Files
DeepSpeed/deepspeed/utils/timer.py
Stas Bekman 9cbd3edd0d [wall_clock_breakdown] always log stats when enabled (#7617)
currently when main logger is WARN level, `wall_clock_breakdown: true`
never logs - which is invalid as it disables this crucial at times
functionality. Plus I think we have a disconnect somewhere since the
recently added `--log_level` flag doesn't seem to change this logger's
level.

The future plan is to be able to have different log levels for different
modules, but for now just use `print` if `wall_clock_breakdown` is
`True`, so this functionality is not log-level dependent.

`print` is also less noisy than the logger, because of the long prefix
generated by the latter, which is of no value to the user since we print
stats and not code related logs, so the printed results are easier to
digest.

Signed-off-by: Stas Bekman <stas@stason.org>
2025-10-02 19:08:39 -04:00

315 lines
11 KiB
Python
Executable File

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import time
from numpy import mean
from deepspeed.utils.logging import log_dist
from deepspeed.accelerator import get_accelerator
FORWARD_MICRO_TIMER = 'fwd_microstep'
FORWARD_GLOBAL_TIMER = 'fwd'
BACKWARD_MICRO_TIMER = 'bwd_microstep'
BACKWARD_GLOBAL_TIMER = 'bwd'
BACKWARD_INNER_MICRO_TIMER = 'bwd_inner_microstep'
BACKWARD_INNER_GLOBAL_TIMER = 'bwd_inner'
BACKWARD_REDUCE_MICRO_TIMER = 'bwd_allreduce_microstep'
BACKWARD_REDUCE_GLOBAL_TIMER = 'bwd_allreduce'
STEP_MICRO_TIMER = 'step_microstep'
STEP_GLOBAL_TIMER = 'step'
TIME_EPSILON = 1e-6
try:
import psutil
PSUTILS_INSTALLED = True
except ImportError:
PSUTILS_INSTALLED = False
pass
class CudaEventTimer(object):
def __init__(self, start_event: get_accelerator().Event, end_event: get_accelerator().Event):
self.start_event = start_event
self.end_event = end_event
def get_elapsed_msec(self):
get_accelerator().current_stream().wait_event(self.end_event)
self.end_event.synchronize()
return self.start_event.elapsed_time(self.end_event)
class SynchronizedWallClockTimer:
"""Group of timers. Borrowed from Nvidia Megatron code"""
class Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.started_ = False
self.event_timers = []
self.use_host_timer = get_accelerator().use_host_timers()
self.start_event = None
self.elapsed_records = None
self.start_time = 0.0
self.end_time = 0.0
def start(self):
"""Start the timer."""
assert not self.started_, f"{self.name_} timer has already been started"
if self.use_host_timer:
self.start_time = time.time()
else:
event_class = get_accelerator().Event
self.start_event = event_class(enable_timing=True)
self.start_event.record()
self.started_ = True
def stop(self, reset=False, record=False):
"""Stop the timer."""
assert self.started_, "timer is not started"
event_class = get_accelerator().Event
if self.use_host_timer:
self.end_time = time.time()
self.event_timers.append(self.end_time - self.start_time)
else:
event_class = get_accelerator().Event
end_event = event_class(enable_timing=True)
end_event.record()
self.event_timers.append(CudaEventTimer(self.start_event, end_event))
self.start_event = None
self.started_ = False
def _get_elapsed_msec(self):
if self.use_host_timer:
self.elapsed_records = [et * 1000.0 for et in self.event_timers]
else:
self.elapsed_records = [et.get_elapsed_msec() for et in self.event_timers]
self.event_timers.clear()
return sum(self.elapsed_records)
def reset(self):
"""Reset timer."""
self.started_ = False
self.start_event = None
self.elapsed_records = None
self.event_timers.clear()
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self._get_elapsed_msec()
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
def mean(self):
self.elapsed(reset=False)
return trim_mean(self.elapsed_records, 0.1)
def __init__(self):
self.timers = {}
def get_timers(self):
return self.timers
def __call__(self, name):
if name not in self.timers:
self.timers[name] = self.Timer(name)
return self.timers[name]
@staticmethod
def memory_usage():
alloc = "mem_allocated: {:.4f} GB".format(get_accelerator().memory_allocated() / (1024 * 1024 * 1024))
max_alloc = "max_mem_allocated: {:.4f} GB".format(get_accelerator().max_memory_allocated() /
(1024 * 1024 * 1024))
cache = "cache_allocated: {:.4f} GB".format(get_accelerator().memory_cached() / (1024 * 1024 * 1024))
max_cache = "max_cache_allocated: {:.4f} GB".format(get_accelerator().max_memory_cached() /
(1024 * 1024 * 1024))
return " | {} | {} | {} | {}".format(alloc, max_alloc, cache, max_cache)
