mirror of
https://github.com/deepspeedai/DeepSpeed.git
synced 2025-10-20 15:33:51 +08:00
* zero++ tutorial PR (#3783) * [Fix] _conv_flops_compute when padding is a str and stride=1 (#3169) * fix conv_flops_compute when padding is a str when stride=1 * fix error * change type of paddings to tuple * fix padding calculation * apply formatting check --------- Co-authored-by: Cheng Li <pistasable@gmail.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> * fix interpolate flops compute (#3782) * use `Flops Profiler` to test `model.generate()` (#2515) * Update profiler.py * pre-commit run --all-files * Delete .DS_Store * Delete .DS_Store * Delete .DS_Store --------- Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: Cheng Li <pistasable@gmail.com> * revert PR #3611 (#3786) * bump to 0.9.6 * ZeRO++ chinese blog (#3793) * zeropp chinese blog * try better quality images * make title larger * even larger... * various fix * center captions * more fixes * fix format * remove staging trigger (#3792) * DeepSpeed-Triton for Inference (#3748) Co-authored-by: Stephen Youn <styoun@microsoft.com> Co-authored-by: Arash Bakhtiari <arash@bakhtiari.org> Co-authored-by: Cheng Li <pistasable@gmail.com> Co-authored-by: Ethan Doe <yidoe@microsoft.com> Co-authored-by: yidoe <68296935+yidoe@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> * ZeRO++ (#3784) Co-authored-by: HeyangQin <heyangqin@microsoft.com> Co-authored-by: GuanhuaWang <alexwgh333@gmail.com> Co-authored-by: cmikeh2 <connorholmes@microsoft.com> Co-authored-by: Ammar Ahmad Awan <ammar.awan@microsoft.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> * adding zero++ to navigation panel of deepspeed.ai (#3796) * Add ZeRO++ Japanese blog (#3797) * zeropp chinese blog * try better quality images * make title larger * even larger... * various fix * center captions * more fixes * fix format * add ZeRO++ Japanese blog * add links --------- Co-authored-by: HeyangQin <heyangqin@microsoft.com> Co-authored-by: Conglong Li <conglong.li@gmail.com> * Bug Fixes for autotuner and flops profiler (#1880) * fix autotuner when backward is not called * fix format --------- Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> * Missing strided copy for gated MLP (#3788) Co-authored-by: Ammar Ahmad Awan <ammar.awan@microsoft.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> * Requires grad checking. (#3789) Co-authored-by: Jeff Rasley <jerasley@microsoft.com> * bump to 0.10.0 * Fix Bug in transform.cu (#3534) * Bug fix * Fixed formatting error --------- Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> * bug fix: triton importing error (#3799) Co-authored-by: Stephen Youn <styoun@microsoft.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> * DeepSpeed4Science (#569) * Integrating evoformer attention * add cutlass version check * Updaate error message * add benchmark * Update * Update evoformer_attn.py * Update run_evoformer_test.py * Update evoformer_attn.py * Update run_evoformer_test.py * support more GPU archs * add copyright * add tests * Fix bugs * Update benchmark * update * Fix nvcc macro * clean code * fix formatting * fix yaml import * skip unit test when not compatible * fix yaml requirement * revert changes * update tutorial * update * fix formatting * fix format * skip evoformer attn in pre-compile-ops * revert changes * update tutorial * fix cutlass check * update tutorial * refactor tutorial * revise * Updated the Megatron-DS section (#565) * Updated the Megatron-DS section * minor fix * minor fix * minor fix * separate evoformer tutorial * Revised the ds4science landing page (#566) * Updated the Megatron-DS section * minor fix * minor fix * minor fix * Revised the landing page * Revised the landing page * Removing unused file * fix links image position * modify main page * fix doc --------- Co-authored-by: Shiyang Chen <csycfl@gmail.com> Co-authored-by: Minjia Zhang <33713995+minjiaz@users.noreply.github.com> --------- Co-authored-by: Heyang Qin <heyangqin@microsoft.com> Co-authored-by: Bill Luo <50068224+zhiruiluo@users.noreply.github.com> Co-authored-by: Cheng Li <pistasable@gmail.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: Guorun <84232793+CaffreyR@users.noreply.github.com> Co-authored-by: Jeff Rasley <jerasley@microsoft.com> Co-authored-by: stephen youn <13525892+stephen-youn@users.noreply.github.com> Co-authored-by: Stephen Youn <styoun@microsoft.com> Co-authored-by: Arash Bakhtiari <arash@bakhtiari.org> Co-authored-by: Ethan Doe <yidoe@microsoft.com> Co-authored-by: yidoe <68296935+yidoe@users.noreply.github.com> Co-authored-by: GuanhuaWang <alexwgh333@gmail.com> Co-authored-by: cmikeh2 <connorholmes@microsoft.com> Co-authored-by: Ammar Ahmad Awan <ammar.awan@microsoft.com> Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com> Co-authored-by: Reza Yazdani <reyazda@microsoft.com> Co-authored-by: Masahiro Tanaka <81312776+tohtana@users.noreply.github.com> Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> Co-authored-by: Joe Mayer <114769929+jomayeri@users.noreply.github.com> Co-authored-by: Ramya Ramineni <62723901+rraminen@users.noreply.github.com> Co-authored-by: Shiyang Chen <csycfl@gmail.com> Co-authored-by: Minjia Zhang <33713995+minjiaz@users.noreply.github.com>
987 lines
46 KiB
C++
987 lines
46 KiB
C++
/***************************************************************************************************
|
|
* Copyright (c) 2017 - 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* 3. Neither the name of the copyright holdvr nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
**************************************************************************************************/
|
|
|
|
// Copyright (c) Microsoft Corporation.
