [1] multi-CPU, [2] multi-GPU, [3] TPU): 2
Which type of machine are you using? ([0] No distributed training, [1] multi-CPU, [2] multi-GPU, [3] TPU [4] MPS): 2
How many different machines will you use (use more than 1 for multi-node training)? [1]:
Do you want to use DeepSpeed? [yes/NO]:
Do you want to use FullyShardedDataParallel? [yes/NO]:
@ -290,7 +290,6 @@ You will implement the `accelerate.utils.AbstractTrainStep` or inherit from thei
```python
from accelerate.utils import MegatronLMDummyScheduler, GPTTrainStep, avg_losses_across_data_parallel_group
# Custom loss function for the Megatron model
class GPTTrainStepWithCustomLoss(GPTTrainStep):
def __init__(self, megatron_args, **kwargs):

View File

@ -31,10 +31,41 @@ please follow this nice medium article [GPU-Acceleration Comes to PyTorch on M1
## How it works out of the box
It is enabled by default on MacOs machines with MPS enabled Apple Silicon GPUs.
To disable it, pass `--cpu` flag to `accelerate launch` command or answer the corresponding question when answering the `accelerate config` questionnaire.
You can directly run the following script to test it out on MPS enabled Apple Silicon machines:
On your machine(s) just run:
```bash
accelerate config
```
and answer the questions asked, specifically choose `MPS` for the query:
```
Which type of machine are you using?.
```
This will generate a config file that will be used automatically to properly set
the default options when doing `accelerate launch`, such as the one shown below:
```bash
compute_environment: LOCAL_MACHINE
deepspeed_config: {}
distributed_type: MPS
downcast_bf16: 'no'
fsdp_config: {}
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
mixed_precision: 'no'
num_machines: 1
num_processes: 1
use_cpu: false
```
After this configuration has been made, here is how you run the CV example
(from the root of the repo) with MPS enabled:
```bash
accelerate launch /examples/cv_example.py --data_dir images
```

View File

@ -160,43 +160,10 @@ use_cpu: false
want to use different/other Python packages you can do this by adding them to the `requirements.txt`. These packages
will be installed before your training script is started.
### Local Training: SageMaker Local mode
### Remote scripts: Use scripts located on Github
The local mode in the SageMaker SDK allows you to run your training script locally inside the HuggingFace DLC (Deep Learning container)
or using your custom container image. This is useful for debugging and testing your training script inside the final container environment.
Local mode uses Docker compose (*Note: Docker Compose V2 is not supported yet*). The SDK will handle the authentication against ECR
to pull the DLC to your local environment. You can emulate CPU (single and multi-instance) and GPU (single instance) SageMaker training jobs.
To use local mode, you need to set your `ec2_instance_type` to `local`.
```yaml
ec2_instance_type: local
```
### Advanced configuration
The configuration allows you to override parameters for the [Estimator](https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html).
These settings have to be applied in the config file and are not part of `accelerate config`. You can control many additional aspects of the training job, e.g. use Spot instances, enable network isolation and many more.
```yaml
additional_args:
# enable network isolation to restrict internet access for containers
enable_network_isolation: True
```
You can find all available configuration [here](https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html).
*undecided if feature is needed. Contact us if you would like this feature.*
### Use Spot Instances
You can use Spot Instances e.g. using (see [Advanced configuration](#advanced-configuration)):
```yaml
additional_args:
use_spot_instances: True
max_wait: 86400
```
*Note: Spot Instances are subject to be terminated and training to be continued from a checkpoint. This is not handled in 🤗 Accelerate out of the box. Contact us if you would like this feature.*
### Remote scripts: Use scripts located on Github
*undecided if feature is needed. Contact us if you would like this feature.*
*undecided if feature is needed. Contact us if you would like this feature.*

View File

@ -83,12 +83,6 @@ for iteration in config["num_iterations"]:
accelerator.end_training()
```
If a tracker requires a directory to save data to such as `TensorBoard` then a `logging_dir` or `project_dir` can be passed in. `project_dir` is useful
if there are other further configurations such as those which can be combined with the [`~utils.ProjectConfiguration`] dataclass.
```python
accelerator = Accelerator(log_with="tensorboard", logging_dir=".")
```
## Implementing Custom Trackers
@ -111,12 +105,9 @@ Every tracker must implement three functions and have three properties:
- This should be implemented as a `@property` function
- Should return the internal tracking mechanism the library uses, such as the `run` object for `wandb`.
Each method should also utilize the [`state.PartialState`] class if the logger should only be executed on the main process for instance.
A brief example can be seen below with an integration with Weights and Biases, containing only the relevant information and logging just on
the main process:
A brief example can be seen below with an integration with Weights and Biases, containing only the relevant information:
```python
from accelerate.tracking import GeneralTracker, on_main_process
from accelerate.tracking import GeneralTracker
from typing import Optional
import wandb
@ -126,7 +117,6 @@ class MyCustomTracker(GeneralTracker):
name = "wandb"
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: str):
self.run_name = run_name
run = wandb.init(self.run_name)
@ -135,11 +125,9 @@ class MyCustomTracker(GeneralTracker):
def tracker(self):
return self.run.run
@on_main_process
def store_init_configuration(self, values: dict):
wandb.config(values)
@on_main_process
def log(self, values: dict, step: Optional[int] = None):
wandb.log(values, step=step)
```
@ -173,26 +161,16 @@ wandb_tracker = accelerator.get_tracker("wandb")
From there you can interact with `wandb`'s `run` object like normal:
```python
wandb_run.log_artifact(some_artifact_to_log)
```
<Tip>
Trackers built in Accelerate will automatically execute on the correct process,
so if a tracker is only meant to be ran on the main process it will do so
automatically.
<Tip warning={true}>
Make sure to only interact with trackers on the main process!
</Tip>
If you want to truly remove Accelerate's wrapping entirely, you can
achieve the same outcome with:
```python
wandb_tracker = accelerator.get_tracker("wandb", unwrap=True)
with accelerator.on_main_process:
wandb_tracker.log_artifact(some_artifact_to_log)
if accelerator.is_main_process:
wandb_run.log_artifact(some_artifact_to_log)
```
## When a wrapper cannot work
If a library has an API that does not follow a strict `.log` with an overall dictionary such as Neptune.AI, logging can be done manually under an `if accelerator.is_main_process` statement:

View File

@ -64,9 +64,9 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on your server
accelerate launch ./nlp_example.py # This will run the script on your server
```
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
* With traditional PyTorch launcher
```bash
python -m torchrun --nproc_per_node 2 --use_env ./nlp_example.py
python -m torch.distributed.launch --nproc_per_node 2 --use_env ./nlp_example.py
```
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
* With Accelerate config and launcher, on each machine:
@ -74,14 +74,14 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on each server
accelerate launch ./nlp_example.py # This will run the script on each server
```
* With PyTorch launcher only (`torch.distributed.launch` can be used in older versions of PyTorch)
* With PyTorch launcher only
```bash
python -m torchrun --nproc_per_node 2 \
python -m torch.distributed.launch --nproc_per_node 2 \
--use_env \
--node_rank 0 \
--master_addr master_node_ip_address \
./nlp_example.py # On the first server
python -m torchrun --nproc_per_node 2 \
python -m torch.distributed.launch --nproc_per_node 2 \
--use_env \
--node_rank 1 \
--master_addr master_node_ip_address \
@ -152,9 +152,9 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on your server
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on your server
```
* With traditional PyTorch launcher (`torch.distributed.launch` can be used with older versions of PyTorch)
* With traditional PyTorch launcher
```bash
python -m torchrun --nproc_per_node 2 --use_env ./cv_example.py --data_dir path_to_data
python -m torch.distributed.launch --nproc_per_node 2 --use_env ./cv_example.py --data_dir path_to_data
```
- multi GPUs, multi node (several machines, using PyTorch distributed mode)
* With Accelerate config and launcher, on each machine:
@ -162,14 +162,14 @@ To run it in each of these various modes, use the following commands:
accelerate config # This will create a config file on each server
accelerate launch ./cv_example.py --data_dir path_to_data # This will run the script on each server
```
* With PyTorch launcher only (`torch.distributed.launch` can be used with older versions of PyTorch)
* With PyTorch launcher only
```bash
python -m torchrun --nproc_per_node 2 \
python -m torch.distributed.launch --nproc_per_node 2 \
--use_env \
--node_rank 0 \
--master_addr master_node_ip_address \
./cv_example.py --data_dir path_to_data # On the first server
python -m torchrun --nproc_per_node 2 \
python -m torch.distributed.launch --nproc_per_node 2 \
--use_env \
--node_rank 1 \
--master_addr master_node_ip_address \
@ -190,22 +190,7 @@ To run it in each of these various modes, use the following commands:
### Using AWS SageMaker integration
- [Examples showcasing AWS SageMaker integration of 🤗 Accelerate.](https://github.com/pacman100/accelerate-aws-sagemaker)
## Simple Multi-GPU Hardware Launcher
[multigpu_remote_launcher.py](./multigpu_remote_launcher.py) is a minimal script that demonstrates launching accelerate
on multiple remote GPUs, and with automatic hardware environment and dependency setup for reproducibility. You can
easily customize the training function used, training arguments, hyperparameters, and type of compute hardware, and then
run the script to automatically launch multi GPU training on remote hardware.
This script uses [Runhouse](https://github.com/run-house/runhouse) to launch on self-hosted hardware (e.g. in your own
cloud account or on-premise cluster) but there are other options for running remotely as well. Runhouse can be installed
with `pip install runhouse`, and you can refer to
[hardware setup](https://runhouse-docs.readthedocs-hosted.com/en/main/rh_primitives/cluster.html#hardware-setup)
for hardware setup instructions, or this
[Colab tutorial](https://colab.research.google.com/drive/1qVwYyLTCPYPSdz9ZX7BZl9Qm0A3j7RJe) for a more in-depth walkthrough.
## Finer Examples
While the first two scripts are extremely barebones when it comes to what you can do with accelerate, more advanced features are documented in two other locations.

View File

@ -19,7 +19,7 @@ Adjustments to each script from the base `nlp_example.py` file can be found quic
All following scripts also accept these arguments in addition to their added ones.
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torch.distributed.run`), such as:
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torch.distributed.launch`), such as:
```bash
accelerate launch ../nlp_example.py --mixed_precision fp16 --cpu 0
@ -34,7 +34,7 @@ accelerate launch ../nlp_example.py --mixed_precision fp16 --cpu 0
- `output_dir`, where saved state folders should be saved to, default is current working directory
- `resume_from_checkpoint`, what checkpoint folder to resume from. ("epoch_0", "step_22", ...)
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as:
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torch.distributed.launch`), such as:
(Note, `resume_from_checkpoint` assumes that we've ran the script for one epoch with the `--checkpointing_steps epoch` flag)
@ -48,7 +48,7 @@ accelerate launch ./checkpointing.py --checkpointing_steps epoch output_dir "che
- Arguments available:
- `num_folds`, the number of folds the training dataset should be split into.
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as:
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torch.distributed.launch`), such as:
```bash
accelerate launch ./cross_validation.py --num_folds 2
@ -61,7 +61,7 @@ accelerate launch ./cross_validation.py --num_folds 2
- Arguments available:
- `with_tracking`, whether to load in all available experiment trackers from the environment.
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as:
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torch.distributed.launch`), such as:
```bash
accelerate launch ./tracking.py --with_tracking
@ -73,7 +73,7 @@ accelerate launch ./tracking.py --with_tracking
- Arguments available:
- `gradient_accumulation_steps`, the number of steps to perform before the gradients are accumulated and the optimizer and scheduler are stepped + zero_grad
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torchrun`), such as:
These arguments should be added at the end of any method for starting the python script (such as `python`, `accelerate launch`, `python -m torch.distributed.launch`), such as:
```bash
accelerate launch ./gradient_accumulation.py --gradient_accumulation_steps 5

View File

@ -14,16 +14,16 @@
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator
# New Code #
import evaluate
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -84,20 +84,10 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
def collate_fn(examples):
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -224,8 +214,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -15,14 +15,14 @@
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -86,22 +86,9 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -216,12 +203,13 @@ def training_function(config, args):
# Now we train the model
for epoch in range(starting_epoch, num_epochs):
model.train()
# New Code #
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
overall_step += resume_step
for step, batch in enumerate(train_dataloader):
# New Code #
# We need to skip steps until we reach the resumed step during the first epoch
if args.resume_from_checkpoint and epoch == starting_epoch:
if resume_step is not None and step < resume_step:
overall_step += 1
continue
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
outputs = model(**batch)
@ -281,8 +269,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -15,20 +15,20 @@
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
@ -106,22 +106,9 @@ def get_fold_dataloaders(
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -263,8 +250,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -31,12 +31,16 @@ import random
from itertools import chain
from pathlib import Path
import datasets
import torch
from torch.utils.data import DataLoader
import datasets
import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import DummyOptim, DummyScheduler, set_seed
from datasets import load_dataset
from huggingface_hub import Repository
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import (
CONFIG_MAPPING,
@ -51,10 +55,6 @@ from transformers import (
from transformers.utils import get_full_repo_name
from transformers.utils.versions import require_version
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import DummyOptim, DummyScheduler, set_seed
logger = get_logger(__name__)
@ -285,9 +285,10 @@ def evaluate(args, model, eval_dataloader, accelerator, eval_dataset):
outputs = model(**batch)
loss = outputs.loss
losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size)))
losses.append(accelerator.gather(loss.repeat(args.per_device_eval_batch_size)))
losses = torch.cat(losses)
losses = losses[: len(eval_dataset)]
try:
eval_loss = torch.mean(losses)
perplexity = math.exp(eval_loss)
@ -642,7 +643,7 @@ def main():
total_loss += loss.detach().float()
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if (step + 1) % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()

View File

@ -16,13 +16,13 @@ import argparse
import gc
import os
import evaluate
import torch
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -147,22 +147,9 @@ def training_function(config, args):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -343,8 +330,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -15,14 +15,14 @@
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -81,22 +81,9 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -205,8 +192,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -31,12 +31,16 @@ import random
from itertools import chain
from pathlib import Path
import datasets
import torch
from torch.utils.data import DataLoader
import datasets
import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import MegatronLMDummyScheduler, set_seed
from datasets import load_dataset
from huggingface_hub import Repository
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from transformers import (
CONFIG_MAPPING,
@ -51,10 +55,6 @@ from transformers import (
from transformers.utils import check_min_version, get_full_repo_name, send_example_telemetry
from transformers.utils.versions import require_version
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import MegatronLMDummyScheduler, set_seed
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.23.0.dev0")

View File

@ -14,16 +14,16 @@
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
# New Code #
import evaluate
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -86,22 +86,9 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -217,8 +204,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -15,14 +15,14 @@
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -88,22 +88,9 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -222,8 +209,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -15,14 +15,14 @@
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -86,22 +86,9 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -249,8 +236,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -17,14 +17,14 @@ import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
import PIL
from accelerate import Accelerator
from timm import create_model
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
########################################################################
@ -173,7 +173,7 @@ def training_function(config, args):
)
# We need to keep track of how many total steps we have iterated over
overall_step = 0
# We also need to keep track of the starting epoch so files are named properly
# We also need to keep track of the stating epoch so files are named properly
starting_epoch = 0
# Potentially load in the weights and states from a previous save
@ -203,11 +203,12 @@ def training_function(config, args):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
overall_step += resume_step
for batch in train_dataloader:
if args.resume_from_checkpoint and epoch == starting_epoch:
if resume_step is not None and step < resume_step:
overall_step += 1
continue
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch = {k: v.to(accelerator.device) for k, v in batch.items()}
inputs = (batch["image"] - mean) / std
@ -229,7 +230,6 @@ def training_function(config, args):
accelerator.save_state(output_dir)
model.eval()
accurate = 0
num_elems = 0
for step, batch in enumerate(eval_dataloader):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch = {k: v.to(accelerator.device) for k, v in batch.items()}
@ -239,10 +239,9 @@ def training_function(config, args):
predictions = outputs.argmax(dim=-1)
predictions, references = accelerator.gather_for_metrics((predictions, batch["label"]))
accurate_preds = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
eval_metric = accurate.item() / num_elems
eval_metric = accurate.item() / accelerator.gradient_state.samples_seen
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}")
if args.with_tracking:
@ -271,8 +270,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -15,14 +15,14 @@
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -109,22 +109,9 @@ def training_function(config, args):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
@ -193,11 +180,12 @@ def training_function(config, args):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
overall_step += resume_step
for step, batch in enumerate(train_dataloader):
# We need to skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == starting_epoch:
if resume_step is not None and step < resume_step:
overall_step += 1
continue
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device)
outputs = model(**batch)
@ -263,8 +251,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -17,14 +17,14 @@ import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
import PIL
from accelerate import Accelerator
from timm import create_model
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
########################################################################
@ -189,8 +189,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -1,55 +0,0 @@
import argparse
import runhouse as rh
import torch
from nlp_example import training_function
from accelerate.utils import PrepareForLaunch, patch_environment
def launch_train(*args):
num_processes = torch.cuda.device_count()
print(f"Device count: {num_processes}")
with patch_environment(
world_size=num_processes, master_addr="127.0.01", master_port="29500", mixed_precision=args[1].mixed_precision
):
launcher = PrepareForLaunch(training_function, distributed_type="MULTI_GPU")
torch.multiprocessing.start_processes(launcher, args=args, nprocs=num_processes, start_method="spawn")
if __name__ == "__main__":
# Refer to https://runhouse-docs.readthedocs-hosted.com/en/main/rh_primitives/cluster.html#hardware-setup
# for cloud access setup instructions (if using on-demand hardware), and for API specifications.
# on-demand GPU
# gpu = rh.cluster(name='rh-cluster', instance_type='V100:1', provider='cheapest', use_spot=False) # single GPU
gpu = rh.cluster(name="rh-cluster", instance_type="V100:4", provider="cheapest", use_spot=False) # multi GPU
gpu.up_if_not()
# on-prem GPU
# gpu = rh.cluster(
# ips=["ip_addr"], ssh_creds={ssh_user:"<username>", ssh_private_key:"<key_path>"}, name="rh-cluster"
# )
# Set up remote function
reqs = [
"pip:./",
"transformers",
"datasets",
"evaluate",
"tqdm",
"scipy",
"scikit-learn",
"tensorboard",
"torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117",
]
launch_train_gpu = rh.function(fn=launch_train, system=gpu, reqs=reqs, name="train_bert_glue")
# Define train args/config, run train function
train_args = argparse.Namespace(cpu=False, mixed_precision="fp16")
config = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
launch_train_gpu(config, train_args, stream_logs=True)
# Alternatively, we can just run as instructed in the README (but only because there's already a wrapper CLI):
# gpu.install_packages(reqs)
# gpu.run(['accelerate launch --multi_gpu accelerate/examples/nlp_example.py'])

View File

@ -14,14 +14,14 @@
# limitations under the License.
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
########################################################################
@ -79,33 +79,16 @@ def get_dataloaders(accelerator: Accelerator, batch_size: int = 16):
def collate_fn(examples):
# On TPU it's best to pad everything to the same length or training will be very slow.
max_length = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
return tokenizer.pad(
examples,
padding="longest",
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors="pt",
)
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt")
return tokenizer.pad(examples, padding="longest", return_tensors="pt")
# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"],
shuffle=False,
collate_fn=collate_fn,
batch_size=EVAL_BATCH_SIZE,
drop_last=(accelerator.mixed_precision == "fp8"),
tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE
)
return train_dataloader, eval_dataloader
@ -137,6 +120,7 @@ def training_function(config, args):
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
model = model.to(accelerator.device)
# Instantiate optimizer
optimizer = AdamW(params=model.parameters(), lr=lr)
@ -150,7 +134,6 @@ def training_function(config, args):
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
@ -193,8 +176,8 @@ def main():
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16", "fp8"],
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",

View File

@ -1,17 +1,3 @@
[tool.black]
line-length = 119
target-version = ['py37']
[tool.ruff]
# Never enforce `E501` (line length violations).
ignore = ["E501", "E741", "W605"]
select = ["E", "F", "I", "W"]
line-length = 119
# Ignore import violations in all `__init__.py` files.
[tool.ruff.per-file-ignores]
"__init__.py" = ["E402", "F401", "F403", "F811"]
[tool.ruff.isort]
lines-after-imports = 2
known-first-party = ["accelerate"]
target-version = ['py36']

View File

@ -4,6 +4,11 @@ ensure_newline_before_comments = True
force_grid_wrap = 0
include_trailing_comma = True
known_first_party = accelerate
known_third_party =
numpy
torch
torch_xla
line_length = 119
lines_after_imports = 2
multi_line_output = 3

View File

@ -16,10 +16,10 @@ from setuptools import setup
from setuptools import find_packages
extras = {}
extras["quality"] = ["black ~= 23.1", "ruff >= 0.0.241", "hf-doc-builder >= 0.3.0"]
extras["quality"] = ["black ~= 22.0", "isort >= 5.5.4", "flake8 >= 3.8.3", "hf-doc-builder >= 0.3.0"]
extras["docs"] = []
extras["test_prod"] = ["pytest", "pytest-xdist", "pytest-subtests", "parameterized"]
extras["test_dev"] = ["datasets", "evaluate", "transformers", "scipy", "scikit-learn", "deepspeed", "tqdm"]
extras["test_dev"] = ["datasets", "evaluate", "transformers", "scipy", "scikit-learn", "deepspeed<0.7.0", "tqdm"]
extras["testing"] = extras["test_prod"] + extras["test_dev"]
extras["rich"] = ["rich"]
@ -32,7 +32,7 @@ extras["sagemaker"] = [
setup(
name="accelerate",
version="0.19.0.dev0",
version="0.14.0",
description="Accelerate",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",

View File

@ -1,18 +1,12 @@
__version__ = "0.19.0.dev0"
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
__version__ = "0.14.0"
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .big_modeling import cpu_offload, disk_offload, dispatch_model, init_empty_weights, load_checkpoint_and_dispatch
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,

File diff suppressed because it is too large Load Diff

View File

@ -19,24 +19,15 @@ from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from .hooks import (
AlignDevicesHook,
CpuOffload,
UserCpuOffloadHook,
add_hook_to_module,
attach_align_device_hook,
attach_align_device_hook_on_blocks,
)
from .hooks import AlignDevicesHook, add_hook_to_module, attach_align_device_hook, attach_align_device_hook_on_blocks
from .utils import (
OffloadedWeightsLoader,
check_device_map,
extract_submodules_state_dict,
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_state_dict,
retie_parameters,
)
from .utils.versions import is_torch_version
@ -71,31 +62,6 @@ def init_empty_weights(include_buffers: bool = False):
"""
if not is_torch_version(">=", "1.9.0"):
raise NotImplementedError("Initializing empty weights to a meta device requires torch >= 1.9.0")
with init_on_device(torch.device("meta"), include_buffers=include_buffers) as f:
yield f
@contextmanager
def init_on_device(device: torch.device, include_buffers: bool = False):
"""
A context manager under which models are initialized with all parameters on the specified device.
Args:
device (`torch.device`):
Device to initialize all parameters on.
include_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to also put all buffers on the meta device while initializing.
Example:
```python
import torch.nn as nn
from accelerate import init_on_device
with init_on_device(device=torch.device("cuda")):
tst = nn.Liner(100, 100) # on `cuda` device
```
"""
old_register_parameter = nn.Module.register_parameter
if include_buffers:
old_register_buffer = nn.Module.register_buffer
@ -105,12 +71,12 @@ def init_on_device(device: torch.device, include_buffers: bool = False):
if param is not None:
param_cls = type(module._parameters[name])
kwargs = module._parameters[name].__dict__
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
module._parameters[name] = param_cls(module._parameters[name].to(torch.device("meta")), **kwargs)
def register_empty_buffer(module, name, buffer):
old_register_buffer(module, name, buffer)
if buffer is not None:
module._buffers[name] = module._buffers[name].to(device)
module._buffers[name] = module._buffers[name].to(torch.device("meta"))
# Patch tensor creation
if include_buffers:
@ -123,7 +89,7 @@ def init_on_device(device: torch.device, include_buffers: bool = False):
def patch_tensor_constructor(fn):
def wrapper(*args, **kwargs):
kwargs["device"] = device
kwargs["device"] = torch.device("meta")
return fn(*args, **kwargs)
return wrapper
@ -191,50 +157,6 @@ def cpu_offload(
return model
def cpu_offload_with_hook(
model: torch.nn.Module,
execution_device: Optional[Union[int, str, torch.device]] = None,
prev_module_hook: Optional[UserCpuOffloadHook] = None,
):
"""
Offloads a model on the CPU and puts it back to an execution device when executed. The difference with
[`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when
the `offload` method of the returned `hook` is called. Useful for pipelines running a model in a loop.
Args:
model (`torch.nn.Module`):
The model to offload.
execution_device(`str`, `int` or `torch.device`, *optional*):
The device on which the model should be executed. Will default to the MPS device if it's available, then
GPU 0 if there is a GPU, and finally to the CPU.
prev_module_hook (`UserCpuOffloadHook`, *optional*):
The hook sent back by this function for a previous model in the pipeline you are running. If passed, its
offload method will be called just before the forward of the model to which this hook is attached.
Example:
```py
model_1, hook_1 = cpu_offload_with_hook(model_1, cuda_device)
model_2, hook_2 = cpu_offload_with_hook(model_2, cuda_device, prev_module_hook=hook_1)
model_3, hook_3 = cpu_offload_with_hook(model_3, cuda_device, prev_module_hook=hook_2)
hid_1 = model_1(input)
for i in range(50):
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
hid_2 = model_2(hid_1)
# model2 is offloaded to the CPU just before this forward.
hid_3 = model_3(hid_3)
# For model3, you need to manually call the hook offload method.
hook_3.offload()
```
"""
hook = CpuOffload(execution_device=execution_device, prev_module_hook=prev_module_hook)
add_hook_to_module(model, hook, append=True)
user_hook = UserCpuOffloadHook(model, hook)
return model, user_hook
def disk_offload(
model: nn.Module,
offload_dir: Union[str, os.PathLike],
@ -288,8 +210,7 @@ def dispatch_model(
device_map: Dict[str, Union[str, int, torch.device]],
main_device: Optional[torch.device] = None,
state_dict: Optional[Dict[str, torch.Tensor]] = None,
offload_dir: Optional[Union[str, os.PathLike]] = None,
offload_index: Optional[Dict[str, str]] = None,
offload_dir: Union[str, os.PathLike] = None,
offload_buffers: bool = False,
preload_module_classes: Optional[List[str]] = None,
):
@ -310,9 +231,6 @@ def dispatch_model(
The state dict of the part of the model that will be kept on CPU.
offload_dir (`str` or `os.PathLike`):
The folder in which to offload the model weights (or where the model weights are already offloaded).
offload_index (`Dict`, *optional*):
A dictionary from weight name to their information (`dtype`/ `shape` or safetensors filename). Will default
to the index saved in `save_folder`.
offload_buffers (`bool`, *optional*, defaults to `False`):
Whether or not to offload the buffers with the model parameters.
preload_module_classes (`List[str]`, *optional*):
@ -338,15 +256,13 @@ def dispatch_model(
state_dict = extract_submodules_state_dict(model.state_dict(), cpu_modules)
disk_modules = [name for name, device in device_map.items() if device == "disk"]
if offload_dir is None and offload_index is None and len(disk_modules) > 0:
if offload_dir is None and len(disk_modules) > 0:
raise ValueError(
"We need an `offload_dir` to dispatch this model according to this `device_map`, the following submodules "
f"need to be offloaded: {', '.join(disk_modules)}."
)
if (
len(disk_modules) > 0
and offload_index is None
and (not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json")))
if len(disk_modules) > 0 and (
not os.path.isdir(offload_dir) or not os.path.isfile(os.path.join(offload_dir, "index.json"))
):
disk_state_dict = extract_submodules_state_dict(model.state_dict(), disk_modules)
offload_state_dict(offload_dir, disk_state_dict)
@ -354,19 +270,14 @@ def dispatch_model(
execution_device = {
name: main_device if device in ["cpu", "disk"] else device for name, device in device_map.items()
}
execution_device[""] = main_device
offloaded_devices = ["disk"] if main_device == "cpu" else ["cpu", "disk"]
offload = {name: device in offloaded_devices for name, device in device_map.items()}
save_folder = offload_dir if len(disk_modules) > 0 else None
if state_dict is not None or save_folder is not None or offload_index is not None:
device = main_device if offload_index is not None else None
weights_map = OffloadedWeightsLoader(
state_dict=state_dict, save_folder=save_folder, index=offload_index, device=device
)
if state_dict is not None or save_folder is not None:
weights_map = OffloadedWeightsLoader(state_dict=state_dict, save_folder=save_folder)
else:
weights_map = None
tied_params = find_tied_parameters(model)
attach_align_device_hook_on_blocks(
model,
execution_device=execution_device,
@ -375,8 +286,6 @@ def dispatch_model(
weights_map=weights_map,
preload_module_classes=preload_module_classes,
)
# Attaching the hook may break tied weights, so we retie them
retie_parameters(model, tied_params)
model.hf_device_map = device_map
return model
@ -432,28 +341,6 @@ def load_checkpoint_and_dispatch(
of the forward. This should only be used for classes that have submodules which are registered but not
called directly during the forward, for instance if a `dense` linear layer is registered, but at forward,
`dense.weight` and `dense.bias` are used in some operations instead of calling `dense` directly.
Example:
```python
>>> from accelerate import init_empty_weights, load_checkpoint_and_dispatch
>>> from huggingface_hub import hf_hub_download
>>> from transformers import AutoConfig, AutoModelForCausalLM
>>> # Download the Weights
>>> checkpoint = "EleutherAI/gpt-j-6B"
>>> weights_location = hf_hub_download(checkpoint, "pytorch_model.bin")
>>> # Create a model and initialize it with empty weights
>>> config = AutoConfig.from_pretrained(checkpoint)
>>> with init_empty_weights():
... model = AutoModelForCausalLM.from_config(config)
>>> # Load the checkpoint and dispatch it to the right devices
>>> model = load_checkpoint_and_dispatch(
... model, weights_location, device_map="auto", no_split_module_classes=["GPTJBlock"]
... )
```
"""
if not is_torch_version(">=", "1.9.0"):
raise NotImplementedError("Loading and dispatching requires torch >= 1.9.0")
@ -474,7 +361,7 @@ def load_checkpoint_and_dispatch(
device_map = infer_auto_device_map(
model, max_memory=max_memory, no_split_module_classes=no_split_module_classes, dtype=dtype
)
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
if offload_state_dict is None and "disk" in device_map.values():
offload_state_dict = True
load_checkpoint_in_model(
model,
@ -483,7 +370,6 @@ def load_checkpoint_and_dispatch(
offload_folder=offload_folder,
dtype=dtype,
offload_state_dict=offload_state_dict,
offload_buffers=offload_buffers,
)
if device_map is None:
return model

