Files
DeepSpeed/deepspeed/module_inject/containers/megatron_gpt_moe.py
2023-03-27 07:55:19 -04:00

84 lines
3.8 KiB
Python

'''Copyright The Microsoft DeepSpeed Team'''
from .base import *
from .base_moe import *
from .features.megatron import MegatronContainer
from deepspeed.model_implementations.transformers.ds_megatron_gpt import DeepSpeedMegatronGPTInference
import torch
from .megatron_gpt import MegatronLayerPolicy
from packaging import version as pkg_version
class DS_MegatronGPTMoEContainer(MegatronContainer, BaseTransformerMoEContainer):
def __init__(self, policy, config, model_config, layer_id):
super().__init__(policy, config, model_config, layer_id)
# All model specific things should be defined here instead of the base class.
def create_module(self, config=None):
_config = config if config is not None else self.ds_model_config
self.module = DeepSpeedMegatronGPTInference(_config, mp_group=self.mp_group)
self.module.config.scale_attention = self.scale_attention
if self.megatron_v2:
self.module.config.rotate_half = True
self.module.config.rotate_every_two = False
return self.module
# TODO: Megatron GPT MoE inherits from Megatron policy and replaces mlp
# TODO: Generalize MoE overall goal, expand beyond Megatron
class MegatronMoELayerPolicy(MegatronLayerPolicy):
_orig_layer_class = None
version = 0
moe_type = 'standard'
num_experts = 1
def __init__(self, client_module, inference=True):
super().__init__(inference)
self.client_module = client_module
# we use megatron version to differentiate between the old and new
# megatron-lm source code
if MegatronMoELayerPolicy._orig_layer_class is None:
if pkg_version.parse(torch.__version__) <= pkg_version.parse("1.2"):
MegatronMoELayerPolicy._orig_layer_class = None
else:
try:
from megatron.model.transformer import ParallelTransformerLayer
MegatronMoELayerPolicy._orig_layer_class = ParallelTransformerLayer
except ImportError:
MegatronMoELayerPolicy._orig_layer_class = None
def get_num_experts(self):
return self.num_experts
def mlp(self, moe_type='standard'):
# for now, all of this is tightly coupled to megatron-deepspeed moe implementation
# todo: think and refactor this to be more general
#from deepspeed.moe.utils import has_moe_layers
#moe, _ = has_moe_layers(self.client_module)
moe_experts = self.client_module.mlp.deepspeed_moe.experts.deepspeed_experts if moe_type == 'standard' else \
self.client_module.mlp.moe.deepspeed_moe.experts.deepspeed_experts
num_experts = len(moe_experts)
self.num_experts = num_experts
if moe_type == 'standard':
return [moe_experts[i].dense_h_to_4h.weight for i in range(num_experts)], \
[moe_experts[i].dense_h_to_4h.bias for i in range(num_experts)], \
[moe_experts[i].dense_4h_to_h.weight for i in range(num_experts)], \
[moe_experts[i].dense_4h_to_h.bias for i in range(num_experts)]
else:
return [moe_experts[i].dense_h_to_4h.weight for i in range(num_experts)], \
[moe_experts[i].dense_h_to_4h.bias for i in range(num_experts)], \
[moe_experts[i].dense_4h_to_h.weight for i in range(num_experts)], \
[moe_experts[i].dense_4h_to_h.bias for i in range(num_experts)], \
self.client_module.mlp.mlp.dense_h_to_4h.weight, \
self.client_module.mlp.mlp.dense_h_to_4h.bias, \
self.client_module.mlp.mlp.dense_4h_to_h.weight, \
self.client_module.mlp.mlp.dense_4h_to_h.bias, \
self.client_module.mlp.coefficient.weight