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
// DeepSpeed Team
|
|
|
|
#pragma once
|
|
|
|
#include <curand_kernel.h>
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "cutlass/bfloat16.h"
|
|
#include "cutlass/fast_math.h"
|
|
#include "cutlass/gemm/gemm.h"
|
|
#include "cutlass/layout/matrix.h"
|
|
#include "cutlass/layout/vector.h"
|
|
#include "cutlass/matrix.h"
|
|
#include "cutlass/numeric_types.h"
|
|
#include "cutlass/tensor_ref.h"
|
|
|
|
#include "cutlass/epilogue/threadblock/default_epilogue_simt.h"
|
|
#include "cutlass/epilogue/threadblock/default_epilogue_tensor_op.h"
|
|
#include "cutlass/epilogue/threadblock/default_epilogue_volta_tensor_op.h"
|
|
#include "cutlass/gemm/device/default_gemm_configuration.h"
|
|
#include "cutlass/gemm/kernel/default_gemm.h"
|
|
#include "cutlass/gemm/threadblock/default_mma.h"
|
|
#include "cutlass/gemm/threadblock/default_mma_core_simt.h"
|
|
#include "cutlass/gemm/threadblock/default_mma_core_sm70.h"
|
|
#include "cutlass/gemm/threadblock/default_mma_core_sm75.h"
|
|
#include "cutlass/gemm/threadblock/default_mma_core_sm80.h"
|
|
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
|
|
#include "cutlass/matrix_shape.h"
|
|
#include "cutlass/platform/platform.h"
|
|
#include "cutlass/transform/threadblock/predicated_tile_iterator.h"
|
|
#include "epilogue/epilogue_pipelined.h"
|
|
#include "epilogue/epilogue_rescale_output.h"
|
|
#include "gemm/find_default_mma.h"
|
|
#include "gemm/mma_from_smem.h"
|
|
#include "gemm_kernel_utils.h"
|
|
#include "transform/bias_broadcast.h"
|
|
#include "transform/tile_smem_loader.h"
|
|
|
|
#include <inttypes.h>
|
|
|
|
using namespace gemm_kernel_utils;
|
|
|
|
namespace {
|
|
template <typename scalar_t, typename Arch>
|
|
constexpr int getWarpsPerSm()
|
|
{
|
|
return (Arch::kMinComputeCapability >= 80 && !cutlass::platform::is_same<scalar_t, float>::value
|
|
? 16
|
|
: 12);
|
|
}
|
|
static CUTLASS_DEVICE float atomicMaxFloat(float* addr, float value)
|
|
{
|
|
// source: https://stackoverflow.com/a/51549250
|
|
return (value >= 0) ? __int_as_float(atomicMax((int*)addr, __float_as_int(value)))
|
|
: __uint_as_float(atomicMin((unsigned int*)addr, __float_as_uint(value)));
|
|
}
|
|
} // namespace
|
|
|
|
template <
|
|
// The datatype of Q/K/V
|
|
typename scalar_t_,
|
|
// Architecture we are targeting (eg `cutlass::arch::Sm80`)
|
|
typename ArchTag,
|
|
// If Q/K/V are correctly aligned in memory and we can run a fast kernel
|
|
bool isAligned_,
|
|
int kQueriesPerBlock,
|
|
int kKeysPerBlock_,
|
|
bool kSingleValueIteration_, // = `value.shape[-1] <= kKeysPerBlock`
|
|
// This is quite slower on V100 for some reason
|
|
// Set to false if you know at compile-time you will never need dropout
|
|
bool kSupportsBias_ = false,
|
|
template <typename, typename, typename> class Broadcast1_ = BroadcastNoLoad,
|
|
template <typename, typename, typename> class Broadcast2_ = BroadcastNoLoad>
|
|
struct AttentionKernel {
|
|
using scalar_t = scalar_t_;
|
|
using accum_t = float;
|
|
using lse_scalar_t = float;
|
|
using output_t = scalar_t;
|
|
// Accumulator between 2 iterations
|
|
// Using `accum_t` improves perf on f16 at the cost of
|
|
// numerical errors
|
|
using output_accum_t = accum_t;
|
|
static constexpr bool kSupportsBias = kSupportsBias_;
|
|
static constexpr int kKeysPerBlock = kKeysPerBlock_;
|
|
static constexpr bool kIsAligned = isAligned_;
|
|
static constexpr bool kSingleValueIteration = kSingleValueIteration_;
|
|
static constexpr int32_t kAlignLSE = 32; // block size of backward
|
|
static constexpr bool kPreloadV =
|
|
ArchTag::kMinComputeCapability >= 80 && cutlass::sizeof_bits<scalar_t>::value == 16;
|
|
static constexpr bool kKeepOutputInRF = kSingleValueIteration;
|
|
static constexpr bool kNeedsOutputAccumulatorBuffer =
|
|
!kKeepOutputInRF && !cutlass::platform::is_same<output_accum_t, output_t>::value;
|
|
|
|
static_assert(kQueriesPerBlock % 32 == 0, "");
|
|
static_assert(kKeysPerBlock % 32 == 0, "");
|
|
static constexpr int kNumWarpsPerBlock = kQueriesPerBlock * kKeysPerBlock / (32 * 32);
|
|
static constexpr int kWarpSize = 32;
|
|
|
|
// Launch bounds
|
|
static constexpr int kNumThreads = kWarpSize * kNumWarpsPerBlock;
|
|
static constexpr int kMinBlocksPerSm = getWarpsPerSm<scalar_t, ArchTag>() / kNumWarpsPerBlock;
|
|
|
|
struct Params {
|
|
// Input tensors
|
|
scalar_t* query_ptr; // [num_queries, num_heads, head_dim]
|
|
scalar_t* key_ptr; // [num_keys, num_heads, head_dim]
|
|
scalar_t* value_ptr; // [num_keys, num_heads, head_dim_value]
|
|
|
|
// Output tensors
|
|
output_t* output_ptr; // [num_queries, num_heads, head_dim_value]
|
|
output_accum_t* output_accum_ptr; // [num_queries, num_heads, head_dim_value]
|
|
lse_scalar_t* logsumexp_ptr; // [num_heads, num_queries] - can be null
|
|
|
|
