diff --git a/manim_animations/dataloaders/stage_0.py b/manim_animations/dataloaders/stage_0.py
new file mode 100644
index 00000000..0128fddc
--- /dev/null
+++ b/manim_animations/dataloaders/stage_0.py
@@ -0,0 +1,32 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+
+class Stage0(Scene):
+ def construct(self):
+ mascot = ImageMobject("mascot_bookie.png")
+ mascot.scale(.35)
+ mascot.move_to([-3.75,-1,0])
+ text = Paragraph(
+ "Distributed Training,\nHugging Face Accelerate,\nand PyTorch DataLoaders\n\nHow do they all interact?",
+ font_size=36,
+ line_spacing=1,
+ alignment="center",
+ weight=BOLD,
+ )
+ text.move_to([1.75,.5,0])
+ self.add(mascot)
+ self.add(text)
\ No newline at end of file
diff --git a/manim_animations/dataloaders/stage_1.py b/manim_animations/dataloaders/stage_1.py
new file mode 100644
index 00000000..1aea2085
--- /dev/null
+++ b/manim_animations/dataloaders/stage_1.py
@@ -0,0 +1,31 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+class Stage01(Scene):
+ def construct(self):
+ mascot = ImageMobject("mascot_bookie.png")
+ mascot.scale(.35)
+ mascot.move_to([-3.75,-1,0])
+ text = Paragraph(
+ "Distributed Training,\nHugging Face Accelerate,\nand PyTorch DataLoaders\n\nHow do they all interact?",
+ font_size=36,
+ line_spacing=1,
+ alignment="center",
+ weight=BOLD,
+ )
+ text.move_to([1.75,.5,0])
+ self.add(mascot)
+ self.add(text)
\ No newline at end of file
diff --git a/manim_animations/dataloaders/stage_2.py b/manim_animations/dataloaders/stage_2.py
new file mode 100644
index 00000000..3c098846
--- /dev/null
+++ b/manim_animations/dataloaders/stage_2.py
@@ -0,0 +1,176 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+
+class Stage2(Scene):
+ def construct(self):
+ # The dataset items
+ fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
+ columns = [
+ VGroup(*[Rectangle(height=0.25,width=0.25,color="green") for i in range(8)]).arrange(RIGHT,buff=0)
+ for j in range(4)
+ ]
+ dataset_recs = VGroup(*columns).arrange(UP, buff=0)
+ dataset_text = Text("Dataset", font_size=24)
+ dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
+ dataset.move_to([-2,0,0])
+ self.add(dataset)
+
+ code = Code(
+ code="dataloader = DataLoader(...)\nfor batch in dataloader():\n\t...",
+ tab_width=4,
+ background="window",
+ language="Python",
+ font="Monospace",
+ font_size=14,
+ corner_radius=.2,
+ insert_line_no=False,
+ line_spacing=.75,
+ style=Code.styles_list[1],
+ )
+ code.move_to([-3.5, 2.5, 0])
+ self.add(code)
+
+ # The dataloader itself
+ dataloader = Group(
+ Rectangle(color="red", height=2, width=2),
+ Text("DataLoader", font_size=24)
+ ).arrange(DOWN, buff=.5, aligned_edge=DOWN)
+
+ sampler = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ dataloader.move_to([1, 0, 0])
+ sampler.move_to([.75,.25,0])
+ self.add(dataloader)
+ self.add(sampler)
+
+ gpu_1 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("GPU 1", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, 2, 0])
+ gpu_2 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("GPU 2", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, .5, 0])
+ gpu_3 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("GPU 3", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, -1, 0])
+ gpu_4 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("GPU 4", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4, -2.5, 0])
+ gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
+ self.add(gpu_1, gpu_2, gpu_3, gpu_4)
+
+ # Animate their existence
+ self.play(
+ Create(gpu_1[0], run_time=0.5),
+ Create(gpu_2[0], run_time=0.5),