View File

@ -37,7 +37,6 @@ if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
from .logging import get_logger
from .state import PartialState
logger = get_logger(__name__)
@ -110,16 +109,7 @@ def save_accelerator_state(
return output_dir
def load_accelerator_state(
input_dir,
models,
optimizers,
schedulers,
process_index,
scaler=None,
map_location=None,
**load_model_func_kwargs,
):
def load_accelerator_state(input_dir, models, optimizers, schedulers, process_index, scaler=None):
"""
Loads states of the models, optimizers, scaler, and RNG generators from a given directory.
@ -136,32 +126,19 @@ def load_accelerator_state(
The current process index in the Accelerator state
scaler (`torch.cuda.amp.GradScaler`, *optional*):
An optional *GradScaler* instance to load
map_location (`str`, *optional*):
What device to load the optimizer state onto. Should be one of either "cpu" or "on_device".
load_model_func_kwargs (`dict`, *optional*):
Additional arguments that can be passed to the model's `load_state_dict` method.
"""
if map_location not in [None, "cpu", "on_device"]:
raise TypeError(
"Unsupported optimizer map location passed, please choose one of `None`, `'cpu'`, or `'on_device'`"
)
if map_location is None:
map_location = "cpu"
elif map_location == "on_device":
map_location = PartialState().device
# Model states
for i, model in enumerate(models):
weights_name = f"{MODEL_NAME}.bin" if i == 0 else f"{MODEL_NAME}_{i}.bin"
input_model_file = os.path.join(input_dir, weights_name)
models[i].load_state_dict(torch.load(input_model_file, map_location=map_location), **load_model_func_kwargs)
models[i].load_state_dict(torch.load(input_model_file, map_location="cpu"))
logger.info("All model weights loaded successfully")
# Optimizer states
for i, opt in enumerate(optimizers):
optimizer_name = f"{OPTIMIZER_NAME}.bin" if i == 0 else f"{OPTIMIZER_NAME}_{i}.bin"
input_optimizer_file = os.path.join(input_dir, optimizer_name)
optimizer_state = torch.load(input_optimizer_file)
optimizers[i].load_state_dict(optimizer_state)
optimizers[i].load_state_dict(torch.load(input_optimizer_file, map_location="cpu"))
logger.info("All optimizer states loaded successfully")
# Scheduler states
@ -188,7 +165,7 @@ def load_accelerator_state(
if is_tpu_available():
xm.set_rng_state(states["xm_seed"])
logger.info("All random states loaded successfully")
except Exception:
except:
logger.info("Could not load random states")
@ -208,4 +185,4 @@ def load_custom_state(obj, path, index: int = 0):
"""
load_location = f"{path}/custom_checkpoint_{index}.pkl"
logger.info(f"Loading the state of {get_pretty_name(obj)} from {load_location}")
obj.load_state_dict(torch.load(load_location, map_location="cpu"))
obj.load_state_dict(torch.load(load_location))

View File

@ -16,7 +16,7 @@
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.config import config_command_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
@ -24,11 +24,11 @@ from accelerate.commands.tpu import tpu_command_parser
def main():
parser = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]", allow_abbrev=False)
parser = ArgumentParser("Accelerate CLI tool", usage="accelerate <command> [<args>]")
subparsers = parser.add_subparsers(help="accelerate command helpers")
# Register commands
get_config_parser(subparsers=subparsers)
config_command_parser(subparsers=subparsers)
env_command_parser(subparsers=subparsers)
launch_command_parser(subparsers=subparsers)
tpu_command_parser(subparsers=subparsers)

View File

@ -15,37 +15,70 @@
# limitations under the License.
import argparse
import os
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _convert_compute_environment
from .sagemaker import get_sagemaker_input
def get_config_parser(subparsers=None):
parent_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False)
# The main config parser
config_parser = config_command_parser(subparsers)
# The subparser to add commands to
subcommands = config_parser.add_subparsers(title="subcommands", dest="subcommand")
def get_user_input():
compute_environment = _ask_field(
"In which compute environment are you running? ([0] This machine, [1] AWS (Amazon SageMaker)): ",
_convert_compute_environment,
error_message="Please enter 0 or 1",
)
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
config = get_sagemaker_input()
else:
config = get_cluster_input()
return config
# Then add other parsers with the parent parser
default_command_parser(subcommands, parents=[parent_parser])
update_command_parser(subcommands, parents=[parent_parser])
return config_parser
def config_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("config")
else:
parser = argparse.ArgumentParser("Accelerate config command")
parser.add_argument(
"--config_file",
default=None,
help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
),
)
if subparsers is not None:
parser.set_defaults(func=config_command)
return parser
def config_command(args):
config = get_user_input()
if args.config_file is not None:
config_file = args.config_file
else:
if not os.path.isdir(cache_dir):
os.makedirs(cache_dir)
config_file = default_yaml_config_file
if config_file.endswith(".json"):
config.to_json_file(config_file)
else:
config.to_yaml_file(config_file)
def main():
config_parser = get_config_parser()
args = config_parser.parse_args()
if not hasattr(args, "func"):
config_parser.print_help()
exit(1)
# Run
args.func(args)
parser = config_command_parser()
args = parser.parse_args()
config_command(args)
if __name__ == "__main__":

View File

@ -16,38 +16,23 @@
import os
from ...utils import (
ComputeEnvironment,
DistributedType,
is_deepspeed_available,
is_mps_available,
is_transformers_available,
)
from ...utils import ComputeEnvironment, DistributedType, is_deepspeed_available, is_transformers_available
from ...utils.constants import (
DEEPSPEED_MULTINODE_LAUNCHERS,
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
TORCH_DYNAMO_MODES,
)
from .config_args import ClusterConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_distributed_mode,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_yes_no_to_bool,
)
from .config_utils import _ask_field, _convert_distributed_mode, _convert_yes_no_to_bool
def get_cluster_input():
distributed_type = _ask_options(
"Which type of machine are you using?",
["No distributed training", "multi-CPU", "multi-GPU", "TPU"],
distributed_type = _ask_field(
"Which type of machine are you using? ([0] No distributed training, [1] multi-CPU, [2] multi-GPU, [3] TPU [4] MPS): ",
_convert_distributed_mode,
error_message="Please enter 0, 1, 2, 3 or 4.",
)
machine_rank = 0
@ -58,25 +43,28 @@ def get_cluster_input():
main_process_port = None
rdzv_backend = "static"
same_network = True
tpu_name = None
tpu_zone = None
commands = None
command_file = None
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.MULTI_CPU]:
num_machines = _ask_field(
"How many different machines will you use (use more than 1 for multi-node training)? [1]: ",
int,
lambda x: int(x),
default=1,
)
if num_machines > 1:
machine_rank = _ask_options(
"What is the rank of this machine?",
list(range(num_machines)),
int,
machine_rank = _ask_field(
"What is the rank of this machine (from 0 to the number of machines - 1 )? [0]: ",
lambda x: int(x),
default=0,
)
main_process_ip = _ask_field(
"What is the IP address of the machine that will host the main process? ",
)
main_process_port = _ask_field(
"What is the port you will use to communicate with the main process? ",
int,
lambda x: int(x),
)
same_network = _ask_field(
"Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: ",
@ -91,7 +79,7 @@ def get_cluster_input():
if distributed_type == DistributedType.NO:
use_cpu = _ask_field(
"Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:",
"Do you want to run your training on CPU only (even if a GPU is available)? [yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
@ -101,60 +89,8 @@ def get_cluster_input():
else:
use_cpu = False
ipex_config = {}
if use_cpu:
ipex_config["ipex_enabled"] = _ask_field(
"Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
dynamo_config = {}
use_dynamo = _ask_field(
"Do you wish to optimize your script with torch dynamo?[yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_dynamo:
prefix = "dynamo_"
dynamo_config[prefix + "backend"] = _ask_options(
"Which dynamo backend would you like to use?",
[x.lower() for x in DYNAMO_BACKENDS],
_convert_dynamo_backend,
default=2,
)
use_custom_options = _ask_field(
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_custom_options:
dynamo_config[prefix + "mode"] = _ask_options(
"Which mode do you want to use?",
TORCH_DYNAMO_MODES,
lambda x: TORCH_DYNAMO_MODES[int(x)],
default=0,
)
dynamo_config[prefix + "use_fullgraph"] = _ask_field(
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
dynamo_config[prefix + "use_dynamic"] = _ask_field(
"Do you want to enable dynamic shape tracing? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
use_mps = not use_cpu and is_mps_available()
deepspeed_config = {}
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.NO] and not use_mps:
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.NO]:
use_deepspeed = _ask_field(
"Do you want to use DeepSpeed? [yes/NO]: ",
_convert_yes_no_to_bool,
@ -177,28 +113,30 @@ def get_cluster_input():
if use_deepspeed_config:
deepspeed_config["deepspeed_config_file"] = _ask_field(
"Please enter the path to the json DeepSpeed config file: ",
str,
lambda x: str(x),
default="none",
)
else:
deepspeed_config["zero_stage"] = _ask_options(
"What should be your DeepSpeed's ZeRO optimization stage?",
[0, 1, 2, 3],
int,
deepspeed_config["zero_stage"] = _ask_field(
"What should be your DeepSpeed's ZeRO optimization stage (0, 1, 2, 3)? [2]: ",
lambda x: int(x),
default=2,
)
deepspeed_devices = ["none", "cpu", "nvme"]
if deepspeed_config["zero_stage"] >= 2:
deepspeed_config["offload_optimizer_device"] = _ask_options(
"Where to offload optimizer states?", deepspeed_devices, lambda x: deepspeed_devices[int(x)]
deepspeed_config["offload_optimizer_device"] = _ask_field(
"Where to offload optimizer states? [none/cpu/nvme]: ",
lambda x: str(x),
default="none",
)
deepspeed_config["offload_param_device"] = _ask_options(
"Where to offload parameters?", deepspeed_devices, lambda x: deepspeed_devices[int(x)]
deepspeed_config["offload_param_device"] = _ask_field(
"Where to offload parameters? [none/cpu/nvme]: ",
lambda x: str(x),
default="none",
)
deepspeed_config["gradient_accumulation_steps"] = _ask_field(
"How many gradient accumulation steps you're passing in your script? [1]: ",
int,
lambda x: int(x),
default=1,
)
use_gradient_clipping = _ask_field(
@ -210,7 +148,7 @@ def get_cluster_input():
if use_gradient_clipping:
deepspeed_config["gradient_clipping"] = _ask_field(
"What is the gradient clipping value? [1.0]: ",
float,
lambda x: float(x),
default=1.0,
)
if deepspeed_config["zero_stage"] == 3:
@ -234,11 +172,14 @@ def get_cluster_input():
)
if num_machines > 1:
launcher_query = "Which Type of launcher do you want to use?"
deepspeed_config["deepspeed_multinode_launcher"] = _ask_options(
launcher_query = "Which Type of launcher do you want to use "
for i, launcher in enumerate(DEEPSPEED_MULTINODE_LAUNCHERS):
launcher_query += f"[{i}] {launcher}, "
launcher_query = launcher_query[:-2] + ")? [0]: "
deepspeed_config["deepspeed_multinode_launcher"] = _ask_field(
launcher_query,
DEEPSPEED_MULTINODE_LAUNCHERS,
lambda x: DEEPSPEED_MULTINODE_LAUNCHERS[int(x)],
default=DEEPSPEED_MULTINODE_LAUNCHERS[0],
)
if deepspeed_config["deepspeed_multinode_launcher"] != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
@ -248,7 +189,7 @@ def get_cluster_input():
"for more information please refer official [documentation]"
"(https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node). "
"Please specify the location of hostfile: ",
str,
lambda x: str(x),
)
is_exclusion_filter = _ask_field(
@ -260,7 +201,7 @@ def get_cluster_input():
if is_exclusion_filter:
deepspeed_config["deepspeed_exclusion_filter"] = _ask_field(
"DeepSpeed exclusion filter string: ",
str,
lambda x: str(x),
)
is_inclusion_filter = _ask_field(
@ -272,7 +213,7 @@ def get_cluster_input():
if is_inclusion_filter:
deepspeed_config["deepspeed_inclusion_filter"] = _ask_field(
"DeepSpeed inclusion filter string: ",
str,
lambda x: str(x),
)
fsdp_config = {}
@ -286,11 +227,13 @@ def get_cluster_input():
if use_fsdp:
distributed_type = DistributedType.FSDP
if distributed_type == DistributedType.FSDP:
sharding_strategy_query = "What should be your sharding strategy?"
fsdp_config["fsdp_sharding_strategy"] = _ask_options(
sharding_strategy_query = "What should be your sharding strategy ("
for i, strategy in enumerate(FSDP_SHARDING_STRATEGY):
sharding_strategy_query += f"[{i+1}] {strategy}, "
sharding_strategy_query = sharding_strategy_query[:-2] + ")? [1]: "
fsdp_config["fsdp_sharding_strategy"] = _ask_field(
sharding_strategy_query,
FSDP_SHARDING_STRATEGY,
lambda x: int(x) + 1,
lambda x: int(x),
default=1,
)
fsdp_config["fsdp_offload_params"] = _ask_field(
@ -299,35 +242,43 @@ def get_cluster_input():
default=False,
error_message="Please enter yes or no.",
)
fsdp_wrap_query = "What should be your auto wrap policy?"
fsdp_config["fsdp_auto_wrap_policy"] = _ask_options(
fsdp_wrap_query = "What should be your auto wrap policy ("
for i, wrap_policy in enumerate(FSDP_AUTO_WRAP_POLICY):
fsdp_wrap_query += f"[{i}] {wrap_policy}, "
fsdp_wrap_query = fsdp_wrap_query[:-2] + ")? [0]: "
fsdp_config["fsdp_auto_wrap_policy"] = _ask_field(
fsdp_wrap_query,
FSDP_AUTO_WRAP_POLICY,
lambda x: FSDP_AUTO_WRAP_POLICY[int(x)],
default="TRANSFORMER_BASED_WRAP",
)
if fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[0]:
fsdp_config["fsdp_transformer_layer_cls_to_wrap"] = _ask_field(
"Specify the comma-separated list of transformer layer class names (case-sensitive) to wrap ,e.g, :"
"`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput` ...? : ",
str,
"What is the transformer layer class name (case-sensitive) to wrap ,e.g, `BertLayer`, `GPTJBlock`, `T5Block` ...? : ",
lambda x: str(x),
)
elif fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[1]:
fsdp_config["fsdp_min_num_params"] = _ask_field(
"What should be your FSDP's minimum number of parameters for Default Auto Wrapping Policy? [1e8]: ",
int,
lambda x: int(x),
default=1e8,
)
fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy?"
fsdp_config["fsdp_backward_prefetch_policy"] = _ask_options(
fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy ("
for i, backward_prefetch_policy in enumerate(FSDP_BACKWARD_PREFETCH):
fsdp_backward_prefetch_query += f"[{i}] {backward_prefetch_policy}, "
fsdp_backward_prefetch_query = fsdp_backward_prefetch_query[:-2] + ")? [0]: "
fsdp_config["fsdp_backward_prefetch_policy"] = _ask_field(
fsdp_backward_prefetch_query,
FSDP_BACKWARD_PREFETCH,
lambda x: FSDP_BACKWARD_PREFETCH[int(x)],
default="BACKWARD_PRE",
)
fsdp_state_dict_type_query = "What should be your FSDP's state dict type?"
fsdp_config["fsdp_state_dict_type"] = _ask_options(
fsdp_state_dict_type_query = "What should be your FSDP's state dict type ("
for i, state_dict_type in enumerate(FSDP_STATE_DICT_TYPE):
fsdp_state_dict_type_query += f"[{i}] {state_dict_type}, "
fsdp_state_dict_type_query = fsdp_state_dict_type_query[:-2] + ")? [0]: "
fsdp_config["fsdp_state_dict_type"] = _ask_field(
fsdp_state_dict_type_query,
FSDP_STATE_DICT_TYPE,
lambda x: FSDP_STATE_DICT_TYPE[int(x)],
default="FULL_STATE_DICT",
)
megatron_lm_config = {}
@ -344,7 +295,7 @@ def get_cluster_input():
prefix = "megatron_lm_"
megatron_lm_config[prefix + "tp_degree"] = _ask_field(
"What is the Tensor Parallelism degree/size? [1]:",
int,
lambda x: int(x),
default=1,
error_message="Please enter an integer.",
)
@ -358,14 +309,14 @@ def get_cluster_input():
megatron_lm_config[prefix + "pp_degree"] = _ask_field(
"What is the Pipeline Parallelism degree/size? [1]:",
int,
lambda x: int(x),
default=1,
error_message="Please enter an integer.",
)
if megatron_lm_config[prefix + "pp_degree"] > 1:
megatron_lm_config[prefix + "num_micro_batches"] = _ask_field(
"What is the number of micro-batches? [1]:",
int,
lambda x: int(x),
default=1,
error_message="Please enter an integer.",
)
@ -387,61 +338,22 @@ def get_cluster_input():
megatron_lm_config[prefix + "gradient_clipping"] = _ask_field(
"What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]: ",
float,
lambda x: float(x),
default=1.0,
)
# TPU specific defaults
tpu_commands = None
tpu_command_file = None
tpu_downcast_bf16 = "no"
tpu_env = []
tpu_name = None
tpu_vm = None
tpu_zone = None
tpu_use_sudo = False
tpu_use_cluster = False
if distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_GPU, DistributedType.TPU]:
machine_type = str(distributed_type).split(".")[1].replace("MULTI_", "")
if machine_type == "TPU":
machine_type += " cores"
else:
machine_type += "(s)"
num_processes = _ask_field(
f"How many {machine_type} should be used for distributed training? [1]:",
int,
default=1,
error_message="Please enter an integer.",
)
elif distributed_type in [DistributedType.FSDP, DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
num_processes = _ask_field(
"How many GPU(s) should be used for distributed training? [1]:",
int,
default=1,
error_message="Please enter an integer.",
)
else:
num_processes = 1
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.NO] and not use_cpu and not use_mps:
gpu_ids = _ask_field(
"What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:",
default="all",
)
if distributed_type == DistributedType.TPU:
mixed_precision = "no"
main_training_function = _ask_field(
"What is the name of the function in your script that should be launched in all parallel scripts? [main]: ",
default="main",
)
tpu_use_cluster = _ask_field(
use_cluster = _ask_field(
"Are you using a TPU cluster? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if tpu_use_cluster:
if use_cluster:
tpu_name = _ask_field(
"What is the name of your TPU cluster? ",
default=None,
@ -452,11 +364,6 @@ def get_cluster_input():
default=None,
error_message="Please enter the zone of your TPU cluster.",
)
tpu_use_sudo = _ask_field(
"To run a python script in a TPU pod, should `sudo` be used? [yes/NO]: ",
default=False,
error_message="Please enter yes or no.",
)
run_commands = _ask_field(
"Do you have code you wish to run on startup in each pod? [yes/NO]: ",
_convert_yes_no_to_bool,
@ -471,18 +378,18 @@ def get_cluster_input():
error_message="Please enter yes or no.",
)
if use_command_file:
tpu_command_file = _ask_field(
command_file = _ask_field(
"What is the path to your bash script? ",
default=None,
error_message="Please enter the path to your bash script.",
)
tpu_command_file = os.path.abspath(tpu_command_file)
command_file = os.path.abspath(command_file)
else:
print("Please enter each command seperately you wish to run on startup in each pod.")
tpu_commands = []
commands = []
another_command = True
while another_command:
tpu_commands.append(
commands.append(
_ask_field(
"Please enter a single command to be ran ",
default=None,
@ -495,33 +402,53 @@ def get_cluster_input():
default=False,
error_message="Please enter yes or no.",
)
tpu_vm = _ask_field(
"If not using an instance group, what are the names of the Compute VM instances to be used, seperated by a comma: ",
default="",
).split(",")
tpu_env = _ask_field(
"What environment variables do you wish to set in each pod, seperated by a comma: ",
default="",
).split(",")
else:
main_training_function = "main"
if distributed_type == DistributedType.DEEPSPEED and use_deepspeed_config:
mixed_precision = None
else:
mixed_precision = _ask_options(
"Do you wish to use FP16 or BF16 (mixed precision)?",
["no", "fp16", "bf16", "fp8"],
_convert_mixed_precision,
)
if use_dynamo and mixed_precision == "no" and not use_cpu:
print(
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
if distributed_type in [DistributedType.MULTI_CPU, DistributedType.MULTI_GPU, DistributedType.TPU]:
machine_type = str(distributed_type).split(".")[1].replace("MULTI_", "")
if machine_type == "TPU":
machine_type += " cores"
else:
machine_type += "(s)"
num_processes = _ask_field(
f"How many {machine_type} should be used for distributed training? [1]:",
lambda x: int(x),
default=1,
error_message="Please enter an integer.",
)
elif distributed_type in [DistributedType.FSDP, DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]:
num_processes = _ask_field(
"How many GPU(s) should be used for distributed training? [1]:",
lambda x: int(x),
default=1,
error_message="Please enter an integer.",
)
else:
num_processes = 1
if distributed_type in [DistributedType.MULTI_GPU, DistributedType.NO] and not use_cpu:
gpu_ids = _ask_field(
"What GPU(s) (by id) should be used for training on this machine as a comma-seperated list? [all]:",
default="all",
)
if distributed_type != DistributedType.TPU:
if distributed_type == DistributedType.DEEPSPEED and use_deepspeed_config:
mixed_precision = "no"
else:
mixed_precision = _ask_field(
"Do you wish to use FP16 or BF16 (mixed precision)? [NO/fp16/bf16]: ",
lambda x: str(x).lower(),
default="no",
)
else:
mixed_precision = "no"
downcast_bf16 = "no"
if distributed_type == DistributedType.TPU and mixed_precision == "bf16":
tpu_downcast_bf16 = _ask_field(
downcast_bf16 = _ask_field(
"Should `torch.float` be cast as `bfloat16` and `torch.double` remain `float32` on TPUs?", default="no"
)
@ -531,7 +458,7 @@ def get_cluster_input():
num_processes=num_processes,
gpu_ids=gpu_ids,
mixed_precision=mixed_precision,
downcast_bf16=tpu_downcast_bf16,
downcast_bf16=downcast_bf16,
machine_rank=machine_rank,
num_machines=num_machines,
main_process_ip=main_process_ip,
@ -540,17 +467,11 @@ def get_cluster_input():
deepspeed_config=deepspeed_config,
fsdp_config=fsdp_config,
megatron_lm_config=megatron_lm_config,
ipex_config=ipex_config,
use_cpu=use_cpu,
rdzv_backend=rdzv_backend,
same_network=same_network,
commands=tpu_commands,
command_file=tpu_command_file,
tpu_env=tpu_env,
tpu_name=tpu_name,
tpu_vm=tpu_vm,
tpu_zone=tpu_zone,
tpu_use_sudo=tpu_use_sudo,
tpu_use_cluster=tpu_use_cluster,
dynamo_config=dynamo_config,
commands=commands,
command_file=command_file,
)

