Files
DeepSpeed/deepspeed/inference/engine.py
Reza Yazdani 95d9a1b6c3 Fix Opt injection (#2541)
* fix Opt injection & add injection verification check at inference test

* fix several issues

* remove fixture

* remove check_injection when no kerenl is injected

Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
Co-authored-by: Jeff Rasley <jerasley@microsoft.com>
2023-01-06 13:21:49 -08:00

538 lines
23 KiB
Python
Executable File

'''
Copyright 2021 The Microsoft DeepSpeed Team
'''
import torch
import time
import os
from deepspeed import comm as dist
from deepspeed.utils.logging import log_dist
from torch.nn.modules import Module
from packaging import version as pkg_version
from deepspeed.runtime.checkpoint_engine.torch_checkpoint_engine import TorchCheckpointEngine
from deepspeed.utils.timer import SynchronizedWallClockTimer
from ..runtime.state_dict_factory import SDLoaderFactory
from ..runtime.weight_quantizer import WeightQuantization
from ..module_inject.replace_module import replace_transformer_layer, generic_injection
from ..comm.comm import init_distributed
from ..pipe import PipelineModule
from ..moe.utils import has_moe_layers
from ..module_inject import LinearAllreduce, LinearLayer, Normalize, ReplaceWithTensorSlicing
from ..module_inject.replace_policy import TransformerPolicy
DS_INFERENCE_ENABLED = False
from torch import nn
INFERENCE_MODEL_TIMER = "model-forward-inference"
class InferenceEngine(Module):
inference_mp_group = None
inference_ep_group = None
expert_mp_group = None
def __init__(self, model, config):
"""
Args:
model: torch.nn.Module
config: DeepSpeedInferenceConfig
"""
global DS_INFERENCE_ENABLED
DS_INFERENCE_ENABLED = True
super().__init__()
self.module = model
self._config = config
self._get_model_config_generate(config) # keep for weird backward compatibility
# patch model generate with ours if model uses it
if hasattr(self.module, "generate"):
self.generate = self._generate
if hasattr(self.module, "config"):
TransformerPolicy.hf_model_config = self.module.config
# todo: keep this self.injection_dict because we don't use to change config.injection_policy API
# todo: this will get changed when Molly's PR on auto injection dict is merged
self.injection_dict = config.injection_policy
# todo: refactor the mp_group and mp_size related in the next refactor
self.mp_group = config.tensor_parallel.tp_group
self.mpu = config.tensor_parallel.mpu
#self._validate_args(self.mpu, config.replace_with_kernel_inject)
self.quantize_merge_count = 1
self.quantization_scales = None
# these are not needed in the config as we are creating them ourselves in the inference engine
self.ep_group = None # config.moe.ep_group
self.expert_mp_group = None # config.moe.ep_mp_group
self.cuda_graph_created = False
self.checkpoint_engine = TorchCheckpointEngine()
quantization_setting = None
self._init_quantization_setting(
quantization_setting
) # todo: update with the new quant config for weight quant
self.model_profile_enabled = False
self._model_times = []
# This is a hack to remove the prepare_mask function on HF side for BLOOM architecture
self.remove_mask_prepare_for_bloom()
if config.enable_cuda_graph:
assert pkg_version.parse(torch.__version__) >= pkg_version.parse("1.10"), \
"If you want to use cuda graph, please upgrade torch to at least v1.10"
if config.checkpoint and not config.replace_with_kernel_inject:
self._load_checkpoint(config.checkpoint)
# convert model to intended dtype
if config.dtype:
self._convert_to_dtype(config)
if self.mpu:
config.tensor_parallel.tp_size = dist.get_world_size(
group=self.mpu.get_model_parallel_group())
self.mp_group = self.mpu.get_model_parallel_group()
elif config.tensor_parallel.tp_size > 1:
self._create_model_parallel_group(config)
config.tensor_parallel.tp_group = self.mp_group
if isinstance(self.module, torch.nn.Module):
moe, _ = has_moe_layers(self.module)
else:
moe = False
if moe and dist.get_world_size() > 1:
self._create_ep_parallel_group(config.moe.moe_experts)
# retain this from the old conditional argument being passed to apply_injection_policy()
if not config.replace_with_kernel_inject:
config.checkpoint = None
if self.injection_dict:
for client_module, injection_policy in self.injection_dict.items():
