mirror of
https://github.com/deepspeedai/DeepSpeed.git
synced 2025-10-20 15:33:51 +08:00
280 lines
12 KiB
Python
280 lines
12 KiB
Python
'''Copyright The Microsoft DeepSpeed Team'''
|
|
|
|
import os
|
|
from typing import Dict
|
|
import torch
|
|
|
|
from .reshape_3d_utils import model_3d_desc
|
|
from .reshape_utils import (basic_folder_validation, merge_state, partition_data, get_files, get_files_with_prefix)
|
|
|
|
from .constants import (MODEL_FILE_PREFIX, LAYER_FILE_PREFIX)
|
|
|
|
from .reshape_meg_2d import reshape_meg_2d_parallel, meg_2d_parallel_map
|
|
from .zero_checkpoint import ZeROCheckpoint
|
|
from .constants import *
|
|
|
|
EMBEDDING_LAYER_INDEX = 0
|
|
FINAL_LAYER_NORM_INDEX = -1
|
|
ARGS_KEY = 'args'
|
|
CHECKPOINT_INFO_KEY = 'checkpoint_info'
|
|
ITERATION_KEY = 'iteration'
|
|
|
|
SEQUENTIAL_LAYERS = [
|
|
'input_layernorm.weight', 'input_layernorm.bias', 'self_attention.dense.bias', 'post_attention_layernorm.weight',
|
|
'post_attention_layernorm.bias', 'mlp.dense_4h_to_h.bias', 'position_embeddings.weight'
|
|
]
|
|
|
|
LAYER_CONCAT_DIM = {'self_attention.dense.weight': 1, 'mlp.dense_4h_to_h.weight': 1}
|
|
|
|
|
|
class DeepSpeedCheckpoint(object):
|
|
|
|
def __init__(self, dir, tp_degree=None, pp_degree=None, dp_degree=None):
|
|
self.dir = dir
|
|
self._validate_folder(dir)
|
|
|
|
self.zero_checkpoint = ZeROCheckpoint(dir)
|
|
|
|
self.file_list = get_files(dir)
|
|
self.layer_files = get_files_with_prefix(self.file_list, LAYER_FILE_PREFIX)
|
|
self.mp_rank_files = get_files_with_prefix(self.file_list, MODEL_FILE_PREFIX)
|
|
|
|
self.layer_keys = self._get_layer_keys()
|
|
self.layer_count = len(self.layer_keys)
|
|
|
|
self.tp_degree = self.zero_checkpoint.get_src_tp_degree() if tp_degree is None else tp_degree
|
|
self.pp_degree = self.zero_checkpoint.get_src_pp_degree() if pp_degree is None else pp_degree
|
|
self.dp_degree = self.zero_checkpoint.get_src_dp_degree() if dp_degree is None else dp_degree
|
|
|
|
self.original_world_size = self.zero_checkpoint.get_src_tp_degree() * self.zero_checkpoint.get_src_pp_degree(
|
|
) * self.zero_checkpoint.get_src_dp_degree()
|
|
self.world_size = self.tp_degree * self.pp_degree * self.dp_degree
|
|
|
|
self.old_2d_map = meg_2d_parallel_map(self.zero_checkpoint.get_src_pp_degree(),
|
|
self.zero_checkpoint.get_src_tp_degree())
|
|
self.old_2d_map.simple_init()
|
|
self.new_2d_map = reshape_meg_2d_parallel(old_pp_degree=self.zero_checkpoint.get_src_pp_degree(),
|
|
old_tp_degree=self.zero_checkpoint.get_src_tp_degree(),
|
|
new_pp_degree=self.pp_degree,
|
|
new_tp_degree=self.tp_degree)
|
|
|
|
if self.is_change_pp_degree() or self.is_change_tp_degree() or self.is_change_dp_degree():
|
|
self.zero_checkpoint.reshape(model_3d_desc(self.pp_degree, self.tp_degree, self.dp_degree))
|
|
|
|
self.global_state = {}
|
|
|
|
self._sanity_check()
|
|
self.pp_to_transformer_map = self._build_pp_transformer_map()
|
|
self.transformer_file_map = self._build_transformer_file_map()
|
|
self.tp_to_embedding_map = self._build_tp_other_layer_map(EMBEDDING_LAYER_INDEX)
|
|
self.tp_to_final_norm_map = self._build_tp_other_layer_map(FINAL_LAYER_NORM_INDEX)
|
|
self._build_global_state()
|
|
|
|
def is_change_tp_degree(self):
|
|
return self.tp_degree != self.zero_checkpoint.get_src_tp_degree()
