Files
DeepSpeed/benchmarks/communication/all_gather.py
Jeff Rasley da84e60d98 add missing license info to top of all source code (#2889)
Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com>
Co-authored-by: Conglong Li <conglong.li@gmail.com>
Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2023-02-27 11:20:41 -08:00

153 lines
5.9 KiB
Python

'''Copyright The Microsoft DeepSpeed Team'''
from benchmarks.communication.utils import *
from benchmarks.communication.constants import *
import time
# Run all_gather and print metrics
def timed_all_gather(input, output, args):
if args.dist == 'torch':
import torch.distributed as dist
elif args.dist == 'deepspeed':
import deepspeed.comm as dist
sync_all()
# Warmups, establish connections, etc.
for i in range(args.warmups):
# use all_gather_base if available
if args.dist == 'torch':
if hasattr(torch.distributed, "_all_gather_base"):
dist._all_gather_base(output, input, group=None, async_op=args.async_op)
else:
output_tensors = list(
torch.chunk(output_tensor,
cdb.get_world_size(group)))
dist.all_gather(output_tensors, input_tensor, group=group, async_op=True)
elif args.dist == 'deepspeed':
dist.allgather_fn(output, input, group=None, async_op=args.async_op)
sync_all()
# time the actual comm op trials times and average it
pre = time.perf_counter()
for i in range(args.trials):
# use all_gather_base if available
if args.dist == 'torch':
if hasattr(torch.distributed, "_all_gather_base"):
dist._all_gather_base(output, input, group=None, async_op=args.async_op)
else:
output_tensors = list(
torch.chunk(output_tensor,
cdb.get_world_size(group)))
dist.all_gather(output_tensors, input_tensor, group=group, async_op=True)
elif args.dist == 'deepspeed':
dist.allgather_fn(output, input, group=None, async_op=args.async_op)
sync_all()
duration = time.perf_counter() - pre
# maintain and clean performance data
avg_duration = duration / args.trials
size = input.element_size() * input.nelement()
n = dist.get_world_size()
tput, busbw = get_bw('all_gather', size, avg_duration, args)
tput_str, busbw_str, duration_str = get_metric_strings(args, tput, busbw, avg_duration)
desc = f'{input.nelement()}x{input.element_size()}'
if not args.raw:
size = convert_size(size)
print_rank_0(
f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}")
def run_all_gather(local_rank, args):
if args.dist == 'torch':
import torch.distributed as dist
elif args.dist == 'deepspeed':
import deepspeed.comm as dist
# Prepare benchmark header
print_header(args, 'all_gather')
global_rank = dist.get_rank()
world_size = dist.get_world_size()
if args.scan:
# Create list of message sizes
M_LIST = []
for x in (2**p for p in range(1, args.maxsize)):
M_LIST.append(x)
sync_all()
# loop over various tensor sizes
for M in M_LIST:
global_rank = dist.get_rank()
try:
mat = torch.ones(world_size,
M,
dtype=getattr(torch,
args.dtype)).cuda(local_rank)
sync_all()
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
torch.cuda.empty_cache()
output = torch.zeros(input.nelement() * world_size,
dtype=getattr(torch,
args.dtype)).cuda(local_rank)
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print('WARNING: Ran out of GPU memory. Exiting comm op.')
sync_all()
break
sync_all()
timed_all_gather(input, output, args)
else:
# all_gather_base saves memory
if (args.dist == 'torch'
and hasattr(torch.distributed,
"_all_gather_base")) or (args.dist == 'deepspeed'
and dist.has_allgather_base):
mem_factor = args.mem_factor + 0.2
else:
mem_factor = args.mem_factor
# Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor
sync_all()
elements_per_gpu = max_numel(comm_op='all_gather',
dtype=getattr(torch,
args.dtype),
mem_factor=mem_factor,
local_rank=local_rank,
args=args)
try:
mat = torch.ones(elements_per_gpu,
dtype=getattr(torch,
args.dtype)).cuda(local_rank)
# multiply each GPU's tensor by the rank to ease debugging
input = ((mat.mul_(float(global_rank))).view(-1))
# Delete original mat to avoid OOM
del mat
torch.cuda.empty_cache()
output = torch.zeros(elements_per_gpu * world_size,
dtype=getattr(torch,
args.dtype)).cuda(local_rank)
except RuntimeError as e:
if 'out of memory' in str(e):
if dist.get_rank() == 0:
print(
'WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!'
)
sync_all()
return
sync_all()
timed_all_gather(input, output, args)
if __name__ == "__main__":
args = benchmark_parser().parse_args()
rank = args.local_rank
init_processes(local_rank=rank, args=args)
run_all_gather(local_rank=rank, args=args)