# construct the tuple and pass that instead of a string or dict.
if isinstance(injection_policy, str):
config.injection_policy_tuple = (injection_policy, )
else:
config.injection_policy_tuple = injection_policy
self._apply_injection_policy(config, client_module)
elif config.replace_method == 'auto':
self._apply_injection_policy(config)
device = torch.cuda.current_device()
self.module.to(device)
if config.tensor_parallel.tp_size > 1:
_rng_state = torch.cuda.get_rng_state().to(torch.cuda.current_device())
dist.broadcast(_rng_state, 0)
torch.cuda.set_rng_state(_rng_state.cpu())
if config.tensor_parallel.tp_size > 1:
assert not config.enable_cuda_graph, "Cuda graph is not supported for model parallelism"
def profile_model_time(self, use_cuda_events=True):
if not self.model_profile_enabled and not self._config.enable_cuda_graph:
self.module.register_forward_pre_hook(self._pre_forward_hook)
self.module.register_forward_hook(self._post_forward_hook)
self.model_profile_enabled = True
self.use_cuda_events = use_cuda_events
if self.use_cuda_events:
self.timers = SynchronizedWallClockTimer()
# todo: remove this once all the config dicts are centralized from top level pydantic config
def _get_model_config_generate(self, config):
# this is being passed to replace_transformer_layer(config=self.user_model_config_dict)
self.config = getattr(self.module,
'config',
None) if config.config is None else config.config
def remove_mask_prepare_for_bloom(self):
if hasattr(self.module, 'transformer'):
if hasattr(self.module.transformer, '_prepare_attn_mask'):
self.module.transformer._prepare_attn_mask = lambda attention_mask, *args, **kwargs: attention_mask
def _pre_forward_hook(self, module, *inputs, **kwargs):
if self.use_cuda_events:
self.timers(INFERENCE_MODEL_TIMER).start()
else:
torch.cuda.synchronize()
self._start = time.time()
def _post_forward_hook(self, module, input, output):
if self.use_cuda_events:
self.timers(INFERENCE_MODEL_TIMER).stop()
elapsed_time = self.timers(INFERENCE_MODEL_TIMER).elapsed(reset=True)
else:
torch.cuda.synchronize()
self._end = time.time()
elapsed_time = self._end - self._start
self._model_times.append(elapsed_time)
def _create_model_parallel_group(self, config):
# Call the init process
if InferenceEngine.inference_mp_group is None:
init_distributed()
local_rank = int(os.getenv('LOCAL_RANK', '0'))
torch.cuda.set_device(local_rank)
ranks = [i for i in range(config.tensor_parallel.tp_size)]
self.mp_group = dist.new_group(ranks)
InferenceEngine.inference_mp_group = self.mp_group
else:
self.mp_group = InferenceEngine.inference_mp_group
def _create_ep_parallel_group(self, moe_experts):
# Call the init process
self.ep_group = {}
self.expert_mp_group = {}
moe_experts = moe_experts if type(moe_experts) is list else [moe_experts]
for e in moe_experts:
self.ep_group.update({e: None})
self.expert_mp_group.update({e: None})
for moe_ep_size in self.ep_group.keys():
num_ep_groups = dist.get_world_size() // moe_ep_size
for i in range(num_ep_groups):
ep_cnt = i * moe_ep_size
size = dist.get_world_size(
) if moe_ep_size > dist.get_world_size() else moe_ep_size
ranks = list(range(ep_cnt, ep_cnt + size))
_ep_group = dist.new_group(ranks)
if dist.get_rank() in ranks:
self.ep_group.update({moe_ep_size: _ep_group})
if dist.get_world_size() > moe_ep_size:
num_expert_mp_groups = dist.get_world_size() // num_ep_groups