// Scale
|
|
accum_t scale;
|
|
|
|
// Dimensions/strides
|
|
int32_t head_dim;
|
|
int32_t head_dim_value;
|
|
int32_t num_queries;
|
|
int32_t num_keys;
|
|
|
|
int32_t q_strideM;
|
|
int32_t k_strideM;
|
|
int32_t v_strideM;
|
|
// int32_t bias_strideM = 0;
|
|
|
|
int32_t o_strideM = 0;
|
|
|
|
// Everything below is only used in `advance_to_block`
|
|
// and shouldn't use registers
|
|
int32_t q_strideH;
|
|
int32_t k_strideH;
|
|
int32_t v_strideH;
|
|
// int32_t bias_strideH = 0;
|
|
|
|
int64_t q_strideB;
|
|
int64_t k_strideB;
|
|
int64_t v_strideB;
|
|
// int32_t bias_strideB = 0;
|
|
|
|
int32_t num_batches;
|
|
int32_t num_heads;
|
|
|
|
// Parameters for biases
|
|
scalar_t* bias1_ptr = nullptr;
|
|
scalar_t* bias2_ptr = nullptr;
|
|
int32_t B = 0;
|
|
int32_t N = 0;
|
|
|
|
// Moves pointers to what we should process
|
|
// Returns "false" if there is no work to do
|
|
CUTLASS_DEVICE bool advance_to_block()
|
|
{
|
|
auto batch_id = blockIdx.z;
|
|
auto head_id = blockIdx.y;
|
|
auto query_start = blockIdx.x * kQueriesPerBlock;
|
|
|
|
auto lse_dim = ceil_div((int32_t)num_queries, kAlignLSE) * kAlignLSE;
|
|
|
|
query_ptr += batch_id * q_strideB;
|
|
key_ptr += batch_id * k_strideB;
|
|
value_ptr += batch_id * v_strideB;
|
|
output_ptr += int64_t(batch_id * num_queries) * o_strideM;
|
|
if (output_accum_ptr != nullptr) {
|
|
output_accum_ptr += int64_t(batch_id * num_queries) * (head_dim_value * num_heads);
|
|
}
|
|
|
|
int64_t q_start = 0, k_start = 0;
|
|
// Advance to the current batch / head / query_start
|
|
query_ptr += (q_start + query_start) * q_strideM + head_id * q_strideH;
|
|
key_ptr += k_start * k_strideM + head_id * k_strideH;
|
|
|
|
value_ptr += k_start * v_strideM + head_id * v_strideH;
|
|
output_ptr += int64_t(q_start + query_start) * o_strideM + head_id * head_dim_value;
|
|
|
|
if (output_accum_ptr != nullptr) {
|
|
output_accum_ptr += int64_t(q_start + query_start) * (head_dim_value * num_heads) +
|
|
head_id * head_dim_value;
|
|
} else {
|
|
// Accumulate directly in the destination buffer (eg for f32)
|
|
output_accum_ptr = (accum_t*)output_ptr;
|
|
}
|
|
|
|
if (logsumexp_ptr != nullptr) {
|
|
// lse[batch_id, head_id, query_start]
|
|
logsumexp_ptr += batch_id * lse_dim * num_heads + head_id * lse_dim + query_start;
|
|
}
|
|
|
|
using broadcast_1 = Broadcast1_<typename MM0::BiasLoader::ThreadMap,
|
|
typename MM0::BiasLoader::Shape,
|
|
scalar_t>;
|
|
if (kSupportsBias && broadcast_1::kEnable && bias1_ptr) {
|
|
bias1_ptr = broadcast_1::advance(bias1_ptr,
|
|
batch_id / N,
|
|
batch_id % N,
|
|
head_id,
|
|
num_queries * N,
|
|
num_queries,
|
|
0);
|
|
}
|
|
using broadcast_2 = Broadcast2_<typename MM0::BiasLoader::ThreadMap,
|
|
typename MM0::BiasLoader::Shape,
|
|
scalar_t>;
|
|
if (kSupportsBias && broadcast_2::kEnable && bias2_ptr) {
|
|
auto strideB = num_heads * num_queries * num_keys;
|
|
auto strideH = num_queries * num_keys;
|
|
bias2_ptr = broadcast_2::advance(
|
|
bias2_ptr, batch_id / N, batch_id % N, head_id, strideB, 0, strideH);
|
|
}
|
|
|
|
num_queries -= query_start;
|
|
num_batches = 0; // no longer used after
|
|
|
|
// If num_queries == 1, and there is only one key head we're wasting
|
|
// 15/16th of tensor core compute In that case :
|
|
// - we only launch kernels for head_id % kQueriesPerBlock == 0
|
|
// - we iterate over heads instead of queries (strideM = strideH)
|
|
if (num_queries == 1 && k_strideH == 0 && v_strideH == 0) {
|
|
if (head_id % kQueriesPerBlock != 0) return false;
|
|
q_strideM = q_strideH;
|
|
num_queries = num_heads;
|
|
num_heads = 1; // unused but here for intent
|
|
o_strideM = head_dim_value;
|
|
}
|
|
|
|
// Make sure the compiler knows these variables are the same on all
|
|
// the threads of the warp.
|
|
query_ptr = warp_uniform(query_ptr);
|
|
key_ptr = warp_uniform(key_ptr);
|
|
value_ptr = warp_uniform(value_ptr);
|
|
output_ptr = warp_uniform(output_ptr);
|
|
output_accum_ptr = warp_uniform(output_accum_ptr);
|
|
logsumexp_ptr = warp_uniform(logsumexp_ptr);
|
|
num_queries = warp_uniform(num_queries);
|
|
num_keys = warp_uniform(num_keys);
|
|
num_heads = warp_uniform(num_heads);
|
|
head_dim = warp_uniform(head_dim);
|
|
head_dim_value = warp_uniform(head_dim_value);
|
|
o_strideM = warp_uniform(o_strideM);
|
|
if (kSupportsBias && broadcast_1::kEnable) { bias1_ptr = warp_uniform(bias1_ptr); }
|
|
if (kSupportsBias && broadcast_2::kEnable) { bias2_ptr = warp_uniform(bias2_ptr); }
|
|
return true;
|
|
}
|
|
|
|
__host__ dim3 getBlocksGrid() const
|
|
{
|
|
return dim3(ceil_div(num_queries, (int32_t)kQueriesPerBlock), num_heads, num_batches);
|
|
}
|
|
|
|
__host__ dim3 getThreadsGrid() const { return dim3(kWarpSize, kNumWarpsPerBlock, 1); }
|
|
};
|
|
|
|
struct MM0 {
|
|
/*
|
|
In this first matmul, we compute a block of `Q @ K.T`.
