update the format

This commit is contained in:
wangfei
2019-08-20 15:10:38 +08:00
parent 51b67ead82
commit 1777f6e71b
4 changed files with 412 additions and 325 deletions

28
.idea/workspace.xml generated
View File

@ -2,7 +2,7 @@
<project version="4">
<component name="ChangeListManager">
<list default="true" id="dba69579-024f-442a-b5bf-b31a92577c82" name="Default Changelist" comment="">
<change beforePath="$PROJECT_DIR$/README.md" beforeDir="false" afterPath="$PROJECT_DIR$/README.md" afterDir="false" />
<change beforePath="$PROJECT_DIR$/.idea/workspace.xml" beforeDir="false" afterPath="$PROJECT_DIR$/.idea/workspace.xml" afterDir="false" />
</list>
<option name="EXCLUDED_CONVERTED_TO_IGNORED" value="true" />
<option name="SHOW_DIALOG" value="false" />
@ -17,7 +17,7 @@
<provider selected="true" editor-type-id="split-provider[text-editor;markdown-preview-editor]">
<state split_layout="SPLIT">
<first_editor relative-caret-position="540">
<caret line="36" column="19" selection-end-line="50" selection-end-column="46" />
<caret line="36" column="19" selection-end-line="53" />
</first_editor>
<second_editor />
</state>
@ -29,7 +29,7 @@
<provider selected="true" editor-type-id="split-provider[text-editor;markdown-preview-editor]">
<state split_layout="SPLIT">
<first_editor relative-caret-position="45">
<caret line="3" column="52" selection-start-line="3" selection-start-column="52" selection-end-line="3" selection-end-column="52" />
<caret line="3" column="68" selection-start-line="3" selection-start-column="68" selection-end-line="3" selection-end-column="68" />
</first_editor>
<second_editor />
</state>
@ -187,18 +187,18 @@
<workItem from="1556094040133" duration="12000" />
<workItem from="1565696349206" duration="1282000" />
<workItem from="1565697965673" duration="582000" />
<workItem from="1565699959770" duration="713000" />
<workItem from="1565699959770" duration="1208000" />
<workItem from="1566207499309" duration="9000" />
</task>
<servers />
</component>
<component name="TimeTrackingManager">
<option name="totallyTimeSpent" value="2589000" />
<option name="totallyTimeSpent" value="3093000" />
</component>
<component name="ToolWindowManager">
<frame x="0" y="23" width="1440" height="830" extended-state="0" />
<editor active="true" />
<layout>
<window_info active="true" content_ui="combo" id="Project" order="0" visible="true" weight="0.28040057" />
<window_info content_ui="combo" id="Project" order="0" visible="true" weight="0.2825465" />
<window_info id="Structure" order="1" side_tool="true" weight="0.25" />
<window_info id="Favorites" order="2" side_tool="true" />
<window_info anchor="bottom" id="Message" order="0" />
@ -212,7 +212,7 @@
<window_info anchor="bottom" id="Version Control" order="8" />
<window_info anchor="bottom" id="Database Changes" order="9" />
<window_info anchor="bottom" id="Event Log" order="10" side_tool="true" />
<window_info anchor="bottom" id="Terminal" order="11" visible="true" weight="0.096205965" />
<window_info active="true" anchor="bottom" id="Terminal" order="11" visible="true" weight="0.096205965" />
<window_info anchor="bottom" id="Python Console" order="12" />
<window_info anchor="right" id="Commander" order="0" weight="0.4" />
<window_info anchor="right" id="Ant Build" order="1" weight="0.25" />
@ -283,13 +283,7 @@
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/tensorTest.py">
<provider selected="true" editor-type-id="text-editor">
<state relative-caret-position="351">
<caret line="13" column="13" selection-start-line="13" selection-start-column="13" selection-end-line="13" selection-end-column="13" />
</state>
</provider>
</entry>
<entry file="file://$PROJECT_DIR$/tensorTest.py" />
<entry file="file://$PROJECT_DIR$/fourSection/NeuralTransfer.md">
<provider selected="true" editor-type-id="split-provider[text-editor;markdown-preview-editor]">
<state split_layout="SPLIT">
@ -448,7 +442,7 @@
<provider selected="true" editor-type-id="split-provider[text-editor;markdown-preview-editor]">
<state split_layout="SPLIT">
<first_editor relative-caret-position="540">
<caret line="36" column="19" selection-end-line="50" selection-end-column="46" />
<caret line="36" column="19" selection-end-line="53" />
</first_editor>
<second_editor />
</state>
@ -458,7 +452,7 @@
<provider selected="true" editor-type-id="split-provider[text-editor;markdown-preview-editor]">
<state split_layout="SPLIT">
<first_editor relative-caret-position="45">
<caret line="3" column="52" selection-start-line="3" selection-start-column="52" selection-end-line="3" selection-end-column="52" />