expert_mp_size = dist.get_world_size() // moe_ep_size
for i in range(num_expert_mp_groups):
expert_mp_comm_ranks = [
i + nr * moe_ep_size for nr in range(expert_mp_size)
]
_expert_mp_group = dist.new_group(expert_mp_comm_ranks)
if dist.get_rank() in expert_mp_comm_ranks:
self.expert_mp_group.update({moe_ep_size: _expert_mp_group})
def _init_quantization_setting(self, quantization_setting):
self.quantize_bits = 8
self.mlp_extra_grouping = False
self.quantize_groups = 1
if type(quantization_setting) is tuple:
self.mlp_extra_grouping, \
self.quantize_groups = quantization_setting
elif quantization_setting is not None:
self.quantize_groups = quantization_setting
log_dist(
f"quantize_bits = {self.quantize_bits} "
f"mlp_extra_grouping = {self.mlp_extra_grouping}, "
f"quantize_groups = {self.quantize_groups}",
[0])
# TODO: remove this function and add this functionality to pydantic config checking
def _validate_args(self, mpu, replace_with_kernel_inject):
# TODO: to support SD pipeline we need to avoid this check for now
if replace_with_kernel_inject and not isinstance(self.module, Module):
raise ValueError(f"model must be a torch.nn.Module, got {type(self.module)}")
if not isinstance(self._config.tensor_parallel.tp_size,
int) or self._config.tensor_parallel.tp_size < 1:
raise ValueError(
f"mp_size must be an int >= 1, got {self._config.tensor_parallel.tp_size}"
)
if mpu:
methods = ["get_model_parallel_group", "get_data_parallel_group"]
for method in methods:
if not hasattr(mpu, method):
raise ValueError(f"mpu is missing {method}")
if self._config.checkpoint is not None and not isinstance(
self._config.checkpoint,
(str,
dict)):
raise ValueError(
f"checkpoint must be None, str or dict, got {type(self._config.checkpoint)}"
)
supported_dtypes = [None, torch.half, torch.int8, torch.float]
if self._config.dtype not in supported_dtypes:
raise ValueError(
f"{self._config.dtype} not supported, valid dtype: {supported_dtypes}")
if self.injection_dict is not None and not isinstance(self.injection_dict, dict):
raise ValueError(
f"injection_dict must be None or a dict, got: {self.injection_dict}")
def load_model_with_checkpoint(self, r_module):
self.mp_replace = ReplaceWithTensorSlicing(
mp_group=self.mp_group,
mp_size=self._config.tensor_parallel.tp_size) #, out_dim=0, in_dim=1)
error_msgs = []
def load(module, state_dict, prefix):
args = (state_dict, prefix, {}, True, [], [], error_msgs)
if hasattr(module, 'weight'):
if 'query_key_value' in prefix:
module.weight = self.mp_replace.qkv_copy(
module.weight.data,
state_dict[prefix + 'weight'])
else:
module.weight = self.mp_replace.copy(module.weight.data,
state_dict[prefix + 'weight'])
else:
module.norm.weight = self.mp_replace.copy(module.norm.weight.data,
state_dict[prefix + 'weight'])
if prefix + 'bias' in self.key_list:
if hasattr(module, 'norm'):
module.norm.bias = self.mp_replace.copy(module.norm.bias,
state_dict[prefix + 'bias'])
else:
data = state_dict[prefix + 'bias']
data = data.to(torch.cuda.current_device())
module.bias = self.mp_replace.copy(module.bias, data)
layer_policies = {
nn.Linear: load,
nn.Embedding: load,
nn.LayerNorm: load,
LinearLayer: load,
LinearAllreduce: load
}
def load_module_recursive(module, prefix='', level=0):
for name, child in module.named_children():
if child.__class__ in layer_policies:
checking_key = prefix + name + '.'