|
|
While the calculation result is still hot in registers, we update
|
|
`mi`, `m_prime`, `s_prime` in shared-memory, and then store this value
|
|
into a shared-memory ("AccumulatorSharedStorage") that is used later as
|
|
operand A for the second matmul (see MM1)
|
|
*/
|
|
using GemmType = DefaultGemmType<ArchTag, scalar_t>;
|
|
|
|
using OpClass = typename GemmType::OpClass;
|
|
using DefaultConfig =
|
|
typename cutlass::gemm::device::DefaultGemmConfiguration<OpClass,
|
|
ArchTag,
|
|
scalar_t,
|
|
scalar_t,
|
|
scalar_t, // ElementC
|
|
accum_t // ElementAccumulator
|
|
>;
|
|
static constexpr int kAlignmentA = kIsAligned ? DefaultConfig::kAlignmentA
|
|
: GemmType::kMinimumAlignment;
|
|
static constexpr int kAlignmentB = kIsAligned ? DefaultConfig::kAlignmentB
|
|
: GemmType::kMinimumAlignment;
|
|
using ThreadblockShape =
|
|
cutlass::gemm::GemmShape<kQueriesPerBlock, kKeysPerBlock, GemmType::ThreadK>;
|
|
using WarpShape = cutlass::gemm::GemmShape<32, 32, GemmType::WarpK>;
|
|
using DefaultMma = typename cutlass::gemm::threadblock::FindDefaultMma<
|
|
scalar_t, // ElementA,
|
|
cutlass::layout::RowMajor, // LayoutA,
|
|
kAlignmentA,
|
|
scalar_t, // ElementB,
|
|
cutlass::layout::ColumnMajor, // LayoutB,
|
|
kAlignmentB,
|
|
accum_t,
|
|
cutlass::layout::RowMajor, // LayoutC,
|
|
OpClass,
|
|
ArchTag, // ArchTag
|
|
ThreadblockShape, // ThreadblockShape
|
|
WarpShape, // WarpShape
|
|
typename GemmType::InstructionShape, // InstructionShape
|
|
DefaultConfig::kStages, // Should use `DefaultConfig::kStages`, but that
|
|
// uses too much smem
|
|
typename GemmType::Operator // Operator
|
|
>::DefaultMma;
|
|
using MmaCore = typename DefaultMma::MmaCore;
|
|
using IteratorA = typename DefaultMma::IteratorA;
|
|
using IteratorB = typename DefaultMma::IteratorB;
|
|
using Mma = typename DefaultMma::ThreadblockMma;
|
|
using AccumLambdaIterator =
|
|
typename DefaultMmaAccumLambdaIterator<typename Mma::Operator::IteratorC,
|
|
accum_t,
|
|
kWarpSize>::Iterator;
|
|
static_assert(MmaCore::WarpCount::kM * MmaCore::WarpCount::kN * MmaCore::WarpCount::kK ==
|
|
kNumWarpsPerBlock,
|
|
"");
|
|
|
|
// used for efficient load of bias tile Bij from global to shared memory
|
|
using BiasLoader =
|
|
TileSmemLoader<scalar_t,
|
|
cutlass::MatrixShape<kQueriesPerBlock, kKeysPerBlock>,
|
|
MmaCore::kThreads,
|
|
// input restriction: kv_len has to be a multiple of this value
|
|
128 / cutlass::sizeof_bits<scalar_t>::value>;
|
|
|
|
// Epilogue to store to shared-memory in a format that we can use later for
|
|
// the second matmul
|
|
using B2bGemm =
|
|
typename cutlass::gemm::threadblock::B2bGemm<typename Mma::Operator::IteratorC,
|
|
typename Mma::Operator,
|
|
scalar_t,
|
|
WarpShape,
|
|
ThreadblockShape>;
|
|
using AccumulatorSharedStorage = typename B2bGemm::AccumulatorSharedStorage;
|
|
};
|
|
|
|
struct MM1 {
|
|
/**
|
|
Second matmul: perform `attn @ V` where `attn` is the attention (not
|
|
normalized) and stored in shared memory
|
|
*/
|
|
using GemmType = DefaultGemmType<ArchTag, scalar_t>;
|
|
|
|
using OpClass = typename GemmType::OpClass;
|
|
using DefaultConfig =
|
|
typename cutlass::gemm::device::DefaultGemmConfiguration<OpClass,
|
|
ArchTag,
|
|
scalar_t,
|
|
scalar_t,
|
|
output_accum_t, // ElementC
|
|
accum_t // ElementAccumulator
|
|
>;
|
|
static constexpr int kAlignmentA = DefaultConfig::kAlignmentA; // from smem
|
|
static constexpr int kAlignmentB = kIsAligned ? DefaultConfig::kAlignmentB
|
|
: GemmType::kMinimumAlignment;
|
|
using ThreadblockShape =
|
|
cutlass::gemm::GemmShape<kQueriesPerBlock, kKeysPerBlock, GemmType::ThreadK>;
|
|
using WarpShape = cutlass::gemm::GemmShape<32, 32, GemmType::WarpK>;
|
|
using InstructionShape = typename GemmType::InstructionShape;
|
|
|
|
using LayoutB = cutlass::layout::RowMajor;
|
|
using DefaultGemm =
|
|
cutlass::gemm::kernel::DefaultGemm<scalar_t, // ElementA,
|
|
cutlass::layout::RowMajor, // LayoutA,
|
|
kAlignmentA,
|
|
scalar_t, // ElementB,
|
|
LayoutB, // LayoutB,
|
|
kAlignmentB,
|
|
output_accum_t,
|
|
cutlass::layout::RowMajor, // LayoutC,
|
|
accum_t,
|
|
OpClass,
|
|
ArchTag,
|
|
ThreadblockShape,
|
|
WarpShape,
|
|
typename GemmType::InstructionShape,
|
|
typename DefaultConfig::EpilogueOutputOp,
|
|
void, // ThreadblockSwizzle - not used
|
|
DefaultConfig::kStages,
|
|
false, // SplitKSerial
|
|
typename GemmType::Operator>;
|
|
|
|
using DefaultMmaFromSmem = typename cutlass::gemm::threadblock::DefaultMmaFromSharedMemory<
|
|
typename DefaultGemm::Mma,
|
|
typename MM0::AccumulatorSharedStorage,
|
|
false>; // kScaleOperandA
|
|
using Mma = typename DefaultMmaFromSmem::Mma;
|
|
using IteratorB = typename Mma::IteratorB;
|
|
using WarpCount = typename Mma::WarpCount;
|
|
static_assert(WarpCount::kM * WarpCount::kN * WarpCount::kK == kNumWarpsPerBlock, "");
|
|
|
|
using DefaultEpilogue = typename DefaultGemm::Epilogue;
|
|
using OutputTileIterator = typename cutlass::epilogue::threadblock::PredicatedTileIterator<
|
|
typename DefaultEpilogue::OutputTileIterator::ThreadMap,
|
|
output_t>;
|
|
using OutputTileIteratorAccum =
|
|