<caret line="3" column="68" selection-start-line="3" selection-start-column="68" selection-end-line="3" selection-end-column="68" />
</first_editor>
<second_editor />
</state>

View File

@ -25,72 +25,99 @@
6.更新网络的参数典型的用一个简单的更新方法<span class="pre">weight</span> <span class="pre">=</span> <span class="pre">weight</span> <span class="pre">-</span> <span class="pre">learning_rate</span> <span class="pre">*</span><span class="pre">gradient</span>
定义神经网络
<pre><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="kn">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="kn">as</span> <span class="nn">F</span>
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
<span class="k">class</span> <span class="nc">Net</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
class Net(nn.Module):
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Net</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># 1 input image channel, 6 output channels, 5x5 square convolution</span>
<span class="c1"># kernel</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="c1"># an affine operation: y = Wx + b</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">16</span> <span class="o">*</span> <span class="mi">5</span> <span class="o">*</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">120</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">120</span><span class="p">,</span> <span class="mi">84</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">84</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># Max pooling over a (2, 2) window</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="c1"># If the size is a square you can only specify a single number</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)),</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">num_flat_features</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
<span class="k">def</span> <span class="nf">num_flat_features</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">size</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">()[</span><span class="mi">1</span><span class="p">:]</span> <span class="c1"># all dimensions except the batch dimension</span>
<span class="n">num_features</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">size</span><span class="p">:</span>
<span class="n">num_features</span> <span class="o">*=</span> <span class="n">s</span>
<span class="k">return</span> <span class="n">num_features</span>
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
<span class="n">net</span> <span class="o">=</span> <span class="n">Net</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="n">net</span><span class="p">)</span></pre>
net = Net()
print(net)
```
输出
<pre>Net(
```python
Net(
(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)</pre>
)
```
你刚定义了一个前馈函数然后反向传播函数被自动通过 autograd 定义了你可以使用任何张量操作在前馈函数上
一个模型可训练的参数可以通过调用 net.parameters() 返回
<pre><span class="n">params</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">net</span><span class="o">.</span><span class="n">parameters</span><span class="p">())</span>
<span class="k">print</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">params</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="n">params</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">size</span><span class="p">())</span> <span class="c1"># conv1's .weight</span></pre>
```python
params = list(net.parameters())
print(len(params))
print(params[0].size()) # conv1's .weight
```
输出
<pre>10
torch.Size([6, 1, 5, 5])</pre>
```python
10
torch.Size([6, 1, 5, 5])
```
让我们尝试随机生成一个 32x32 的输入注意期望的输入维度是 32x32 为了使用这个网络在 MNIST 数据及上你需要把数据集中的图片维度修改为 32x32
<pre><span class="nb">input</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">out</span><span class="p">)</span></pre>
```python
input = torch.randn(1, 1, 32, 32)
out = net(input)
print(out)
```
输出
<pre>tensor([[-0.0233, 0.0159, -0.0249, 0.1413, 0.0663, 0.0297, -0.0940, -0.0135,
0.1003, -0.0559]], grad_fn=&lt;AddmmBackward&gt;)</pre>
```python
tensor([[-0.0233, 0.0159, -0.0249, 0.1413, 0.0663, 0.0297, -0.0940, -0.0135,
0.1003, -0.0559]], grad_fn=<AddmmBackward>)
```
把所有参数梯度缓存器置零用随机的梯度来反向传播
<pre><span class="n">net</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
<span class="n">out</span><span class="o">.</span><span class="n">backward</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span></pre>
```python
net.zero_grad()
out.backward(torch.randn(1, 10))
```
在继续之前让我们复习一下所有见过的类
torch.Tensor - A multi-dimensional array with support for autograd operations like backward(). Also holds the gradient w.r.t. the tensor.