if not any(checking_key in item for item in self.key_list):
continue
if len(list(child.parameters())) > 0 and list(
child.parameters())[0].numel() == 0:
if len(child.weight.ds_shape) == 1:
child = Normalize(dim=child.weight.ds_shape[-1],
dtype=child.weight.dtype,
eps=child.eps)
setattr(module, name, child)
load(child, self.sd, prefix + name + '.')
else:
load_module_recursive(child,
prefix if level == 0 else prefix + name + '.',
level + 1)
load_module_recursive(r_module)
def _apply_injection_policy(self, config, client_module=None):
# client_module is only passed when using the injection_dict method.
checkpoint_dir = config.checkpoint
checkpoint = SDLoaderFactory.get_sd_loader_json(
checkpoint_dir,
self.checkpoint_engine) if checkpoint_dir is not None else None
generic_injection(self.module,
fp16=(config.dtype == torch.half)
or (config.dtype == torch.int8),
enable_cuda_graph=config.enable_cuda_graph)
if isinstance(self.module, torch.nn.Module):
# config is our DeepSpeedInferenceConfig and self.config is the HF model config
replace_transformer_layer(client_module,
self.module,
checkpoint,
config,
self.config)
def _get_all_ckpt_names(self, checkpoints_path, tag):
ckpt_file_pattern = self._get_ckpt_name(checkpoints_path,
tag,
mp_placeholder="*")
import glob
ckpt_files = glob.glob(ckpt_file_pattern)
ckpt_files.sort()
return ckpt_files
def _get_ckpt_name(self, checkpoints_path, tag, mp_placeholder=None):
if mp_placeholder is not None:
mp_rank_str = mp_placeholder
else:
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
mp_rank_str = "{:02d}".format(mp_rank)
ckpt_name = os.path.join(
checkpoints_path,
"mp_rank_" + mp_rank_str + "_model_states.pt",
)
return ckpt_name
def _load_checkpoint(self, load_dir, load_module_strict=True, tag=None):
is_pipe_parallel = isinstance(self.module, PipelineModule)
if is_pipe_parallel:
raise RuntimeError(
'pipeline parallelism is currently not supported in inference.')
if not isinstance(load_dir, dict) and os.path.isdir(load_dir):
if tag is None:
latest_path = os.path.join(load_dir, "latest")
if os.path.isfile(latest_path):
with open(latest_path, "r") as fd:
tag = fd.read().strip()
ckpt_list = self._get_all_ckpt_names(load_dir, tag)
sd_loader = SDLoaderFactory.get_sd_loader(ckpt_list, self.checkpoint_engine)
else:
sd_loader = SDLoaderFactory.get_sd_loader_json(load_dir,
self.checkpoint_engine)
if type(sd_loader) is list:
self.sd = torch.load(sd_loader[0], map_location='cpu')
self.key_list = list(self.sd.keys())
self.load_model_with_checkpoint(self.module)
for i in range(1, len(sd_loader)):
if not dist.is_initialized() or dist.get_rank() == 0:
print(f"loading checkpoint ({i})")
self.sd = torch.load(sd_loader[i], map_location='cuda')
self.key_list = list(self.sd.keys())
self.load_model_with_checkpoint(self.module)
else:
mp_rank = 0 if self.mpu is None else self.mpu.get_model_parallel_rank()
load_path, checkpoint, quantize_config = sd_loader.load(self._config.tensor_parallel.tp_size,
mp_rank,
is_pipe_parallel=is_pipe_parallel,
quantize=(self._config.dtype is torch.int8),
quantize_groups=self.quantize_groups,
mlp_extra_grouping=self.mlp_extra_grouping)
self.quantization_scales, self.quantize_merge_count = quantize_config
moe, _ = has_moe_layers(self.module)
if moe:
from deepspeed.runtime.engine import DeepSpeedEngine
old_moe_load = False
if not isinstance(checkpoint['num_experts'], list):
old_moe_load = True
DeepSpeedEngine.load_moe_state_dict(
load_dir,
tag,
state_dict=checkpoint[self._choose_module_key(checkpoint)],
old_moe_load=old_moe_load,
model=self.module,
mpu=self.mpu,
checkpoint_engine=self.checkpoint_engine)
