Files
DeepSpeed/tests/unit/test_pipe.py
Alex Hedges fc2f378ece Improve pre-commit hooks (#1602)
Co-authored-by: Jeff Rasley <jerasley@microsoft.com>
2021-12-01 03:12:29 +00:00

270 lines
8.7 KiB
Python
Executable File

import os
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
import pytest
import deepspeed
import deepspeed.runtime.utils as ds_utils
from deepspeed.runtime.pipe.topology import PipeDataParallelTopology, PipeModelDataParallelTopology
PipeTopo = PipeDataParallelTopology
from deepspeed.runtime.pipe.module import PipelineModule, LayerSpec
from common import distributed_test
def rel_diff(A, B):
return abs(A - B) / abs(A)
# All models
from simple_model import args_from_dict
class AlexNet(nn.Module):
def __init__(self, num_classes=10):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3,
64,
kernel_size=11,
stride=4,
padding=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2,
stride=2),
nn.Conv2d(64,
192,
kernel_size=5,
padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2,
stride=2),
nn.Conv2d(192,
384,
kernel_size=3,
padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384,
256,
kernel_size=3,
padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256,
256,
kernel_size=3,
padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2,
stride=2),
)
self.classifier = nn.Linear(256, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x, y):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return self.loss_fn(x, y)
class AlexNetPipe(AlexNet):
def to_layers(self):
layers = [*self.features, lambda x: x.view(x.size(0), -1), self.classifier]
return layers
class AlexNetPipeSpec(PipelineModule):
def __init__(self, num_classes=10, **kwargs):
self.num_classes = num_classes
specs = [
LayerSpec(nn.Conv2d, 3, 64, kernel_size=11, stride=4, padding=5),
LayerSpec(nn.ReLU, inplace=True),
LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
LayerSpec(nn.Conv2d, 64, 192, kernel_size=5, padding=2),
F.relu,
LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
LayerSpec(nn.Conv2d, 192, 384, kernel_size=3, padding=1),
F.relu,
LayerSpec(nn.Conv2d, 384, 256, kernel_size=3, padding=1),
F.relu,
LayerSpec(nn.Conv2d, 256, 256, kernel_size=3, padding=1),
F.relu,
LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
lambda x: x.view(x.size(0), -1),
LayerSpec(nn.Linear, 256, self.num_classes), # classifier
]
super().__init__(layers=specs, loss_fn=nn.CrossEntropyLoss(), **kwargs)
def cifar_trainset(fp16=False):
import torchvision
import torchvision.transforms as transforms
transform_list = [
transforms.ToTensor(),
transforms.Normalize((0.5,
0.5,
0.5),
(0.5,
0.5,
0.5)),
]
if fp16:
transform_list.append(torchvision.transforms.Lambda(lambda x: x.half()))
transform = transforms.Compose(transform_list)
local_rank = torch.cuda.current_device()
# Only one rank per machine downloads.
dist.barrier()
if local_rank != 0:
dist.barrier()
trainset = torchvision.datasets.CIFAR10(root='/tmp/cifar10-data',
train=True,
download=True,
transform=transform)
if local_rank == 0:
dist.barrier()
return trainset
def train_cifar(model, args, num_steps=400, average_dp_losses=True, fp16=True, seed=123):
with torch.random.fork_rng(devices=[torch.cuda.current_device()]):
ds_utils.set_random_seed(seed)
# disable dropout
model.eval()
trainset = cifar_trainset(fp16=fp16)
args.local_rank = dist.get_rank()
engine, _, _, _ = deepspeed.initialize(
args=args,
model=model,
model_parameters=[p for p in model.parameters()],
training_data=trainset)
losses = []
for step in range(num_steps):
loss = engine.train_batch()
losses.append(loss.item())
if step % 50 == 0 and dist.get_rank() == 0:
print(f'STEP={step} LOSS={loss.item()}')
if average_dp_losses:
loss_tensor = torch.tensor(losses).cuda()
dist.all_reduce(loss_tensor)
loss_tensor /= dist.get_world_size()
losses = loss_tensor.tolist()
return losses
@pytest.mark.skip(reason="been seeing nondeterministic failures, skipping for now")
@pytest.mark.parametrize('topo',
[
PipeTopo(num_pp=1,
num_dp=4),
PipeTopo(num_pp=2,
num_dp=2),
PipeTopo(num_pp=4,
num_dp=1),
])
def test_pipe_cifar10(topo, tmpdir):
config_dict = {
"train_batch_size": 16,
"train_micro_batch_size_per_gpu": 4,
"steps_per_print": 20,
"optimizer": {
"type": "Adam",
"params": {
"lr": 0.001,
"betas": [0.9,
0.999],
"eps": 1e-8,
"weight_decay": 3e-7
}
},
"zero_optimization": {
"stage": 0
},
"fp16": {
"enabled": False
},
"pipeline": {
"seed_layers": True,
"activation_checkpoint_interval": 1
}
}
args = args_from_dict(tmpdir, config_dict)
# Allocate model for consistent initial weights.
init_net = AlexNetPipe()
@distributed_test(world_size=4)
def _helper(topo, tmpdir, steps=500):
assert steps >= 100
base_net = copy.deepcopy(init_net)
base_model = PipelineModule(layers=base_net.to_layers(),
num_stages=1,
loss_fn=nn.CrossEntropyLoss())
# Train with just data parallelism
base_losses = train_cifar(base_model,
args,
num_steps=steps,
fp16=config_dict['fp16']['enabled'])
test_net = copy.deepcopy(init_net)
test_model = PipelineModule(layers=test_net.to_layers(),
topology=topo,
loss_fn=nn.CrossEntropyLoss())
#test_model = AlexNetPipe(num_classes=10,
# topology=test_topo,
# seed_layers=config_dict['pipeline']['seed_layers'])
test_losses = train_cifar(test_model,
args,
num_steps=steps,
fp16=config_dict['fp16']['enabled'])
abs_diffs = [l0 - l1 for l0, l1 in zip(base_losses, test_losses)]
rel_diffs = [rel_diff(l0, l1) for l0, l1 in zip(base_losses, test_losses)]
if dist.get_rank() == 0:
print(
f'abs min={min(abs_diffs)} max={max(abs_diffs)} avg={sum(abs_diffs)/len(abs_diffs)}'
)
print(
f'rel min={min(rel_diffs)} max={max(rel_diffs)} avg={sum(rel_diffs)/len(rel_diffs)}'
)
print(
f'first: base={base_losses[0]} test={test_losses[0]} abs={abs_diffs[0]} rel={rel_diffs[0]}'
)
for lastX in [1, 10, 100]:
base_avg = sum(base_losses[-lastX:]) / lastX
test_avg = sum(test_losses[-lastX:]) / lastX
print(
f'last-{lastX}: base={base_avg} test={test_avg} abs={base_avg - test_avg} rel={rel_diff(base_avg, test_avg)}'
)
lastX = 100
base = base_losses[-lastX:]
base_avg = sum(base) / len(base)
test = test_losses[-lastX:]
test_avg = sum(test) / len(test)
assert rel_diff(base_avg, test_avg) < 0.03
_helper(topo, tmpdir)