@ -117,53 +144,72 @@ autograd.Function - Implements forward and backward definitions of an autograd o
有一些不同的损失函数在 nn 包中一个简单的损失函数就是 nn.MSELoss 这计算了均方误差
例如
<pre><span class="n">output</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">target</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="mi">10</span><span class="p">)</span> <span class="c1"># a dummy target, for example</span>
<span class="n">target</span> <span class="o">=</span> <span class="n">target</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># make it the same shape as output</span>
<span class="n">criterion</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MSELoss</span><span class="p">()</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">criterion</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">loss</span><span class="p">)</span></pre>
```python
output = net(input)
target = torch.randn(10) # a dummy target, for example
target = target.view(1, -1) # make it the same shape as output
criterion = nn.MSELoss()
loss = criterion(output, target)
print(loss)
```
输出
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight">
<pre>tensor(1.3389, grad_fn=&lt;MseLossBackward&gt;)</pre>
</div>
</div>
```python
tensor(1.3389, grad_fn=<MseLossBackward>)
```
现在如果你跟随损失到反向传播路径可以使用它的 .grad_fn 属性你将会看到一个这样的计算图
<pre><span class="nb">input</span> <span class="o">-&gt;</span> <span class="n">conv2d</span> <span class="o">-&gt;</span> <span class="n">relu</span> <span class="o">-&gt;</span> <span class="n">maxpool2d</span> <span class="o">-&gt;</span> <span class="n">conv2d</span> <span class="o">-&gt;</span> <span class="n">relu</span> <span class="o">-&gt;</span> <span class="n">maxpool2d</span>
<span class="o">-&gt;</span> <span class="n">view</span> <span class="o">-&gt;</span> <span class="n">linear</span> <span class="o">-&gt;</span> <span class="n">relu</span> <span class="o">-&gt;</span> <span class="n">linear</span> <span class="o">-&gt;</span> <span class="n">relu</span> <span class="o">-&gt;</span> <span class="n">linear</span>
<span class="o">-&gt;</span> <span class="n">MSELoss</span>
<span class="o">-&gt;</span> <span class="n">loss</span></pre>
```python
input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d
-> view -> linear -> relu -> linear -> relu -> linear
-> MSELoss
-> loss
```
所以当我们调用 loss.backward()整个图都会微分而且所有的在图中的requires_grad=True 的张量将会让他们的 grad 张量累计梯度
为了演示我们将跟随以下步骤来反向传播
<pre><span class="k">print</span><span class="p">(</span><span class="n">loss</span><span class="o">.</span><span class="n">grad_fn</span><span class="p">)</span> <span class="c1"># MSELoss</span>
<span class="k">print</span><span class="p">(</span><span class="n">loss</span><span class="o">.</span><span class="n">grad_fn</span><span class="o">.</span><span class="n">next_functions</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span> <span class="c1"># Linear</span>
<span class="k">print</span><span class="p">(</span><span class="n">loss</span><span class="o">.</span><span class="n">grad_fn</span><span class="o">.</span><span class="n">next_functions</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">next_functions</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span> <span class="c1"># ReLU</span></pre>
```python
print(loss.grad_fn) # MSELoss
print(loss.grad_fn.next_functions[0][0]) # Linear
print(loss.grad_fn.next_functions[0][0].next_functions[0][0]) # ReLU
```
输出
<pre>&lt;MseLossBackward object at 0x7fab77615278&gt;
&lt;AddmmBackward object at 0x7fab77615940&gt;
&lt;AccumulateGrad object at 0x7fab77615940&gt;</pre>
```python
<MseLossBackward object at 0x7fab77615278>
<AddmmBackward object at 0x7fab77615940>
<AccumulateGrad object at 0x7fab77615940>
```
反向传播
为了实现反向传播损失我们所有需要做的事情仅仅是使用 loss.backward()你需要清空现存的梯度要不然帝都将会和现存的梯度累计到一起
现在我们调用 loss.backward() 然后看一下 con1 的偏置项在反向传播之前和之后的变化
<pre><span class="n">net</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span> <span class="c1"># zeroes the gradient buffers of all parameters</span>
```python
net.zero_grad() # zeroes the gradient buffers of all parameters
<span class="k">print</span><span class="p">(</span><span class="s1">'conv1.bias.grad before backward'</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">net</span><span class="o">.</span><span class="n">conv1</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">grad</span><span class="p">)</span>
print('conv1.bias.grad before backward')
print(net.conv1.bias.grad)
<span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
loss.backward()
<span class="k">print</span><span class="p">(</span><span class="s1">'conv1.bias.grad after backward'</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">net</span><span class="o">.</span><span class="n">conv1</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">grad</span><span class="p">)</span></pre>
print('conv1.bias.grad after backward')
print(net.conv1.bias.grad)
```
输出
<pre>conv1.bias.grad before backward
```python
conv1.bias.grad before backward
tensor([0., 0., 0., 0., 0., 0.])