typename cutlass::epilogue::threadblock::PredicatedTileIterator<
|
|
typename DefaultEpilogue::OutputTileIterator::ThreadMap,
|
|
output_accum_t>;
|
|
|
|
struct SharedStorageMM1 {
|
|
typename Mma::SharedStorage mm;
|
|
};
|
|
};
|
|
|
|
static constexpr int64_t kAlignmentQ = MM0::kAlignmentA;
|
|
static constexpr int64_t kAlignmentK = MM0::kAlignmentB;
|
|
static constexpr int64_t kAlignmentV = 1;
|
|
|
|
// Shared storage - depends on kernel params
|
|
struct ScalingCoefs {
|
|
cutlass::Array<accum_t, kQueriesPerBlock> m_prime;
|
|
cutlass::Array<accum_t, kQueriesPerBlock> s_prime;
|
|
cutlass::Array<accum_t, kQueriesPerBlock> mi;
|
|
};
|
|
|
|
struct SharedStorageEpilogueAtEnd : ScalingCoefs {
|
|
struct SharedStorageAfterMM0 {
|
|
// Everything here might be overwritten during MM0
|
|
union {
|
|
// typename MM0::BiasLoader::SmemTile bias;
|
|
cutlass::AlignedBuffer<float, MM0::BiasLoader::Shape::kCount> bias;
|
|
typename MM0::AccumulatorSharedStorage si;
|
|
};
|
|
typename MM1::SharedStorageMM1 mm1;
|
|
};
|
|
|
|
union {
|
|
typename MM0::Mma::SharedStorage mm0;
|
|
SharedStorageAfterMM0 after_mm0;
|
|
typename MM1::DefaultEpilogue::SharedStorage epilogue;
|
|
};
|
|
|
|
CUTLASS_DEVICE typename MM1::DefaultEpilogue::SharedStorage& epilogue_shared_storage()
|
|
{
|
|
return epilogue;
|
|
}
|
|
};
|
|
|
|
struct SharedStorageEpilogueInLoop : ScalingCoefs {
|
|
struct SharedStorageAfterMM0 {
|
|
// Everything here might be overwritten during MM0
|
|
union {
|
|
// typename MM0::BiasLoader::SmemTile bias;
|
|
cutlass::AlignedBuffer<float, MM0::BiasLoader::Shape::kCount> bias;
|
|
typename MM0::AccumulatorSharedStorage si;
|
|
};
|
|
typename MM1::SharedStorageMM1 mm1;
|
|
typename MM1::DefaultEpilogue::SharedStorage epilogue;
|
|
};
|
|
|
|
union {
|
|
typename MM0::Mma::SharedStorage mm0;
|
|
SharedStorageAfterMM0 after_mm0;
|
|
};
|
|
|
|
CUTLASS_DEVICE typename MM1::DefaultEpilogue::SharedStorage& epilogue_shared_storage()
|
|
{
|
|
return after_mm0.epilogue;
|
|
}
|
|
};
|
|
|
|
using SharedStorage =
|
|
typename cutlass::platform::conditional<kSingleValueIteration || kKeepOutputInRF,
|
|
SharedStorageEpilogueAtEnd,
|
|
SharedStorageEpilogueInLoop>::type;
|
|
|
|
static bool __host__ check_supported(Params const& p)
|
|
{
|
|
CHECK_ALIGNED_PTR(p.query_ptr, kAlignmentQ);
|
|
CHECK_ALIGNED_PTR(p.key_ptr, kAlignmentK);
|
|
CHECK_ALIGNED_PTR(p.value_ptr, kAlignmentV);
|
|
EVOFORMER_CHECK(p.q_strideM % kAlignmentQ == 0, "query is not correctly aligned (strideM)");
|
|
EVOFORMER_CHECK(p.k_strideM % kAlignmentK == 0, "key is not correctly aligned (strideM)");
|
|
EVOFORMER_CHECK(p.v_strideM % kAlignmentV == 0, "value is not correctly aligned (strideM)");
|
|
EVOFORMER_CHECK(p.num_heads <= 1 || p.q_strideH % kAlignmentQ == 0,
|
|
"query is not correctly aligned (strideH)");
|
|
EVOFORMER_CHECK(p.num_heads <= 1 || p.k_strideH % kAlignmentK == 0,
|
|
"key is not correctly aligned (strideH)");
|
|
EVOFORMER_CHECK(p.num_heads <= 1 || p.v_strideH % kAlignmentV == 0,
|
|
"value is not correctly aligned (strideH)");
|
|
return true;
|
|
}
|
|
|
|
static void CUTLASS_DEVICE attention_kernel(Params& p)
|
|
{
|
|
// In this block, we will only ever:
|
|
// - read query[query_start:query_end, :]
|
|
// - write to output[query_start:query_end, :]
|
|
|
|
extern __shared__ char smem_buffer[];
|
|
SharedStorage& shared_storage = *((SharedStorage*)smem_buffer);
|
|
auto& m_prime = shared_storage.m_prime;
|
|
auto& s_prime = shared_storage.s_prime;
|
|
auto& mi = shared_storage.mi;
|
|
const uint32_t query_start = blockIdx.x * kQueriesPerBlock;
|
|
|
|
static_assert(kQueriesPerBlock < kNumWarpsPerBlock * kWarpSize, "");
|
|
if (thread_id() < kQueriesPerBlock) {
|
|
s_prime[thread_id()] = accum_t(0);
|
|
m_prime[thread_id()] = -cutlass::platform::numeric_limits<accum_t>::infinity();
|
|
mi[thread_id()] = -cutlass::platform::numeric_limits<accum_t>::infinity();
|
|
}
|
|
typename MM1::Mma::FragmentC accum_o;
|
|
accum_o.clear();
|
|
|
|
auto createOutputIter = [&](int col) -> typename MM1::OutputTileIterator {
|
|
using OutputTileIterator = typename MM1::OutputTileIterator;
|
|
return OutputTileIterator(
|
|
typename OutputTileIterator::Params{(int32_t)p.o_strideM},
|
|
p.output_ptr,
|
|
typename OutputTileIterator::TensorCoord{p.num_queries, p.head_dim_value},
|
|
thread_id(),
|
|
{0, col});
|
|
};
|
|
|
|
auto createOutputAccumIter = [&](int col) -> typename MM1::OutputTileIteratorAccum {
|
|
using OutputTileIteratorAccum = typename MM1::OutputTileIteratorAccum;
|
|
return OutputTileIteratorAccum(
|
|
typename OutputTileIteratorAccum::Params{(int32_t)(p.head_dim_value * p.num_heads)},
|
|
p.output_accum_ptr,
|
|
typename OutputTileIteratorAccum::TensorCoord{p.num_queries, p.head_dim_value},
|
|
thread_id(),
|
|
{0, col});
|
|
};
|
|
|
|
// Iterate through keys
|
|
for (int32_t iter_key_start = 0; iter_key_start < p.num_keys;
|
|
iter_key_start += kKeysPerBlock) {
|
|
int32_t problem_size_0_m = cutlass::fast_min((int32_t)kQueriesPerBlock, p.num_queries);
|
|
int32_t problem_size_0_n =
|
|
cutlass::fast_min(int32_t(kKeysPerBlock), p.num_keys - iter_key_start);
|
|
int32_t const& problem_size_0_k = p.head_dim;
|
|
int32_t const& problem_size_1_n = p.head_dim_value;
|
|
int32_t const& problem_size_1_k = problem_size_0_n;
|
|
|
|
auto prologueV = [&](int blockN) {
|
|
typename MM1::Mma::IteratorB iterator_V(
|
|
typename MM1::IteratorB::Params{MM1::LayoutB(p.v_strideM)},
|
|
p.value_ptr + iter_key_start * p.v_strideM,
|
|
{problem_size_1_k, problem_size_1_n},
|
|
thread_id(),
|
|
cutlass::MatrixCoord{0, blockN * MM1::Mma::Shape::kN});
|
|
MM1::Mma::prologue(
|
|
shared_storage.after_mm0.mm1.mm, iterator_V, thread_id(), problem_size_1_k);
|
|
};
|
|
|
|
__syncthreads(); // Need to have shared memory initialized, and `m_prime`
|
|
// updated from end of prev iter
|
|
//
|
|
// MATMUL: Q.K_t
|
|
//
|
|
// Computes the block-matrix product of:
|
|
// (a) query[query_start:query_end, :]
|
|
// with
|
|
// (b) key[iter_key_start:iter_key_start + kKeysPerBlock]
|
|
// and stores that into `shared_storage.si`
|
|
//
|
|
|
|
// Compute threadblock location
|
|
cutlass::gemm::GemmCoord tb_tile_offset = {0, 0, 0};
|
|
|
|
cutlass::MatrixCoord tb_offset_A{tb_tile_offset.m() * MM0::Mma::Shape::kM,
|
|
tb_tile_offset.k()};
|
|
|
|
cutlass::MatrixCoord tb_offset_B{tb_tile_offset.k(),
|
|
tb_tile_offset.n() * MM0::Mma::Shape::kN};
|
|
|
|
// Construct iterators to A and B operands
|
|
typename MM0::IteratorA iterator_A(
|
|
typename MM0::IteratorA::Params(typename MM0::MmaCore::LayoutA(p.q_strideM)),
|
|
p.query_ptr,
|
|
{problem_size_0_m, problem_size_0_k},
|
|
thread_id(),
|
|
tb_offset_A);
|
|
|
|
typename MM0::IteratorB iterator_B(
|
|
typename MM0::IteratorB::Params(typename MM0::MmaCore::LayoutB(p.k_strideM)),
|
|
p.key_ptr + iter_key_start * p.k_strideM,
|
|
{problem_size_0_k, problem_size_0_n},
|
|
thread_id(),
|
|
tb_offset_B);
|
|
|
|
auto my_warp_id = warp_id();
|
|
auto my_lane_id = lane_id();
|
|
|
|
// Construct thread-scoped matrix multiply
|
|
typename MM0::Mma mma(shared_storage.mm0, thread_id(), my_warp_id, my_lane_id);
|
|
|
|
typename MM0::Mma::FragmentC accum;
|
|
|
|
accum.clear();
|
|
|
|
auto gemm_k_iterations =
|
|
(problem_size_0_k + MM0::Mma::Shape::kK - 1) / MM0::Mma::Shape::kK;
|
|
|
|
// Compute threadblock-scoped matrix multiply-add
|
|
mma(gemm_k_iterations, accum, iterator_A, iterator_B, accum);
|
|
__syncthreads();
|
|
|
|
if (kPreloadV) {
|
|
prologueV(0);
|
|
} else {
|
|
MM1::Mma::drain_cp_asyncs();
|
|
}
|
|
|
|
typename MM0::Mma::Operator::IteratorC::TensorCoord iteratorC_tile_offset = {
|
|
(tb_tile_offset.m() * MM0::Mma::WarpCount::kM) +
|
|
(my_warp_id % MM0::Mma::WarpCount::kM),
|
|
(tb_tile_offset.n() * MM0::Mma::WarpCount::kN) +
|
|
(my_warp_id / MM0::Mma::WarpCount::kM)};
|
|
|
|
// multiply by scaling factor
|
|
// if (kSupportsBias) {
|
|
// accum =
|
|
// cutlass::multiplies<typename MM0::Mma::FragmentC>()(p.scale,
|
|
// accum);
|
|
// }
|
|
|
|
if (kSupportsBias) {
|
|
cutlass::TensorRef<float, cutlass::layout::RowMajor> bias_tensor_ref(
|
|
shared_storage.after_mm0.bias.data(),
|
|
cutlass::layout::RowMajor(MM0::ThreadblockShape::kN));
|
|
using Shape =
|
|
cutlass::MatrixShape<MM0::ThreadblockShape::kM, MM0::ThreadblockShape::kN>;
|
|
AttentionBiasEpilogue<Shape,
|
|
scalar_t,
|
|
MM0::MmaCore::kThreads,
|
|
Broadcast1_,
|
|
Broadcast2_>
|
|
bias_epilogue;
|
|
bias_epilogue(bias_tensor_ref,
|
|
p.bias1_ptr + iter_key_start,
|
|
p.bias2_ptr + query_start * p.num_keys + iter_key_start,
|
|
thread_id(),
|
|
{problem_size_0_m, problem_size_0_n},
|
|
p.num_keys);
|
|
// Pij += Bij, Pij is in register fragment and Bij is in shared memory
|
|
auto lane_offset = MM0::AccumLambdaIterator::get_lane_offset(
|
|
lane_id(), warp_id(), iteratorC_tile_offset);
|
|
MM0::AccumLambdaIterator::iterateRows(
|
|
lane_offset,
|
|
[&](int accum_m) {},
|
|
[&](int accum_m, int accum_n, int idx) {
|
|
if (accum_m < problem_size_0_m && accum_n < problem_size_0_n) {
|
|
accum[idx] =
|
|
accum[idx] * p.scale + bias_tensor_ref.at({accum_m, accum_n});
|
|
}
|
|
},
|
|
[&](int accum_m) {});
|
|
}
|
|
|
|
DISPATCH_BOOL(iter_key_start == 0, kIsFirst, ([&] {
|
|
DISPATCH_BOOL(
|
|
p.num_keys - iter_key_start >= kKeysPerBlock, kFullColumns, ([&] {
|
|
// Update `mi` from accum stored in registers
|
|
// Also does accum[i] <- exp(accum[i] - mi)
|
|
iterative_softmax<typename MM0::Mma::Operator::IteratorC,
|
|
kFullColumns,
|
|
kIsFirst>(accum_o,
|
|
accum,
|
|
mi,
|
|
m_prime,
|
|
s_prime,
|
|
lane_id(),
|
|
thread_id(),
|
|
warp_id(),
|
|
p.num_keys - iter_key_start,
|
|
iteratorC_tile_offset,
|
|
kSupportsBias ? 1.0f : p.scale);
|
|
}));
|
|
}));
|
|
|
|
// Output results to shared-memory
|
|
int warp_idx_mn_0 =
|
|
my_warp_id % (MM0::Mma::Base::WarpCount::kM * MM0::Mma::Base::WarpCount::kN);
|
|
auto output_tile_coords =
|
|
cutlass::MatrixCoord{warp_idx_mn_0 % MM0::Mma::Base::WarpCount::kM,
|
|
warp_idx_mn_0 / MM0::Mma::Base::WarpCount::kM};
|
|
|
|
MM0::B2bGemm::accumToSmem(
|
|
shared_storage.after_mm0.si, accum, my_lane_id, output_tile_coords);
|
|
|
|
__syncthreads();
|
|
|
|
//
|
|
// MATMUL: Attn . V
|
|
// Run the matmul `attn @ V` for a block of attn and V.