View File

@ -1,89 +0,0 @@
#!/usr/bin/env python
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
description = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def get_user_input():
compute_environment = _ask_options(
"In which compute environment are you running?",
["This machine", "AWS (Amazon SageMaker)"],
_convert_compute_environment,
)
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
config = get_sagemaker_input()
else:
config = get_cluster_input()
return config
def config_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("config", description=description)
else:
parser = argparse.ArgumentParser("Accelerate config command", description=description)
parser.add_argument(
"--config_file",
default=None,
help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
),
)
if subparsers is not None:
parser.set_defaults(func=config_command)
return parser
def config_command(args):
config = get_user_input()
if args.config_file is not None:
config_file = args.config_file
else:
if not os.path.isdir(cache_dir):
os.makedirs(cache_dir)
config_file = default_yaml_config_file
if config_file.endswith(".json"):
config.to_json_file(config_file)
else:
config.to_yaml_file(config_file)
print(f"accelerate configuration saved at {config_file}")
def main():
parser = config_command_parser()
args = parser.parse_args()
config_command(args)
if __name__ == "__main__":
main()

View File

@ -41,16 +41,8 @@ else:
def load_config_from_file(config_file):
if config_file is not None:
if not os.path.isfile(config_file):
raise FileNotFoundError(
f"The passed configuration file `{config_file}` does not exist. "
"Please pass an existing file to `accelerate launch`, or use the the default one "
"created through `accelerate config` and run `accelerate launch` "
"without the `--config_file` argument."
)
else:
config_file = default_config_file
config_file_exists = config_file is not None and os.path.isfile(config_file)
config_file = config_file if config_file_exists else default_config_file
with open(config_file, "r", encoding="utf-8") as f:
if config_file.endswith(".json"):
if (
@ -85,9 +77,6 @@ class BaseConfig:
for key, value in result.items():
if isinstance(value, Enum):
result[key] = value.value
if isinstance(value, dict) and not bool(value):
result[key] = None
result = {k: v for k, v in result.items() if v is not None}
return result
@classmethod
@ -98,12 +87,9 @@ class BaseConfig:
if "compute_environment" not in config_dict:
config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE
if "mixed_precision" not in config_dict:
config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else None
config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else "no"
if "fp16" in config_dict: # Convert the config to the new format.
del config_dict["fp16"]
if "dynamo_backend" in config_dict: # Convert the config to the new format.
dynamo_backend = config_dict.pop("dynamo_backend")
config_dict["dynamo_config"] = {} if dynamo_backend == "NO" else {"dynamo_backend": dynamo_backend}
if "use_cpu" not in config_dict:
config_dict["use_cpu"] = False
return cls(**config_dict)
@ -122,14 +108,12 @@ class BaseConfig:
config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE
if "mixed_precision" not in config_dict:
config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else None
config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else "no"
if "fp16" in config_dict: # Convert the config to the new format.
del config_dict["fp16"]
if "dynamo_backend" in config_dict: # Convert the config to the new format.
dynamo_backend = config_dict.pop("dynamo_backend")
config_dict["dynamo_config"] = {} if dynamo_backend == "NO" else {"dynamo_backend": dynamo_backend}
if "use_cpu" not in config_dict:
config_dict["use_cpu"] = False
return cls(**config_dict)
def to_yaml_file(self, yaml_file):
@ -144,8 +128,6 @@ class BaseConfig:
self.distributed_type = SageMakerDistributedType(self.distributed_type)
else:
self.distributed_type = DistributedType(self.distributed_type)
if self.dynamo_config is None:
self.dynamo_config = {}
@dataclass
@ -166,23 +148,14 @@ class ClusterConfig(BaseConfig):
fsdp_config: dict = None
# args for megatron_lm
megatron_lm_config: dict = None
# args for ipex
ipex_config: dict = None
# args for TPU
downcast_bf16: bool = False
# args for TPU pods
tpu_name: str = None
tpu_zone: str = None
tpu_use_cluster: bool = False
tpu_use_sudo: bool = False
command_file: str = None
commands: List[str] = None
tpu_vm: List[str] = None
tpu_env: List[str] = None
# args for dynamo
dynamo_config: dict = None
def __post_init__(self):
if self.deepspeed_config is None:
@ -191,8 +164,6 @@ class ClusterConfig(BaseConfig):
self.fsdp_config = {}
if self.megatron_lm_config is None:
self.megatron_lm_config = {}
if self.ipex_config is None:
self.ipex_config = {}
return super().__post_init__()
@ -200,7 +171,7 @@ class ClusterConfig(BaseConfig):
class SageMakerConfig(BaseConfig):
ec2_instance_type: str
iam_role_name: str
image_uri: Optional[str] = None
image_uri: str
profile: Optional[str] = None
region: str = "us-east-1"
num_machines: int = 1
@ -211,5 +182,3 @@ class SageMakerConfig(BaseConfig):
py_version: str = SAGEMAKER_PYTHON_VERSION
sagemaker_inputs_file: str = None
sagemaker_metrics_file: str = None
additional_args: dict = None
dynamo_config: dict = None

View File

@ -14,30 +14,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
DYNAMO_BACKENDS = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
from ...utils.dataclasses import ComputeEnvironment, DistributedType, SageMakerDistributedType
def _ask_field(input_text, convert_value=None, default=None, error_message=None):
@ -48,17 +25,11 @@ def _ask_field(input_text, convert_value=None, default=None, error_message=None)
if default is not None and len(result) == 0:
return default
return convert_value(result) if convert_value is not None else result
except Exception:
except:
if error_message is not None:
print(error_message)
def _ask_options(input_text, options=[], convert_value=None, default=0):
menu = BulletMenu(input_text, options)
result = menu.run(default_choice=default)
return convert_value(result) if convert_value is not None else result
def _convert_compute_environment(value):
value = int(value)
return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value])
@ -66,17 +37,7 @@ def _convert_compute_environment(value):
def _convert_distributed_mode(value):
value = int(value)
return DistributedType(["NO", "MULTI_CPU", "MULTI_GPU", "TPU"][value])
def _convert_dynamo_backend(value):
value = int(value)
return DynamoBackend(DYNAMO_BACKENDS[value]).value
def _convert_mixed_precision(value):
value = int(value)
return PrecisionType(["no", "fp16", "bf16", "fp8"][value])
return DistributedType(["NO", "MULTI_CPU", "MULTI_GPU", "TPU", "MPS"][value])
def _convert_sagemaker_distributed_mode(value):
@ -86,14 +47,3 @@ def _convert_sagemaker_distributed_mode(value):
def _convert_yes_no_to_bool(value):
return {"yes": True, "no": False}[value.lower()]
class SubcommandHelpFormatter(argparse.RawDescriptionHelpFormatter):
"""
A custom formatter that will remove the usage line from the help message for subcommands.
"""
def _format_usage(self, usage, actions, groups, prefix):
usage = super()._format_usage(usage, actions, groups, prefix)
usage = usage.replace("<command> [<args>] ", "")
return usage

View File

@ -1,105 +0,0 @@
#!/usr/bin/env python
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
import torch
from .config_args import ClusterConfig, default_json_config_file
from .config_utils import SubcommandHelpFormatter
description = "Create a default config file for Accelerate with only a few flags set."
def write_basic_config(mixed_precision="no", save_location: str = default_json_config_file, dynamo_backend="no"):
"""
Creates and saves a basic cluster config to be used on a local machine with potentially multiple GPUs. Will also
set CPU if it is a CPU-only machine.
Args:
mixed_precision (`str`, *optional*, defaults to "no"):
Mixed Precision to use. Should be one of "no", "fp16", or "bf16"
save_location (`str`, *optional*, defaults to `default_json_config_file`):
Optional custom save location. Should be passed to `--config_file` when using `accelerate launch`. Default
location is inside the huggingface cache folder (`~/.cache/huggingface`) but can be overriden by setting
the `HF_HOME` environmental variable, followed by `accelerate/default_config.yaml`.
"""
path = Path(save_location)
path.parent.mkdir(parents=True, exist_ok=True)
if path.exists():
print(
f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`."
)
return False
mixed_precision = mixed_precision.lower()
if mixed_precision not in ["no", "fp16", "bf16", "fp8"]:
raise ValueError(
f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}"
)
config = {
"compute_environment": "LOCAL_MACHINE",
"mixed_precision": mixed_precision,
}
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
config["num_processes"] = num_gpus
config["use_cpu"] = False
if num_gpus > 1:
config["distributed_type"] = "MULTI_GPU"
else:
config["distributed_type"] = "NO"
else:
num_gpus = 0
config["use_cpu"] = True
config["num_processes"] = 1
config["distributed_type"] = "NO"
config = ClusterConfig(**config)
config.to_json_file(path)
return path
def default_command_parser(parser, parents):
parser = parser.add_parser("default", parents=parents, help=description, formatter_class=SubcommandHelpFormatter)
parser.add_argument(
"--config_file",
default=default_json_config_file,
help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
),
dest="save_location",
)
parser.add_argument(
"--mixed_precision",
choices=["no", "fp16", "bf16"],
type=str,
help="Whether or not to use mixed precision training. "
"Choose between FP16 and BF16 (bfloat16) training. "
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.",
default="no",
)
parser.set_defaults(func=default_config_command)
return parser
def default_config_command(args):
config_file = write_basic_config(args.mixed_precision, args.save_location)
if config_file:
print(f"accelerate configuration saved at {config_file}")

View File

@ -16,19 +16,11 @@
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_boto3_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
from .config_utils import _ask_field, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool
if is_boto3_available():
@ -95,10 +87,9 @@ def _get_iam_role_arn(role_name):
def get_sagemaker_input():
credentials_configuration = _ask_options(
"How do you want to authorize?",
["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "],
int,
credentials_configuration = _ask_field(
"How do you want to authorize? ([0] AWS Profile, [1] Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY)): ",
lambda x: int(x),
)
aws_profile = None
if credentials_configuration == 0:
@ -118,10 +109,9 @@ def get_sagemaker_input():
aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1")
os.environ["AWS_DEFAULT_REGION"] = aws_region
role_management = _ask_options(
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?",
["Provide IAM Role name", "Create new IAM role using credentials"],
int,
role_management = _ask_field(
"Do you already have an IAM Role for executing Amazon SageMaker Training Jobs? ([0] provide IAM Role name, [1] create new IAM role using credentials: ",
lambda x: int(x),
)
if role_management == 0:
iam_role_name = _ask_field("Enter your IAM role name: ")
@ -166,86 +156,45 @@ def get_sagemaker_input():
lambda x: str(x).lower(),
)
distributed_type = _ask_options(
"What is the distributed mode?",
["No distributed training", "Data parallelism"],
distributed_type = _ask_field(
"What is the distributed mode? ([0] No distributed training, [1] data parallelism): ",
_convert_sagemaker_distributed_mode,
error_message="Please enter 0 or 1",
)
dynamo_config = {}
use_dynamo = _ask_field(
"Do you wish to optimize your script with torch dynamo?[yes/NO]:",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_dynamo:
prefix = "dynamo_"
dynamo_config[prefix + "backend"] = _ask_options(
"Which dynamo backend would you like to use?",
[x.lower() for x in DYNAMO_BACKENDS],
_convert_dynamo_backend,
default=2,
)
use_custom_options = _ask_field(
"Do you want to customize the defaults sent to torch.compile? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
if use_custom_options:
dynamo_config[prefix + "mode"] = _ask_options(
"Which mode do you want to use?",
TORCH_DYNAMO_MODES,
lambda x: TORCH_DYNAMO_MODES[int(x)],
default="default",
)
dynamo_config[prefix + "use_fullgraph"] = _ask_field(
"Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
dynamo_config[prefix + "use_dynamic"] = _ask_field(
"Do you want to enable dynamic shape tracing? [yes/NO]: ",
_convert_yes_no_to_bool,
default=False,
error_message="Please enter yes or no.",
)
ec2_instance_query = "Which EC2 instance type you want to use for your training?"
ec2_instance_query = "Which EC2 instance type you want to use for your training "
if distributed_type != SageMakerDistributedType.NO:
ec2_instance_type = _ask_options(
ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)]
)
ec2_instance_query += "("
for i, instance_type in enumerate(SAGEMAKER_PARALLEL_EC2_INSTANCES):
ec2_instance_query += f"[{i}] {instance_type}, "
ec2_instance_query = ec2_instance_query[:-2] + ")? [0]: "
ec2_instance_type = _ask_field(ec2_instance_query, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)])
else:
ec2_instance_query += "? [ml.p3.2xlarge]:"
ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge")
num_machines = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
if (
distributed_type == SageMakerDistributedType.DATA_PARALLEL
or distributed_type == SageMakerDistributedType.MODEL_PARALLEL
):
num_machines = _ask_field(
"How many machines do you want use? [1]: ",
int,
lambda x: int(x),
default=1,
)
mixed_precision = _ask_options(
"Do you wish to use FP16 or BF16 (mixed precision)?",
["no", "fp16", "bf16", "fp8"],
_convert_mixed_precision,
mixed_precision = _ask_field(
"Do you wish to use FP16 or BF16 (mixed precision)? [No/FP16/BF16]: ",
lambda x: str(x),
default="No",
)
if use_dynamo and mixed_precision == "no":
print(
"Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts."
)
return SageMakerConfig(
image_uri=docker_image,
compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER,
distributed_type=distributed_type,
use_cpu=False,
dynamo_config=dynamo_config,
ec2_instance_type=ec2_instance_type,
profile=aws_profile,
region=aws_region,

View File

@ -1,63 +0,0 @@
#!/usr/bin/env python
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from .config_args import default_config_file, load_config_from_file
from .config_utils import SubcommandHelpFormatter
description = "Update an existing config file with the latest defaults while maintaining the old configuration."
def update_config(args):
"""
Update an existing config file with the latest defaults while maintaining the old configuration.
"""
config_file = args.config_file
if config_file is None and Path(default_config_file).exists():
config_file = default_config_file
elif not Path(config_file).exists():
raise ValueError(f"The passed config file located at {config_file} doesn't exist.")
config = load_config_from_file(config_file)
if config_file.endswith(".json"):
config.to_json_file(config_file)
else:
config.to_yaml_file(config_file)
return config_file
def update_command_parser(parser, parents):
parser = parser.add_parser("update", parents=parents, help=description, formatter_class=SubcommandHelpFormatter)
parser.add_argument(
"--config_file",
default=None,
help=(
"The path to the config file to update. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
),
)
parser.set_defaults(func=update_config_command)
return parser
def update_config_command(args):
config_file = update_config(args)
print(f"Sucessfully updated the configuration file at {config_file}.")