conv1.bias.grad after backward
tensor([-0.0054, 0.0011, 0.0012, 0.0148, -0.0186, 0.0087])</pre>
tensor([-0.0054, 0.0011, 0.0012, 0.0148, -0.0186, 0.0087])
```
现在我们看到了如何使用损失函数
唯一剩下的事情就是更新神经网络的参数
@ -171,24 +217,31 @@ tensor([-0.0054, 0.0011, 0.0012, 0.0148, -0.0186, 0.0087])</pre>
更新神经网络参数
最简单的更新规则就是随机梯度下降
<blockquote>
<div><code class="docutils literal notranslate"><span class="pre">weight</span> <span class="pre">=</span> <span class="pre">weight</span> <span class="pre">-</span> <span class="pre">learning_rate</span> <span class="pre">*</span> <span class="pre">gradient</span></code></div></blockquote>
```python
weight = weight - learning_rate * gradient
```
我们可以使用 python 来实现这个规则
<pre><span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.01</span>
<span class="k">for</span> <span class="n">f</span> <span class="ow">in</span> <span class="n">net</span><span class="o">.</span><span class="n">parameters</span><span class="p">():</span>
<span class="n">f</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">sub_</span><span class="p">(</span><span class="n">f</span><span class="o">.</span><span class="n">grad</span><span class="o">.</span><span class="n">data</span> <span class="o">*</span> <span class="n">learning_rate</span><span class="p">)</span></pre>
```
learning_rate = 0.01
for f in net.parameters():
f.data.sub_(f.grad.data * learning_rate)
```
尽管如此如果你是用神经网络你想使用不同的更新规则类似于 SGD, Nesterov-SGD, Adam, RMSProp, 为了让这可行我们建立了一个小包torch.optim 实现了所有的方法使用它非常的简单
<pre><span class="kn">import</span> <span class="nn">torch.optim</span> <span class="kn">as</span> <span class="nn">optim</span>
```python
import torch.optim as optim
<span class="c1"># create your optimizer</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">net</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.01</span><span class="p">)</span>
# create your optimizer
optimizer = optim.SGD(net.parameters(), lr=0.01)
# in your training loop:
optimizer.zero_grad() # zero the gradient buffers
output = net(input)
loss = criterion(output, target)
loss.backward()
optimizer.step() # Does the update
```
<span class="c1"># in your training loop:</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span> <span class="c1"># zero the gradient buffers</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">criterion</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
<span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span> <span class="c1"># Does the update</span></pre>
下载 Python 源代码
<a href="http://pytorchchina.com/wp-content/uploads/2018/12/neural_networks_tutorial.py_.zip">neural_networks_tutorial.py</a>

View File

@ -3,96 +3,116 @@
在这个教程中我们将学习如何用 DataParallel 来使用多 GPU
通过 PyTorch 使用多个 GPU 非常简单你可以将模型放在一个 GPU
<pre> device = torch.device("cuda:0")
model.to(device)</pre>
```python
device = torch.device("cuda:0")
model.to(device)
```
然后你可以复制所有的张量到 GPU
<pre> mytensor = my_tensor.to(device)</pre>
```python
mytensor = my_tensor.to(device)
```
请注意只是调用 my_tensor.to(device) 返回一个 my_tensor 新的复制在GPU上而不是重写 my_tensor你需要分配给他一个新的张量并且在 GPU 上使用这个张量
在多 GPU 中执行前馈后馈操作是非常自然的尽管如此PyTorch 默认只会使用一个 GPU通过使用 DataParallel 让你的模型并行运行你可以很容易的在多 GPU 上运行你的操作
<pre> model = nn.DataParallel(model)</pre>
```python
model = nn.DataParallel(model)
```
这是整个教程的核心我们接下来将会详细讲解
引用和参数
引入 PyTorch 模块和定义参数
<pre> import torch
```python
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader</pre>
from torch.utils.data import Dataset, DataLoader
```
# 参数
<pre> input_size = 5
```python
input_size = 5
output_size = 2
batch_size = 30
data_size = 100</pre>
data_size = 100
```
设备
<pre>device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")</pre>
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
```
实验玩具数据
生成一个玩具数据你只需要实现 getitem.