+ Create(gpu_3[0], run_time=0.5),
+ Create(gpu_4[0], run_time=0.5),
+ Create(dataset_recs, run_time=1),
+ Create(sampler[0], run_time=1),
+ Create(dataloader[0], run_time=1)
+ )
+
+ step_1 = MarkupText(
+ f"Without any special care, \nthe same data is sent though each sampler, \nand the same samples are spit out on each GPU",
+ font_size=18
+ )
+ step_1.move_to([0, -2.5, 0])
+ self.play(
+ Write(step_1, run_time=4),
+ )
+
+ first_animations = []
+ second_animations = []
+
+
+ colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
+ current_color = colors[0]
+ buff = 0
+ lr_buff = .25
+ old_target = None
+ new_datasets = []
+ for i,data in enumerate(dataset_recs[-1]):
+ if i % 2 == 0:
+ # current_color = colors[i//2]
+ current_color = "BLUE_E"
+ dataset_target = Rectangle(height=0.46/2,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
+ dataset_target.move_to(data)
+ dataset_target.generate_target()
+ aligned_edge = ORIGIN
+ if i % 2 == 0:
+ old_target = dataset_target.target
+ buff -= .25
+ aligned_edge = LEFT
+ dataset_target.target.next_to(
+ sampler, buff=buff, direction=UP,
+ aligned_edge=LEFT
+ )
+ else:
+ dataset_target.target.next_to(
+ old_target, direction=RIGHT, buff=0.01,
+ )
+ new_datasets.append(dataset_target)
+ first_animations.append(data.animate(run_time=0.5).set_stroke(current_color))
+ second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
+ self.play(*first_animations)
+ self.play(*second_animations)
+ self.wait()
+
+ move_animation = []
+
+ for j,gpu in enumerate(gpus):
+ buff = 0
+ for i,data in enumerate(new_datasets):
+ if i % 2 == 0:
+ current_color = colors[i//2]
+ if j != 3:
+ data = data.copy()
+ data.generate_target()
+ aligned_edge = ORIGIN
+ if i % 2 == 0:
+ old_target = data.target
+ buff -= .25
+ aligned_edge = LEFT
+ data.target.next_to(
+ gpu, buff=buff, direction=UP,
+ aligned_edge=LEFT
+ )
+ else:
+ data.target.next_to(
+ old_target, direction=RIGHT, buff=0.01,
+ )
+ move_animation.append(MoveToTarget(data, run_time=1.5))
+
+
+ self.play(*move_animation)
+
+ self.remove(step_1)
+ step_2 = MarkupText(
+ f"This behavior is undesireable, because we want\neach GPU to see different data for efficient training.",
+ font_size=18
+ )
+ step_2.move_to([0, -2.5, 0])
+
+ self.play(
+ Write(step_2, run_time=2.5),
+ )
+ self.wait()
\ No newline at end of file
diff --git a/manim_animations/dataloaders/stage_3.py b/manim_animations/dataloaders/stage_3.py
new file mode 100644
index 00000000..7a561c03
--- /dev/null
+++ b/manim_animations/dataloaders/stage_3.py
@@ -0,0 +1,34 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+class Stage3(Scene):
+ def construct(self):
+ step_1 = MarkupText(
+ f"To combat this, Accelerate employs one of two different\nSampler wrapper methods depending on the scenario:",
+ font_size=24
+ )
+ step_1.move_to([0, 1.5, 0])
+ self.add(step_1)
+ step_2 = MarkupText(
+ f"1. Sharding the dataset before drawing:\n\t● IterableDatasetShard\n\t● BatchSamplerShard",
+ font_size=24,
+ ).next_to(step_1, direction=DOWN, aligned_edge=LEFT)
+ self.add(step_2)
+ step_3 = MarkupText(
+ f"\n\n2. Splitting the batch after drawing:\n\t● DataLoaderDispatcher",
+ font_size=24,
+ ).next_to(step_2, direction=DOWN, aligned_edge=LEFT)
+ self.add(step_3)
\ No newline at end of file
diff --git a/manim_animations/dataloaders/stage_4.py b/manim_animations/dataloaders/stage_4.py
new file mode 100644
index 00000000..18fd8b58
--- /dev/null
+++ b/manim_animations/dataloaders/stage_4.py
@@ -0,0 +1,52 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+class Stage4(Scene):