View File

@ -20,18 +20,21 @@ import logging
import os
import subprocess
import sys
import warnings
from ast import literal_eval
from pathlib import Path
from typing import Dict, List
import psutil
import torch
import psutil
from accelerate.commands.config import default_config_file, load_config_from_file
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.commands.config.config_utils import DYNAMO_BACKENDS
from accelerate.state import get_int_from_env
from accelerate.utils import (
ComputeEnvironment,
DistributedType,
PrecisionType,
PrepareForLaunch,
_filter_args,
is_deepspeed_available,
@ -39,13 +42,10 @@ from accelerate.utils import (
is_sagemaker_available,
is_torch_version,
patch_environment,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from accelerate.utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS, TORCH_DYNAMO_MODES
from accelerate.utils.constants import DEEPSPEED_MULTINODE_LAUNCHERS
from accelerate.utils.dataclasses import SageMakerDistributedType
from accelerate.utils.launch import env_var_path_add
if is_rich_available():
@ -61,6 +61,8 @@ logger = logging.getLogger(__name__)
options_to_group = {
"--multi-gpu": "Distributed GPUs",
"--tpu": "TPU",
"--mps": "MPS",
"--use_mps_device": "MPS",
"--use_deepspeed": "DeepSpeed Arguments",
"--use_fsdp": "FSDP Arguments",
"--use_megatron_lm": "Megatron-LM Arguments",
@ -123,9 +125,9 @@ class _CustomHelpAction(argparse._HelpAction):
def launch_command_parser(subparsers=None):
if subparsers is not None:
parser = subparsers.add_parser("launch", add_help=False, allow_abbrev=False)
parser = subparsers.add_parser("launch", add_help=False)
else:
parser = argparse.ArgumentParser("Accelerate launch command", add_help=False, allow_abbrev=False)
parser = argparse.ArgumentParser("Accelerate launch command", add_help=False)
parser.register("action", "help", _CustomHelpAction)
parser.add_argument("-h", "--help", action="help", help="Show this help message and exit.")
@ -133,12 +135,6 @@ def launch_command_parser(subparsers=None):
parser.add_argument(
"--config_file", default=None, help="The config file to use for the default values in the launching script."
)
parser.add_argument(
"--quiet",
"-q",
action="store_true",
help="Silence subprocess errors from the launch stack trace and only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations)",
)
# Hardware selection arguments
hardware_args = parser.add_argument_group(
"Hardware Selection Arguments", "Arguments for selecting the hardware to be used."
@ -146,6 +142,12 @@ def launch_command_parser(subparsers=None):
hardware_args.add_argument(
"--cpu", default=False, action="store_true", help="Whether or not to force the training on the CPU."
)
hardware_args.add_argument(
"--mps",
default=False,
action="store_true",
help="Whether or not this should use MPS-enabled GPU device on MacOS machines.",
)
hardware_args.add_argument(
"--multi_gpu",
default=False,
@ -155,6 +157,12 @@ def launch_command_parser(subparsers=None):
hardware_args.add_argument(
"--tpu", default=False, action="store_true", help="Whether or not this should launch a TPU training."
)
hardware_args.add_argument(
"--use_mps_device",
default=False,
action="store_true",
help="This argument is deprecated, use `--mps` instead.",
)
# Resource selection arguments
resource_args = parser.add_argument_group(
@ -163,11 +171,17 @@ def launch_command_parser(subparsers=None):
resource_args.add_argument(
"--mixed_precision",
type=str,
choices=["no", "fp16", "bf16", "fp8"],
choices=["no", "fp16", "bf16"],
help="Whether or not to use mixed precision training. "
"Choose between FP16 and BF16 (bfloat16) training. "
"BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.",
)
resource_args.add_argument(
"--fp16",
default=False,
action="store_true",
help="This argument is deprecated, use `--mixed_precision fp16` instead.",
)
resource_args.add_argument(
"--num_processes", type=int, default=None, help="The total number of processes to be launched in parallel."
)
@ -181,34 +195,6 @@ def launch_command_parser(subparsers=None):
help="The number of CPU threads per process. Can be tuned for optimal performance.",
)
# Dynamo arguments
resource_args.add_argument(
"--dynamo_backend",
type=str,
choices=["no"] + [b.lower() for b in DYNAMO_BACKENDS],
help="Choose a backend to optimize your training with dynamo, see more at "
"https://github.com/pytorch/torchdynamo.",
)
resource_args.add_argument(
"--dynamo_mode",
type=str,
default="default",
choices=TORCH_DYNAMO_MODES,
help="Choose a mode to optimize your training with dynamo.",
)
resource_args.add_argument(
"--dynamo_use_fullgraph",
default=False,
action="store_true",
help="Whether to use full graph mode for dynamo or it is ok to break model into several subgraphs",
)
resource_args.add_argument(
"--dynamo_use_dynamic",
default=False,
action="store_true",
help="Whether to enable dynamic shape tracing.",
)
# Training Paradigm arguments
paradigm_args = parser.add_argument_group(
"Training Paradigm Arguments", "Arguments for selecting which training paradigm to be used."
@ -257,19 +243,6 @@ def launch_command_parser(subparsers=None):
default=None,
help="The port to use to communicate with the machine of rank 0.",
)
distributed_args.add_argument(
"-t",
"--tee",
default="0",
type=str,
help="Tee std streams into a log file and also to console.",
)
distributed_args.add_argument(
"--role",
type=str,
default="default",
help="User-defined role for the workers.",
)
# Rendezvous related arguments
distributed_args.add_argument(
"--rdzv_conf",
@ -301,40 +274,8 @@ def launch_command_parser(subparsers=None):
help="Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script.",
)
# TPU arguments
# tpu arguments
tpu_args = parser.add_argument_group("TPU", "Arguments related to TPU.")
tpu_args.add_argument(
"--tpu_cluster",
action="store_true",
dest="tpu_use_cluster",
help="Whether to use a GCP TPU pod for training.",
)
tpu_args.add_argument(
"--no_tpu_cluster",
action="store_false",
dest="tpu_use_cluster",
help="Should not be passed explicitly, this is for internal use only.",
)
tpu_args.add_argument(
"--tpu_use_sudo",
action="store_true",
help="Whether to use `sudo` when running the TPU training script in each pod.",
)
tpu_args.add_argument(
"--vm",
type=str,
action="append",
help=(
"List of single Compute VM instance names. "
"If not provided we assume usage of instance groups. For TPU pods."
),
)
tpu_args.add_argument(
"--env",
type=str,
action="append",
help="List of environment variables to set on the Compute VM instances. For TPU pods.",
)
tpu_args.add_argument(
"--main_training_function",
type=str,
@ -359,50 +300,45 @@ def launch_command_parser(subparsers=None):
"--zero_stage",
default=None,
type=int,
help="DeepSpeed's ZeRO optimization stage (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to `2`.",
help="DeepSpeed's ZeRO optimization stage (useful only when `use_deepspeed` flag is passed).",
)
deepspeed_args.add_argument(
"--offload_optimizer_device",
default=None,
type=str,
help="Decides where (none|cpu|nvme) to offload optimizer states (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to 'none'.",
help="Decides where (none|cpu|nvme) to offload optimizer states (useful only when `use_deepspeed` flag is passed).",
)
deepspeed_args.add_argument(
"--offload_param_device",
default=None,
type=str,
help="Decides where (none|cpu|nvme) to offload parameters (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to 'none'.",
help="Decides where (none|cpu|nvme) to offload parameters (useful only when `use_deepspeed` flag is passed).",
)
deepspeed_args.add_argument(
"--gradient_accumulation_steps",
default=None,
type=int,
help="No of gradient_accumulation_steps used in your training script (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to `1`.",
help="No of gradient_accumulation_steps used in your training script (useful only when `use_deepspeed` flag is passed).",
)
deepspeed_args.add_argument(
"--gradient_clipping",
default=None,
type=float,
help="gradient clipping value used in your training script (useful only when `use_deepspeed` flag is passed). "
"If unspecified, will default to `1.0`.",
help="gradient clipping value used in your training script (useful only when `use_deepspeed` flag is passed).",
)
deepspeed_args.add_argument(
"--zero3_init_flag",
default=None,
type=str,
help="Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. "
"Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `true`.",
"Only applicable with DeepSpeed ZeRO Stage-3.",
)
deepspeed_args.add_argument(
"--zero3_save_16bit_model",
default=None,
type=str,
help="Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. "
"Only applicable with DeepSpeed ZeRO Stage-3. If unspecified, will default to `false`.",
"Only applicable with DeepSpeed ZeRO Stage-3.",
)
deepspeed_args.add_argument(
"--deepspeed_hostfile",
@ -426,7 +362,7 @@ def launch_command_parser(subparsers=None):
"--deepspeed_multinode_launcher",
default=None,
type=str,
help="DeepSpeed multi-node launcher to use. If unspecified, will default to `pdsh`.",
help="DeepSpeed multi-node launcher to use.",
)
# fsdp arguments
@ -553,15 +489,6 @@ def launch_command_parser(subparsers=None):
),
)
# ipex args
ipex_args = parser.add_argument_group("IPEX Arguments", "Arguments related to IPEX.")
ipex_args.add_argument(
"--ipex_enabled",
default=False,
action="store_true",
help="Whether to use Intel PyTorch Extension (IPEX) to speed up training on CPU?",
)
# Other arguments of the training scripts
parser.add_argument("training_script_args", nargs=argparse.REMAINDER, help="Arguments of the training script.")
@ -571,53 +498,244 @@ def launch_command_parser(subparsers=None):
def simple_launcher(args):
cmd, current_env = prepare_simple_launcher_cmd_env(args)
cmd = []
if args.no_python and args.module:
raise ValueError("--module and --no_python cannot be used together")
if not args.no_python:
cmd.append(sys.executable)
if args.module:
cmd.append("-m")
cmd.append(args.training_script)
cmd.extend(args.training_script_args)
current_env = os.environ.copy()
current_env["USE_CPU"] = str(args.cpu or args.use_cpu)
if args.use_mps_device:
warnings.warn(
'`use_mps_device` flag is deprecated and will be removed in version 0.15.0 of 🤗 Accelerate. Use "--mps" instead.',
FutureWarning,
)
args.mps = True
current_env["USE_MPS_DEVICE"] = str(args.mps)
if args.mps:
current_env["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
elif args.gpu_ids != "all" and args.gpu_ids is not None:
current_env["CUDA_VISIBLE_DEVICES"] = args.gpu_ids
if args.num_machines > 1:
current_env["MASTER_ADDR"] = args.main_process_ip
current_env["MASTER_PORT"] = str(args.main_process_port)
elif args.num_processes > 1:
current_env["MASTER_ADDR"] = args.main_process_ip if args.main_process_ip is not None else "127.0.0.1"
current_env["MASTER_PORT"] = str(args.main_process_port) if args.main_process_port is not None else "29500"
try:
mixed_precision = PrecisionType(args.mixed_precision.lower())
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
)
if args.fp16:
warnings.warn(
"`fp16` is deprecated and will be removed in version 0.15.0 of 🤗 Accelerate. Use `mixed_precision fp16` instead.",
FutureWarning,
)
mixed_precision = "fp16"
current_env["MIXED_PRECISION"] = str(mixed_precision)
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process)
process = subprocess.Popen(cmd, env=current_env)
process.wait()
if process.returncode != 0:
if not args.quiet:
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
else:
sys.exit(1)
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
def multi_gpu_launcher(args):
if is_torch_version(">=", "1.9.1"):
if is_torch_version(">=", "1.9.0"):
import torch.distributed.run as distrib_run
num_processes = getattr(args, "num_processes")
num_machines = getattr(args, "num_machines")
main_process_ip = getattr(args, "main_process_ip")
main_process_port = getattr(args, "main_process_port")
if num_machines > 1:
setattr(args, "nproc_per_node", str(num_processes // num_machines))
setattr(args, "nnodes", str(num_machines))
setattr(args, "node_rank", int(args.machine_rank))
if getattr(args, "same_network", False):
setattr(args, "master_addr", str(main_process_ip))
setattr(args, "master_port", str(main_process_port))
else:
setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}")
else:
raise NotImplementedError(
"Native multi-GPU training through `accelerate launch` requires pytorch>=1.9.1. "
"Please call `torch.distributed.launch` directly instead."
)
setattr(args, "nproc_per_node", str(num_processes))
if main_process_port is not None:
setattr(args, "master_port", str(main_process_port))
current_env = prepare_multi_gpu_env(args)
if args.module and args.no_python:
raise ValueError("--module and --no_python cannot be used together")
elif args.module:
setattr(args, "module", True)
elif args.no_python:
setattr(args, "no_python", True)
current_env = os.environ.copy()
gpu_ids = getattr(args, "gpu_ids", "all")
if gpu_ids != "all" and args.gpu_ids is not None:
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids
mixed_precision = args.mixed_precision.lower()
try:
mixed_precision = PrecisionType(mixed_precision)
except ValueError:
raise ValueError(f"Unknown mixed_precision mode: {mixed_precision}. Choose between {PrecisionType.list()}.")
if args.fp16:
warnings.warn(
"`fp16` is deprecated and will be removed in version 0.15.0 of 🤗 Accelerate. Use `mixed_precision fp16` instead.",
FutureWarning,
)
mixed_precision = "fp16"
current_env["MIXED_PRECISION"] = str(mixed_precision)
if args.use_fsdp:
current_env["USE_FSDP"] = "true"
current_env["FSDP_SHARDING_STRATEGY"] = str(args.fsdp_sharding_strategy)
current_env["FSDP_OFFLOAD_PARAMS"] = str(args.fsdp_offload_params).lower()
current_env["FSDP_MIN_NUM_PARAMS"] = str(args.fsdp_min_num_params)
if args.fsdp_auto_wrap_policy is not None:
current_env["FSDP_AUTO_WRAP_POLICY"] = str(args.fsdp_auto_wrap_policy)
if args.fsdp_transformer_layer_cls_to_wrap is not None:
current_env["FSDP_TRANSFORMER_CLS_TO_WRAP"] = str(args.fsdp_transformer_layer_cls_to_wrap)
if args.fsdp_backward_prefetch_policy is not None:
current_env["FSDP_BACKWARD_PREFETCH"] = str(args.fsdp_backward_prefetch_policy)
if args.fsdp_state_dict_type is not None:
current_env["FSDP_STATE_DICT_TYPE"] = str(args.fsdp_state_dict_type)
if args.use_megatron_lm:
prefix = "MEGATRON_LM_"
current_env["USE_MEGATRON_LM"] = "true"
current_env[prefix + "TP_DEGREE"] = str(args.megatron_lm_tp_degree)
current_env[prefix + "PP_DEGREE"] = str(args.megatron_lm_pp_degree)
current_env[prefix + "GRADIENT_CLIPPING"] = str(args.megatron_lm_gradient_clipping)
if args.megatron_lm_num_micro_batches is not None:
current_env[prefix + "NUM_MICRO_BATCHES"] = str(args.megatron_lm_num_micro_batches)
if args.megatron_lm_sequence_parallelism is not None:
current_env[prefix + "SEQUENCE_PARALLELISM"] = str(args.megatron_lm_sequence_parallelism)
if args.megatron_lm_recompute_activations is not None:
current_env[prefix + "RECOMPUTE_ACTIVATIONS"] = str(args.megatron_lm_recompute_activations)
if args.megatron_lm_use_distributed_optimizer is not None:
current_env[prefix + "USE_DISTRIBUTED_OPTIMIZER"] = str(args.megatron_lm_use_distributed_optimizer)
current_env["OMP_NUM_THREADS"] = str(args.num_cpu_threads_per_process)
if is_torch_version("<", "1.9.0"):
raise NotImplementedError("Multi-node training requires pytorch>=1.9.0")
debug = getattr(args, "debug", False)
args = _filter_args(
args,
distrib_run.get_args_parser(),
["--training_script", args.training_script, "--training_script_args", args.training_script_args],
)
args = _filter_args(args)
with patch_environment(**current_env):
try:
distrib_run.run(args)
except Exception:
except:
if is_rich_available() and debug:
console = get_console()
console.print("\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]")
console.print_exception(suppress=[__file__], show_locals=False)
else:
raise
def deepspeed_launcher(args):
if is_torch_version(">=", "1.9.1"):
if is_torch_version(">=", "1.9.0"):
import torch.distributed.run as distrib_run
if not is_deepspeed_available():
raise ImportError("DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source.")
num_processes = getattr(args, "num_processes")
num_machines = getattr(args, "num_machines")
main_process_ip = getattr(args, "main_process_ip")
main_process_port = getattr(args, "main_process_port")
cmd, current_env = prepare_deepspeed_cmd_env(args)
# make sure launcher is not None
if args.deepspeed_multinode_launcher is None:
# set to default pdsh
setattr(args, "deepspeed_multinode_launcher", DEEPSPEED_MULTINODE_LAUNCHERS[0])
if num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
cmd = ["deepspeed", "--no_local_rank"]
cmd.extend(["--hostfile", str(args.deepspeed_hostfile), "--launcher", str(args.deepspeed_multinode_launcher)])
if args.deepspeed_exclusion_filter is not None:
cmd.extend(
[
"--exclude",
str(args.deepspeed_exclusion_filter),
]
)
elif args.deepspeed_inclusion_filter is not None:
cmd.extend(
[
"--include",
str(args.deepspeed_inclusion_filter),
]
)
else:
cmd.extend(["--num_gpus", str(args.num_processes // args.num_machines)])
if args.module and args.no_python:
raise ValueError("--module and --no_python cannot be used together")
elif args.module:
cmd.append("--module")
elif args.no_python:
cmd.append("--no_python")
cmd.append(args.training_script)
cmd.extend(args.training_script_args)
elif num_machines > 1 and args.deepspeed_multinode_launcher == DEEPSPEED_MULTINODE_LAUNCHERS[1]:
setattr(args, "nproc_per_node", str(num_processes // num_machines))
setattr(args, "nnodes", str(num_machines))
setattr(args, "node_rank", int(args.machine_rank))
if getattr(args, "same_network", False):
setattr(args, "master_addr", str(main_process_ip))
setattr(args, "master_port", str(main_process_port))
else:
setattr(args, "rdzv_endpoint", f"{main_process_ip}:{main_process_port}")
else:
setattr(args, "nproc_per_node", str(num_processes))
if main_process_port is not None:
setattr(args, "master_port", str(main_process_port))
if args.module and args.no_python:
raise ValueError("--module and --no_python cannot be used together")
elif args.module:
setattr(args, "module", True)
elif args.no_python:
setattr(args, "no_python", True)
current_env = os.environ.copy()
gpu_ids = getattr(args, "gpu_ids", "all")
if gpu_ids != "all" and args.gpu_ids is not None:
current_env["CUDA_VISIBLE_DEVICES"] = gpu_ids
try:
mixed_precision = PrecisionType(args.mixed_precision.lower())
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
)
if args.fp16:
warnings.warn(
'--fp16 flag is deprecated and will be removed in version 0.15.0 of 🤗 Accelerate. Use "--mixed_precision fp16" instead.',
FutureWarning,
)
mixed_precision = "fp16"
current_env["PYTHONPATH"] = env_var_path_add("PYTHONPATH", os.path.abspath("."))
current_env["MIXED_PRECISION"] = str(mixed_precision)
current_env["USE_DEEPSPEED"] = "true"
current_env["DEEPSPEED_ZERO_STAGE"] = str(args.zero_stage)
current_env["GRADIENT_ACCUMULATION_STEPS"] = str(args.gradient_accumulation_steps)
current_env["GRADIENT_CLIPPING"] = str(args.gradient_clipping).lower()
current_env["DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE"] = str(args.offload_optimizer_device).lower()
current_env["DEEPSPEED_OFFLOAD_PARAM_DEVICE"] = str(args.offload_param_device).lower()
current_env["DEEPSPEED_ZERO3_INIT"] = str(args.zero3_init_flag).lower()
current_env["DEEPSPEED_ZERO3_SAVE_16BIT_MODEL"] = str(args.zero3_save_16bit_model).lower()
if args.deepspeed_config_file is not None:
current_env["DEEPSPEED_CONFIG_FILE"] = str(args.deepspeed_config_file)
if args.num_machines > 1 and args.deepspeed_multinode_launcher != DEEPSPEED_MULTINODE_LAUNCHERS[1]:
with open(".deepspeed_env", "a") as f:
@ -629,39 +747,38 @@ def deepspeed_launcher(args):
process = subprocess.Popen(cmd, env=current_env)
process.wait()
if process.returncode != 0:
if not args.quiet:
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
else:
sys.exit(1)
raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd)
else:
if is_torch_version("<", "1.9.1"):
raise NotImplementedError("Multi-node training requires pytorch>=1.9.1")
if is_torch_version("<", "1.9.0"):
raise NotImplementedError("Multi-node training requires pytorch>=1.9.0")
debug = getattr(args, "debug", False)
args = _filter_args(
args,
distrib_run.get_args_parser(),
["--training_script", args.training_script, "--training_script_args", args.training_script_args],
)
args = _filter_args(args)
with patch_environment(**current_env):
try:
distrib_run.run(args)
except Exception:
except:
if is_rich_available() and debug:
console = get_console()
console.print("\n[bold red]Using --debug, `torch.distributed` Stack Trace:[/bold red]")
console.print_exception(suppress=[__file__], show_locals=False)
else:
raise
def tpu_launcher(args):
import torch_xla.distributed.xla_multiprocessing as xmp
current_env = {}
if args.no_python:
raise ValueError("--no_python cannot be used with TPU launcher")
args, current_env = prepare_tpu(args, {})
if args.mixed_precision == "bf16":
if args.downcast_bf16:
current_env["XLA_USE_BF16"] = "0"
current_env["XLA_DOWNCAST_BF16"] = "1"
else:
current_env["XLA_USE_BF16"] = "1"
current_env["XLA_DOWNCAST_BF16"] = "0"
if args.module:
mod_name = args.training_script
@ -686,63 +803,46 @@ def tpu_launcher(args):
xmp.spawn(PrepareForLaunch(main_function), args=(), nprocs=args.num_processes)
def tpu_pod_launcher(args):
from torch_xla.distributed import xla_dist
def _convert_nargs_to_dict(nargs: List[str]) -> Dict[str, str]:
if len(nargs) < 0:
return {}
# helper function to infer type for argsparser
current_env = {}
args, current_env = prepare_tpu(args, current_env, True)
debug = getattr(args, "debug", False)
def _infer_type(s):
try:
s = float(s)
training_script = args.training_script
training_script_args = args.training_script_args
new_args = _filter_args(
args, xla_dist.get_args_parser(), ["--tpu", args.tpu_name, "--positional", "", "--restart-tpuvm-pod-server"]
)
if s // 1 == s:
return int(s)
return s
except ValueError:
return s
if args.tpu_use_sudo:
new_cmd = ["sudo"]
else:
new_cmd = []
parser = argparse.ArgumentParser()
_, unknown = parser.parse_known_args(nargs)
for index, argument in enumerate(unknown):
if argument.startswith(("-", "--")):
action = None
if index + 1 < len(unknown): # checks if next index would be in list
if unknown[index + 1].startswith(("-", "--")): # checks if next element is an key
# raise an error if element is store_true or store_false
raise ValueError(
"SageMaker doesnt support argparse actions for `store_true` or `store_false`. Please define explicit types"
)
else: # raise an error if last element is store_true or store_false
raise ValueError(
"SageMaker doesnt support argparse actions for `store_true` or `store_false`. Please define explicit types"
)
# adds argument to parser based on action_store true
if action is None:
parser.add_argument(argument, type=_infer_type)
else:
parser.add_argument(argument, action=action)
new_cmd += [
"accelerate-launch",
"--tpu",
"--no_tpu_cluster",
"--num_machines",
str(1),
"--mixed_precision",
"no",
"--dynamo_backend",
"no",
"--num_processes",
str(args.num_processes),
"--main_training_function",
str(args.main_training_function),
training_script,
] + training_script_args
new_args.positional = new_cmd
bad_flags = ""
for arg in vars(new_args):
if arg.startswith("docker_"):
value = getattr(new_args, arg)
if value != "" and value is not None:
bad_flags += f'{arg}="{value}"\n'
if bad_flags != "":
raise ValueError(
f"Docker containers are not supported for TPU pod launcher currently, please remove the following flags:\n{bad_flags}"
)
new_args.env = [f"{k}={v}" for k, v in current_env.items()]
new_args.env.append("ACCELERATE_IN_TPU_POD=1")
try:
xla_dist.resolve_and_execute(new_args)
except Exception:
if is_rich_available() and debug:
console = get_console()
console.print("\n[bold red]Using --debug, `torch_xla.xla_dist` Stack Trace:[/bold red]")
console.print_exception(suppress=[__file__], show_locals=False)
else:
raise
return {
key: (literal_eval(value) if value == "True" or value == "False" else value)
for key, value in parser.parse_args(nargs).__dict__.items()
}
def sagemaker_launcher(sagemaker_config: SageMakerConfig, args):
@ -757,33 +857,122 @@ def sagemaker_launcher(sagemaker_config: SageMakerConfig, args):
from sagemaker.huggingface import HuggingFace
args, sagemaker_inputs = prepare_sagemager_args_inputs(sagemaker_config, args)
# configure environment
print("Configuring Amazon SageMaker environment")
os.environ["AWS_DEFAULT_REGION"] = sagemaker_config.region
huggingface_estimator = HuggingFace(**args)
# configure credentials
if sagemaker_config.profile is not None:
os.environ["AWS_PROFILE"] = sagemaker_config.profile
elif args.aws_access_key_id is not None and args.aws_secret_access_key is not None:
os.environ["AWS_ACCESS_KEY_ID"] = args.aws_access_key_id
os.environ["AWS_SECRET_ACCESS_KEY"] = args.aws_secret_access_key
else:
raise EnvironmentError(
"You need to provide an aws_access_key_id and aws_secret_access_key when not using aws_profile"
)
# extract needed arguments
source_dir = os.path.dirname(args.training_script)
if not source_dir: # checks if string is empty
source_dir = "."
entry_point = os.path.basename(args.training_script)
if not entry_point.endswith(".py"):
raise ValueError(f'Your training script should be a python script and not "{entry_point}"')
print("Converting Arguments to Hyperparameters")
hyperparameters = _convert_nargs_to_dict(args.training_script_args)
try:
mixed_precision = PrecisionType(args.mixed_precision.lower())
except ValueError:
raise ValueError(
f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}."
)
if args.fp16:
warnings.warn('--fp16 flag is deprecated. Use "--mixed_precision fp16" instead.', FutureWarning)
mixed_precision = "fp16"
# Environment variables to be set for use during training job
environment = {
"USE_SAGEMAKER": "true",
"MIXED_PRECISION": str(mixed_precision),
"SAGEMAKER_DISTRIBUTED_TYPE": sagemaker_config.distributed_type.value,
}
# configure distribution set up
distribution = None
if sagemaker_config.distributed_type == SageMakerDistributedType.DATA_PARALLEL:
distribution = {"smdistributed": {"dataparallel": {"enabled": True}}}
# configure sagemaker inputs
sagemaker_inputs = None
if sagemaker_config.sagemaker_inputs_file is not None:
print(f"Loading SageMaker Inputs from {sagemaker_config.sagemaker_inputs_file} file")
sagemaker_inputs = {}
with open(sagemaker_config.sagemaker_inputs_file) as file:
for i, line in enumerate(file):
if i == 0:
continue
l = line.split("\t")
sagemaker_inputs[l[0]] = l[1].strip()
print(f"Loaded SageMaker Inputs: {sagemaker_inputs}")
# configure sagemaker metrics
sagemaker_metrics = None
if sagemaker_config.sagemaker_metrics_file is not None:
print(f"Loading SageMaker Metrics from {sagemaker_config.sagemaker_metrics_file} file")
sagemaker_metrics = []
with open(sagemaker_config.sagemaker_metrics_file) as file:
for i, line in enumerate(file):
if i == 0:
continue
l = line.split("\t")
metric_dict = {
"Name": l[0],
"Regex": l[1].strip(),
}
sagemaker_metrics.append(metric_dict)
print(f"Loaded SageMaker Metrics: {sagemaker_metrics}")
# configure session
print("Creating Estimator")
huggingface_estimator = HuggingFace(
image_uri=sagemaker_config.image_uri,
entry_point=entry_point,
source_dir=source_dir,
role=sagemaker_config.iam_role_name,
transformers_version=sagemaker_config.transformers_version,
pytorch_version=sagemaker_config.pytorch_version,
py_version=sagemaker_config.py_version,
base_job_name=sagemaker_config.base_job_name,
instance_count=sagemaker_config.num_machines,
instance_type=sagemaker_config.ec2_instance_type,
debugger_hook_config=False,
distribution=distribution,
hyperparameters=hyperparameters,
environment=environment,
metric_definitions=sagemaker_metrics,
)
huggingface_estimator.fit(inputs=sagemaker_inputs)
print(f"You can find your model data at: {huggingface_estimator.model_data}")
def _validate_launch_command(args):
def launch_command(args):
# Sanity checks
if sum([args.multi_gpu, args.cpu, args.tpu, args.use_deepspeed, args.use_fsdp]) > 1:
raise ValueError(
"You can only use one of `--cpu`, `--multi_gpu`, `--tpu`, `--use_deepspeed`, `--use_fsdp` at a time."
)
if args.multi_gpu and (args.num_processes is not None) and (args.num_processes < 2):
raise ValueError("You need to use at least 2 processes to use `--multi_gpu`.")
if sum([args.multi_gpu, args.tpu, args.use_deepspeed, args.use_fsdp]) > 1:
raise ValueError("You can only pick one between `--multi_gpu`, `--use_deepspeed`, `--tpu`, `--use_fsdp`.")
defaults = None
warned = []
mp_from_config_flag = False
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(default_config_file) and not args.cpu:
defaults = load_config_from_file(args.config_file)
if (
not args.multi_gpu
and not args.tpu
and not args.tpu_use_cluster
and not args.mps
and not args.use_deepspeed
and not args.use_fsdp
and not args.use_megatron_lm
@ -792,28 +981,23 @@ def _validate_launch_command(args):
args.multi_gpu = defaults.distributed_type == DistributedType.MULTI_GPU
args.tpu = defaults.distributed_type == DistributedType.TPU
args.use_fsdp = defaults.distributed_type == DistributedType.FSDP
args.mps = defaults.distributed_type == DistributedType.MPS
args.use_megatron_lm = defaults.distributed_type == DistributedType.MEGATRON_LM
args.tpu_use_cluster = defaults.tpu_use_cluster if args.tpu else False
if args.gpu_ids is None:
if defaults.gpu_ids is not None:
args.gpu_ids = defaults.gpu_ids
else:
args.gpu_ids = "all"
if args.multi_gpu and args.num_machines is None:
args.num_machines = defaults.num_machines
if len(args.gpu_ids.split(",")) < 2 and (args.gpu_ids != "all") and args.multi_gpu and args.num_machines <= 1:
raise ValueError(
"Less than two GPU ids were configured and tried to run on on multiple GPUs. "
"Please ensure at least two are specified for `--gpu_ids`, or use `--gpu_ids='all'`."
)
if not args.mps:
if args.gpu_ids is None:
if defaults.gpu_ids is not None:
args.gpu_ids = defaults.gpu_ids
else:
args.gpu_ids = "all"
if len(args.gpu_ids.split(",")) < 2 and args.multi_gpu and (args.gpu_ids != "all"):
args.multi_gpu = False
if defaults.compute_environment == ComputeEnvironment.LOCAL_MACHINE:
# Update args with the defaults
for name, attr in defaults.__dict__.items():
if isinstance(attr, dict):
for k in defaults.deepspeed_config:
setattr(args, k, defaults.deepspeed_config[k])
if getattr(args, k) is None:
setattr(args, k, defaults.deepspeed_config[k])
for k in defaults.fsdp_config:
arg_to_set = k
if "fsdp" not in arg_to_set:
@ -821,38 +1005,23 @@ def _validate_launch_command(args):
setattr(args, arg_to_set, defaults.fsdp_config[k])
for k in defaults.megatron_lm_config:
setattr(args, k, defaults.megatron_lm_config[k])
for k in defaults.dynamo_config:
setattr(args, k, defaults.dynamo_config[k])
for k in defaults.ipex_config:
setattr(args, k, defaults.ipex_config[k])
continue
# Those args are handled separately
if (
name not in ["compute_environment", "mixed_precision", "distributed_type"]
name not in ["compute_environment", "fp16", "mixed_precision", "distributed_type"]
and getattr(args, name, None) is None
):
setattr(args, name, attr)
if not args.mixed_precision:
if defaults.mixed_precision is None:
args.mixed_precision = "no"
if args.fp16:
args.mixed_precision = "fp16"
else:
args.mixed_precision = defaults.mixed_precision
mp_from_config_flag = True
# Silently set the default here
if args.dynamo_backend is None:
args.dynamo_backend = "no"
else:
if args.num_processes is None:
args.num_processes = torch.cuda.device_count()
args.num_processes = torch.cuda.device_count() if args.multi_gpu else 1
warned.append(f"\t`--num_processes` was set to a value of `{args.num_processes}`")
if torch.cuda.device_count() > 1 and not args.multi_gpu:
warned.append(
"\t\tMore than one GPU was found, enabling multi-GPU training.\n"
"\t\tIf this was unintended please pass in `--num_processes=1`."
)
args.multi_gpu = True
if args.num_machines is None:
warned.append("\t`--num_machines` was set to a value of `1`")
args.num_machines = 1
@ -861,21 +1030,15 @@ def _validate_launch_command(args):
args.mixed_precision = "no"
if not hasattr(args, "use_cpu"):
args.use_cpu = args.cpu
if args.dynamo_backend is None:
warned.append("\t`--dynamo_backend` was set to a value of `'no'`")
args.dynamo_backend = "no"
is_aws_env_disabled = defaults is None or (
defaults is not None and defaults.compute_environment != ComputeEnvironment.AMAZON_SAGEMAKER
)
if is_aws_env_disabled and args.num_cpu_threads_per_process is None:
if args.num_cpu_threads_per_process is None:
args.num_cpu_threads_per_process = 1
if args.use_cpu and args.num_processes >= 1:
if args.use_cpu and args.num_processes > 1:
local_size = get_int_from_env(
["MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"], 1
)
threads_per_process = int(psutil.cpu_count(logical=False) / local_size)
if threads_per_process > 1:
if args.num_cpu_threads_per_process > 1:
args.num_cpu_threads_per_process = threads_per_process
warned.append(
f"\t`--num_cpu_threads_per_process` was set to `{args.num_cpu_threads_per_process}` to improve out-of-box performance when training on CPUs"
@ -887,19 +1050,10 @@ def _validate_launch_command(args):
message += (
"\nTo avoid this warning pass in values for each of the problematic parameters or run `accelerate config`."
)
logger.warning(message)
return args, defaults, mp_from_config_flag
def launch_command(args):
args, defaults, mp_from_config_flag = _validate_launch_command(args)
logger.warn(message)
# Use the proper launcher
if args.use_deepspeed and not args.cpu:
args.deepspeed_fields_from_accelerate_config = list(defaults.deepspeed_config.keys()) if defaults else []
if mp_from_config_flag:
args.deepspeed_fields_from_accelerate_config.append("mixed_precision")
args.deepspeed_fields_from_accelerate_config = ",".join(args.deepspeed_fields_from_accelerate_config)
deepspeed_launcher(args)
elif args.use_fsdp and not args.cpu:
multi_gpu_launcher(args)
@ -908,10 +1062,7 @@ def launch_command(args):
elif args.multi_gpu and not args.cpu:
multi_gpu_launcher(args)
elif args.tpu and not args.cpu:
if args.tpu_use_cluster:
tpu_pod_launcher(args)
else:
tpu_launcher(args)
tpu_launcher(args)
elif defaults is not None and defaults.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
sagemaker_launcher(defaults, args)
else:

View File

@ -1 +0,0 @@
from .selection_menu import BulletMenu

View File

@ -1,65 +0,0 @@
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A utility for showing and hiding the terminal cursor on Windows and Linux, based on https://github.com/bchao1/bullet
"""
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class CursorInfo(ctypes.Structure):
# _fields is a specific attr expected by ctypes
_fields_ = [("size", ctypes.c_int), ("visible", ctypes.c_byte)]
def hide_cursor():
if os.name == "nt":
ci = CursorInfo()
handle = ctypes.windll.kernel32.GetStdHandle(-11)
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
ci.visible = False
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
elif os.name == "posix":
sys.stdout.write("\033[?25l")
sys.stdout.flush()
def show_cursor():
if os.name == "nt":
ci = CursorInfo()
handle = ctypes.windll.kernel32.GetStdHandle(-11)
ctypes.windll.kernel32.GetConsoleCursorInfo(handle, ctypes.byref(ci))
ci.visible = True
ctypes.windll.kernel32.SetConsoleCursorInfo(handle, ctypes.byref(ci))
elif os.name == "posix":
sys.stdout.write("\033[?25h")
sys.stdout.flush()
@contextmanager
def hide():
"Context manager to hide the terminal cursor"
try:
hide_cursor()
yield
finally:
show_cursor()

View File

@ -1,59 +0,0 @@
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A variety of helper functions and constants when dealing with terminal menu choices, based on
https://github.com/bchao1/bullet
"""
import enum
import shutil
import sys
TERMINAL_WIDTH, _ = shutil.get_terminal_size()
CURSOR_TO_CHAR = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
class Direction(enum.Enum):
UP = 0
DOWN = 1
def forceWrite(content, end=""):
sys.stdout.write(str(content) + end)
sys.stdout.flush()
def writeColor(content, color, end=""):
forceWrite(f"\u001b[{color}m{content}\u001b[0m", end)
def reset_cursor():
forceWrite("\r")
def move_cursor(num_lines: int, direction: str):
forceWrite(f"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}")
def clear_line():
forceWrite(" " * TERMINAL_WIDTH)
reset_cursor()
def linebreak():
reset_cursor()
forceWrite("-" * TERMINAL_WIDTH)

View File

@ -1,86 +0,0 @@
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file contains utilities for handling input from the user and registering specific keys to specific functions,
based on https://github.com/bchao1/bullet
"""
from typing import List
from .keymap import KEYMAP, get_character
def mark(key: str):
"""
Mark the function with the key code so it can be handled in the register
"""
def decorator(func):
handle = getattr(func, "handle_key", [])
handle += [key]
setattr(func, "handle_key", handle)
return func
return decorator
def mark_multiple(*keys: List[str]):
"""
Mark the function with the key codes so it can be handled in the register
"""
def decorator(func):
handle = getattr(func, "handle_key", [])
handle += keys
setattr(func, "handle_key", handle)
return func
return decorator
class KeyHandler(type):
"""
Metaclass that adds the key handlers to the class
"""
def __new__(cls, name, bases, attrs):
new_cls = super().__new__(cls, name, bases, attrs)
if not hasattr(new_cls, "key_handler"):
setattr(new_cls, "key_handler", {})
setattr(new_cls, "handle_input", KeyHandler.handle_input)
for value in attrs.values():
handled_keys = getattr(value, "handle_key", [])
for key in handled_keys:
new_cls.key_handler[key] = value
return new_cls
@staticmethod
def handle_input(cls):
"Finds and returns the selected character if it exists in the handler"
char = get_character()
if char != KEYMAP["undefined"]:
char = ord(char)
handler = cls.key_handler.get(char)
if handler:
cls.current_selection = char
return handler(cls)
else:
return None
def register(cls):
"""Adds KeyHandler metaclass to the class"""
return KeyHandler(cls.__name__, cls.__bases__, cls.__dict__.copy())