<pre><span class="k">class</span> <span class="nc">RandomDataset</span><span class="p">(</span><span class="n">Dataset</span><span class="p">):</span>
```python
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">size</span><span class="p">,</span> <span class="n">length</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">len</span> <span class="o">=</span> <span class="n">length</span>
<span class="bp">self</span><span class="o">.</span><span class="n">data</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">randn</span><span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">size</span><span class="p">)</span>
class RandomDataset(Dataset):
<span class="k">def</span> <span class="fm">__getitem__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">index</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">data</span><span class="p">[</span><span class="n">index</span><span class="p">]</span>
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
<span class="k">def</span> <span class="fm">__len__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">len</span>
def __getitem__(self, index):
return self.data[index]
<span class="n">rand_loader</span> <span class="o">=</span> <span class="n">DataLoader</span><span class="p">(</span><span class="n">dataset</span><span class="o">=</span><span class="n">RandomDataset</span><span class="p">(</span><span class="n">input_size</span><span class="p">,</span> <span class="n">data_size</span><span class="p">),</span><span class="n">batch_size</span><span class="o">=</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span></pre>
def __len__(self):
return self.len
rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size),batch_size=batch_size, shuffle=True)
```
简单模型
为了做一个小 demo我们的模型只是获得一个输入执行一个线性操作然后给一个输出尽管如此你可以使用 DataParallel   在任何模型(CNN, RNN, Capsule Net 等等.)
我们放置了一个输出声明在模型中来检测输出和输入张量的大小请注意在 batch rank 0 中的输出
<pre><span class="k">class</span> <span class="nc">Model</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="c1"># Our model</span>
```python
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">input_size</span><span class="p">,</span> <span class="n">output_size</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Model</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">input_size</span><span class="p">,</span> <span class="n">output_size</span><span class="p">)</span>
class Model(nn.Module):
# Our model
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">):</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\t</span><span class="s2">In Model: input size"</span><span class="p">,</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(),</span>
<span class="s2">"output size"</span><span class="p">,</span> <span class="n">output</span><span class="o">.</span><span class="n">size</span><span class="p">())</span>
def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size)
<span class="k">return</span> <span class="n">output</span></pre>
&nbsp;
def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size())
return output
```
创建模型并且数据并行处理
这是整个教程的核心首先我们需要一个模型的实例然后验证我们是否有多个 GPU如果我们有多个 GPU我们可以用 nn.DataParallel    包裹 我们的模型然后我们使用 model.to(device) 把模型放到多 GPU
```python
model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model)
&nbsp;
<pre><span class="n">model</span> <span class="o">=</span> <span class="n">Model</span><span class="p">(</span><span class="n">input_size</span><span class="p">,</span> <span class="n">output_size</span><span class="p">)</span>
<span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">device_count</span><span class="p">()</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">print</span><span class="p">(</span><span class="s2">"Let's use"</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">device_count</span><span class="p">(),</span> <span class="s2">"GPUs!"</span><span class="p">)</span>
<span class="c1"># dim = 0 [30, xxx] -&gt; [10, ...], [10, ...], [10, ...] on 3 GPUs</span>
<span class="n">model</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">DataParallel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span>
<span class="n">model</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span></pre>
model.to(device)
```
输出
<div id="create-model-and-dataparallel" class="section">
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight">
<pre>Let's use 2 GPUs!
</pre>
</div>
</div>
</div>
<div id="run-the-model" class="section"> 运行模型</div>
<div>现在我们可以看到输入和输出张量的大小了</div>
<div></div>
<div>
<pre><span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">rand_loader</span><span class="p">:</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">model</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s2">"Outside: input size"</span><span class="p">,</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(),</span>
<span class="s2">"output_size"</span><span class="p">,</span> <span class="n">output</span><span class="o">.</span><span class="n">size</span><span class="p">())</span></pre>
</div>
```python
Let's use 2 GPUs!
```
运行模型
现在我们可以看到输入和输出张量的大小了
```python
for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
```
输出
<pre>In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])

View File

@ -24,145 +24,153 @@
</ol>
加载并归一化 CIFAR10
使用 torchvision ,用它来加载 CIFAR10 数据非常简单
<pre><span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torchvision</span>
<span class="kn">import</span> <span class="nn">torchvision.transforms</span> <span class="kn">as</span> <span class="nn">transforms</span></pre>
```python
import torch
import torchvision
import torchvision.transforms as transforms
```
torchvision 数据集的输出是范围在[0,1]之间的 PILImage我们将他们转换成归一化范围为[-1,1]之间的张量 Tensors
<pre><span class="n">transform</span> <span class="o">=</span> <span class="n">transforms</span><span class="o">.</span><span class="n">Compose</span><span class="p">(</span>
<span class="p">[</span><span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
<span class="n">transforms</span><span class="o">.</span><span class="n">Normalize</span><span class="p">((</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">),</span> <span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))])</span>
```python
<span class="n">trainset</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">CIFAR10</span><span class="p">(</span><span class="n">root</span><span class="o">=</span><span class="s1">'./data'</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span>
<span class="n">download</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">transform</span><span class="o">=</span><span class="n">transform</span><span class="p">)</span>
<span class="n">trainloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">trainset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
<span class="n">testset</span> <span class="o">=</span> <span class="n">torchvision</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">CIFAR10</span><span class="p">(</span><span class="n">root</span><span class="o">=</span><span class="s1">'./data'</span><span class="p">,</span> <span class="n">train</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span>
<span class="n">download</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">transform</span><span class="o">=</span><span class="n">transform</span><span class="p">)</span>
<span class="n">testloader</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">DataLoader</span><span class="p">(</span><span class="n">testset</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">4</span><span class="p">,</span>
<span class="n">shuffle</span><span class="o">=</span><span class="bp">False</span><span class="p">,</span> <span class="n">num_workers</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
```
<span class="n">classes</span> <span class="o">=</span> <span class="p">(</span><span class="s1">'plane'</span><span class="p">,</span> <span class="s1">'car'</span><span class="p">,</span> <span class="s1">'bird'</span><span class="p">,</span> <span class="s1">'cat'</span><span class="p">,</span>
<span class="s1">'deer'</span><span class="p">,</span> <span class="s1">'dog'</span><span class="p">,</span> <span class="s1">'frog'</span><span class="p">,</span> <span class="s1">'horse'</span><span class="p">,</span> <span class="s1">'ship'</span><span class="p">,</span> <span class="s1">'truck'</span><span class="p">)</span></pre>
输出
<pre>Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Files already downloaded and verified</pre>
```python
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
Files already downloaded and verified
```
让我们来展示其中的一些训练图片
<pre><span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="kn">as</span> <span class="nn">plt</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
```python
import matplotlib.pyplot as plt
import numpy as np
<span class="c1"># functions to show an image</span>
# functions to show an image
<span class="k">def</span> <span class="nf">imshow</span><span class="p">(</span><span class="n">img</span><span class="p">):</span>
<span class="n">img</span> <span class="o">=</span> <span class="n">img</span> <span class="o">/</span> <span class="mi">2</span> <span class="o">+</span> <span class="mf">0.5</span> <span class="c1"># unnormalize</span>
<span class="n">npimg</span> <span class="o">=</span> <span class="n">img</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">npimg</span><span class="p">,</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">)))</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
<span class="c1"># get some random training images</span>
<span class="n">dataiter</span> <span class="o">=</span> <span class="nb">iter</span><span class="p">(</span><span class="n">trainloader</span><span class="p">)</span>
<span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">dataiter</span><span class="o">.</span><span class="n">next</span><span class="p">()</span>
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
<span class="c1"># show images</span>
<span class="n">imshow</span><span class="p">(</span><span class="n">torchvision</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">make_grid</span><span class="p">(</span><span class="n">images</span><span class="p">))</span>
<span class="c1"># print labels</span>
<span class="k">print</span><span class="p">(</span><span class="s1">' '</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="s1">'</span><span class="si">%5s</span><span class="s1">'</span> <span class="o">%</span> <span class="n">classes</span><span class="p">[</span><span class="n">labels</span><span class="p">[</span><span class="n">j</span><span class="p">]]</span> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)))</span></pre>
&nbsp;
<img class="alignnone size-full wp-image-117" src="http://pytorchchina.com/wp-content/uploads/2018/12/sphx_glr_cifar10_tutorial_001.png" alt="" width="640" height="480" />
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
```
输出
<div id="loading-and-normalizing-cifar10" class="section">
