Files
DeepSpeed/deepspeed/ops/sparse_attention/bert_sparse_self_attention.py

79 lines
3.4 KiB
Python
Executable File

"""
Copyright 2020 The Microsoft DeepSpeed Team
"""
from torch import nn
from deepspeed.ops.sparse_attention import SparseSelfAttention, FixedSparsityConfig
class BertSparseSelfAttention(nn.Module):
"""Implements Sparse Self Attention layer of Bert model based on https://github.com/microsoft/DeepSpeedExamples/blob/master/bing_bert/nvidia/modelingpreln.py#L373
For more information please see, TODO DeepSpeed Sparse Transformer.
For usage example please see, TODO DeepSpeed Sparse Transformer Tutorial.
"""
def __init__(
self,
config,
# SparsityConfig parameters needs to be set accordingly
sparsity_config=FixedSparsityConfig(num_heads=4)):
"""Initialize the bert sparse self attention layer.
Note) you can use any of the provided sparsity configs or simply add yours!
Arguments:
config: required: Bert model config
sparsity_config: optional: this parameter determines sparsity pattern configuration; it is based on FixedSparsityConfig class.
"""
super(BertSparseSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size,
config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.sparse_self_attention = SparseSelfAttention(sparsity_config)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads,
self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask):
"""Applies forward phase of bert sparse self attention
Arguments:
hidden_states: required: hidden_states tensor of the bert model
attn_mask: required: a mask tensor of size (SequenceLength X SequenceLength); currently only 2D is supported
Return:
context_layer: a dense tensor containing attention context
"""
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
context_layer = self.sparse_self_attention(query_layer,
key_layer,
value_layer,
key_padding_mask=attention_mask)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer