Files
DeepSpeed/deepspeed/compile/init_z3.py
Junjie Mao aa90f544e3 DeepCompile: Fix IPG bucket clearing (#7610)
PR #6993 replaces the flat IPG buffers with a dict maintaining
type-indexed buckets. The member is also renamed from
`_ipg_bucket_flat_buffer` to `ipg_buckets`.

Update the bucket clearing logic in `init_z3` accordingly.

Signed-off-by: Junjie Mao <junjie.mao@linux.alibaba.com>
2025-10-01 03:42:51 +00:00

96 lines
3.5 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
from deepspeed.runtime.zero.partition_parameters import InsertPostInitMethodToModuleSubClasses
from deepspeed.runtime.zero.parameter_offload import DeepSpeedZeRoOffload
from .passes import zero3_compile, prefetch, selective_gather, offload_parameters
from .backend import make_backend, launch_compile_passes, init_schedule
from .patch_fake_tensor import patch_fake_tensor
from .util import get_deepcompile_handle, add_pre_backward_hook
WARMUP = 5
def init_z3(engine, backend, compile_config, compile_kwargs, schedule=None):
optimizer = engine.optimizer
use_opt = not isinstance(optimizer, DeepSpeedZeRoOffload)
if use_opt and hasattr(optimizer, "ipg_buckets"):
optimizer.ipg_buckets.clear()
get_accelerator().empty_cache()
dc = get_deepcompile_handle()
dc.init(engine.data_parallel_group, compile_config, engine.zero_reduce_bucket_size())
# Unset hooks
for m in engine.module.modules():
m._parameters = m._original_parameters
if use_opt:
optimizer.parameter_offload._remove_module_hooks()
for hook in optimizer._grad_acc_hooks:
hook.remove()
optimizer._grad_acc_hooks.clear()
# Unpatch linear
if hasattr(InsertPostInitMethodToModuleSubClasses, "linear_bk"):
torch.nn.functional.linear = InsertPostInitMethodToModuleSubClasses.linear_bk
if compile_config.symmetric_memory:
group_name = engine.data_parallel_group.group_name
dist.enable_symm_mem_for_group(group_name)
for p in engine.module.parameters():
grad_buffer = torch.Tensor()
if use_opt:
grad_buffer = optimizer._DeepSpeedZeroOptimizer_Stage3__param_id_to_grad_partition[p.ds_id]
# Disable persistent param
p.ds_persist = False
dc.register_z3_param(p.ds_id, p.ds_shape, p.ds_tensor, grad_buffer, p.ds_persist)
if schedule is None:
schedule = []
if (compile_config.offload_parameters):
schedule.append((0, [zero3_compile.add_z3_gather_release, offload_parameters.offload_parameter_fwd]))
else:
schedule.append((0, [zero3_compile.add_z3_gather_release]))
schedule.append(
(WARMUP,
[zero3_compile.add_z3_gather_release, prefetch.schedule_prefetch, selective_gather.selective_gather]))
init_schedule(schedule)
if use_opt:
def set_grad_buffer():
for i, sub_group in enumerate(optimizer.fp16_groups):
optimizer.averaged_gradients[i] = [
optimizer._DeepSpeedZeroOptimizer_Stage3__param_id_to_grad_partition[param.ds_id]
if param.requires_grad else torch.zeros_like(param.ds_tensor) for param in sub_group
]
add_pre_backward_hook(set_grad_buffer)
# offloading opt states need additional setup
from .passes.offload_adam_states import move_opt_states, move_opt_states_sync, init_offload_opt_states
for _, passes in schedule:
if move_opt_states in passes or move_opt_states_sync in passes:
init_offload_opt_states(optimizer, dc)
engine.launch_compile_passes = launch_compile_passes
patch_fake_tensor()
torch._inductor.config.size_asserts = False
return make_backend(backend, compile_config, compile_kwargs=compile_kwargs)