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight">
<pre>cat plane ship frog
</pre>
</div>
</div>
</div>
<div id="define-a-convolutional-neural-network" class="section"></div>
<div></div>
```python
cat plane ship frog
```
<div>定义一个卷积神经网络
在这之前先 从神经网络章节 复制神经网络并修改它为3通道的图片(在此之前它被定义为1通道)</div>
<div></div>
<div>
<pre><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="kn">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="kn">as</span> <span class="nn">F</span>
```python
import torch.nn as nn
import torch.nn.functional as F
<span class="k">class</span> <span class="nc">Net</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Net</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">6</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">6</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">16</span> <span class="o">*</span> <span class="mi">5</span> <span class="o">*</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">120</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">120</span><span class="p">,</span> <span class="mi">84</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">84</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">16</span> <span class="o">*</span> <span class="mi">5</span> <span class="o">*</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
<span class="n">net</span> <span class="o">=</span> <span class="n">Net</span><span class="p">()</span></pre>
</div>
<div></div>
<div>
net = Net()
```
&nbsp;
</div>
<div>定义一个损失函数和优化器
让我们使用分类交叉熵Cross-Entropy 作损失函数动量SGD做优化器</div>
<div></div>
<div>
<pre><span class="kn">import</span> <span class="nn">torch.optim</span> <span class="kn">as</span> <span class="nn">optim</span>
<span class="n">criterion</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">()</span>
<span class="n">optimizer</span> <span class="o">=</span> <span class="n">optim</span><span class="o">.</span><span class="n">SGD</span><span class="p">(</span><span class="n">net</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">lr</span><span class="o">=</span><span class="mf">0.001</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="mf">0.9</span><span class="p">)</span></pre>
</div>
<div></div>
```python
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
<div>训练网络
这里事情开始变得有趣我们只需要在数据迭代器上循环传给网络和优化器 输入就可以</div>
<div></div>
<div>
<pre><span class="k">for</span> <span class="n">epoch</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">):</span> <span class="c1"># loop over the dataset multiple times</span>
<span class="n">running_loss</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">data</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">trainloader</span><span class="p">,</span> <span class="mi">0</span><span class="p">):</span>
<span class="c1"># get the inputs</span>
<span class="n">inputs</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span>
```python
<span class="c1"># zero the parameter gradients</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span>
for epoch in range(2): # loop over the dataset multiple times
<span class="c1"># forward + backward + optimize</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
<span class="n">loss</span> <span class="o">=</span> <span class="n">criterion</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="n">labels</span><span class="p">)</span>
<span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span>
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
<span class="c1"># print statistics</span>
<span class="n">running_loss</span> <span class="o">+=</span> <span class="n">loss</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="k">if</span> <span class="n">i</span> <span class="o">%</span> <span class="mi">2000</span> <span class="o">==</span> <span class="mi">1999</span><span class="p">:</span> <span class="c1"># print every 2000 mini-batches</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'[</span><span class="si">%d</span><span class="s1">, </span><span class="si">%5d</span><span class="s1">] loss: </span><span class="si">%.3f</span><span class="s1">'</span> <span class="o">%</span>
<span class="p">(</span><span class="n">epoch</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">i</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">running_loss</span> <span class="o">/</span> <span class="mi">2000</span><span class="p">))</span>
<span class="n">running_loss</span> <span class="o">=</span> <span class="mf">0.0</span>
# zero the parameter gradients
optimizer.zero_grad()
<span class="k">print</span><span class="p">(</span><span class="s1">'Finished Training'</span><span class="p">)</span></pre>
</div>
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight"> 输出</div>
<div>
<pre>[1, 2000] loss: 2.187
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
```
输出
```
[1, 2000] loss: 2.187
[1, 4000] loss: 1.852
[1, 6000] loss: 1.672
[1, 8000] loss: 1.566
@ -174,9 +182,11 @@ Files already downloaded and verified</pre>
[2, 8000] loss: 1.318
[2, 10000] loss: 1.282
[2, 12000] loss: 1.286
Finished Training</pre>
</div>
</div>
Finished Training
```
在测试集上测试网络
我们已经通过训练数据集对网络进行了2次训练但是我们需要检查网络是否已经学到了东西
@ -185,69 +195,76 @@ Finished Training</pre>
好的第一步让我们从测试集中显示一张图像来熟悉它<img class="alignnone size-full wp-image-118" src="http://pytorchchina.com/wp-content/uploads/2018/12/sphx_glr_cifar10_tutorial_002.png" alt="" width="640" height="480" />
输出
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight">
<pre>GroundTruth: cat ship ship plane
</pre>
</div>
</div>
```python
GroundTruth: cat ship ship plane
```
现在让我们看看 神经网络认为这些样本应该预测成什么
<div class="highlight-python notranslate">
<div class="highlight">
<pre><span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">images</span><span class="p">)</span>
</pre>
</div>
</div>
```python
outputs = net(images)
```
输出是预测与十个类的近似程度与某一个类的近似程度越高网络就越认为图像是属于这一类别所以让我们打印其中最相似类别类标