View File

@ -1,134 +0,0 @@
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utilities relating to parsing raw characters from the keyboard, based on https://github.com/bchao1/bullet
"""
import os
import string
import sys
ARROW_KEY_FLAG = 1 << 8
KEYMAP = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
KEYMAP["arrow_begin"] = KEYMAP["up"]
KEYMAP["arrow_end"] = KEYMAP["left"]
if sys.platform == "win32":
WIN_CH_BUFFER = []
WIN_KEYMAP = {
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
KEYMAP[str(i)] = ord(str(i))
def get_raw_chars():
"Gets raw characters from inputs"
if os.name == "nt":
import msvcrt
encoding = "mbcs"
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(WIN_CH_BUFFER) == 0:
# Read the keystroke
ch = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
ch2 = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
chx = chr(WIN_KEYMAP[ch2])
WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"]))
WIN_CH_BUFFER.append(chx)
if ord(chx) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126))
ch = chr(KEYMAP["esc"])
except KeyError:
ch = ch2[1]
else:
ch = ch.decode(encoding)
else:
ch = WIN_CH_BUFFER.pop(0)
elif os.name == "posix":
import termios
import tty
fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:
tty.setraw(fd)
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
return ch
def get_character():
"Gets a character from the keyboard and returns the key code"
char = get_raw_chars()
if ord(char) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(char) == KEYMAP["esc"]:
combo = get_raw_chars()
if ord(combo) == KEYMAP["mod_int"]:
key = get_raw_chars()
if ord(key) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(key) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(key) + ARROW_KEY_FLAG)
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]

View File

@ -1,125 +0,0 @@
# Copyright 2022 The HuggingFace Team and Brian Chao. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Main driver for the selection menu, based on https://github.com/bchao1/bullet
"""
import sys
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
@input.register
class BulletMenu:
"""
A CLI menu to select a choice from a list of choices using the keyboard.
"""
def __init__(self, prompt: str = None, choices: list = []):
self.position = 0
self.choices = choices
self.prompt = prompt
if sys.platform == "win32":
self.arrow_char = "*"
else:
self.arrow_char = ""
def write_choice(self, index, end: str = ""):
if sys.platform != "win32":
writeColor(self.choices[index], 32, end)
else:
forceWrite(self.choices[index], end)
def print_choice(self, index: int):
"Prints the choice at the given index"
if index == self.position:
forceWrite(f" {self.arrow_char} ")
self.write_choice(index)
else:
forceWrite(f" {self.choices[index]}")
reset_cursor()
def move_direction(self, direction: Direction, num_spaces: int = 1):
"Should not be directly called, used to move a direction of either up or down"
old_position = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(old_position)
move_cursor(num_spaces, direction.name)
self.print_choice(self.position)
@input.mark(KEYMAP["up"])
def move_up(self):
self.move_direction(Direction.UP)
@input.mark(KEYMAP["down"])
def move_down(self):
self.move_direction(Direction.DOWN)
@input.mark(KEYMAP["newline"])
def select(self):
move_cursor(len(self.choices) - self.position, "DOWN")
return self.position
@input.mark(KEYMAP["interrupt"])
def interrupt(self):
move_cursor(len(self.choices) - self.position, "DOWN")
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(number)] for number in range(10)])
def select_row(self):
index = int(chr(self.current_selection))
movement = index - self.position
if index == self.position:
return
if index < len(self.choices):
if self.position > index:
self.move_direction(Direction.UP, -movement)
elif self.position < index:
self.move_direction(Direction.DOWN, movement)
else:
return
else:
return
def run(self, default_choice: int = 0):
"Start the menu and return the selected choice"
if self.prompt:
linebreak()
forceWrite(self.prompt, "\n")
forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n")
self.position = default_choice
for i in range(len(self.choices)):
self.print_choice(i)
forceWrite("\n")
move_cursor(len(self.choices) - self.position, "UP")
with cursor.hide():
while True:
choice = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices) + 1):
move_cursor(1, "UP")
clear_line()
self.write_choice(choice, "\n")
return choice

View File

@ -45,12 +45,10 @@ def test_command_parser(subparsers=None):
def test_command(args):
script_name = os.path.sep.join(__file__.split(os.path.sep)[:-2] + ["test_utils", "scripts", "test_script.py"])
if args.config_file is None:
test_args = script_name
else:
test_args = f"--config_file={args.config_file} {script_name}"
cmd = ["accelerate-launch"] + test_args.split()
test_args = f"""
--config_file={args.config_file} {script_name}
""".split()
cmd = ["accelerate-launch"] + test_args
result = execute_subprocess_async(cmd, env=os.environ.copy())
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!")

View File

@ -18,9 +18,8 @@ import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
from packaging.version import Version, parse
_description = "Run commands across TPU VMs for initial setup before running `accelerate launch`."
@ -52,11 +51,6 @@ def tpu_command_parser(subparsers=None):
help="The zone of the TPU to use. If not specified, will use the zone specified in the config file.",
)
pod_args = parser.add_argument_group("TPU Arguments", "Arguments for options ran inside the TPU.")
pod_args.add_argument(
"--use_alpha",
action="store_true",
help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.",
)
pod_args.add_argument(
"--command_file",
default=None,
@ -127,10 +121,8 @@ def tpu_command_launcher(args):
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
cmd = ["gcloud"]
if args.use_alpha:
cmd += ["alpha"]
cmd += [
cmd = [
"gcloud",
"compute",
"tpus",
"tpu-vm",

View File

@ -13,7 +13,6 @@
# limitations under the License.
import math
from contextlib import suppress
from typing import List, Optional, Union
import torch
@ -340,10 +339,8 @@ class DataLoaderShard(DataLoader):
- `"cuda"`: the CUDA random number generator (GPU only)
- `"xla"`: the XLA random number generator (TPU only)
- `"generator"`: an optional `torch.Generator`
synchronized_generator (`torch.Generator`, *optional*):
generator (`torch.Generator`, *optional*):
A random number generator to keep synchronized across processes.
split_batches (`int`, *optional*, defaults to 0):
The number of batches to skip at the beginning.
kwargs:
All other keyword arguments to pass to the regular `DataLoader` initialization.
@ -356,44 +353,40 @@ class DataLoaderShard(DataLoader):
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
"""
def __init__(self, dataset, device=None, rng_types=None, synchronized_generator=None, skip_batches=0, **kwargs):
def __init__(self, dataset, device=None, rng_types=None, synchronized_generator=None, **kwargs):
super().__init__(dataset, **kwargs)
self.device = device
self.rng_types = rng_types
self.synchronized_generator = synchronized_generator
self.skip_batches = skip_batches
self.gradient_state = GradientState()
def __iter__(self):
if self.rng_types is not None:
synchronize_rng_states(self.rng_types, self.synchronized_generator)
self.gradient_state._add_dataloader(self)
# We can safely pass because the default is -1
with suppress(Exception):
self.gradient_state._set_end_of_dataloader(False)
try:
length = getattr(self.dataset, "total_dataset_length", len(self.dataset))
self.gradient_state._set_remainder(length % self.total_batch_size)
except Exception:
# We can safely pass because the default is -1
pass
dataloader_iter = super().__iter__()
# We iterate one batch ahead to check when we are at the end
try:
current_batch = next(dataloader_iter)
except StopIteration:
yield
batch_index = 0
while True:
try:
# But we still move it to the device so it is done before `StopIteration` is reached
if self.device is not None:
current_batch = send_to_device(current_batch, self.device)
next_batch = next(dataloader_iter)
if batch_index >= self.skip_batches:
yield current_batch
batch_index += 1
yield current_batch
current_batch = next_batch
except StopIteration:
self.gradient_state._remove_dataloader(self)
if batch_index >= self.skip_batches:
yield current_batch
self.gradient_state._set_end_of_dataloader(True)
yield current_batch
break
@property
@ -401,13 +394,13 @@ class DataLoaderShard(DataLoader):
batch_sampler = self.sampler if isinstance(self.sampler, BatchSampler) else self.batch_sampler
return (
batch_sampler.batch_size
if getattr(batch_sampler, "split_batches", False)
else (batch_sampler.batch_size * getattr(batch_sampler, "num_processes", 1))
if batch_sampler.split_batches
else (batch_sampler.batch_size * batch_sampler.num_processes)
)
@property
def total_dataset_length(self):
if hasattr(self.dataset, "total_length"):
if hasattr("total_length", self.dataset):
return self.dataset.total_length
else:
return len(self.dataset)
@ -415,10 +408,9 @@ class DataLoaderShard(DataLoader):
class DataLoaderDispatcher(DataLoader):
"""
Args:
Subclass of a PyTorch `DataLoader` that will iterate and preprocess on process 0 only, then dispatch on each
process their part of the batch.
Args:
split_batches (`bool`, *optional*, defaults to `False`):
Whether the resulting `DataLoader` should split the batches of the original data loader across devices or
yield full batches (in which case it will yield batches starting at the `process_index`-th and advancing of
@ -426,8 +418,6 @@ class DataLoaderDispatcher(DataLoader):
the same as the initial `dataloader` if this option is set to `True`, the batch size of the initial
`dataloader` multiplied by `num_processes` otherwise. Setting this option to `True` requires that the batch
size of the `dataloader` is a round multiple of `batch_size`.
skip_batches (`int`, *optional*, defaults to 0):
The number of batches to skip at the beginning of an iteration.
**Available attributes:**
@ -438,7 +428,7 @@ class DataLoaderDispatcher(DataLoader):
- **total_dataset_length** (`int`) -- Total length of the inner dataset across all processes.
"""
def __init__(self, dataset, split_batches: bool = False, skip_batches=0, _drop_last: bool = False, **kwargs):
def __init__(self, dataset, split_batches: bool = False, _drop_last: bool = False, **kwargs):
shuffle = False
if is_torch_version(">=", "1.11.0"):
from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe
@ -458,24 +448,21 @@ class DataLoaderDispatcher(DataLoader):
self.gradient_state = GradientState()
self.state = AcceleratorState()
self._drop_last = _drop_last
self.skip_batches = skip_batches
# We can safely pass because the default is -1
with suppress(Exception):
try:
length = getattr(self.dataset, "total_dataset_length", len(self.dataset))
self.gradient_state._set_remainder(length % self.total_batch_size)
except Exception:
# We can safely pass because the default is -1
pass
def _fetch_batches(self, iterator):
batches, batch = None, None
# On process 0, we gather the batch to dispatch.
print("Starting to dispatch")
if self.state.process_index == 0:
print("In process zero")
try:
if self.split_batches:
# One batch of the main iterator is dispatched and split.
print("Getting next batch")
batch = next(iterator)
print(f'Batch: {batch}')
else:
# num_processes batches of the main iterator are concatenated then dispatched and split.
# We add the batches one by one so we have the remainder available when drop_last=False.
@ -486,18 +473,12 @@ class DataLoaderDispatcher(DataLoader):
# In both cases, we need to get the structure of the batch that we will broadcast on other
# processes to initialize the tensors with the right shape.
# data_structure, stop_iteration
print("getting batch info")
batch_info = [get_data_structure(batch), False]
print(f'Batch info: {batch_info}')
except StopIteration:
print("Hit stop iteration")
batch_info = [None, True]
else:
batch_info = [None, self._stop_iteration]
# This is inplace, so after this instruction, every process has the same `batch_info` as process 0.
print(f'Batch info on process {AcceleratorState().process_index}: {batch_info}')
from accelerate.utils import wait_for_everyone
wait_for_everyone()
broadcast_object_list(batch_info)
self._stop_iteration = batch_info[1]
if self._stop_iteration:
@ -512,7 +493,7 @@ class DataLoaderDispatcher(DataLoader):
return batch, batch_info
def __iter__(self):
self.gradient_state._add_dataloader(self)
self.gradient_state._set_end_of_dataloader(False)
main_iterator = None
if self.state.process_index == 0:
# We only iterate through the DataLoader on process 0.
@ -521,7 +502,6 @@ class DataLoaderDispatcher(DataLoader):
self._stop_iteration = False
first_batch = None
next_batch, next_batch_info = self._fetch_batches(main_iterator)
batch_index = 0
while not stop_iteration:
batch, batch_info = next_batch, next_batch_info
@ -558,11 +538,9 @@ class DataLoaderDispatcher(DataLoader):
batch = slice_tensors(batch, data_slice)
if stop_iteration:
self.gradient_state._remove_dataloader(self)
self.gradient_state._set_remainder(observed_batch_size)
if batch_index >= self.skip_batches:
yield batch
batch_index += 1
self.gradient_state._set_end_of_dataloader(True)
yield batch
def __len__(self):
whole_length = super().__len__()
@ -736,9 +714,7 @@ def prepare_data_loader(
# Need to provide batch_size as batch_sampler is None for Iterable dataset
if new_batch_sampler is None:
kwargs["drop_last"] = dataloader.drop_last
kwargs["batch_size"] = (
dataloader.batch_size // num_processes if split_batches and not dispatch_batches else dataloader.batch_size
)
kwargs["batch_size"] = dataloader.batch_size // num_processes if split_batches else dataloader.batch_size
if dispatch_batches:
kwargs.pop("generator")
@ -772,118 +748,3 @@ def prepare_data_loader(
if state.distributed_type == DistributedType.TPU:
return MpDeviceLoaderWrapper(dataloader, device)
return dataloader
class SkipBatchSampler(BatchSampler):
"""
A `torch.utils.data.BatchSampler` that skips the first `n` batches of another `torch.utils.data.BatchSampler`.
"""
def __init__(self, batch_sampler, skip_batches=0):
self.batch_sampler = batch_sampler
self.skip_batches = skip_batches
def __iter__(self):
for index, samples in enumerate(self.batch_sampler):
if index >= self.skip_batches:
yield samples
@property
def total_length(self):
return len(self.batch_sampler)
def __len__(self):
return len(self.batch_sampler) - self.skip_batches
class SkipDataLoader(DataLoader):
"""
Subclass of a PyTorch `DataLoader` that will skip the first batches.
Args:
dataset (`torch.utils.data.dataset.Dataset`):
The dataset to use to build this datalaoder.
skip_batches (`int`, *optional*, defaults to 0):
The number of batches to skip at the beginning.
kwargs:
All other keyword arguments to pass to the regular `DataLoader` initialization.
"""
def __init__(self, dataset, skip_batches=0, **kwargs):
super().__init__(dataset, **kwargs)
self.skip_batches = skip_batches
def __iter__(self):
for index, batch in enumerate(super().__iter__()):
if index >= self.skip_batches:
yield batch
def skip_first_batches(dataloader, num_batches=0):
"""
Creates a `torch.utils.data.DataLoader` that will efficiently skip the first `num_batches`.
"""
dataset = dataloader.dataset
sampler_is_batch_sampler = False
if isinstance(dataset, IterableDataset):
new_batch_sampler = None
else:
sampler_is_batch_sampler = isinstance(dataloader.sampler, BatchSampler)
batch_sampler = dataloader.sampler if sampler_is_batch_sampler else dataloader.batch_sampler
new_batch_sampler = SkipBatchSampler(batch_sampler, skip_batches=num_batches)
# We ignore all of those since they are all dealt with by our new_batch_sampler
ignore_kwargs = [
"batch_size",
"shuffle",
"sampler",
"batch_sampler",
"drop_last",
]
kwargs = {
k: getattr(dataloader, k, _PYTORCH_DATALOADER_KWARGS[k])
for k in _PYTORCH_DATALOADER_KWARGS
if k not in ignore_kwargs
}
# Need to provide batch_size as batch_sampler is None for Iterable dataset
if new_batch_sampler is None:
kwargs["drop_last"] = dataloader.drop_last
kwargs["batch_size"] = dataloader.batch_size
if isinstance(dataloader, DataLoaderDispatcher):
if new_batch_sampler is None:
# Need to manually skip batches in the dataloader
kwargs["skip_batches"] = num_batches
dataloader = DataLoaderDispatcher(
dataset,
split_batches=dataloader.split_batches,
batch_sampler=new_batch_sampler,
_drop_last=dataloader._drop_last,
**kwargs,
)
elif isinstance(dataloader, DataLoaderShard):
if new_batch_sampler is None:
# Need to manually skip batches in the dataloader
kwargs["skip_batches"] = num_batches
elif sampler_is_batch_sampler:
kwargs["sampler"] = new_batch_sampler
kwargs["batch_size"] = dataloader.batch_size
else:
kwargs["batch_sampler"] = new_batch_sampler
dataloader = DataLoaderShard(
dataset,
device=dataloader.device,
rng_types=dataloader.rng_types,
synchronized_generator=dataloader.synchronized_generator,
**kwargs,
)
else:
if new_batch_sampler is None:
# Need to manually skip batches in the dataloader
dataloader = SkipDataLoader(dataset, skip_batches=num_batches, **kwargs)
else:
dataloader = DataLoader(dataset, batch_sampler=new_batch_sampler, **kwargs)
return dataloader

View File

@ -18,14 +18,7 @@ from typing import Dict, List, Mapping, Optional, Union
import torch
import torch.nn as nn
from .state import PartialState
from .utils import (
PrefixedDataset,
find_device,
named_module_tensors,
send_to_device,
set_module_tensor_to_device,
)
from .utils import PrefixedDataset, find_device, named_module_tensors, send_to_device, set_module_tensor_to_device
class ModelHook:
@ -128,10 +121,8 @@ def add_hook_to_module(module: nn.Module, hook: ModelHook, append: bool = False)
</Tip>
Args:
module (`torch.nn.Module`):
The module to attach a hook to.
hook (`ModelHook`):
The hook to attach.
module (`torch.nn.Module`): The module to attach a hook to.
hook (`ModelHook`): The hook to attach.
append (`bool`, *optional*, defaults to `False`):
Whether the hook should be chained with an existing one (if module already contains a hook) or not.
@ -238,13 +229,6 @@ class AlignDevicesHook(ModelHook):
self.param_original_devices = {}
self.buffer_original_devices = {}
def __repr__(self):
return (
f"AlignDeviceHook(execution_device={self.execution_device}, offload={self.offload}, "
f"io_same_device={self.io_same_device}, offload_buffers={self.offload_buffers}, "
f"place_submodules={self.place_submodules})"
)
def init_hook(self, module):
if not self.offload and self.execution_device is not None:
for name, _ in named_module_tensors(module, recurse=self.place_submodules):
@ -468,7 +452,7 @@ def attach_align_device_hook_on_blocks(
if not isinstance(offload, Mapping):
offload = {key: offload for key in execution_device.keys()}
if module_name in execution_device and module_name in offload and not offload[module_name]:
if module_name in execution_device and not offload[module_name]:
hook = AlignDevicesHook(
execution_device=execution_device[module_name],
offload_buffers=offload_buffers,
@ -477,7 +461,7 @@ def attach_align_device_hook_on_blocks(
)
add_hook_to_module(module, hook)
attach_execution_device_hook(module, execution_device[module_name])
elif module_name in execution_device and module_name in offload:
elif module_name in execution_device:
attach_align_device_hook(
module,
execution_device=execution_device[module_name],
@ -494,7 +478,7 @@ def attach_align_device_hook_on_blocks(
module, execution_device[module_name], preload_module_classes=preload_module_classes
)
elif module_name == "":
hook = AlignDevicesHook(execution_device=execution_device.get(""), io_same_device=True)
hook = AlignDevicesHook(io_same_device=True)
add_hook_to_module(module, hook)
for child_name, child in module.named_children():
@ -508,54 +492,3 @@ def attach_align_device_hook_on_blocks(
module_name=child_name,
preload_module_classes=preload_module_classes,
)
class CpuOffload(ModelHook):
"""
Offloads a model on the CPU until its forward pass is called. The model will not be offloaded back to the CPU after
the forward, the user needs to call the `init_hook` method again for this.
Args:
execution_device(`str`, `int` or `torch.device`, *optional*):
The device on which the model should be executed. Will default to the MPS device if it's available, then
GPU 0 if there is a GPU, and finally to the CPU.
prev_module_hook (`UserCpuOffloadHook`, *optional*):
The hook sent back by [`cpu_offload_with_hook`] for a previous model in the pipeline you are running. If
passed, its offload method will be called just before the forward of the model to which this hook is
attached.
"""
def __init__(
self,
execution_device: Optional[Union[str, int, torch.device]] = None,
prev_module_hook: Optional["UserCpuOffloadHook"] = None,
):
self.prev_module_hook = prev_module_hook
self.execution_device = execution_device if execution_device is not None else PartialState().default_device
def init_hook(self, module):
return module.to("cpu")
def pre_forward(self, module, *args, **kwargs):
if self.prev_module_hook is not None:
self.prev_module_hook.offload()
module.to(self.execution_device)
return send_to_device(args, self.execution_device), send_to_device(kwargs, self.execution_device)
class UserCpuOffloadHook:
"""
A simple hook grouping a model and a `ModelHook`, which provides easy APIs for to call the init method of the hook
or remove it entirely.
"""
def __init__(self, model, hook):
self.model = model
self.hook = hook
def offload(self):
self.hook.init_hook(self.model)
def remove(self):
remove_hook_from_module(self.model)

View File

@ -15,25 +15,19 @@
import os
import sys
import tempfile
import warnings
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
from .utils import PrecisionType, PrepareForLaunch, patch_environment
def notebook_launcher(function, args=(), num_processes=None, mixed_precision="no", use_port="29500"):
def notebook_launcher(function, args=(), num_processes=None, use_fp16=False, mixed_precision="no", use_port="29500"):
"""
Launches a training function, using several processes if it's possible in the current environment (TPU with
multiple cores for instance).
<Tip warning={true}>
To use this function absolutely zero calls to a CUDA device must be made in the notebook session before calling. If
any have been made, you will need to restart the notebook and make sure no cells use any CUDA capability.
</Tip>
Args:
function (`Callable`):
The training function to execute. If it accepts arguments, the first argument should be the index of the
@ -47,21 +41,6 @@ def notebook_launcher(function, args=(), num_processes=None, mixed_precision="no
If `fp16` or `bf16`, will use mixed precision training on multi-GPU.
use_port (`str`, *optional*, defaults to `"29500"`):
The port to use to communicate between processes when launching a multi-GPU training.
Example:
```python
# Assume this is defined in a Jupyter Notebook on an instance with two GPUs
from accelerate import notebook_launcher
def train(*args):
# Your training function here
...
notebook_launcher(train, args=(arg1, arg2), num_processes=2, mixed_precision="fp16")
```
"""
# Are we in a google colab or a Kaggle Kernel?
in_colab = False
@ -110,7 +89,6 @@ def notebook_launcher(function, args=(), num_processes=None, mixed_precision="no
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state) > 0:
raise ValueError(
@ -126,34 +104,35 @@ def notebook_launcher(function, args=(), num_processes=None, mixed_precision="no
"function."
)
if use_fp16:
warnings.warn(
"`fp16=True` is deprecated and will be removed in version 0.15.0 of 🤗 Accelerate. Use `mixed_precision='fp16'` instead.",
FutureWarning,
)
mixed_precision = "fp16"
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=num_processes, master_addr="127.0.01", master_port=use_port, mixed_precision=mixed_precision
):
launcher = PrepareForLaunch(function, distributed_type="MULTI_GPU")
print(f"Launching training on {num_processes} GPUs.")
try:
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
"CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. "
"This likely stems from an outside import causing issues once the `notebook_launcher()` is called. "
"Please review your imports and test them when running the `notebook_launcher()` to identify "
"which one is problematic."
) from e
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
use_mps_device = "false"
if torch.backends.mps.is_available():
print("Launching training on MPS.")
use_mps_device = "true"
elif torch.cuda.is_available():
print("Launching training on one GPU.")
else:
print("Launching training on CPU.")
function(*args)
with patch_environment(use_mps_device=use_mps_device):
function(*args)
def debug_launcher(function, args=(), num_processes=2):
@ -184,9 +163,9 @@ def debug_launcher(function, args=(), num_processes=2):
world_size=num_processes,
master_addr="127.0.01",
master_port="29500",
accelerate_mixed_precision="no",
mixed_precision="no",
accelerate_debug_rdv_file=tmp_file.name,
accelerate_use_cpu="yes",
use_cpu="yes",
):
launcher = PrepareForLaunch(function, debug=True)
start_processes(launcher, args=args, nprocs=num_processes, start_method="fork")