|
|
// `attn` is read from shared memory (in `shared_storage_si`)
|
|
// `V` is read from global memory (with iterator_B)
|
|
//
|
|
|
|
const int64_t nBlockN =
|
|
kSingleValueIteration
|
|
? 1
|
|
: ceil_div((int64_t)problem_size_1_n, int64_t(MM1::ThreadblockShape::kN));
|
|
for (int blockN = 0; blockN < nBlockN; ++blockN) {
|
|
int gemm_k_iterations =
|
|
(problem_size_1_k + MM1::Mma::Shape::kK - 1) / MM1::Mma::Shape::kK;
|
|
|
|
// Compute threadblock-scoped matrix multiply-add and store it in accum
|
|
// (in registers)
|
|
if (!kPreloadV) {
|
|
__syncthreads(); // we share shmem between mma and epilogue
|
|
}
|
|
|
|
typename MM1::Mma::IteratorB iterator_V(
|
|
typename MM1::IteratorB::Params{MM1::LayoutB(p.v_strideM)},
|
|
p.value_ptr + iter_key_start * p.v_strideM,
|
|
{problem_size_1_k, problem_size_1_n},
|
|
thread_id(),
|
|
cutlass::MatrixCoord{0, blockN * MM1::Mma::Shape::kN});
|
|
typename MM1::Mma mma_pv(shared_storage.after_mm0.mm1.mm,
|
|
shared_storage.after_mm0.si,
|
|
(int)thread_id(),
|
|
(int)warp_id(),
|
|
(int)lane_id(),
|
|
(int)problem_size_1_k);
|
|
mma_pv.set_prologue_done(kPreloadV);
|
|
if (!kKeepOutputInRF) { accum_o.clear(); }
|
|
mma_pv(gemm_k_iterations, accum_o, iterator_V, accum_o);
|
|
__syncthreads();
|
|
|
|
if (kPreloadV && !kSingleValueIteration && blockN + 1 < nBlockN) {
|
|
prologueV(blockN + 1);
|
|
}
|
|
|
|
if (!kKeepOutputInRF) {
|
|
MM1::Mma::drain_cp_asyncs();
|
|
DISPATCH_BOOL(
|
|
iter_key_start == 0, kIsFirst, ([&] {
|
|
DISPATCH_BOOL(
|
|
(iter_key_start + kKeysPerBlock) >= p.num_keys, kIsLast, ([&] {
|
|
using DefaultEpilogue = typename MM1::DefaultEpilogue;
|
|
using DefaultOp = typename MM1::DefaultConfig::EpilogueOutputOp;
|
|
using ElementCompute = typename DefaultOp::ElementCompute;
|
|
using EpilogueOutputOp = typename cutlass::epilogue::thread::
|
|
MemoryEfficientAttentionNormalize<
|
|
typename cutlass::platform::
|
|
conditional<kIsLast, output_t, output_accum_t>::
|
|
type,
|
|
output_accum_t,
|
|
DefaultOp::kCount,
|
|
typename DefaultOp::ElementAccumulator,
|
|
ElementCompute,
|
|
kIsFirst,
|
|
kIsLast,
|
|
cutlass::Array<ElementCompute, kQueriesPerBlock>>;
|
|
using Epilogue =
|
|
typename cutlass::epilogue::threadblock::EpiloguePipelined<
|
|
typename DefaultEpilogue::Shape,
|
|
typename MM1::Mma::Operator,
|
|
DefaultEpilogue::kPartitionsK,
|
|
typename cutlass::platform::conditional<
|
|
kIsLast,
|
|
typename MM1::OutputTileIterator,
|
|
typename MM1::OutputTileIteratorAccum>::type,
|
|
typename DefaultEpilogue::AccumulatorFragmentIterator,
|
|
typename DefaultEpilogue::WarpTileIterator,
|
|
typename DefaultEpilogue::SharedLoadIterator,
|
|
EpilogueOutputOp,
|
|
typename DefaultEpilogue::Padding,
|
|
DefaultEpilogue::kFragmentsPerIteration,
|
|
true, // IterationsUnroll
|
|
typename MM1::OutputTileIteratorAccum // Read
|
|
// iterator
|
|
>;
|
|
|
|
int col = blockN * MM1::Mma::Shape::kN;
|
|
auto source_iter = createOutputAccumIter(col);
|
|
auto dest_iter =
|
|
call_conditional<kIsLast,
|
|
decltype(createOutputIter),
|
|
decltype(createOutputAccumIter)>::
|
|
apply(createOutputIter, createOutputAccumIter, col);
|
|
EpilogueOutputOp rescale(s_prime, m_prime);
|
|
Epilogue epilogue(shared_storage.epilogue_shared_storage(),
|
|
thread_id(),
|
|
warp_id(),
|
|
lane_id());
|
|
epilogue(rescale, dest_iter, accum_o, source_iter);
|
|
}));
|
|
}));
|
|
if (!kSingleValueIteration) { __syncthreads(); }
|
|
}
|
|
}
|
|
__syncthreads(); // we modify `m_prime` after
|
|
}
|
|
|
|
if (kKeepOutputInRF) {
|
|
constexpr bool kIsFirst = true;
|
|
constexpr bool kIsLast = true;
|
|
using DefaultEpilogue = typename MM1::DefaultEpilogue;
|
|
using DefaultOp = typename MM1::DefaultConfig::EpilogueOutputOp;
|
|
using ElementCompute = typename DefaultOp::ElementCompute;
|
|
using EpilogueOutputOp =
|
|
typename cutlass::epilogue::thread::MemoryEfficientAttentionNormalize<
|
|
output_t, // output
|
|
output_accum_t, // source
|
|
DefaultOp::kCount,
|
|
typename DefaultOp::ElementAccumulator, // accum
|
|
output_accum_t, // compute
|
|
kIsFirst,
|
|
kIsLast,
|
|
cutlass::Array<ElementCompute, kQueriesPerBlock>>;
|
|
using Epilogue = typename cutlass::epilogue::threadblock::EpiloguePipelined<
|
|
typename DefaultEpilogue::Shape,
|
|
typename MM1::Mma::Operator,
|
|
DefaultEpilogue::kPartitionsK,
|
|
typename MM1::OutputTileIterator, // destination
|
|
typename DefaultEpilogue::AccumulatorFragmentIterator,
|
|
typename DefaultEpilogue::WarpTileIterator,
|
|
typename DefaultEpilogue::SharedLoadIterator,
|
|
EpilogueOutputOp,
|
|
typename DefaultEpilogue::Padding,
|
|
DefaultEpilogue::kFragmentsPerIteration,
|
|
true, // IterationsUnroll
|
|
typename MM1::OutputTileIteratorAccum // source tile
|
|
>;
|
|
auto dest_iter = createOutputIter(0);
|
|
EpilogueOutputOp rescale(s_prime, m_prime);
|
|
Epilogue epilogue(
|
|
shared_storage.epilogue_shared_storage(), thread_id(), warp_id(), lane_id());