+ def construct(self):
+
+ step_1 = MarkupText(
+ f"To understand the next part fully, let's define two terms,\n`batch_size` and `global_batch_size`:",
+ font_size=18
+ )
+ step_1.move_to([0, 1.5, 0])
+ # ●
+ step_2 = MarkupText(
+ f"\n\n● `batch_size`: \n\tThis will be defined as the batch size seen on a given\n\t*individual* GPU",
+ font_size=18,
+ ).next_to(step_1, direction=DOWN, aligned_edge=LEFT)
+
+ step_3 = MarkupText(
+ f"\n\n● `global_batch_size`:\n\tThis will be defined as the *total* number of\n\tdifferent items seen in the dataset, across all GPUs",
+ font_size=18,
+ ).next_to(step_2, direction=DOWN, aligned_edge=LEFT)
+
+ step_4 = MarkupText(
+ f"\n\nSo if we have a dataset of 64 items, 8 GPUs, \nand a `batch_size` of 8, each *step* will go through\nthe entire dataset one time as 8*8=64",
+ font_size=18,
+ ).next_to(step_3, direction=DOWN, aligned_edge=LEFT)
+ self.play(
+ Write(step_1, run_time=4),
+ )
+ self.play(
+ Write(step_2, run_time=4)
+ )
+ self.play(
+ Write(step_3, run_time=4)
+ )
+ self.play(
+ Write(step_4, run_time=6)
+ )
+ self.wait()
\ No newline at end of file
diff --git a/manim_animations/dataloaders/stage_5.py b/manim_animations/dataloaders/stage_5.py
new file mode 100644
index 00000000..4c78286c
--- /dev/null
+++ b/manim_animations/dataloaders/stage_5.py
@@ -0,0 +1,203 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+class Stage5(Scene):
+ def construct(self):
+ # The dataset items
+ colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
+ fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
+ columns = [
+ VGroup(*[Rectangle(height=0.25,width=0.25,color=colors[j]) for i in range(8)]).arrange(RIGHT,buff=0)
+ for j in range(4)
+ ]
+ dataset_recs = VGroup(*columns).arrange(UP, buff=0)
+ dataset_text = Text("Dataset", font_size=24)
+ dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
+ dataset.move_to([-2,0,0])
+ self.add(dataset)
+ code = Code(
+ code="# We enable this by default\naccelerator = Accelerator()\ndataloader = DataLoader(...)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...",
+ tab_width=4,
+ background="window",
+ language="Python",
+ font="Monospace",
+ font_size=14,
+ corner_radius=.2,
+ insert_line_no=False,
+ line_spacing=.75,
+ style=Code.styles_list[1],
+ )
+ code.move_to([-3.5, 2.5, 0])
+ self.add(code)
+
+ # The dataloader itself
+
+ sampler_1 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 1", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_2 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 2", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_3 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 3", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_4 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 4", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_1.move_to([2,2,0])
+ sampler_2.move_to([2,.5,0])
+ sampler_3.move_to([2,-1.,0])
+ sampler_4.move_to([2,-2.5,0])
+ self.add(sampler_1, sampler_2, sampler_3, sampler_4)
+ samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
+
+ gpu_1 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 1", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
+ gpu_2 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 2", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, .5, 0])
+ gpu_3 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 3", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
+ gpu_4 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 4", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
+ gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