<pre><span class="n">_</span><span class="p">,</span> <span class="n">predicted</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'Predicted: '</span><span class="p">,</span> <span class="s1">' '</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="s1">'</span><span class="si">%5s</span><span class="s1">'</span> <span class="o">%</span> <span class="n">classes</span><span class="p">[</span><span class="n">predicted</span><span class="p">[</span><span class="n">j</span><span class="p">]]</span>
<span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)))</span></pre>
```python
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))
```
输出
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight">
<pre>Predicted: cat ship car ship
</pre>
</div>
</div>
```python
Predicted: cat ship car ship
```
结果看起开非常好让我们看看网络在整个数据集上的表现
<pre><span class="n">correct</span> <span class="o">=</span> <span class="mi">0</span>
<span class="n">total</span> <span class="o">=</span> <span class="mi">0</span>
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">testloader</span><span class="p">:</span>
<span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">images</span><span class="p">)</span>
<span class="n">_</span><span class="p">,</span> <span class="n">predicted</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">outputs</span><span class="o">.</span><span class="n">data</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">total</span> <span class="o">+=</span> <span class="n">labels</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">correct</span> <span class="o">+=</span> <span class="p">(</span><span class="n">predicted</span> <span class="o">==</span> <span class="n">labels</span><span class="p">)</span><span class="o">.</span><span class="n">sum</span><span class="p">()</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
```python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
<span class="k">print</span><span class="p">(</span><span class="s1">'Accuracy of the network on the 10000 test images: </span><span class="si">%d</span> <span class="si">%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span>
<span class="mi">100</span> <span class="o">*</span> <span class="n">correct</span> <span class="o">/</span> <span class="n">total</span><span class="p">))</span></pre>
输出
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight">
<pre>Accuracy of the network on the 10000 test images: 54 %
</pre>
</div>
</div>
```python
Accuracy of the network on the 10000 test images: 54 %
```
这看起来比随机预测要好随机预测的准确率为10%随机预测出为10类中的哪一类看来网络学到了东西
<pre><span class="n">class_correct</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="mf">0.</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span>
<span class="n">class_total</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="mf">0.</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">))</span>
<span class="k">with</span> <span class="n">torch</span><span class="o">.</span><span class="n">no_grad</span><span class="p">():</span>
<span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">testloader</span><span class="p">:</span>
<span class="n">images</span><span class="p">,</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">data</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">net</span><span class="p">(</span><span class="n">images</span><span class="p">)</span>
<span class="n">_</span><span class="p">,</span> <span class="n">predicted</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">max</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">c</span> <span class="o">=</span> <span class="p">(</span><span class="n">predicted</span> <span class="o">==</span> <span class="n">labels</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">):</span>
<span class="n">label</span> <span class="o">=</span> <span class="n">labels</span><span class="p">[</span><span class="n">i</span><span class="p">]</span>
<span class="n">class_correct</span><span class="p">[</span><span class="n">label</span><span class="p">]</span> <span class="o">+=</span> <span class="n">c</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="o">.</span><span class="n">item</span><span class="p">()</span>
<span class="n">class_total</span><span class="p">[</span><span class="n">label</span><span class="p">]</span> <span class="o">+=</span> <span class="mi">1</span>
```python
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">):</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'Accuracy of </span><span class="si">%5s</span><span class="s1"> : </span><span class="si">%2d</span> <span class="si">%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span>
<span class="n">classes</span><span class="p">[</span><span class="n">i</span><span class="p">],</span> <span class="mi">100</span> <span class="o">*</span> <span class="n">class_correct</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">/</span> <span class="n">class_total</span><span class="p">[</span><span class="n">i</span><span class="p">]))</span></pre>
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
```
输出
<pre>Accuracy of plane : 57 %
Accuracy of car : 73 %
@ -266,11 +283,14 @@ Accuracy of truck : 66 %</pre>
在GPU上训练
就像你怎么把一个张量转移到GPU上一样你要将神经网络转到GPU上
如果CUDA可以用让我们首先定义下我们的设备为第一个可见的cuda设备
<pre><span class="n">device</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span><span class="p">(</span><span class="s2">"cuda:0"</span> <span class="k">if</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">is_available</span><span class="p">()</span> <span class="k">else</span> <span class="s2">"cpu"</span><span class="p">)</span>
<span class="c1"># Assume that we are on a CUDA machine, then this should print a CUDA device:</span>
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
<span class="k">print</span><span class="p">(</span><span class="n">device</span><span class="p">)</span></pre>
# Assume that we are on a CUDA machine, then this should print a CUDA device:
print(device)
```
输出
<div class="sphx-glr-script-out highlight-none notranslate">
<div class="highlight">