|
|
MM1::Mma::drain_cp_asyncs();
|
|
epilogue(rescale, dest_iter, accum_o);
|
|
}
|
|
|
|
// 7. Calculate logsumexp
|
|
// To make the backward easier, we pad logsumexp with `inf`
|
|
// this avoids a few bound checks, and is not more expensive during fwd
|
|
static_assert(kQueriesPerBlock < kNumWarpsPerBlock * kWarpSize, "");
|
|
if (p.logsumexp_ptr && thread_id() < kQueriesPerBlock) {
|
|
auto lse_dim = ceil_div((int32_t)p.num_queries, kAlignLSE) * kAlignLSE;
|
|
if (thread_id() < p.num_queries) {
|
|
p.logsumexp_ptr[thread_id()] =
|
|
accum_t(mi[thread_id()]) + cutlass::fast_log(accum_t(s_prime[thread_id()]));
|
|
} else if (thread_id() < lse_dim) {
|
|
p.logsumexp_ptr[thread_id()] =
|
|
cutlass::platform::numeric_limits<accum_t>::infinity();
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename WarpIteratorC,
|
|
bool kFullColumns,
|
|
bool kIsFirst>
|
|
CUTLASS_DEVICE static void iterative_softmax(
|
|
typename WarpIteratorC::Fragment& frag_o, // output so far
|
|
typename WarpIteratorC::Fragment& frag,
|
|
cutlass::Array<accum_t, kQueriesPerBlock>& mi,
|
|
cutlass::Array<accum_t, kQueriesPerBlock>& m_prime,
|
|
cutlass::Array<accum_t, kQueriesPerBlock>& s_prime,
|
|
int8_t lane_id,
|
|
int8_t thread_id,
|
|
int8_t warp_id,
|
|
int16_t max_col,
|
|
typename WarpIteratorC::TensorCoord const& tile_offset,
|
|
float scaling)
|
|
{
|
|
/* Iterates on the accumulator and corresponding position on result matrix
|
|
|
|
(1) Update `mi[r]` to the max value of the row `r`
|
|
(2) In a second iteration do the following:
|
|
(a) accum <- exp(accum - mi)
|
|
(b) m_prime <- exp(m_prime - mi)
|
|
(c) s_prime <- s_prime * m_prime + sum(accum)
|
|
|
|
All of this is done on registers, before we store all of this
|
|
on shared memory for the next matmul with Value.
|
|
*/
|
|
using Fragment = typename WarpIteratorC::Fragment;
|
|
using LambdaIterator =
|
|
typename DefaultMmaAccumLambdaIterator<WarpIteratorC, accum_t, kWarpSize>::Iterator;
|
|
// Convert to `accum_t` (rather than double)
|
|
constexpr float kLog2e = 1.4426950408889634074; // log_2(e) = M_LOG2E
|
|
if (!kIsFirst) {
|
|
if (thread_id < kQueriesPerBlock) { m_prime[thread_id] = mi[thread_id]; }
|
|
__syncthreads();
|
|
}
|
|
|
|
auto lane_offset = LambdaIterator::get_lane_offset(lane_id, warp_id, tile_offset);
|
|
|
|
// First update `mi` to the max per-row
|
|
{
|
|
accum_t max;
|
|
LambdaIterator::iterateRows(
|
|
lane_offset,
|
|
[&](int accum_m) { max = -cutlass::platform::numeric_limits<accum_t>::infinity(); },
|
|
[&](int accum_m, int accum_n, int idx) {
|
|
if (kFullColumns || accum_n < max_col) {
|
|
max = cutlass::fast_max(max, frag[idx]);
|
|
}
|
|
},
|
|
[&](int accum_m) {
|
|
// Having 4x atomicMax seems faster than reduce within warp
|
|
// first...
|
|
atomicMaxFloat(&mi[accum_m], max * scaling);
|
|
});
|
|
}
|
|
frag = cutlass::multiplies<Fragment>()(scaling * kLog2e, frag);
|
|
|
|
// Make sure we all share the update values for `mi`
|
|
__syncthreads();
|
|
|
|
if (thread_id < kQueriesPerBlock) {
|
|
auto m_prime_exp = exp2f(kLog2e * (m_prime[thread_id] - mi[thread_id]));
|
|
m_prime[thread_id] = m_prime_exp;
|
|
s_prime[thread_id] *= m_prime_exp;
|
|
}
|
|
__syncthreads(); // Update output fragments
|
|
if (kKeepOutputInRF && !kIsFirst) {
|
|
accum_t mp;
|
|
LambdaIterator::iterateRows(
|
|
lane_offset,
|
|
[&](int accum_m) { mp = m_prime[accum_m]; },
|
|
[&](int accum_m, int accum_n, int idx) { frag_o[idx] *= mp; },
|
|
[&](int accum_m) {});
|
|
__syncthreads();
|
|
}
|
|
// Update accum_m, accum_n, ...
|
|
{
|
|
accum_t mi_row, total_row;
|
|
LambdaIterator::iterateRows(
|
|
lane_offset,
|
|
[&](int accum_m) { mi_row = kLog2e * mi[accum_m]; },
|
|
[&](int accum_m, int accum_n, int idx) {
|
|
frag[idx] = (kFullColumns || accum_n < max_col) ? exp2f(frag[idx] - mi_row)
|
|
: accum_t(0.0);
|
|
},
|
|
[&](int accum_m) {});
|
|
LambdaIterator::iterateRows(
|
|
lane_offset,
|
|
[&](int accum_m) { total_row = 0.0; },
|
|
[&](int accum_m, int accum_n, int idx) { total_row += frag[idx]; },
|
|
[&](int accum_m) {
|
|
if (LambdaIterator::reduceSameRow(
|
|
lane_id, total_row, [](accum_t a, accum_t b) { return a + b; })) {
|
|
atomicAdd(&s_prime[accum_m], total_row);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
static CUTLASS_DEVICE int8_t lane_id() { return threadIdx.x; }
|
|
static CUTLASS_DEVICE int8_t warp_id() { return threadIdx.y; }
|
|
static CUTLASS_DEVICE int16_t thread_id() { return threadIdx.x + threadIdx.y * blockDim.x; }
|
|
};
|
|
|
|
template <typename AK>
|
|
__global__ void __launch_bounds__(AK::kNumThreads, AK::kMinBlocksPerSm)
|
|
attention_kernel_batched_impl(typename AK::Params p)
|
|
{
|
|
if (!p.advance_to_block()) { return; }
|
|
AK::attention_kernel(p);
|
|
}
|
|
|
|
template <typename AK>
|
|
__global__ void __launch_bounds__(AK::kNumThreads, AK::kMinBlocksPerSm)
|
|
attention_kernel_batched(typename AK::Params params);
|