+ self.add(gpu_1, gpu_2, gpu_3, gpu_4)
+
+ # Animate their existence
+ self.play(
+ Create(gpu_1[0], run_time=1),
+ Create(gpu_2[0], run_time=1),
+ Create(gpu_3[0], run_time=1),
+ Create(gpu_4[0], run_time=1),
+ Create(dataset_recs, run_time=1),
+ Create(sampler_1[0], run_time=1),
+ Create(sampler_2[0], run_time=1),
+ Create(sampler_3[0], run_time=1),
+ Create(sampler_4[0], run_time=1),
+ )
+
+ first_animations = []
+ second_animations = []
+
+
+ colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
+ current_color = colors[0]
+ buff = 0
+ lr_buff = .25
+ old_target = None
+ new_datasets = []
+ for i,row_data in enumerate(dataset_recs):
+ new_row = []
+ current_color = colors[i]
+ if i == 0:
+ idx = -3
+ elif i == 1:
+ idx = -2
+ elif i == 2:
+ idx = -1
+ elif i == 3:
+ idx = 0
+ for j,indiv_data in enumerate(row_data):
+ dataset_target = Rectangle(height=0.46/2,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
+ dataset_target.move_to(indiv_data)
+ dataset_target.generate_target()
+ aligned_edge = ORIGIN
+ if j % 8 == 0:
+ aligned_edge = LEFT
+ dataset_target.target.next_to(
+ samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ dataset_target.target.set_x(dataset_target.target.get_x())
+ elif j % 4 == 0:
+ old_target = dataset_target.target
+ dataset_target.target.next_to(
+ samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ dataset_target.target.set_x(dataset_target.target.get_x())
+ dataset_target.target.set_y(dataset_target.target.get_y()-.25)
+ else:
+ dataset_target.target.next_to(
+ old_target, direction=RIGHT, buff=0.02,
+ )
+ old_target = dataset_target.target
+ new_row.append(dataset_target)
+ first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
+ second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
+
+ new_datasets.append(new_row)
+ step_1 = MarkupText(
+ f"Since we splice the dataset between each GPU,\nthe models weights can be averaged during `backward()`\nActing as though we did one giant epoch\nvery quickly.",
+ font_size=18
+ )
+ step_1.move_to([-2.5, -2, 0])
+
+ self.play(
+ Write(step_1, run_time=3),
+ )
+ self.play(
+ *first_animations,
+ )
+ self.play(*second_animations)
+ self.wait(duration=.5)
+
+ move_animation = []
+ import random
+ for i,row in enumerate(new_datasets):
+ # row = [row[k] for k in random.sample(range(8), 8)]
+ current_color = colors[i]
+ if i == 0:
+ idx = -3
+ elif i == 1:
+ idx = -2
+ elif i == 2:
+ idx = -1
+ elif i == 3:
+ idx = 0
+ for j,indiv_data in enumerate(row):
+ indiv_data.generate_target()
+ aligned_edge = ORIGIN
+ if j % 8 == 0:
+ aligned_edge = LEFT
+ indiv_data.target.next_to(
+ gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ indiv_data.target.set_x(indiv_data.target.get_x())
+ elif j % 4 == 0:
+ indiv_data.target.next_to(
+ gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ indiv_data.target.set_x(indiv_data.target.get_x())
+ indiv_data.target.set_y(indiv_data.target.get_y()-.25)
+ else:
+ indiv_data.target.next_to(
+ old_target, direction=RIGHT, buff=0.02,
+ )
+ old_target = indiv_data.target
+ move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
+
+ self.play(*move_animation)
+ self.wait()
\ No newline at end of file
diff --git a/manim_animations/dataloaders/stage_6.py b/manim_animations/dataloaders/stage_6.py
new file mode 100644
index 00000000..2ac5d390
--- /dev/null
+++ b/manim_animations/dataloaders/stage_6.py
@@ -0,0 +1,193 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+
+class Stage6(Scene):
+ def construct(self):
+ # The dataset items
+ colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
+ fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
+ columns = [
+ VGroup(*[Rectangle(height=0.25,width=0.25,color=colors[j]) for i in range(8)]).arrange(RIGHT,buff=0)
+ for j in range(4)
+ ]
+ dataset_recs = VGroup(*columns).arrange(UP, buff=0)
+ dataset_text = Text("Dataset", font_size=24)
+ dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
+ dataset.move_to([-2,0,0])
+ self.add(dataset)
+ code = Code(
+ code="# We enable this by default\naccelerator = Accelerator()\ndataloader = DataLoader(..., shuffle=True)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...",
+ tab_width=4,
+ background="window",
+ language="Python",
+ font="Monospace",
+ font_size=14,
+ corner_radius=.2,
+ insert_line_no=False,
+ line_spacing=.75,
+ style=Code.styles_list[1],
+ )
+ code.move_to([-3.5, 2.5, 0])
+ self.add(code)
+
+ # The dataloader itself
+
+ sampler_1 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 1", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_2 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 2", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_3 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 3", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_4 = Group(
+ Rectangle(color="blue", height=1, width=1),
+ Text("Sampler GPU 4", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_1.move_to([2,2,0])
+ sampler_2.move_to([2,.5,0])
+ sampler_3.move_to([2,-1.,0])
+ sampler_4.move_to([2,-2.5,0])
+ self.add(sampler_1, sampler_2, sampler_3, sampler_4)
+ samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
+
+ gpu_1 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 1", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
+ gpu_2 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 2", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, .5, 0])
+ gpu_3 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 3", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
+ gpu_4 = Group(
+ Rectangle(color="white", height=1, width=1),
+ Text("Output GPU 4", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
+ gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
+ self.add(gpu_1, gpu_2, gpu_3, gpu_4)
+
+
+ first_animations = []
+ second_animations = []
+
+
+ colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
+ current_color = colors[0]
+ buff = 0
+ lr_buff = .25
+ old_target = None
+ new_datasets = []
+ for i,row_data in enumerate(dataset_recs):
+ new_row = []
+ current_color = colors[i]
+ if i == 0:
+ idx = -3
+ elif i == 1:
+ idx = -2
+ elif i == 2:
+ idx = -1
+ elif i == 3:
+ idx = 0
+ for j,indiv_data in enumerate(row_data):
+ dataset_target = Rectangle(height=0.46/2,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
+ dataset_target.move_to(indiv_data)
+ dataset_target.generate_target()
+ aligned_edge = ORIGIN
+ if j % 8 == 0:
+ aligned_edge = LEFT
+ old_target = dataset_target.target
+ dataset_target.target.next_to(
+ samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ dataset_target.target.set_x(dataset_target.target.get_x())
+ elif j % 4 == 0:
+ old_target = dataset_target.target
+ dataset_target.target.next_to(
+ samplers[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ dataset_target.target.set_x(dataset_target.target.get_x())
+ dataset_target.target.set_y(dataset_target.target.get_y()-.25)
+ else:
+ dataset_target.target.next_to(
+ old_target, direction=RIGHT, buff=0.02,
+ )
+ old_target = dataset_target.target
+ new_row.append(dataset_target)
+ first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
+ second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
+
+ new_datasets.append(new_row)
+ step_1 = MarkupText(
+ f"During shuffling, each mini-batch's\noutput order will be modified",
+ font_size=18
+ )
+ step_1.move_to([-1.5, -2, 0])
+
+ self.play(
+ Write(step_1, run_time=3),
+ )
+ self.play(
+ *first_animations,
+ )
+ self.play(*second_animations)
+ self.wait(duration=.5)
+
+ move_animation = []
+ import random
+ for i,row in enumerate(new_datasets):
+ row = [row[k] for k in random.sample(range(8), 8)]
+ current_color = colors[i]
+ if i == 0:
+ idx = -3
+ elif i == 1:
+ idx = -2
+ elif i == 2:
+ idx = -1
+ elif i == 3:
+ idx = 0
+ for j,indiv_data in enumerate(row):
+ indiv_data.generate_target()
+ aligned_edge = ORIGIN
+ if j % 8 == 0:
+ aligned_edge = LEFT
+ indiv_data.target.next_to(
+ gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ indiv_data.target.set_x(indiv_data.target.get_x())
+ elif j % 4 == 0:
+ indiv_data.target.next_to(
+ gpus[abs(idx)].get_corner(UP+LEFT), buff=.02, direction=RIGHT+DOWN,
+ )
+ indiv_data.target.set_x(indiv_data.target.get_x())
+ indiv_data.target.set_y(indiv_data.target.get_y()-.25)
+ else:
+ indiv_data.target.next_to(
+ old_target, direction=RIGHT, buff=0.02,
+ )
+ old_target = indiv_data.target
+ move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
+
+ self.play(*move_animation)
+ self.wait()
\ No newline at end of file
diff --git a/manim_animations/dataloaders/stage_7.py b/manim_animations/dataloaders/stage_7.py
new file mode 100644
index 00000000..ec1b952a
--- /dev/null
+++ b/manim_animations/dataloaders/stage_7.py
@@ -0,0 +1,182 @@
+# Copyright 2024 The HuggingFace Team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from manim import *
+
+class Stage7(Scene):
+ def construct(self):
+ # The dataset items
+ code = Code(
+ code="accelerator = Accelerator(dispatch_batches=True)\ndataloader = DataLoader(...)\ndataloader = accelerator.prepare(dataloader)\nfor batch in dataloader:\n\t...",
+ tab_width=4,
+ background="window",
+ language="Python",
+ font="Monospace",
+ font_size=14,
+ corner_radius=.2,
+ insert_line_no=False,
+ line_spacing=.75,
+ style=Code.styles_list[1],
+ )
+ code.move_to([-3.5, 2.5, 0])
+ self.add(code)
+ colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
+ fill = Rectangle(height=0.46,width=0.46).set_stroke(width=0)
+ columns = [
+ VGroup(*[Rectangle(height=0.25,width=0.25,color=colors[j]) for i in range(8)]).arrange(RIGHT,buff=0)
+ for j in range(4)
+ ]
+ dataset_recs = VGroup(*columns).arrange(UP, buff=0)
+ dataset_text = Text("Dataset", font_size=24)
+ dataset = Group(dataset_recs,dataset_text).arrange(DOWN, buff=0.5, aligned_edge=DOWN)
+ dataset.move_to([-2,0,0])
+ self.add(dataset)
+
+ # The dataloader itself
+
+ sampler_1 = Group(
+ Rectangle(color="blue", height=1.02, width=1.02),
+ Text("Sampler GPU 1", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_2 = Group(
+ Rectangle(color="blue", height=1.02, width=1.02),
+ Text("Sampler GPU 2", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_3 = Group(
+ Rectangle(color="blue", height=1.02, width=1.02),
+ Text("Sampler GPU 3", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_4 = Group(
+ Rectangle(color="blue", height=1.02, width=1.02),
+ Text("Sampler GPU 4", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN)
+ sampler_1.move_to([2,2,0])
+ sampler_2.move_to([2,.5,0])
+ sampler_3.move_to([2,-1.,0])
+ sampler_4.move_to([2,-2.5,0])
+ self.add(sampler_1, sampler_2, sampler_3, sampler_4)
+ samplers = [sampler_1[0], sampler_2[0], sampler_3[0], sampler_4[0]]
+
+ gpu_1 = Group(