self.module.load_state_dict(
state_dict=checkpoint[self._choose_module_key(checkpoint)],
strict=load_module_strict)
def _choose_module_key(self, sd):
assert not ('module' in sd and 'model' in sd), "checkpoint has both 'model' and 'module' keys, not sure how to proceed"
assert 'module' in sd or 'model' in sd, "checkpoint contains neither 'model' or 'module' keys, not sure how to proceed"
if 'module' in sd:
return 'module'
elif 'model' in sd:
return 'model'
def _convert_to_dtype(self, config):
if not isinstance(self.module, torch.nn.Module):
return
if False: #config.dtype is torch.int8 and self.quantization_scales is None:
quantizer = WeightQuantization(mlp_extra_grouping=self.mlp_extra_grouping)
model, self.quantization_scales = quantizer.model_quantize(self.module,
self.injection_dict,
self.quantize_bits,
self.quantize_groups)
elif config.dtype == torch.half:
self.module.half()
elif config.dtype == torch.bfloat16:
self.module.bfloat16()
elif config.dtype == torch.float:
self.module.float()
def _create_cuda_graph(self, *inputs, **kwargs):
# warmup to create the workspace and cublas handle
cuda_stream = torch.cuda.Stream()
cuda_stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(cuda_stream):
for i in range(3):
ret = self.module(*inputs, **kwargs)
torch.cuda.current_stream().wait_stream(cuda_stream)
# create cuda_graph and assign static_inputs and static_outputs
self._cuda_graphs = torch.cuda.CUDAGraph()
self.static_inputs = inputs
self.static_kwargs = kwargs
with torch.cuda.graph(self._cuda_graphs):
self.static_output = self.module(*self.static_inputs, **self.static_kwargs)
self.cuda_graph_created = True
def _graph_replay(self, *inputs, **kwargs):
for i in range(len(inputs)):
if torch.is_tensor(inputs[i]):
self.static_inputs[i].copy_(inputs[i])
for k in kwargs:
if torch.is_tensor(kwargs[k]):
self.static_kwargs[k].copy_(kwargs[k])
self._cuda_graphs.replay()
return self.static_output
def model_times(self):
assert self.model_profile_enabled, "model profiling is not enabled"
model_times = self._model_times
if self._config.enable_cuda_graph and len(self._model_times) == 0:
raise ValueError(
"Model times are empty and cuda graph is enabled. If "
"this is a GPT-style model this combo is not supported. If this is a "
"BERT-style model this is a bug, please report it. "
f"Model type is: {type(self.module)}")
self._model_times = []
return model_times
def forward(self, *inputs, **kwargs):
"""Execute forward propagation
Arguments:
*inputs: Variable length input list
**kwargs: variable length keyword arguments
"""
start = None
if self.model_profile_enabled and self._config.enable_cuda_graph:
torch.cuda.synchronize()
start = time.time()
if self._config.enable_cuda_graph:
if self.cuda_graph_created:
outputs = self._graph_replay(*inputs, **kwargs)
else:
self._create_cuda_graph(*inputs, **kwargs)
outputs = self._graph_replay(*inputs, **kwargs)
else:
outputs = self.module(*inputs, **kwargs)
if self.model_profile_enabled and self._config.enable_cuda_graph:
torch.cuda.synchronize()
duration = time.time() - start
self._model_times.append(duration)
return outputs
def _generate(self, *inputs, **kwargs):
num_beams = 1
if "generation_config" in kwargs:
gen_config = kwargs["generation_config"]
num_beams = getattr(gen_config, "num_beams", 1)
if "num_beams" in kwargs:
num_beams = kwargs["num_beams"]
if num_beams > 1:
raise NotImplementedError(
"DeepSpeed does not support `num_beams` > 1, if this is important to you please "
"add your request to: https://github.com/microsoft/DeepSpeed/issues/2506"
)
return self.module.generate(*inputs, **kwargs)