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None):
"""Log a group of timers."""
assert normalizer > 0.0
string = "time (ms)"
for name in names:
if name in self.timers:
elapsed_time = (self.timers[name].elapsed(reset=reset) / normalizer)
string += " | {}: {:.2f}".format(name, elapsed_time)
# timers logging should be independent of the global log level it's already conditional on wall_clock_breakdown being True, so using use_logger=False will always print the stats
log_dist(string, ranks=ranks or [0], use_logger=False)
def get_mean(self, names, normalizer=1.0, reset=True):
"""Get the mean of a group of timers."""
assert normalizer > 0.0
means = {}
for name in names:
if name in self.timers:
elapsed_time = (self.timers[name].mean() * 1000.0 / normalizer)
means[name] = elapsed_time
return means
class NoopTimer:
class Timer:
def start(self):
...
def reset(self):
...
def stop(self, **kwargs):
...
def elapsed(self, **kwargs):
return 0
def mean(self):
return 0
def __init__(self):
self.timer = self.Timer()
def __call__(self, name):
return self.timer
def get_timers(self):
return {}
def log(self, names, normalizer=1.0, reset=True, memory_breakdown=False, ranks=None):
...
def get_mean(self, names, normalizer=1.0, reset=True):
...
class ThroughputTimer:
def __init__(self, config, batch_size, start_step=2, steps_per_output=None, monitor_memory=False, logging_fn=None):
from deepspeed.utils import logger
self.config = config
self.start_time = 0
self.end_time = 0
self.started = False
self.batch_size = 1 if batch_size is None else batch_size
self.start_step = start_step
self.epoch_count = 0
self.micro_step_count = 0
self.global_step_count = 0
self.total_elapsed_time = 0
self.step_elapsed_time = 0
self.steps_per_output = steps_per_output
self.monitor_memory = monitor_memory
self.logging = logging_fn
if self.logging is None:
self.logging = logger.info
self.initialized = False
if self.monitor_memory and not PSUTILS_INSTALLED:
raise ImportError("Unable to import 'psutils', please install package")
def update_epoch_count(self):
self.epoch_count += 1
self.micro_step_count = 0
def _init_timer(self):
self.initialized = True
def start(self):
if not self.config.enabled:
return
self._init_timer()
self.started = True
if self.global_step_count >= self.start_step:
if self.config.synchronized:
get_accelerator().synchronize()
self.start_time = time.time()
def _is_report_boundary(self):
if self.steps_per_output is None:
return False
return self.global_step_count % self.steps_per_output == 0
def stop(self, global_step=False, report_speed=True):
if not self.config.enabled or not self.started:
return
self.started = False
self.micro_step_count += 1
if global_step:
self.global_step_count += 1
if self.start_time > 0:
if self.config.synchronized:
get_accelerator().synchronize()
self.end_time = time.time()
duration = self.end_time - self.start_time
self.total_elapsed_time += duration
self.step_elapsed_time += duration
if global_step:
if report_speed and self._is_report_boundary():
self.logging(
"epoch={}/micro_step={}/global_step={}, RunningAvgSamplesPerSec={}, CurrSamplesPerSec={}, "
"MemAllocated={}GB, MaxMemAllocated={}GB".format(
self.epoch_count,
self.micro_step_count,
self.global_step_count,
self.avg_samples_per_sec(),
self.batch_size / (self.step_elapsed_time + TIME_EPSILON),
round(get_accelerator().memory_allocated() / 1024**3, 2),
round(get_accelerator().max_memory_allocated() / 1024**3, 2),
))
if self.monitor_memory:
virt_mem = psutil.virtual_memory()
swap = psutil.swap_memory()
self.logging("epoch={}/micro_step={}/global_step={}, vm %: {}, swap %: {}".format(
self.epoch_count,
self.micro_step_count,
self.global_step_count,
virt_mem.percent,
swap.percent,
))
self.step_elapsed_time = 0
def avg_samples_per_sec(self):
if self.global_step_count > 0:
total_step_offset = self.global_step_count - self.start_step
avg_time_per_step = self.total_elapsed_time / total_step_offset
# training samples per second
return self.batch_size / avg_time_per_step
return float("-inf")
def trim_mean(data, trim_percent):
"""Compute the trimmed mean of a list of numbers.
Args:
data (list): List of numbers.
trim_percent (float): Percentage of data to trim.
Returns:
float: Trimmed mean.
"""
assert 0.0 <= trim_percent <= 1.0
n = len(data)
# Account for edge case of empty list
if len(data) == 0:
return 0
data.sort()
k = int(round(n * (trim_percent)))
return mean(data[k:n - k])