+ Rectangle(color="white", height=1.02, width=.98),
+ Text("Output GPU 1", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, 2, 0])
+ gpu_2 = Group(
+ Rectangle(color="white", height=1.02, width=.98),
+ Text("Output GPU 2", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, .5, 0])
+ gpu_3 = Group(
+ Rectangle(color="white", height=1.02, width=.98),
+ Text("Output GPU 3", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -1, 0])
+ gpu_4 = Group(
+ Rectangle(color="white", height=1.02, width=.98),
+ Text("Output GPU 4", font_size=12)
+ ).arrange(DOWN, buff=.25, aligned_edge=DOWN).move_to([4.5, -2.5, 0])
+ gpus = [gpu_1[0], gpu_2[0], gpu_3[0], gpu_4[0]]
+ self.add(gpu_1, gpu_2, gpu_3, gpu_4)
+
+ step_1 = MarkupText(
+ f"When using a `DataLoaderDispatcher`, all\nof the samples are collected from GPU 0's dataset,\nthen divided and sent to each GPU.\nAs a result, this will be slower.",
+ font_size=18
+ )
+ step_1.move_to([-2.5, -2, 0])
+
+ self.play(
+ Write(step_1, run_time=3.5),
+ )
+
+ first_animations = []
+ second_animations = []
+
+
+ colors = ["BLUE_E", "DARK_BROWN", "GOLD_E", "GRAY_A"]
+ current_color = colors[0]
+ ud_buff = 0.01
+ lr_buff = 0.01
+ old_target = None
+ new_datasets = []
+ for i,row_data in enumerate(dataset_recs):
+ new_row = []
+ current_color = colors[i]
+
+ for j,indiv_data in enumerate(row_data):
+ dataset_target = Rectangle(height=0.46/4,width=0.46/2).set_stroke(width=0.).set_fill(current_color, opacity=0.7)
+ dataset_target.move_to(indiv_data)
+ dataset_target.generate_target()
+ aligned_edge = ORIGIN
+ if j % 8 == 0:
+ aligned_edge = LEFT
+ dataset_target.target.next_to(
+ samplers[0].get_corner(DOWN+LEFT), buff=0.0125, direction=RIGHT+UP,
+ )
+ dataset_target.target.set_x(dataset_target.target.get_x())
+ dataset_target.target.set_y(dataset_target.target.get_y() + (.25 * i))
+ elif j % 4 == 0:
+ old_target = dataset_target.target
+ dataset_target.target.next_to(
+ samplers[0].get_corner(DOWN+LEFT), buff=0.0125, direction=RIGHT+UP,
+ )
+ dataset_target.target.set_x(dataset_target.target.get_x())
+ dataset_target.target.set_y(dataset_target.target.get_y()+.125 + (.25 * i))
+ else:
+ dataset_target.target.next_to(
+ old_target, direction=RIGHT, buff=0.0125,
+ )
+ old_target = dataset_target.target
+ new_row.append(dataset_target)
+ first_animations.append(indiv_data.animate(run_time=0.5).set_stroke(current_color))
+ second_animations.append(MoveToTarget(dataset_target, run_time=1.5))
+
+ new_datasets.append(new_row)
+ self.play(
+ *first_animations,
+ )
+ self.play(*second_animations)
+ move_animation = []
+ for i,row in enumerate(new_datasets):
+ current_color = colors[i]
+ if i == 0:
+ idx = -3
+ elif i == 1:
+ idx = -2
+ elif i == 2:
+ idx = -1
+ elif i == 3:
+ idx = 0
+ for j,indiv_data in enumerate(row):
+ indiv_data.generate_target()
+ indiv_data.animate.stretch_to_fit_height(0.46/2)
+ aligned_edge = ORIGIN
+ if j % 8 == 0:
+ aligned_edge = LEFT
+ indiv_data.target.next_to(
+ gpus[abs(idx)].get_corner(UP+LEFT), buff=.01, direction=RIGHT+DOWN,
+ )
+ indiv_data.target.set_x(indiv_data.target.get_x())
+ indiv_data.target.set_y(indiv_data.target.get_y()-.25)
+ elif j % 4 == 0:
+ indiv_data.target.next_to(
+ gpus[abs(idx)].get_corner(UP+LEFT), buff=.01, direction=RIGHT+DOWN,
+ )
+ indiv_data.target.set_x(indiv_data.target.get_x())
+ else:
+ indiv_data.target.next_to(
+ old_target, direction=RIGHT, buff=0.01,
+ )
+ old_target = indiv_data.target
+ move_animation.append(MoveToTarget(indiv_data, run_time=1.5))
+
+ self.play(*move_animation)
+ self.wait()
\ No newline at end of file