mirror of
https://github.com/fendouai/PyTorchDocs.git
synced 2025-10-20 21:33:46 +08:00
dsfsd
dsfsd
This commit is contained in:
@ -38,8 +38,8 @@
|
||||
|
||||
## 第八章:在生产中部署PyTorch模型
|
||||
### 1.[通过带Flask的REST API在Python中部署PyTorch](https://github.com/fendouai/PyTorchDocs/blob/master/EigthSection/Deploying%20PyTorch%20in%20Python%20via%20a%20REST%20APIwith%20Flask.md)
|
||||
### 2.TorchScript简介
|
||||
### 3.在C++中加载TorchScript模型
|
||||
### 2.[TorchScript简介](https://github.com/fendouai/PyTorchDocs/blob/master/EigthSection/torchScript.md)
|
||||
### 3.[在C++中加载TorchScript模型](https://github.com/fendouai/PyTorchDocs/blob/master/EigthSection/torchScript_in_C%2B%2B.md)
|
||||
|
||||
磐创AI 聊天机器人,智能客服:
|
||||
|
||||
|
@ -8,8 +8,8 @@
|
||||
|
||||
这是在生产中部署PyTorch模型的系列教程中的第一篇。到目前为止,以这种方式使用Flask是开始为PyTorch模型提供服务的最简单方法,
|
||||
但不适用于具有高性能要求的用例。因此:
|
||||
* 如果您已经熟悉TorchScript,则可以直接进入我们的[Loading a TorchScript Model in C++](https://pytorch.org/tutorials/advanced/cpp_export.html)教程。
|
||||
* 如果您首先需要复习TorchScript,请查看我们的[Intro a TorchScript](https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html)教程。
|
||||
* 如果您已经熟悉TorchScript,则可以直接进入我们的[Loading a TorchScript Model in C++](https://github.com/fendouai/PyTorchDocs/blob/master/EigthSection/torchScript_in_C%2B%2B.md)教程。
|
||||
* 如果您首先需要复习TorchScript,请查看我们的[Intro a TorchScript](https://github.com/fendouai/PyTorchDocs/blob/master/EigthSection/torchScript.md)教程。
|
||||
|
||||
## 1.定义API
|
||||
我们将首先定义API端点、请求和响应类型。我们的API端点将位于`/ predict`,它接受带有包含图像的`file`参数的HTTP POST请求。响应
|
||||
|
Reference in New Issue
Block a user