Files
DeepSpeed/deepspeed/nvme/ds_aio_handle.py
Olatunji Ruwase a5400974df DeepNVMe perf tuning (#6560)
Add performance tuning utilities: `ds_nvme_tune` and `ds_io`.  
Update tutorial with tuning section.

---------

Co-authored-by: Ubuntu <jomayeri@microsoft.com>
Co-authored-by: Joe Mayer <114769929+jomayeri@users.noreply.github.com>
2024-09-26 13:07:19 +00:00

223 lines
7.0 KiB
Python
Executable File

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Functionality of swapping optimizer tensors to/from (NVMe) storage devices.
"""
import torch
import os
import time
from multiprocessing import Pool, Barrier
from deepspeed.ops.aio import AsyncIOBuilder
from deepspeed.ops.op_builder import GDSBuilder
from deepspeed.accelerator import get_accelerator
from .test_ds_aio_utils import report_results, task_log, task_barrier, create_filename, create_file
BUFFER = 'buffer'
BOUNCE_BUFFER = 'bounce_buffer'
def pre_handle(args, tid, read_op):
io_string = "Read" if read_op else "Write"
gds = True if args.use_gds else False
device_id, folder = args.mapping_list[tid]
filename = create_filename(folder, args.read, args.io_size, tid)
if args.read and not (os.path.isfile(filename) and os.path.getsize(filename) == args.io_size):
create_file(filename, args.io_size)
task_log(tid, f'Allocate tensor of size {args.io_size} bytes')
bounce_buffer = None
if args.gpu:
device_name = get_accelerator().device_name(device_id)
buffer = torch.randint(high=128, size=(args.io_size, ), dtype=torch.uint8, device=device_name)
if not (args.slow_bounce_buffer or gds):
bounce_buffer = torch.randint(high=128, size=(args.io_size, ), dtype=torch.uint8,
device='cpu').pin_memory()
else:
buffer = torch.randint(high=128, size=(args.io_size, ), dtype=torch.uint8, device='cpu').pin_memory()
task_log(tid,
f'{io_string} file {filename} of size {args.io_size} bytes from buffer on device {buffer.device}',
force=True)
io_parallel = args.io_parallel if args.io_parallel else 1
if gds:
handle = GDSBuilder().load().gds_handle(args.block_size, args.queue_depth, args.single_submit,
not args.sequential_requests, io_parallel)
handle.pin_device_tensor(buffer)
else:
handle = AsyncIOBuilder().load().aio_handle(args.block_size, args.queue_depth, args.single_submit,
not args.sequential_requests, io_parallel)
task_log(tid, f'created deepspeed aio handle')
ctxt = {}
ctxt['file'] = filename
ctxt['num_bytes'] = args.io_size
ctxt['handle'] = handle
ctxt['gds'] = gds
ctxt[BUFFER] = buffer
ctxt[BOUNCE_BUFFER] = bounce_buffer
ctxt['elapsed_sec'] = 0
return ctxt
def pre_handle_read(pool_params):
args, tid = pool_params
ctxt = pre_handle(args, tid, True)
return ctxt
def pre_handle_write(pool_params):
args, tid = pool_params
ctxt = pre_handle(args, tid, False)
return ctxt
def post_handle(pool_params):
_, _, ctxt = pool_params
for buf in [BUFFER, BOUNCE_BUFFER]:
if ctxt[buf] is not None:
if ctxt['gds']:
ctxt['handle'].unpin_device_tensor(ctxt[buf])
ctxt[buf].detach()
ctxt[buf] = None
return ctxt
def main_parallel_read(pool_params):
args, tid, ctxt = pool_params
handle = ctxt['handle']
start_time = time.time()
dest_buffer = BOUNCE_BUFFER if ctxt[BOUNCE_BUFFER] is not None else BUFFER
ret = handle.pread(ctxt[dest_buffer], ctxt['file'], args.validate, True)
assert ret != -1
handle.wait()
if dest_buffer == BOUNCE_BUFFER:
ctxt[BUFFER].data.copy_(ctxt[BOUNCE_BUFFER].data)
end_time = time.time()
ctxt['elapsed_sec'] += end_time - start_time
return ctxt
def main_parallel_write(pool_params):
args, tid, ctxt = pool_params
# Avoid overwriting existing files as it could be artificially faster
if os.path.isfile(ctxt['file']):
os.remove(ctxt['file'])
handle = ctxt['handle']
start_time = time.time()
if ctxt[BOUNCE_BUFFER] is not None:
source_buffer = BOUNCE_BUFFER
ctxt[BOUNCE_BUFFER].data.copy_(ctxt[BUFFER].data)
else:
source_buffer = BUFFER
ret = handle.pwrite(ctxt[source_buffer], ctxt['file'], args.validate, True)
assert ret != -1
handle.wait()
end_time = time.time()
ctxt['elapsed_sec'] += end_time - start_time
return ctxt
def main_handle_read(pool_parms):
args, tid, ctxt = pool_parms
handle = ctxt['handle']
start_time = time.time()
dest_buffer = BOUNCE_BUFFER if ctxt[BOUNCE_BUFFER] is not None else BUFFER
ret = handle.read(ctxt[dest_buffer], ctxt['file'], args.validate)
assert ret != -1
if dest_buffer == BOUNCE_BUFFER:
ctxt[BUFFER].data.copy_(ctxt[BOUNCE_BUFFER].data)
end_time = time.time()
ctxt['elapsed_sec'] += end_time - start_time
return ctxt
def main_handle_write(pool_parms):
args, tid, ctxt = pool_parms
# Avoid overwriting existing files as it could be artificially faster
if os.path.isfile(ctxt['file']):
os.remove(ctxt['file'])
handle = ctxt['handle']
start_time = time.time()
if ctxt[BOUNCE_BUFFER] is not None:
source_buffer = BOUNCE_BUFFER
ctxt[BOUNCE_BUFFER].data.copy_(ctxt[BUFFER].data)
else:
source_buffer = BUFFER
ret = handle.write(ctxt[source_buffer], ctxt['file'], args.validate)
assert ret != -1
end_time = time.time()
ctxt['elapsed_sec'] += end_time - start_time
return ctxt
def get_schedule(args, read_op):
schedule = {}
if read_op:
schedule['pre'] = pre_handle_read
schedule['post'] = post_handle
schedule['main'] = main_parallel_read
else:
schedule['pre'] = pre_handle_write
schedule['post'] = post_handle
schedule['main'] = main_parallel_write
return schedule
def _aio_handle_tasklet(pool_params):
args, tid, read_op = pool_params
num_processes = len(args.mapping_dict)
# Create schedule
schedule = get_schedule(args, read_op)
task_log(tid, f'schedule = {schedule}')
task_barrier(aio_barrier, num_processes)
# Run pre task
task_log(tid, f'running pre-task')
ctxt = schedule["pre"]((args, tid))
task_barrier(aio_barrier, num_processes)
# Run main tasks in a loop
ctxt["main_task_sec"] = 0
for i in range(args.loops):
task_log(tid, f'running main task {i}')
start_time = time.time()
ctxt = schedule["main"]((args, tid, ctxt))
task_barrier(aio_barrier, num_processes)
stop_time = time.time()
ctxt["main_task_sec"] += stop_time - start_time
# Run post task
task_log(tid, f'running post-task')
ctxt = schedule["post"]((args, tid, ctxt))
task_barrier(aio_barrier, num_processes)
return ctxt["main_task_sec"], ctxt["elapsed_sec"], ctxt["num_bytes"] * args.loops
def _init_tasklet(b):
global aio_barrier
aio_barrier = b
def aio_handle_multiprocessing(args, read_op):
num_processes = len(args.mapping_dict)
b = Barrier(num_processes)
pool_params = [(args, p, read_op) for p in range(num_processes)]
with Pool(processes=num_processes, initializer=_init_tasklet, initargs=(b, )) as p:
pool_results = p.map(_aio_handle_tasklet, pool_params)
report_results(args, read_op, pool_results)