View File

@ -13,9 +13,9 @@
# limitations under the License.
import logging
import os
from .state import PartialState
from .state import AcceleratorState
from .utils import DistributedType
class MultiProcessAdapter(logging.LoggerAdapter):
@ -24,15 +24,17 @@ class MultiProcessAdapter(logging.LoggerAdapter):
`log` takes in an additional `main_process_only` kwarg, which dictates whether it should be called on all processes
or only the main executed one. Default is `main_process_only=True`.
Does not require an `Accelerator` object to be created first.
"""
@staticmethod
def _should_log(main_process_only):
"Check if log should be performed"
state = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
state = AcceleratorState()
if state.distributed_type != DistributedType.MEGATRON_LM:
process_index_flag = state.local_process_index == 0
else:
process_index_flag = state.process_index == state.num_processes - 1
return not main_process_only or (main_process_only and process_index_flag)
def log(self, level, msg, *args, **kwargs):
"""
@ -47,7 +49,7 @@ class MultiProcessAdapter(logging.LoggerAdapter):
self.logger.log(level, msg, *args, **kwargs)
def get_logger(name: str, log_level: str = None):
def get_logger(name: str):
"""
Returns a `logging.Logger` for `name` that can handle multiprocessing.
@ -56,8 +58,6 @@ def get_logger(name: str, log_level: str = None):
Args:
name (`str`):
The name for the logger, such as `__file__`
log_level (`str`, *optional*):
The log level to use. If not passed, will default to the `LOG_LEVEL` environment variable, or `INFO` if not
Example:
@ -68,15 +68,7 @@ def get_logger(name: str, log_level: str = None):
>>> logger.info("My log", main_process_only=False)
>>> logger.debug("My log", main_process_only=True)
>>> logger = get_logger(__name__, log_level="DEBUG")
>>> logger.info("My log")
>>> logger.debug("My second log")
```
"""
if log_level is None:
log_level = os.environ.get("ACCELERATE_LOG_LEVEL", None)
logger = logging.getLogger(name)
if log_level is not None:
logger.setLevel(log_level.upper())
return MultiProcessAdapter(logger, {})

View File

@ -12,6 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all
import warnings
@ -20,3 +25,5 @@ warnings.warn(
"`from accelerate import find_executable_batch_size` to avoid this warning.",
FutureWarning,
)
from .utils.memory import find_executable_batch_size

View File

@ -16,7 +16,7 @@
import warnings
from .state import AcceleratorState, GradientState
from .state import AcceleratorState
warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler")
@ -49,7 +49,6 @@ class AcceleratedScheduler:
self.optimizers = optimizers if isinstance(optimizers, (list, tuple)) else [optimizers]
self.split_batches = split_batches
self.step_with_optimizer = step_with_optimizer
self.gradient_state = GradientState()
def step(self, *args, **kwargs):
if not self.step_with_optimizer:
@ -58,11 +57,6 @@ class AcceleratedScheduler:
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
@ -75,9 +69,8 @@ class AcceleratedScheduler:
num_processes = AcceleratorState().num_processes
for _ in range(num_processes):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler, "total_steps"):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*args, **kwargs)
if hasattr(self.scheduler, "total_steps") and self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*args, **kwargs)
else:
self.scheduler.step(*args, **kwargs)

View File

@ -14,22 +14,15 @@
import os
import warnings
from contextlib import contextmanager
from functools import partial
from typing import Any, Callable, Optional
import torch
from .utils import (
DistributedType,
DynamoBackend,
GradientAccumulationPlugin,
get_ccl_version,
get_int_from_env,
is_ccl_available,
is_deepspeed_available,
is_fp8_available,
is_mps_available,
is_tpu_available,
parse_choice_from_env,
parse_flag_from_env,
@ -41,25 +34,10 @@ if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def is_initialized() -> bool:
"""
Checks if the `AcceleratorState` has been initialized from `Accelerator`. Same as `AcceleratorState.initialized`,
but works as a module method.
"""
return AcceleratorState._shared_state != {}
# Lambda function that does nothing
def do_nothing(*args, **kwargs):
return None
# Inspired by Alex Martelli's 'Borg'.
class PartialState:
class AcceleratorState:
"""
Singleton class that has information about the current training environment and functions to help with process
control. Designed to be used when only process control and device execution states are needed. Does *not* need to
be initialized from `Accelerator`.
Singleton class that has information about the current training environment.
**Available attributes:**
@ -71,26 +49,42 @@ class PartialState:
of mixed precision being performed.
- **num_processes** (`int`) -- The number of processes currently launched in parallel.
- **process_index** (`int`) -- The index of the current process.
- **is_last_process** (`bool`) -- Whether or not the current process is the last one.
- **is_main_process** (`bool`) -- Whether or not the current process is the main one.
- **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
"""
_shared_state = {}
def __init__(self, cpu: bool = False, **kwargs):
def __init__(
self,
mixed_precision: str = None,
cpu: bool = False,
deepspeed_plugin=None,
fsdp_plugin=None,
megatron_lm_plugin=None,
_from_accelerator: bool = False,
**kwargs,
):
self.__dict__ = self._shared_state
if not self.initialized:
self._cpu = cpu
if parse_flag_from_env("USE_CPU"):
cpu = True
self._check_initialized(mixed_precision, cpu)
self.fork_launched = parse_flag_from_env("FORK_LAUNCHED", 0)
if not getattr(self, "initialized", False):
self.backend = None
env_device = os.environ.get("ACCELERATE_TORCH_DEVICE", None)
self.device = torch.device(env_device) if env_device is not None else None
self.deepspeed_plugin = None
mixed_precision = (
parse_choice_from_env("MIXED_PRECISION", "no") if mixed_precision is None else mixed_precision.lower()
)
if not _from_accelerator:
raise ValueError(
"Please make sure to properly initialize your accelerator via `accelerator = Accelerator()` "
"before using any functionality from the `accelerate` library."
)
if (
os.environ.get("ACCELERATE_USE_SAGEMAKER", "false") == "true"
and os.environ.get("ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE") != SageMakerDistributedType.NO
os.environ.get("USE_SAGEMAKER", "false") == "true"
and os.environ.get("SAGEMAKER_DISTRIBUTED_TYPE") != SageMakerDistributedType.NO
and not cpu
):
if os.environ.get("ACCELERATE_SAGEMAKER_DISTRIBUTED_TYPE") == SageMakerDistributedType.DATA_PARALLEL:
if os.environ.get("SAGEMAKER_DISTRIBUTED_TYPE") == SageMakerDistributedType.DATA_PARALLEL:
self.distributed_type = DistributedType.MULTI_GPU
import smdistributed.dataparallel.torch.torch_smddp # noqa
@ -100,50 +94,68 @@ class PartialState:
self.num_processes = torch.distributed.get_world_size()
self.process_index = torch.distributed.get_rank()
self.local_process_index = int(os.environ.get("LOCAL_RANK", -1))
if self.device is None:
self.device = torch.device("cuda", self.local_process_index)
self.device = torch.device("cuda", self.local_process_index)
torch.cuda.set_device(self.device)
self.mixed_precision = mixed_precision
elif is_tpu_available() and not cpu:
self.distributed_type = DistributedType.TPU
self.num_processes = xm.xrt_world_size()
self.process_index = xm.get_ordinal()
self.local_process_index = xm.get_local_ordinal()
self.device = xm.xla_device()
elif (
os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true"
and int(os.environ.get("LOCAL_RANK", -1)) != -1
and not cpu
):
if mixed_precision == "bf16":
if os.environ.get("DOWNCAST_BF16"):
os.environ["XLA_USE_BF16"] = str(0)
os.environ["XLA_DOWNCAST_BF16"] = str(1)
self.downcast_bfloat = True
else:
os.environ["XLA_USE_BF16"] = str(1)
os.environ["XLA_DOWNCAST_BF16"] = str(0)
self.downcast_bfloat = False
self.mixed_precision = mixed_precision
elif os.environ.get("USE_DEEPSPEED", "false") == "true" and not cpu:
assert (
is_deepspeed_available()
), "DeepSpeed is not available => install it using `pip3 install deepspeed` or build it from source"
self.distributed_type = DistributedType.DEEPSPEED
if not torch.distributed.is_initialized():
from deepspeed import comm as dist
from .utils import compare_versions
# DeepSpeed always uses nccl
kwargs.pop("backend", None)
self.backend = "nccl"
dist.init_distributed(dist_backend=self.backend, auto_mpi_discovery=False, **kwargs)
if compare_versions("deepspeed", ">", "0.6.5"):
from deepspeed import comm as dist
dist.init_distributed(dist_backend=self.backend)
else:
torch.distributed.init_process_group(backend="nccl", **kwargs)
self.num_processes = torch.distributed.get_world_size()
self.process_index = torch.distributed.get_rank()
self.local_process_index = int(os.environ.get("LOCAL_RANK", -1))
if self.device is None:
self.device = torch.device("cuda", self.local_process_index)
self.device = torch.device("cuda", self.local_process_index)
torch.cuda.set_device(self.device)
self._mixed_precision = "no" # deepspeed handles mixed_precision using deepspeed_config
self.mixed_precision = "no" # deepspeed handles mixed_precision using deepspeed_config
self.deepspeed_plugin = deepspeed_plugin
elif int(os.environ.get("LOCAL_RANK", -1)) != -1 and not cpu:
self.distributed_type = DistributedType.MULTI_GPU
if not torch.distributed.is_initialized():
self.backend = kwargs.pop("backend", "nccl")
torch.distributed.init_process_group(backend=self.backend, **kwargs)
torch.distributed.init_process_group(backend="nccl", **kwargs)
self.backend = "nccl"
self.num_processes = torch.distributed.get_world_size()
self.process_index = torch.distributed.get_rank()
self.local_process_index = int(os.environ.get("LOCAL_RANK", -1))
if self.device is None:
self.device = torch.device("cuda", self.local_process_index)
self.device = torch.device("cuda", self.local_process_index)
torch.cuda.set_device(self.device)
self.mixed_precision = mixed_precision
if os.environ.get("USE_FSDP", "false") == "true":
self.distributed_type = DistributedType.FSDP
if self.mixed_precision != "no":
fsdp_plugin.set_mixed_precision(self.mixed_precision)
self.fsdp_plugin = fsdp_plugin
if os.environ.get("USE_MEGATRON_LM", "false") == "true":
self.distributed_type = DistributedType.MEGATRON_LM
megatron_lm_plugin.set_mixed_precision(self.mixed_precision)
self.megatron_lm_plugin = megatron_lm_plugin
elif get_int_from_env(["PMI_SIZE", "OMPI_COMM_WORLD_SIZE", "MV2_COMM_WORLD_SIZE", "WORLD_SIZE"], 1) > 1:
self.distributed_type = DistributedType.MULTI_CPU
if is_ccl_available() and get_int_from_env(["CCL_WORKER_COUNT"], 0) > 0:
@ -178,528 +190,82 @@ class PartialState:
"please try exporting rank 0's hostname as MASTER_ADDR"
)
if not torch.distributed.is_initialized():
# Backend is not set by the user, we set it here
kwargs.pop("nccl_backend", None)
torch.distributed.init_process_group(backend, rank=rank, world_size=size, **kwargs)
self.backend = backend
torch.distributed.init_process_group(self.backend, rank=rank, world_size=size, **kwargs)
self.num_processes = torch.distributed.get_world_size()
self.process_index = torch.distributed.get_rank()
self.local_process_index = local_rank
if self.device is None:
self.device = torch.device("cpu")
self.device = torch.device("cpu")
self.mixed_precision = mixed_precision
else:
self.distributed_type = DistributedType.NO
self.num_processes = 1
self.process_index = self.local_process_index = 0
if parse_flag_from_env("USE_MPS_DEVICE") and not cpu:
if not torch.backends.mps.is_available():
if not torch.backends.mps.is_built():
raise AssertionError(
"MPS not available because the current PyTorch install was not "
"built with MPS enabled. Please install torch version >=1.12.0 on "
"your Apple silicon Mac running macOS 12.3 or later with a native "
"version (arm64) of Python"
)
else:
raise AssertionError(
"MPS not available because the current MacOS version is not 12.3+ "
"and/or you do not have an MPS-enabled device on this machine."
)
else:
from .utils import is_torch_version
if self.device is None:
self.device = torch.device("cpu") if cpu else self.default_device
self.fork_launched = parse_flag_from_env("FORK_LAUNCHED", 0)
if not is_torch_version(">", "1.12.0"):
warnings.warn(
"We strongly recommend to install PyTorch >= 1.13 (nightly version at the time of writing) on your MacOS machine. "
"It has major fixes related to model correctness and performance improvements for transformer based models. "
"Please refer to https://github.com/pytorch/pytorch/issues/82707 for more details."
)
self.device = torch.device("mps")
elif cpu or not torch.cuda.is_available():
self.device = torch.device("cpu")
else:
self.device = torch.device("cuda")
self.mixed_precision = mixed_precision
self.initialized = True
def __repr__(self) -> str:
return (
def __repr__(self):
mixed_precision = self.mixed_precision
repr = (
f"Distributed environment: {self.distributed_type}{(' Backend: ' + self.backend) if self.backend else ''}\n"
f"Num processes: {self.num_processes}\n"
f"Process index: {self.process_index}\n"
f"Local process index: {self.local_process_index}\n"
f"Device: {self.device}\n"
)
@staticmethod
def _reset_state():
"Resets `_shared_state`, is used internally and should not be called"
PartialState._shared_state = {}
@property
def initialized(self) -> bool:
"Returns whether the `PartialState` has been initialized"
return self._shared_state != {}
@property
def use_distributed(self):
"""
Whether the Accelerator is configured for distributed training
"""
return self.distributed_type != DistributedType.NO and self.num_processes > 1
@property
def is_last_process(self) -> bool:
"Returns whether the current process is the last one"
return self.process_index == self.num_processes - 1
@property
def is_main_process(self) -> bool:
"Returns whether the current process is the main process"
return (
self.process_index == 0 if self.distributed_type != DistributedType.MEGATRON_LM else self.is_last_process
)
@property
def is_local_main_process(self) -> bool:
"Returns whether the current process is the main process on the local node"
return (
self.local_process_index == 0
if self.distributed_type != DistributedType.MEGATRON_LM
else self.is_last_process
)
def wait_for_everyone(self):
"""
Will stop the execution of the current process until every other process has reached that point (so this does
nothing when the script is only run in one process). Useful to do before saving a model.
Example:
```python
>>> # Assuming two GPU processes
>>> import time
>>> from accelerate.state import PartialState
>>> state = PartialState()
>>> if state.is_main_process:
... time.sleep(2)
>>> else:
... print("I'm waiting for the main process to finish its sleep...")
>>> state.wait_for_everyone()
>>> # Should print on every process at the same time
>>> print("Everyone is here")
```
"""
if self.distributed_type in (
DistributedType.MULTI_GPU,
DistributedType.MULTI_CPU,
DistributedType.DEEPSPEED,
DistributedType.FSDP,
):
torch.distributed.barrier()
elif self.distributed_type == DistributedType.TPU:
xm.rendezvous("accelerate.utils.wait_for_everyone")
def _goes_first(self, is_main: bool):
if not is_main:
self.wait_for_everyone()
yield
if is_main:
self.wait_for_everyone()
@contextmanager
def main_process_first(self):
"""
Lets the main process go first inside a with block.
The other processes will enter the with block after the main process exits.
Example:
```python
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
>>> with accelerator.main_process_first():
... # This will be printed first by process 0 then in a seemingly
... # random order by the other processes.
... print(f"This will be printed by process {accelerator.process_index}")
```
"""
yield from self._goes_first(self.is_main_process)
@contextmanager
def local_main_process_first(self):
"""
Lets the local main process go inside a with block.
The other processes will enter the with block after the main process exits.
Example:
```python
>>> from accelerate.state import PartialState
>>> state = PartialState()
>>> with state.local_main_process_first():
... # This will be printed first by local process 0 then in a seemingly
... # random order by the other processes.
... print(f"This will be printed by process {state.local_process_index}")
```
"""
yield from self._goes_first(self.is_local_main_process)
def on_main_process(self, function: Callable[..., Any] = None):
"""
Decorator that only runs the decorated function on the main process.
Args:
function (`Callable`): The function to decorate.
Example:
```python
>>> from accelerate.state import PartialState
>>> state = PartialState()
>>> @state.on_main_process
... def print_something():
... print("This will be printed by process 0 only.")
>>> print_something()
"This will be printed by process 0 only"
```
"""
if not self.initialized:
raise ValueError("The `PartialState` or `Accelerator` must be initialized before calling this function.")
if self.is_main_process or not self.use_distributed:
return function
return do_nothing
def on_local_main_process(self, function: Callable[..., Any] = None):
"""
Decorator that only runs the decorated function on the local main process.
Args:
function (`Callable`): The function to decorate.
Example:
```python
# Assume we have 2 servers with 4 processes each.
from accelerate.state import PartialState
state = PartialState()
@state.on_local_main_process
def print_something():
print("This will be printed by process 0 only on each server.")
print_something()
# On server 1:
"This will be printed by process 0 only"
# On server 2:
"This will be printed by process 0 only"
```
"""
if self.is_local_main_process or not self.use_distributed:
return function
return do_nothing
def on_last_process(self, function: Callable[..., Any]):
"""
Decorator that only runs the decorated function on the last process.
Args:
function (`Callable`): The function to decorate.
Example:
```python
# Assume we have 4 processes.
from accelerate.state import PartialState
state = PartialState()
@state.on_last_process
def print_something():
print(f"Printed on process {state.process_index}")
print_something()
"Printed on process 3"
```
"""
if self.is_last_process or not self.use_distributed:
return function
return do_nothing
def on_process(self, function: Callable[..., Any] = None, process_index: int = None):
"""
Decorator that only runs the decorated function on the process with the given index.
Args:
function (`Callable`, `optional`):
The function to decorate.
process_index (`int`, `optional`):
The index of the process on which to run the function.
Example:
```python
# Assume we have 4 processes.
from accelerate.state import PartialState
state = PartialState()
@state.on_process(process_index=2)
def print_something():
print(f"Printed on process {state.process_index}")
print_something()
"Printed on process 2"
```
"""
if function is None:
return partial(self.on_process, process_index=process_index)
if (self.process_index == process_index) or (not self.use_distributed):
return function
return do_nothing
def on_local_process(self, function: Callable[..., Any] = None, local_process_index: int = None):
"""
Decorator that only runs the decorated function on the process with the given index on the current node.
Args:
function (`Callable`, *optional*):
The function to decorate.
local_process_index (`int`, *optional*):
The index of the local process on which to run the function.
Example:
```python
# Assume we have 2 servers with 4 processes each.
from accelerate import Accelerator
accelerator = Accelerator()
@accelerator.on_local_process(local_process_index=2)
def print_something():
print(f"Printed on process {accelerator.local_process_index}")
print_something()
# On server 1:
"Printed on process 2"
# On server 2:
"Printed on process 2"
```
"""
if function is None:
return partial(self.on_local_process, local_process_index=local_process_index)
if (self.local_process_index == local_process_index) or (not self.use_distributed):
return function
return do_nothing
def print(self, *args, **kwargs):
if self.is_local_main_process:
print(*args, **kwargs)
@property
def default_device(self) -> torch.device:
"""
Returns the default device which is:
- MPS if `torch.backends.mps.is_available()` and `torch.backends.mps.is_built()` both return True.
- CUDA if `torch.cuda.is_available()`
- CPU otherwise
"""
if is_mps_available():
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
return torch.device("mps")
elif torch.cuda.is_available():
return torch.device("cuda")
else:
return torch.device("cpu")
class AcceleratorState:
"""
Singleton class that has information about the current training environment.
**Available attributes:**
- **device** (`torch.device`) -- The device to use.
- **distributed_type** ([`~accelerate.state.DistributedType`]) -- The type of distributed environment currently
in use.
- **initialized** (`bool`) -- Whether or not the `AcceleratorState` has been initialized from `Accelerator`.
- **local_process_index** (`int`) -- The index of the current process on the current server.
- **mixed_precision** (`str`) -- Whether or not the current script will use mixed precision, and if so the type
of mixed precision being performed.
- **num_processes** (`int`) -- The number of processes currently launched in parallel.
- **process_index** (`int`) -- The index of the current process.
- **is_last_process** (`bool`) -- Whether or not the current process is the last one.
- **is_main_process** (`bool`) -- Whether or not the current process is the main one.
- **is_local_main_process** (`bool`) -- Whether or not the current process is the main one on the local node.
"""
_shared_state = {}
def __init__(
self,
mixed_precision: str = None,
cpu: bool = False,
dynamo_plugin=None,
deepspeed_plugin=None,
fsdp_plugin=None,
megatron_lm_plugin=None,
ipex_plugin=None,
_from_accelerator: bool = False,
**kwargs,
):
self.__dict__ = self._shared_state
if parse_flag_from_env("ACCELERATE_USE_CPU"):
cpu = True
if PartialState._shared_state == {}:
PartialState(cpu, **kwargs)
self.__dict__.update(PartialState._shared_state)
self._check_initialized(mixed_precision, cpu)
if not self.initialized:
self.deepspeed_plugin = None
self.ipex_plugin = None
mixed_precision = (
parse_choice_from_env("ACCELERATE_MIXED_PRECISION", "no")
if mixed_precision is None
else mixed_precision.lower()
)
if mixed_precision == "fp8" and not is_fp8_available():
raise ValueError("Using `fp8` precision requires `transformer_engine` to be installed.")
self.dynamo_plugin = dynamo_plugin
if not _from_accelerator:
raise ValueError(
"Please make sure to properly initialize your accelerator via `accelerator = Accelerator()` "
"before using any functionality from the `accelerate` library."
)
# deepspeed handles mixed_precision using deepspeed_config
self._mixed_precision = "no" if self.distributed_type == DistributedType.DEEPSPEED else mixed_precision
if self.distributed_type == DistributedType.TPU:
if mixed_precision == "bf16":
if os.environ.get("ACCELERATE_DOWNCAST_BF16"):
os.environ["XLA_USE_BF16"] = str(0)
os.environ["XLA_DOWNCAST_BF16"] = str(1)
self.downcast_bfloat = True
else:
os.environ["XLA_USE_BF16"] = str(1)
os.environ["XLA_DOWNCAST_BF16"] = str(0)
self.downcast_bfloat = False
elif os.environ.get("ACCELERATE_USE_DEEPSPEED", "false") == "true" and not cpu:
self.deepspeed_plugin = deepspeed_plugin
elif self.distributed_type == DistributedType.MULTI_GPU:
if os.environ.get("ACCELERATE_USE_FSDP", "false") == "true":
self.distributed_type = DistributedType.FSDP
if self._mixed_precision != "no":
fsdp_plugin.set_mixed_precision(self._mixed_precision)
self.fsdp_plugin = fsdp_plugin
if os.environ.get("ACCELERATE_USE_MEGATRON_LM", "false") == "true":
self.distributed_type = DistributedType.MEGATRON_LM
megatron_lm_plugin.set_mixed_precision(self._mixed_precision)
self.megatron_lm_plugin = megatron_lm_plugin
elif self.distributed_type in [DistributedType.MULTI_CPU, DistributedType.NO]:
if self.device.type == "cpu" and ipex_plugin is not None:
self.ipex_plugin = ipex_plugin if ipex_plugin.use_ipex else None
if self.ipex_plugin is not None:
self.ipex_plugin.set_mixed_precision(mixed_precision)
if (
self.dynamo_plugin.backend != DynamoBackend.NO
and self._mixed_precision == "no"
and self.device.type == "cuda"
):
torch.backends.cuda.matmul.allow_tf32 = True
PartialState._shared_state["distributed_type"] = self.distributed_type
@property
def initialized(self) -> bool:
return self._shared_state != PartialState._shared_state
def __repr__(self):
repr = PartialState().__repr__() + f"\nMixed precision type: {self.mixed_precision}\n"
if self.distributed_type == DistributedType.DEEPSPEED:
repr += f"ds_config: {self.deepspeed_plugin.deepspeed_config}\n"
else:
repr += f"Mixed precision type: {mixed_precision}\n"
return repr
def _check_initialized(self, mixed_precision=None, cpu=None):
"Checks if a modification is trying to be made and the `AcceleratorState` has already been initialized"
if self.initialized:
err = "AcceleratorState has already been initialized and cannot be changed, restart your runtime completely and pass `{flag}` to `Accelerator()`."
if cpu and self.device.type != "cpu":
raise ValueError(err.format(flag="cpu=True"))
if (
mixed_precision is not None
and mixed_precision != self._mixed_precision
and self.distributed_type != DistributedType.DEEPSPEED
):
raise ValueError(err.format(flag=f"mixed_precision='{mixed_precision}'"))
# For backward compatibility
@property
def use_fp16(self):
warnings.warn(
"The `use_fp16` property is deprecated and will be removed in version 1.0 of Accelerate use "
"`AcceleratorState.mixed_precision == 'fp16'` instead.",
FutureWarning,
)
return self._mixed_precision != "no"
@property
def mixed_precision(self):
if self.distributed_type == DistributedType.DEEPSPEED:
config = self.deepspeed_plugin.deepspeed_config
if config.get("fp16", {}).get("enabled", False):
mixed_precision = "fp16"
elif config.get("bf16", {}).get("enabled", False):
mixed_precision = "bf16"
else:
mixed_precision = "no"
else:
mixed_precision = self._mixed_precision
return mixed_precision
return self.mixed_precision != "no"
@staticmethod
def _reset_state(reset_partial_state: bool = False):
def _reset_state():
"Resets `_shared_state`, is used internally and should not be called"
AcceleratorState._shared_state = {}
if reset_partial_state:
PartialState._reset_state()
@property
def use_distributed(self):
"""
Whether the Accelerator is configured for distributed training
"""
return PartialState().use_distributed
@property
def is_last_process(self) -> bool:
"Returns whether the current process is the last one"
return PartialState().is_last_process
@property
def is_main_process(self) -> bool:
"Returns whether the current process is the main process"
return PartialState().is_main_process
@property
def is_local_main_process(self) -> bool:
"Returns whether the current process is the main process on the local node"
return PartialState().is_local_main_process
def wait_for_everyone(self):
PartialState().wait_for_everyone()
@contextmanager
def main_process_first(self):
"""
Lets the main process go first inside a with block.
The other processes will enter the with block after the main process exits.
"""
with PartialState().main_process_first():
yield
@contextmanager
def local_main_process_first(self):
"""
Lets the local main process go inside a with block.
The other processes will enter the with block after the main process exits.
"""
with PartialState().local_main_process_first():
yield
def print(self, *args, **kwargs):
PartialState().print(*args, **kwargs)
def _check_initialized(self, mixed_precision=None, cpu=None):
"Checks if a modification is trying to be made and the `AcceleratorState` has already been initialized"
if getattr(self, "initialized", False):
err = "AcceleratorState has already been initialized and cannot be changed, restart your runtime completely and pass `{flag}` to `Accelerate()`."
if cpu and self.device.type != "cpu":
raise ValueError(err.format(flag="cpu=True"))
if mixed_precision is not None and mixed_precision != self.mixed_precision:
raise ValueError(err.format(flag=f"mixed_precision='{mixed_precision}'"))
class GradientState:
@ -711,51 +277,23 @@ class GradientState:
- **end_of_dataloader** (`bool`) -- Whether we have reached the end the current dataloader
- **remainder** (`int`) -- The number of extra samples that were added from padding the dataloader
- **sync_gradients** (`bool`) -- Whether the gradients should be synced across all devices
- **active_dataloader** (`Optional[DataLoader]`) -- The dataloader that is currently being iterated over
- **dataloader_references** (`List[Optional[DataLoader]]`) -- A list of references to the dataloaders that are
being iterated over
- **num_steps** (`int`) -- The number of steps to accumulate over
- **adjust_scheduler** (`bool`) -- Whether the scheduler should be adjusted to account for the gradient
accumulation
"""
_shared_state = {}
def __init__(self, gradient_accumulation_plugin: Optional[GradientAccumulationPlugin] = None):
def __init__(self):
self.__dict__ = self._shared_state
if not self.initialized:
if not getattr(self, "initialized", False):
self.sync_gradients = True
self.end_of_dataloader = False
self.remainder = -1
self.active_dataloader = None
self.dataloader_references = [None]
self.plugin_kwargs = gradient_accumulation_plugin.to_kwargs()
# Plugin args are different and can be updated
if gradient_accumulation_plugin is not None and self.plugin_kwargs != gradient_accumulation_plugin.to_kwargs():
self.plugin_kwargs = gradient_accumulation_plugin.to_kwargs()
@property
def num_steps(self) -> int:
"Returns the number of steps to accumulate over"
return self.plugin_kwargs.get("num_steps", 1)
@property
def adjust_scheduler(self) -> bool:
"Returns whether the scheduler should be adjusted"
return self.plugin_kwargs.get("adjust_scheduler", False)
@property
def initialized(self) -> bool:
"Returns whether the `GradientState` has been initialized"
return GradientState._shared_state != {}
self.initialized = True
def __repr__(self):
return (
f"Sync Gradients: {self.sync_gradients}\n"
f"At end of current dataloader: {self.end_of_dataloader}\n"
f"Extra samples added: {self.remainder}\n"
f"Gradient accumulation plugin: {self.plugin_kwargs}\n"
f"Extra samples added: {self.remainder}"
)
def _set_sync_gradients(self, sync_gradients):
@ -769,25 +307,3 @@ class GradientState:
def _set_remainder(self, remainder):
"Private function that sets the number of remaining samples at the end of the dataloader. Users should not have to call this."
self.remainder = remainder
def _add_dataloader(self, dataloader):
"Private function that adds a dataloader to `self.dataloader_references` and sets `in_dataloader` to `True`. Users should not have to call this."
self.active_dataloader = dataloader
self.dataloader_references.append(self.active_dataloader)
self._set_end_of_dataloader(False)
def _remove_dataloader(self, dataloader):
"Private function that removes a dataloader from `self.dataloader_references` and sets `in_dataloader` to `False` if there are no more dataloaders. Users should not have to call this."
self.dataloader_references.remove(dataloader)
self.active_dataloader = self.dataloader_references[-1]
self._set_end_of_dataloader(True)
@property
def in_dataloader(self) -> bool:
"Returns whether the current process is in a dataloader"
return self.active_dataloader is not None
@staticmethod
def _reset_state():
"Resets `_shared_state`, is used internally and should not be called"
GradientState._shared_state = {}

View File

@ -1,12 +1,14 @@
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_safetensors,
require_single_gpu,
require_torch_min_version,
require_tpu,
@ -16,4 +18,4 @@ from .testing import (
from .training import RegressionDataset, RegressionModel
from .scripts import test_script, test_sync, test_ops # isort: skip
from .scripts import test_script, test_sync # isort:skip

View File

@ -16,15 +16,15 @@ import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
MAX_GPU_BATCH_SIZE = 16

View File

@ -13,32 +13,28 @@
# limitations under the License.
import math
import os
from copy import deepcopy
import torch
from torch.utils.data import DataLoader
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
def get_basic_setup(accelerator, num_samples=82, batch_size=16):
def get_basic_setup(accelerator, num_samples=82):
"Returns everything needed to perform basic training"
set_seed(42)
model = RegressionModel()
ddp_model = deepcopy(model)
dset = RegressionDataset(length=num_samples)
dataloader = DataLoader(dset, batch_size=batch_size)
dataloader = DataLoader(dset, batch_size=16)
model.to(accelerator.device)
ddp_model, dataloader = accelerator.prepare(ddp_model, dataloader)
return model, ddp_model, dataloader
@ -88,17 +84,15 @@ def generate_predictions(model, dataloader, accelerator):
logit, target = accelerator.gather_for_metrics((logit, target))
logits_and_targets.append((logit, target))
logits, targs = [], []
for logit, targ in logits_and_targets:
for (logit, targ) in logits_and_targets:
logits.append(logit)
targs.append(targ)
logits, targs = torch.cat(logits), torch.cat(targs)
return logits, targs
def test_torch_metrics(
accelerator: Accelerator, num_samples=82, dispatch_batches=False, split_batches=False, batch_size=16
):
model, ddp_model, dataloader = get_basic_setup(accelerator, num_samples, batch_size)
def test_torch_metrics(accelerator: Accelerator, num_samples=82, dispatch_batches=False, split_batches=False):
model, ddp_model, dataloader = get_basic_setup(accelerator, num_samples)
logits, targs = generate_predictions(ddp_model, dataloader, accelerator)
assert (
len(logits) == num_samples
@ -165,11 +159,6 @@ def main():
print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99")
test_torch_metrics(accelerator, 99)
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test last batch is not dropped when perfectly divisible**")
accelerator = Accelerator()
test_torch_metrics(accelerator, 512)
accelerator.state._reset_state()
def _mp_fn(index):

View File

@ -18,13 +18,13 @@ import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
MAX_GPU_BATCH_SIZE = 16

View File

@ -16,15 +16,15 @@ import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
import evaluate
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
MAX_GPU_BATCH_SIZE = 16

View File

@ -14,25 +14,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from torch.utils.data import DataLoader, TensorDataset
from accelerate.accelerator import Accelerator
from accelerate.utils.dataclasses import DistributedType
class DummyIterableDataset(IterableDataset):
def __init__(self, data):
self.data = data
def __iter__(self):
for element in self.data:
yield element
def create_accelerator(even_batches=True):
@ -41,14 +28,11 @@ def create_accelerator(even_batches=True):
return accelerator
def create_dataloader(accelerator: Accelerator, dataset_size: int, batch_size: int, iterable: bool = False):
def create_dataloader(accelerator: Accelerator, dataset_size: int, batch_size: int):
"""
Create a simple DataLoader to use during the test cases
"""
if iterable:
dataset = DummyIterableDataset(torch.as_tensor(range(dataset_size)))
else:
dataset = TensorDataset(torch.as_tensor(range(dataset_size)))
dataset = TensorDataset(torch.as_tensor(range(dataset_size)))
dl = DataLoader(dataset, batch_size=batch_size)
dl = accelerator.prepare(dl)
@ -77,6 +61,7 @@ def verify_dataloader_batch_sizes(
def test_default_ensures_even_batch_sizes():
accelerator = create_accelerator()
# without padding, we would expect a different number of batches
@ -118,95 +103,7 @@ def test_can_disable_even_batches():
)
def test_can_join_uneven_inputs():
accelerator = create_accelerator(even_batches=False)
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
batch_idxs = []
with accelerator.join_uneven_inputs([ddp_model]):
for batch_idx, batch in enumerate(dl):
output = ddp_model(batch[0].float())
loss = output.sum()
loss.backward()
batch_idxs.append(batch_idx)
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def test_join_raises_warning_for_non_ddp_distributed(accelerator):
with warnings.catch_warnings(record=True) as w:
with accelerator.join_uneven_inputs([Mock()]):
pass
assert issubclass(w[-1].category, UserWarning)
assert "only supported for multi-GPU" in str(w[-1].message)
def test_join_can_override_even_batches():
default_even_batches = True
overridden_even_batches = False
accelerator = create_accelerator(even_batches=default_even_batches)
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
train_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
valid_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches):
train_dl_overridden_value = train_dl.batch_sampler.even_batches
valid_dl_overridden_value = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def test_join_can_override_for_mixed_type_dataloaders():
default_even_batches = True
overridden_even_batches = False
accelerator = create_accelerator(even_batches=default_even_batches)
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True)
batch_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1)
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
try:
with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches):
batch_dl_overridden_value = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def test_join_raises_warning_for_iterable_when_overriding_even_batches():
accelerator = create_accelerator()
model = torch.nn.Linear(1, 1)
ddp_model = accelerator.prepare(model)
create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True)
with warnings.catch_warnings(record=True) as w:
with accelerator.join_uneven_inputs([ddp_model], even_batches=False):
pass
assert issubclass(w[-1].category, UserWarning)
assert "only supported for map-style datasets" in str(w[-1].message)
def main():
if __name__ == "__main__":
accelerator = create_accelerator()
accelerator.print("Test that even_batches variable ensures uniform batches across processes")
@ -214,25 +111,3 @@ def main():
accelerator.print("Run tests with even_batches disabled")
test_can_disable_even_batches()
accelerator.print("Test joining uneven inputs")
test_can_join_uneven_inputs()
accelerator.print("Test overriding even_batches when joining uneven inputs")
test_join_can_override_even_batches()
accelerator.print("Test overriding even_batches for mixed dataloader types")
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders")
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print("Test join with non DDP distributed raises warning")
original_state = accelerator.state.distributed_type
accelerator.state.distributed_type = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(accelerator)
accelerator.state.distributed_type = original_state
if __name__ == "__main__":
main()

View File

@ -1,93 +0,0 @@
#!/usr/bin/env python
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, pad_across_processes, reduce
def create_tensor(state):
return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device)
def test_gather(state):
tensor = create_tensor(state)
gathered_tensor = gather(tensor)
assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1))
def test_broadcast(state):
tensor = create_tensor(state)
broadcasted_tensor = broadcast(tensor)
assert broadcasted_tensor.shape == torch.Size([state.num_processes])
assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1))
def test_pad_across_processes(state):
# We need to pad the tensor with one more element if we are the main process
# to ensure that we can pad
if state.is_main_process:
tensor = torch.arange(state.num_processes + 1).to(state.device)
else:
tensor = torch.arange(state.num_processes).to(state.device)
padded_tensor = pad_across_processes(tensor)
assert padded_tensor.shape == torch.Size([state.num_processes + 1])
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0, state.num_processes)) + [0]
def test_reduce_sum(state):
# For now runs on only two processes
if state.num_processes != 2:
return
tensor = create_tensor(state)
reduced_tensor = reduce(tensor, "sum")
truth_tensor = torch.tensor([4.0, 6]).to(state.device)
assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"
def test_reduce_mean(state):
# For now runs on only two processes
if state.num_processes != 2:
return
tensor = create_tensor(state)
reduced_tensor = reduce(tensor, "mean")
truth_tensor = torch.tensor([2.0, 3]).to(state.device)
assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
def main():
state = PartialState()
state.print("testing gather")
test_gather(state)
state.print("testing broadcast")
test_broadcast(state)
state.print("testing pad_across_processes")
test_pad_across_processes(state)
state.print("testing reduce_sum")
test_reduce_sum(state)
state.print("testing reduce_mean")
test_reduce_mean(state)
if __name__ == "__main__":
main()

View File

@ -14,11 +14,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import io
import time
from pathlib import Path
import torch
from torch.utils.data import DataLoader
@ -30,101 +25,12 @@ from accelerate.utils import (
DistributedType,
gather,
is_bf16_available,
is_ipex_available,
is_torch_version,
set_seed,
synchronize_rng_states,
)
def print_main(state):
print(f"Printing from the main process {state.process_index}")
def print_local_main(state):
print(f"Printing from the local main process {state.local_process_index}")
def print_last(state):
print(f"Printing from the last process {state.process_index}")
def print_on(state, process_idx):
print(f"Printing from process {process_idx}: {state.process_index}")
def process_execution_check():
accelerator = Accelerator()
num_processes = accelerator.num_processes
# Test main_process_first context manager
path = Path("check_main_process_first.txt")
if path.exists():
path.unlink()
with accelerator.main_process_first():
if accelerator.is_main_process:
time.sleep(0.1) # ensure main process takes longest
with open(path, "a+") as f:
f.write("Currently in the main process\n")
else:
with open(path, "a+") as f:
f.write("Now on another process\n")
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(path, "r") as f:
text = "".join(f.readlines())
try:
assert text.startswith("Currently in the main process\n"), "Main process was not first"
if num_processes > 1:
assert text.endswith("Now on another process\n"), "Main process was not first"
assert (
text.count("Now on another process\n") == num_processes - 1
), f"Only wrote to file {text.count('Now on another process') + 1} times, not {num_processes}"
except AssertionError:
path.unlink()
raise
# Test the decorators
f = io.StringIO()
with contextlib.redirect_stdout(f):
accelerator.on_main_process(print_main)(accelerator.state)
result = f.getvalue().rstrip()
if accelerator.is_main_process:
assert result == "Printing from the main process 0", f"{result} != Printing from the main process 0"
else:
assert f.getvalue().rstrip() == "", f'{result} != ""'
f.truncate(0)
f.seek(0)
with contextlib.redirect_stdout(f):
accelerator.on_local_main_process(print_local_main)(accelerator.state)
if accelerator.is_local_main_process:
assert f.getvalue().rstrip() == "Printing from the local main process 0"
else:
assert f.getvalue().rstrip() == ""
f.truncate(0)
f.seek(0)
with contextlib.redirect_stdout(f):
accelerator.on_last_process(print_last)(accelerator.state)
if accelerator.is_last_process:
assert f.getvalue().rstrip() == f"Printing from the last process {accelerator.state.num_processes - 1}"
else:
assert f.getvalue().rstrip() == ""
f.truncate(0)
f.seek(0)
for process_idx in range(num_processes):
with contextlib.redirect_stdout(f):
accelerator.on_process(print_on, process_index=process_idx)(accelerator.state, process_idx)
if accelerator.process_index == process_idx:
assert f.getvalue().rstrip() == f"Printing from process {process_idx}: {accelerator.process_index}"
else:
assert f.getvalue().rstrip() == ""
f.truncate(0)
f.seek(0)
def init_state_check():
# Test we can instantiate this twice in a row.
state = AcceleratorState()
@ -369,12 +275,10 @@ def training_check():
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."
# BF16 support is only for CPU + TPU, and some GPU
if is_bf16_available():
# Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16
print("BF16 training check.")
# TEST that previous fp16 flag still works
print("Legacy FP16 training check.")
AcceleratorState._reset_state()
accelerator = Accelerator(mixed_precision="bf16")
accelerator = Accelerator(fp16=True)
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -394,14 +298,12 @@ def training_check():
assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training."
assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training."
# IPEX support is only for CPU
if is_ipex_available():
print("ipex BF16 training check.")
from accelerate.utils.dataclasses import IntelPyTorchExtensionPlugin
# BF16 support is only for CPU + TPU, and some GPU
if is_bf16_available():
# Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16
print("BF16 training check.")
AcceleratorState._reset_state()
ipex_plugin = IntelPyTorchExtensionPlugin(use_ipex=True, dtype=torch.bfloat16)
accelerator = Accelerator(mixed_precision="bf16", cpu=True, ipex_plugin=ipex_plugin)
accelerator = Accelerator(mixed_precision="bf16")
train_dl = DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator)
model = RegressionModel()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
@ -428,9 +330,6 @@ def main():
if state.local_process_index == 0:
print("**Initialization**")
init_state_check()
if state.local_process_index == 0:
print("\n**Test process execution**")
process_execution_check()
if state.local_process_index == 0:
print("\n**Test random number generator synchronization**")

View File

@ -20,10 +20,9 @@ from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
from accelerate.utils import DistributedType, set_seed
def check_model_parameters(model_a, model_b, did_step, iteration):
@ -152,7 +151,7 @@ def test_distributed_sync(accelerator):
def test_gradient_accumulation(split_batches=False, dispatch_batches=False):
accelerator = Accelerator(
split_batches=split_batches, dispatch_batches=dispatch_batches, gradient_accumulation_steps=2
gradient_accumulation_steps=2, split_batches=split_batches, dispatch_batches=dispatch_batches
)
# Test that context manager behaves properly
model, ddp_model, dataloader = get_training_setup(accelerator)
@ -185,12 +184,11 @@ def test_gradient_accumulation(split_batches=False, dispatch_batches=False):
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
ddp_input = ddp_input[torch.randperm(len(ddp_input))]
GradientState._reset_state()
def test_gradient_accumulation_with_opt_and_scheduler(split_batches=False, dispatch_batches=False):
accelerator = Accelerator(
split_batches=split_batches, dispatch_batches=dispatch_batches, gradient_accumulation_steps=2
gradient_accumulation_steps=2, split_batches=split_batches, dispatch_batches=dispatch_batches
)
# Test that context manager behaves properly
model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched = get_training_setup(accelerator, True)
@ -204,13 +202,11 @@ def test_gradient_accumulation_with_opt_and_scheduler(split_batches=False, dispa
ddp_model.train()
step_model(model, input, target, accelerator, False)
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(dataloader)):
if split_batches:
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
else:
for _ in range(accelerator.num_processes):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(ddp_model):
@ -228,41 +224,11 @@ def test_gradient_accumulation_with_opt_and_scheduler(split_batches=False, dispa
check_model_parameters(model, ddp_model, did_step, iteration)
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration)
GradientState._reset_state()
def test_dataloader_break():
accelerator = Accelerator()
first_dset = RegressionDataset(length=80)
first_dataloader = DataLoader(first_dset, batch_size=16)
second_dset = RegressionDataset(length=96)
second_dataloader = DataLoader(second_dset, batch_size=16)
first_dataloader, second_dataloader = accelerator.prepare(first_dataloader, second_dataloader)
for iteration, _ in enumerate(first_dataloader):
# Will be True except if we are on the last batch
if iteration < len(first_dataloader) - 1:
assert id(accelerator.gradient_state.active_dataloader) == id(first_dataloader)
if iteration == 1:
for batch_num, _ in enumerate(second_dataloader):
if batch_num < len(second_dataloader) - 1:
assert id(accelerator.gradient_state.active_dataloader) == id(
second_dataloader
), f"First dataloader: {id(first_dataloader)}\nSecond dataloader: {id(second_dataloader)}\nActive dataloader: {id(accelerator.gradient_state.active_dataloader)}\n"
else:
assert id(accelerator.gradient_state.active_dataloader) == id(
first_dataloader
), f"First dataloader: {id(first_dataloader)}\nSecond dataloader: {id(second_dataloader)}\nActive dataloader: {id(accelerator.gradient_state.active_dataloader)}\n"
else:
assert accelerator.gradient_state.active_dataloader is None
def main():
accelerator = Accelerator()
state = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**")
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**")
@ -280,26 +246,23 @@ def main():
f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**",
)
test_gradient_accumulation(split_batch, dispatch_batches)
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<", "2.0") or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
"`split_batches=False`, `dispatch_batches=False`**",
)
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**",
)
test_gradient_accumulation_with_opt_and_scheduler(split_batch, dispatch_batches)
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
"`split_batches=False`, `dispatch_batches=False`**",
)
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ",
f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**",
)
test_gradient_accumulation_with_opt_and_scheduler(split_batch, dispatch_batches)
def _mp_fn(index):

View File

@ -27,14 +27,12 @@ from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..state import AcceleratorState
from ..utils import (
gather,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
@ -89,14 +87,6 @@ def require_cuda(test_case):
return unittest.skipUnless(torch.cuda.is_available(), "test requires a GPU")(test_case)
def require_mps(test_case):
"""
Decorator marking a test that requires MPS backend. These tests are skipped when torch doesn't support `mps`
backend.
"""
return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`")(test_case)
def require_huggingface_suite(test_case):
"""
Decorator marking a test that requires transformers and datasets. These tests are skipped when they are not.
@ -129,14 +119,6 @@ def require_multi_gpu(test_case):
return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
def require_safetensors(test_case):
"""
Decorator marking a test that requires safetensors installed. These tests are skipped when safetensors isn't
installed
"""
return unittest.skipUnless(is_safetensors_available(), "test requires safetensors")(test_case)
def require_deepspeed(test_case):
"""
Decorator marking a test that requires DeepSpeed installed. These tests are skipped when DeepSpeed isn't installed
@ -232,20 +214,6 @@ class TempDirTestCase(unittest.TestCase):
shutil.rmtree(path)
class AccelerateTestCase(unittest.TestCase):
"""
A TestCase class that will reset the accelerator state at the end of every test. Every test that checks or utilizes
the `AcceleratorState` class should inherit from this to avoid silent failures due to state being shared between
tests.
"""
def tearDown(self):
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class MockingTestCase(unittest.TestCase):
"""
A TestCase class designed to dynamically add various mockers that should be used in every test, mimicking the
@ -339,8 +307,8 @@ async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=Fals
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:"))),
_read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:")),
_read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:")),
],
timeout=timeout,
)
@ -348,6 +316,7 @@ async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=Fals
def execute_subprocess_async(cmd, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput:
loop = asyncio.get_event_loop()
result = loop.run_until_complete(
_stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo)

View File

@ -18,13 +18,12 @@
import json
import os
import time
from functools import wraps
from abc import ABCMeta, abstractmethod, abstractproperty
from typing import Any, Dict, List, Optional, Union
import yaml
from .logging import get_logger
from .state import PartialState
from .utils import (
LoggerType,
is_aim_available,
@ -38,10 +37,7 @@ from .utils import (
_available_trackers = []
if is_tensorboard_available():
try:
from torch.utils import tensorboard
except ModuleNotFoundError:
import tensorboardX as tensorboard
from torch.utils import tensorboard
_available_trackers.append(LoggerType.TENSORBOARD)
@ -68,71 +64,32 @@ if is_mlflow_available():
logger = get_logger(__name__)
def on_main_process(function):
"""
Decorator to selectively run the decorated function on the main process only based on the `main_process_only`
attribute in a class.
Checks at function execution rather than initialization time, not triggering the initialization of the
`PartialState`.
"""
@wraps(function)
def execute_on_main_process(self, *args, **kwargs):
if getattr(self, "main_process_only", False):
return PartialState().on_main_process(function)(self, *args, **kwargs)
else:
return function(self, *args, **kwargs)
return execute_on_main_process
def get_available_trackers():
"Returns a list of all supported available trackers in the system"
return _available_trackers
class GeneralTracker:
class GeneralTracker(object, metaclass=ABCMeta):
"""
A base Tracker class to be used for all logging integration implementations.
Each function should take in `**kwargs` that will automatically be passed in from a base dictionary provided to
[`Accelerator`].
Should implement `name`, `requires_logging_directory`, and `tracker` properties such that:
`name` (`str`): String representation of the tracker class name, such as "TensorBoard" `requires_logging_directory`
(`bool`): Whether the logger requires a directory to store their logs. `tracker` (`object`): Should return internal
tracking mechanism used by a tracker class (such as the `run` for wandb)
Implementations can also include a `main_process_only` (`bool`) attribute to toggle if relevent logging, init, and
other functions should occur on the main process or across all processes (by default will use `True`)
[`Accelerator`]
"""
main_process_only = True
@abstractproperty
def name(self):
"String representation of the python class name"
pass
def __init__(self, _blank=False):
if not _blank:
err = ""
if not hasattr(self, "name"):
err += "`name`"
if not hasattr(self, "requires_logging_directory"):
if len(err) > 0:
err += ", "
err += "`requires_logging_directory`"
# as tracker is a @property that relies on post-init
if "tracker" not in dir(self):
if len(err) > 0:
err += ", "
err += "`tracker`"
if len(err) > 0:
raise NotImplementedError(
f"The implementation for this tracker class is missing the following "
f"required attributes. Please define them in the class definition: "
f"{err}"
)
@abstractproperty
def requires_logging_directory(self):
"""
Whether the logger requires a directory to store their logs. Should either return `True` or `False`.
"""
pass
@abstractmethod
def store_init_configuration(self, values: dict):
"""
Logs `values` as hyperparameters for the run. Implementations should use the experiment configuration
@ -145,6 +102,7 @@ class GeneralTracker:
"""
pass
@abstractmethod
def log(self, values: dict, step: Optional[int], **kwargs):
"""
Logs `values` to the current run. Base `log` implementations of a tracking API should go in here, along with
@ -165,6 +123,13 @@ class GeneralTracker:
"""
pass
@abstractproperty
def tracker(self):
"""
Should return internal tracking mechanism used by a tracker class (such as the `run` for wandb)
"""
pass
class TensorBoardTracker(GeneralTracker):
"""
@ -182,9 +147,7 @@ class TensorBoardTracker(GeneralTracker):
name = "tensorboard"
requires_logging_directory = True
@on_main_process
def __init__(self, run_name: str, logging_dir: Union[str, os.PathLike], **kwargs):
super().__init__()
def __init__(self, run_name: str, logging_dir: Optional[Union[str, os.PathLike]], **kwargs):
self.run_name = run_name
self.logging_dir = os.path.join(logging_dir, run_name)
self.writer = tensorboard.SummaryWriter(self.logging_dir, **kwargs)
@ -197,7 +160,6 @@ class TensorBoardTracker(GeneralTracker):
def tracker(self):
return self.writer
@on_main_process
def store_init_configuration(self, values: dict):
"""
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment. Stores the
@ -221,7 +183,6 @@ class TensorBoardTracker(GeneralTracker):
raise
logger.debug("Stored initial configuration hyperparameters to TensorBoard and hparams yaml file")
@on_main_process
def log(self, values: dict, step: Optional[int] = None, **kwargs):
"""
Logs `values` to the current run.
@ -246,7 +207,6 @@ class TensorBoardTracker(GeneralTracker):
self.writer.flush()
logger.debug("Successfully logged to TensorBoard")
@on_main_process
def finish(self):
"""
Closes `TensorBoard` writer
@ -268,11 +228,8 @@ class WandBTracker(GeneralTracker):
name = "wandb"
requires_logging_directory = False
main_process_only = False
@on_main_process
def __init__(self, run_name: str, **kwargs):
super().__init__()
self.run_name = run_name
self.run = wandb.init(project=self.run_name, **kwargs)
logger.debug(f"Initialized WandB project {self.run_name}")
@ -284,7 +241,6 @@ class WandBTracker(GeneralTracker):
def tracker(self):
return self.run
@on_main_process
def store_init_configuration(self, values: dict):
"""
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
@ -297,7 +253,6 @@ class WandBTracker(GeneralTracker):
wandb.config.update(values)
logger.debug("Stored initial configuration hyperparameters to WandB")
@on_main_process
def log(self, values: dict, step: Optional[int] = None, **kwargs):
"""
Logs `values` to the current run.
@ -314,7 +269,6 @@ class WandBTracker(GeneralTracker):
self.run.log(values, step=step, **kwargs)
logger.debug("Successfully logged to WandB")
@on_main_process
def finish(self):
"""
Closes `wandb` writer
@ -339,9 +293,7 @@ class CometMLTracker(GeneralTracker):
name = "comet_ml"
requires_logging_directory = False
@on_main_process
def __init__(self, run_name: str, **kwargs):
super().__init__()
self.run_name = run_name
self.writer = Experiment(project_name=run_name, **kwargs)
logger.debug(f"Initialized CometML project {self.run_name}")
@ -353,7 +305,6 @@ class CometMLTracker(GeneralTracker):
def tracker(self):
return self.writer
@on_main_process
def store_init_configuration(self, values: dict):
"""
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
@ -366,7 +317,6 @@ class CometMLTracker(GeneralTracker):
self.writer.log_parameters(values)
logger.debug("Stored initial configuration hyperparameters to CometML")
@on_main_process
def log(self, values: dict, step: Optional[int] = None, **kwargs):
"""
Logs `values` to the current run.
@ -392,7 +342,6 @@ class CometMLTracker(GeneralTracker):
self.writer.log_metrics(v, step=step, **kwargs)
logger.debug("Successfully logged to CometML")
@on_main_process
def finish(self):
"""
Closes `comet-ml` writer
@ -415,7 +364,6 @@ class AimTracker(GeneralTracker):
name = "aim"
requires_logging_directory = True
@on_main_process
def __init__(self, run_name: str, logging_dir: Optional[Union[str, os.PathLike]] = ".", **kwargs):
self.run_name = run_name
self.writer = Run(repo=logging_dir, **kwargs)
@ -429,7 +377,6 @@ class AimTracker(GeneralTracker):
def tracker(self):
return self.writer
@on_main_process
def store_init_configuration(self, values: dict):
"""
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
@ -440,7 +387,6 @@ class AimTracker(GeneralTracker):
"""
self.writer["hparams"] = values
@on_main_process
def log(self, values: dict, step: Optional[int], **kwargs):
"""
Logs `values` to the current run.
@ -457,7 +403,6 @@ class AimTracker(GeneralTracker):
for key, value in values.items():
self.writer.track(value, name=key, step=step, **kwargs)
@on_main_process
def finish(self):
"""
Closes `aim` writer
@ -496,7 +441,6 @@ class MLflowTracker(GeneralTracker):
name = "mlflow"
requires_logging_directory = True
@on_main_process
def __init__(
self,
experiment_name: str = None,
@ -507,6 +451,7 @@ class MLflowTracker(GeneralTracker):
run_name: Optional[str] = None,
description: Optional[str] = None,
):
experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", experiment_name)
run_id = os.getenv("MLFLOW_RUN_ID", run_id)
tags = os.getenv("MLFLOW_TAGS", tags)
@ -539,7 +484,6 @@ class MLflowTracker(GeneralTracker):
def tracker(self):
return self.active_run
@on_main_process
def store_init_configuration(self, values: dict):
"""
Logs `values` as hyperparameters for the run. Should be run at the beginning of your experiment.
@ -566,7 +510,6 @@ class MLflowTracker(GeneralTracker):
logger.debug("Stored initial configuration hyperparameters to MLflow")
@on_main_process
def log(self, values: dict, step: Optional[int]):
"""
Logs `values` to the current run.
@ -590,7 +533,6 @@ class MLflowTracker(GeneralTracker):
mlflow.log_metrics(metrics, step=step)
logger.debug("Successfully logged to mlflow")
@on_main_process
def finish(self):
"""
End the active MLflow run.
@ -635,6 +577,7 @@ def filter_trackers(
if log_with is not None:
if not isinstance(log_with, (list, tuple)):
log_with = [log_with]
logger.debug(f"{log_with}")
if "all" in log_with or LoggerType.ALL in log_with:
loggers = [o for o in log_with if issubclass(type(o), GeneralTracker)] + get_available_trackers()
else:
@ -651,7 +594,7 @@ def filter_trackers(
if getattr(tracker_init, "requires_logging_directory"):
if logging_dir is None:
raise ValueError(
f"Logging with `{log_type}` requires a `logging_dir` to be passed in."
f"Logging with `{str(log_type)}` requires a `logging_dir` to be passed in."
)
loggers.append(log_type)
else:

View File

@ -1,43 +1,38 @@
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all
from .constants import MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS
from .dataclasses import (
ComputeEnvironment,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FP8RecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
IntelPyTorchExtensionPlugin,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_aim_available,
is_apex_available,
is_bf16_available,
is_boto3_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fp8_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
@ -56,9 +51,7 @@ from .modeling import (
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
)
from .offload import (
@ -83,7 +76,6 @@ from .operations import (
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
pad_across_processes,
@ -105,16 +97,7 @@ if is_deepspeed_available():
HfDeepSpeedConfig,
)
from .launch import (
PrepareForLaunch,
_filter_args,
get_launch_prefix,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .launch import PrepareForLaunch, _filter_args, get_launch_prefix
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
@ -133,17 +116,14 @@ from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .memory import find_executable_batch_size
from .other import (
extract_model_from_parallel,
get_pretty_name,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers

View File

@ -29,7 +29,6 @@ FSDP_AUTO_WRAP_POLICY = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"]
FSDP_BACKWARD_PREFETCH = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"]
FSDP_STATE_DICT_TYPE = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"]
DEEPSPEED_MULTINODE_LAUNCHERS = ["pdsh", "standard", "openmpi", "mvapich"]
TORCH_DYNAMO_MODES = ["default", "reduce-overhead", "max-autotune"]
STR_OPERATION_TO_FUNC = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt}

View File

@ -23,16 +23,14 @@ import functools
import os
import typing
import warnings
from contextlib import contextmanager
from dataclasses import dataclass, field
from datetime import timedelta
from distutils.util import strtobool
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
from typing import Any, Callable, Dict, Iterable, List, Optional
import torch
from .constants import FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_STATE_DICT_TYPE, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
class KwargsHandler:
@ -66,18 +64,7 @@ class DistributedDataParallelKwargs(KwargsHandler):
`static_graph` is only available in PyTorch 1.11.0 and later versions.
</Tip>
Example:
```python
from accelerate import Accelerator
from accelerate.utils import DistributedDataParallelKwargs
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(kwargs_handlers=[kwargs])
```
"""
</Tip>"""
dim: int = 0
broadcast_buffers: bool = True
@ -99,18 +86,7 @@ class GradScalerKwargs(KwargsHandler):
`GradScaler` is only available in PyTorch 1.5.0 and later versions.
</Tip>
Example:
```python
from accelerate import Accelerator
from accelerate.utils import GradScalerKwargs
kwargs = GradScalerKwargs(backoff_filter=0.25)
accelerator = Accelerator(kwargs_handlers=[kwargs])
```
"""
</Tip>"""
init_scale: float = 65536.0
growth_factor: float = 2.0
@ -126,54 +102,12 @@ class InitProcessGroupKwargs(KwargsHandler):
to the documentation of this
[method](https://pytorch.org/docs/stable/distributed.html#torch.distributed.init_process_group) for more
information on each argument.
```python
from datetime import timedelta
from accelerate import Accelerator
from accelerate.utils import InitProcessGroupKwargs
kwargs = InitProcessGroupKwargs(timeout=timedelta(seconds=800))
accelerator = Accelerator(kwargs_handlers=[kwargs])
```
"""
backend: Optional[str] = "nccl"
init_method: Optional[str] = None
timeout: timedelta = timedelta(seconds=1800)
@dataclass
class FP8RecipeKwargs(KwargsHandler):
"""
Use this object in your [`Accelerator`] to customize the initialization of the recipe for FP8 mixed precision
training. Please refer to the documentation of this
[class](https://docs.nvidia.com/deeplearning/transformer-engine/user-guide/api/common.html#transformer_engine.common.recipe.DelayedScaling)
for more information on each argument.
```python
from accelerate import Accelerator
from accelerate.utils import FP8RecipeKwargs
kwargs = FP8RecipeKwargs(fp8_format="HYBRID")
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[kwargs])
```
"""
margin: int = 0
interval: int = 1
fp8_format: str = "E4M3"
amax_history_len: int = 1
amax_compute_algo: str = "most_recent"
override_linear_precision: Tuple[bool, bool, bool] = (False, False, False)
def __post_init__(self):
self.fp8_format = self.fp8_format.upper()
if self.fp8_format not in ["E4M3", "HYBRID"]:
raise ValueError("`fp8_format` must be 'E4M3' or 'HYBRID'.")
if self.amax_compute_algo not in ["max", "most_recent"]:
raise ValueError("`amax_compute_algo` must be 'max' or 'most_recent'")
class DistributedType(str, enum.Enum):
"""
Represents a type of distributed environment.
@ -194,7 +128,7 @@ class DistributedType(str, enum.Enum):
DEEPSPEED = "DEEPSPEED"
FSDP = "FSDP"
TPU = "TPU"
MPS = "MPS" # here for backward compatibility. Remove in v0.18.0
MPS = "MPS"
MEGATRON_LM = "MEGATRON_LM"
@ -230,50 +164,6 @@ class ComputeEnvironment(str, enum.Enum):
AMAZON_SAGEMAKER = "AMAZON_SAGEMAKER"
class DynamoBackend(str, enum.Enum):
"""
Represents a dynamo backend (see https://github.com/pytorch/torchdynamo).
Values:
- **NO** -- Do not use torch dynamo.
- **EAGER** -- Uses PyTorch to run the extracted GraphModule. This is quite useful in debugging TorchDynamo
issues.
- **AOT_EAGER** -- Uses AotAutograd with no compiler, i.e, just using PyTorch eager for the AotAutograd's
extracted forward and backward graphs. This is useful for debugging, and unlikely to give speedups.
- **INDUCTOR** -- Uses TorchInductor backend with AotAutograd and cudagraphs by leveraging codegened Triton
kernels. [Read
more](https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747)
- **NVFUSER** -- nvFuser with TorchScript. [Read
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
- **AOT_NVFUSER** -- nvFuser with AotAutograd. [Read
more](https://dev-discuss.pytorch.org/t/tracing-with-primitives-update-1-nvfuser-and-its-primitives/593)
- **AOT_CUDAGRAPHS** -- cudagraphs with AotAutograd. [Read
more](https://github.com/pytorch/torchdynamo/pull/757)
- **OFI** -- Uses Torchscript optimize_for_inference. Inference only. [Read
more](https://pytorch.org/docs/stable/generated/torch.jit.optimize_for_inference.html)
- **FX2TRT** -- Uses Nvidia TensorRT for inference optimizations. Inference only. [Read
more](https://github.com/pytorch/TensorRT/blob/master/docsrc/tutorials/getting_started_with_fx_path.rst)
- **ONNXRT** -- Uses ONNXRT for inference on CPU/GPU. Inference only. [Read more](https://onnxruntime.ai/)
- **IPEX** -- Uses IPEX for inference on CPU. Inference only. [Read
more](https://github.com/intel/intel-extension-for-pytorch).
"""
# Subclassing str as well as Enum allows the `SageMakerDistributedType` to be JSON-serializable out of the box.
NO = "NO"
EAGER = "EAGER"
AOT_EAGER = "AOT_EAGER"
INDUCTOR = "INDUCTOR"
NVFUSER = "NVFUSER"
AOT_NVFUSER = "AOT_NVFUSER"
AOT_CUDAGRAPHS = "AOT_CUDAGRAPHS"
OFI = "OFI"
FX2TRT = "FX2TRT"
ONNXRT = "ONNXRT"
IPEX = "IPEX"
class EnumWithContains(enum.EnumMeta):
"A metaclass that adds the ability to check if `self` contains an item with the `in` operator"
@ -294,7 +184,7 @@ class BaseEnum(enum.Enum, metaclass=EnumWithContains):
@classmethod
def list(cls):
"Method to list all the possible items in `cls`"
return list(map(str, cls))
return list(map(lambda item: str(item), cls))
class LoggerType(BaseEnum):
@ -327,7 +217,6 @@ class PrecisionType(BaseEnum):
"""
NO = "no"
FP8 = "fp8"
FP16 = "fp16"
BF16 = "bf16"
@ -348,90 +237,6 @@ class TensorInformation:
dtype: torch.dtype
@dataclass
class ProjectConfiguration:
"""
Configuration for the Accelerator object based on inner-project needs.
"""
project_dir: str = field(default=None, metadata={"help": "A path to a directory for storing data."})
logging_dir: str = field(
default=None,
metadata={
"help": "A path to a directory for storing logs of locally-compatible loggers. If None, defaults to `project_dir`."
},
)
automatic_checkpoint_naming: bool = field(
default=False,
metadata={"help": "Whether saved states should be automatically iteratively named."},
)
total_limit: int = field(
default=None,
metadata={"help": "The maximum number of total saved states to keep."},
)
iteration: int = field(
default=0,
metadata={"help": "The current save iteration."},
)
def __post_init__(self):
if self.logging_dir is None:
self.logging_dir = self.project_dir
@dataclass
class GradientAccumulationPlugin(KwargsHandler):
"""
A plugin to configure gradient accumulation behavior.
"""
num_steps: int = field(default=None, metadata={"help": "The number of steps to accumulate gradients for."})
adjust_scheduler: bool = field(
default=True,
metadata={
"help": "Whether to adjust the scheduler steps to account for the number of steps being accumulated. Should be `True` if the used scheduler was not adjusted for gradient accumulation."
},
)
@dataclass
class TorchDynamoPlugin(KwargsHandler):
"""
This plugin is used to compile a model with PyTorch 2.0
"""
backend: DynamoBackend = field(
default=None,
metadata={"help": f"Possible options are {[b.value.lower() for b in DynamoBackend]}"},
)
mode: str = field(
default=None, metadata={"help": "Possible options are 'default', 'reduce-overhead' or 'max-autotune'"}
)
fullgraph: bool = field(default=None, metadata={"help": "Whether it is ok to break model into several subgraphs"})
dynamic: bool = field(default=None, metadata={"help": "Whether to use dynamic shape for tracing"})
options: Any = field(default=None, metadata={"help": "A dictionary of options to pass to the backend."})
disable: bool = field(default=False, metadata={"help": "Turn torch.compile() into a no-op for testing"})
def __post_init__(self):
prefix = "ACCELERATE_DYNAMO_"
if self.backend is None:
self.backend = os.environ.get(prefix + "BACKEND", "no")
self.backend = DynamoBackend(self.backend.upper())
if self.mode is None:
self.mode = os.environ.get(prefix + "MODE", "default")
if self.fullgraph is None:
self.fullgraph = strtobool(os.environ.get(prefix + "USE_FULLGRAPH", "False")) == 1
if self.dynamic is None:
self.dynamic = strtobool(os.environ.get(prefix + "USE_DYNAMIC", "False")) == 1
def to_dict(self):
dynamo_config = copy.deepcopy(self.__dict__)
dynamo_config["backend"] = dynamo_config["backend"].value.lower()
return dynamo_config
@dataclass
class DeepSpeedPlugin:
"""
@ -479,30 +284,8 @@ class DeepSpeedPlugin:
def __post_init__(self):
from .deepspeed import HfDeepSpeedConfig
if self.gradient_accumulation_steps is None:
self.gradient_accumulation_steps = int(os.environ.get("ACCELERATE_GRADIENT_ACCUMULATION_STEPS", 1))
if self.gradient_clipping is None:
gradient_clipping = os.environ.get("ACCELERATE_GRADIENT_CLIPPING", "none")
if gradient_clipping != "none":
self.gradient_clipping = float(gradient_clipping)
if self.zero_stage is None:
self.zero_stage = int(os.environ.get("ACCELERATE_DEEPSPEED_ZERO_STAGE", 2))
if self.offload_optimizer_device is None:
self.offload_optimizer_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE", "none")
if self.offload_param_device is None:
self.offload_param_device = os.environ.get("ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE", "none")
if self.zero3_save_16bit_model is None:
self.zero3_save_16bit_model = (
os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL", "false") == "true"
)
if self.hf_ds_config is None:
self.hf_ds_config = os.environ.get("ACCELERATE_DEEPSPEED_CONFIG_FILE", "none")
self.hf_ds_config = os.environ.get("DEEPSPEED_CONFIG_FILE", "none")
if (
isinstance(self.hf_ds_config, dict)
or (isinstance(self.hf_ds_config, str) and self.hf_ds_config != "none")
@ -512,30 +295,31 @@ class DeepSpeedPlugin:
self.hf_ds_config = HfDeepSpeedConfig(self.hf_ds_config)
if "gradient_accumulation_steps" not in self.hf_ds_config.config:
self.hf_ds_config.config["gradient_accumulation_steps"] = 1
elif self.hf_ds_config.config["gradient_accumulation_steps"] == "auto":
raise ValueError("gradient_accumulation_steps cannot be set to 'auto' in the DeepSpeed config.")
if "zero_optimization" not in self.hf_ds_config.config:
raise ValueError("Please specify the ZeRO optimization config in the DeepSpeed config.")
self._deepspeed_config_checks()
plugin_to_config_mapping = {
"gradient_accumulation_steps": "gradient_accumulation_steps",
"gradient_clipping": "gradient_clipping",
"zero_stage": "zero_optimization.stage",
"offload_optimizer_device": "zero_optimization.offload_optimizer.device",
"offload_param_device": "zero_optimization.offload_param.device",
"zero3_save_16bit_model": "zero_optimization.stage3_gather_16bit_weights_on_model_save",
}
kwargs = {v: getattr(self, k) for k, v in plugin_to_config_mapping.items() if getattr(self, k) is not None}
for key in kwargs.keys():
self.fill_match(key, **kwargs, must_match=False)
self.hf_ds_config.set_stage_and_offload()
# filling the missing values in the class attributes from the DeepSpeed config
# when using the DeepSpeed config file.
for key, value in plugin_to_config_mapping.items():
config_value = self.hf_ds_config.get_value(value)
if config_value is not None and config_value != "auto":
setattr(self, key, config_value)
else:
if self.gradient_accumulation_steps is None:
self.gradient_accumulation_steps = int(os.environ.get("GRADIENT_ACCUMULATION_STEPS", 1))
if self.gradient_clipping is None:
gradient_clipping = os.environ.get("GRADIENT_CLIPPING", "none")
if gradient_clipping != "none":
self.gradient_clipping = float(gradient_clipping)
if self.zero_stage is None:
self.zero_stage = int(os.environ.get("DEEPSPEED_ZERO_STAGE", 2))
if self.offload_optimizer_device is None:
self.offload_optimizer_device = os.environ.get("DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE", "none")
if self.offload_param_device is None:
self.offload_param_device = os.environ.get("DEEPSPEED_OFFLOAD_PARAM_DEVICE", "none")
if self.zero3_save_16bit_model is None:
self.zero3_save_16bit_model = os.environ.get("DEEPSPEED_ZERO3_SAVE_16BIT_MODEL", "false") == "true"
config = {
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
@ -554,19 +338,15 @@ class DeepSpeedPlugin:
if self.gradient_clipping:
config["gradient_clipping"] = self.gradient_clipping
self.hf_ds_config = HfDeepSpeedConfig(config)
self.deepspeed_config = self.hf_ds_config.config
self.deepspeed_config["steps_per_print"] = float("inf") # this will stop deepspeed from logging @ stdout
if self.zero3_init_flag is None:
self.zero3_init_flag = (
strtobool(os.environ.get("ACCELERATE_DEEPSPEED_ZERO3_INIT", str(self.hf_ds_config.is_zero3()))) == 1
)
self.zero3_init_flag = os.environ.get("DEEPSPEED_ZERO3_INIT", "false") == "true"
if self.zero3_init_flag and not self.hf_ds_config.is_zero3():
warnings.warn("DeepSpeed Zero3 Init flag is only applicable for ZeRO Stage 3. Setting it to False.")
self.zero3_init_flag = False
def fill_match(self, ds_key_long, mismatches=None, must_match=True, **kwargs):
mismatches = [] if mismatches is None else mismatches
def fill_match(self, ds_key_long, mismatches, must_match=True, **kwargs):
config, ds_key = self.hf_ds_config.find_config_node(ds_key_long)
if config is None:
return
@ -611,28 +391,10 @@ class DeepSpeedPlugin:
def set_mixed_precision(self, mixed_precision):
ds_config = self.deepspeed_config
kwargs = {
"fp16.enabled": mixed_precision == "fp16",
"bf16.enabled": mixed_precision == "bf16",
}
if mixed_precision == "fp16":
if "fp16" not in ds_config:
ds_config["fp16"] = {"enabled": True, "auto_cast": True}
elif mixed_precision == "bf16":
if "bf16" not in ds_config:
ds_config["bf16"] = {"enabled": True}
if mixed_precision != "no":
diff_dtype = "bf16" if mixed_precision == "fp16" else "fp16"
if str(ds_config.get(diff_dtype, {}).get("enabled", "False")).lower() == "true":
raise ValueError(
f"`--mixed_precision` arg cannot be set to `{mixed_precision}` when `{diff_dtype}` is set in the DeepSpeed config file."
)
for dtype in ["fp16", "bf16"]:
if dtype not in ds_config:
ds_config[dtype] = {"enabled": False}
self.fill_match("fp16.enabled", must_match=False, **kwargs)
self.fill_match("bf16.enabled", must_match=False, **kwargs)
if mixed_precision == "fp16" and "fp16" not in ds_config and "bf16" not in ds_config:
ds_config.update({"fp16": {"enabled": True, "auto_cast": True}})
elif mixed_precision == "bf16" and "fp16" not in ds_config and "bf16" not in ds_config:
ds_config.update({"bf16": {"enabled": True}})
def set_deepspeed_weakref(self):
from .imports import is_transformers_available
@ -658,48 +420,6 @@ class DeepSpeedPlugin:
self.dschf = HfDeepSpeedConfig(ds_config) # keep this object alive # noqa
def is_zero3_init_enabled(self):
return self.zero3_init_flag
@contextmanager
def zero3_init_context_manager(self, enable=False):
old = self.zero3_init_flag
if old == enable:
yield
else:
self.zero3_init_flag = enable
self.dschf = None
self.set_deepspeed_weakref()
yield
self.zero3_init_flag = old
self.dschf = None
self.set_deepspeed_weakref()
def _deepspeed_config_checks(self):
env_variable_names_to_ignore = [
"ACCELERATE_GRADIENT_ACCUMULATION_STEPS",
"ACCELERATE_GRADIENT_CLIPPING",
"ACCELERATE_DEEPSPEED_ZERO_STAGE",
"ACCELERATE_DEEPSPEED_OFFLOAD_OPTIMIZER_DEVICE",
"ACCELERATE_DEEPSPEED_OFFLOAD_PARAM_DEVICE",
"ACCELERATE_DEEPSPEED_ZERO3_SAVE_16BIT_MODEL",
"ACCELERATE_MIXED_PRECISION",
]
env_variable_names_to_ignore = [
name.replace("ACCELERATE_", "").replace("DEEPSPEED_", "").lower() for name in env_variable_names_to_ignore
]
deepspeed_fields_from_accelerate_config = os.environ.get("ACCELERATE_CONFIG_DS_FIELDS", "").split(",")
if any(name in env_variable_names_to_ignore for name in deepspeed_fields_from_accelerate_config):
raise ValueError(
f"When using `deepspeed_config_file`, the following accelerate config variables will be ignored: {env_variable_names_to_ignore}.\n"
"Please specify them appropriately in the DeepSpeed config file.\n"
"If you are using an accelerate config file, remove others config variables mentioned in the above specified list.\n"
"The easiest method is to create a new config following the questionnaire via `accelerate config`.\n"
"It will only ask for the necessary config variables when using `deepspeed_config_file`."
)
@dataclass
class FullyShardedDataParallelPlugin:
@ -758,28 +478,13 @@ class FullyShardedDataParallelPlugin:
},
)
limit_all_gathers: bool = field(
default=False,
metadata={
"help": "If False, then FSDP allows the CPU thread to schedule all-gathers "
"without any extra synchronization. If True, then FSDP explicitly synchronizes the CPU thread to prevent "
"too many in-flight all-gathers. This bool only affects the sharded strategies that schedule all-gathers. "
"Enabling this can help lower the number of CUDA malloc retries."
},
)
use_orig_params: bool = field(
default=False,
metadata={"help": "If True, enables parameter-efficient fine-tuning"},
)
def __post_init__(self):
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch,
CPUOffload,
FullStateDictConfig,
ShardingStrategy,
StateDictType,
_state_dict_type_to_config,
)
if self.sharding_strategy is None:
@ -800,8 +505,12 @@ class FullyShardedDataParallelPlugin:
state_dict_type_policy = os.environ.get("FSDP_STATE_DICT_TYPE", "FULL_STATE_DICT")
self.state_dict_type = StateDictType(FSDP_STATE_DICT_TYPE.index(state_dict_type_policy) + 1)
if self.state_dict_type == StateDictType.FULL_STATE_DICT and self.state_dict_config is None:
self.state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=True)
if self.state_dict_type == StateDictType.FULL_STATE_DICT:
self.state_dict_config = _state_dict_type_to_config[self.state_dict_type](
offload_to_cpu=True, rank0_only=True
)
else:
self.state_dict_config = _state_dict_type_to_config[self.state_dict_type]()
@staticmethod
def get_module_class_from_name(module, name):
@ -829,19 +538,16 @@ class FullyShardedDataParallelPlugin:
if self.auto_wrap_policy is None:
auto_wrap_policy = os.environ.get("FSDP_AUTO_WRAP_POLICY", "NO_WRAP")
if auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[0]:
transformer_cls_names_to_wrap = os.environ.get("FSDP_TRANSFORMER_CLS_TO_WRAP", "").split(",")
transformer_cls_to_wrap = set()
for layer_class in transformer_cls_names_to_wrap:
transformer_cls = FullyShardedDataParallelPlugin.get_module_class_from_name(model, layer_class)
if transformer_cls is None:
raise Exception("Could not find the transformer layer class to wrap in the model.")
else:
transformer_cls_to_wrap.add(transformer_cls)
transformer_cls_to_wrap = os.environ.get("FSDP_TRANSFORMER_CLS_TO_WRAP", "")
transformer_cls_to_wrap = FullyShardedDataParallelPlugin.get_module_class_from_name(
model, transformer_cls_to_wrap
)
if transformer_cls_to_wrap is None:
raise Exception("Could not find the transformer layer class to wrap in the model.")
self.auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
# Transformer layer class to wrap
transformer_layer_cls=transformer_cls_to_wrap,
transformer_layer_cls={transformer_cls_to_wrap},
)
elif auto_wrap_policy == FSDP_AUTO_WRAP_POLICY[1]:
min_num_params = int(os.environ.get("FSDP_MIN_NUM_PARAMS", 0))
@ -866,14 +572,9 @@ class FullyShardedDataParallelPlugin:
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
if is_torch_version("<=", "1.13.5"):
if self.state_dict_type == StateDictType.FULL_STATE_DICT:
with FSDP.state_dict_type(model, self.state_dict_type, self.state_dict_config):
state_dict = model.state_dict()
else:
FSDP.set_state_dict_type(model, self.state_dict_type, self.state_dict_config)
state_dict = model.state_dict()
if self.state_dict_type == StateDictType.FULL_STATE_DICT:
weights_name = f"{MODEL_NAME}.bin" if model_index == 0 else f"{MODEL_NAME}_{model_index}.bin"
output_model_file = os.path.join(output_dir, weights_name)
if accelerator.process_index == 0:
@ -881,6 +582,8 @@ class FullyShardedDataParallelPlugin:
torch.save(state_dict, output_model_file)
print(f"Model saved to {output_model_file}")
else:
with FSDP.state_dict_type(model, self.state_dict_type, self.state_dict_config):
state_dict = model.state_dict()
weights_name = (
f"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
@ -913,12 +616,7 @@ class FullyShardedDataParallelPlugin:
print(f"Loading model from {input_model_file}")
state_dict = torch.load(input_model_file)
print(f"Model loaded from {input_model_file}")
if is_torch_version("<=", "1.13.5"):
with FSDP.state_dict_type(model, self.state_dict_type, self.state_dict_config):
model.load_state_dict(state_dict)
else:
FSDP.set_state_dict_type(model, self.state_dict_type, self.state_dict_config)
with FSDP.state_dict_type(model, self.state_dict_type, self.state_dict_config):
model.load_state_dict(state_dict)
def save_optimizer(self, accelerator, optimizer, model, output_dir, optimizer_index=0, optim_input=None):
@ -1325,24 +1023,3 @@ class MegatronLMPlugin:
self.megatron_lm_default_args[key] = True
elif key.startswith("no_log_"):
self.megatron_lm_default_args[key.replace("no_", "")] = True
@dataclass
class IntelPyTorchExtensionPlugin:
"""
This plugin is used to enable Intel PyTorch Extension (IPEX).
"""
use_ipex: bool = field(default=None, metadata={"help": "Enable Intel PyTorch Extension (IPEX)"})
dtype: torch.dtype = field(default=torch.float32, metadata={"help": "Enable mixed precision in IPEX"})
def __post_init__(self):
prefix = "IPEX_"
if self.use_ipex is None:
self.use_ipex = strtobool(os.environ.get(prefix + "ENABLED", "False")) == 1
def set_mixed_precision(self, mixed_precision):
if mixed_precision == "fp16":
raise ValueError("Tried to use `fp16` but it is not supported on cpu")
elif mixed_precision == "bf16":
self.dtype = torch.bfloat16

Some files were not shown because too many files have changed in this diff Show More