|
|
|
|
def is_change_pp_degree(self):
|
|
return self.pp_degree != self.zero_checkpoint.get_src_pp_degree()
|
|
|
|
def is_change_dp_degree(self):
|
|
return self.dp_degree != self.zero_checkpoint.get_src_dp_degree()
|
|
|
|
def show_2d_mapping(self):
|
|
print(f'reshaped 2d map ---- begin')
|
|
|
|
for i in range(self.pp_degree):
|
|
for j in range(self.tp_degree):
|
|
file_list = self.get_2d_parallel_files(pp_index=i, tp_index=j)
|
|
print(f'[{i}, {j}] = {file_list}')
|
|
|
|
print(f'reshaped 2d map ---- end')
|
|
|
|
def show_tp_embedding_map(self):
|
|
self._dump_mapping(self.tp_to_embedding_map, 'tp_to_embedding_layers')
|
|
|
|
def show_tp_final_norm_map(self):
|
|
self._dump_mapping(self.tp_to_final_norm_map, 'tp_to_final_norm_layers')
|
|
|
|
def show_pp_tranformer_map(self):
|
|
self._dump_mapping(self.pp_to_transformer_map, 'pp_to_tranformer_layers')
|
|
|
|
def show_transformer_file_map(self):
|
|
self._dump_mapping(self.transformer_file_map, 'rank_to_tranformer_files')
|
|
|
|
def _build_global_state(self):
|
|
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
|
|
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
|
|
self.global_state[ARGS_KEY] = sd.get(ARGS_KEY, None)
|
|
|
|
def get_zero_checkpoint_state(self, pp_index, tp_index, dp_index) -> dict:
|
|
return self.zero_checkpoint.get_state_for_rank(pp_index=pp_index,
|
|
tp_index=tp_index,
|
|
dp_index=dp_index,
|
|
keys_to_ignore=[PARAM_SHAPES])
|
|
|
|
def get_zero_files(self, pp_index, tp_index, dp_index) -> list:
|
|
return self.zero_checkpoint.get_files_for_rank(pp_index=pp_index, tp_index=tp_index, dp_index=dp_index)
|
|
|
|
def get_embedding_layer_id(self):
|
|
return self.layer_keys[EMBEDDING_LAYER_INDEX]
|
|
|
|
def get_final_norm_layer_id(self):
|
|
return self.layer_keys[FINAL_LAYER_NORM_INDEX]
|
|
|
|
def get_iteration(self):
|
|
if not ITERATION_KEY in self.global_state:
|
|
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
|
|
self.global_state[ITERATION_KEY] = sd.get(ITERATION_KEY, 0)
|
|
|
|
return self.global_state[ITERATION_KEY]
|
|
|
|
def get_embedding_state(self, tp_index: int) -> Dict:
|
|
assert tp_index in self.tp_to_embedding_map.keys()
|
|
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in self.tp_to_embedding_map[tp_index]]
|
|
sd = self._merge_state_dicts(sd_list)
|
|
return sd
|
|
|
|
def get_embedding_files(self, tp_index: int) -> list:
|
|
assert tp_index in self.tp_to_embedding_map.keys()
|
|
return self.tp_to_embedding_map[tp_index]
|
|
|
|
def _get_checkpoint_value(self, key):
|
|
if not key in self.global_state:
|
|
sd = torch.load(self.mp_rank_files[0], map_location=torch.device('cpu'))
|
|
self.global_state[key] = sd.get(key, None)
|
|
|
|
return self.global_state[key]
|
|
|
|
def get_args(self):
|
|
return self._get_checkpoint_value(ARGS_KEY)
|
|
|
|
def get_checkpoint_info(self, info_key=CHECKPOINT_INFO_KEY):
|
|
return self._get_checkpoint_value(info_key)
|
|
|
|
def get_2d_parallel_state(self, tp_index: int, pp_index: int) -> dict:
|
|
assert tp_index < self.tp_degree
|
|
assert pp_index < self.pp_degree
|
|
fname_list = self.get_2d_parallel_files(tp_index=tp_index, pp_index=pp_index)
|
|
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list]
|
|
|
|
merged_sd = None
|
|
for sd in sd_list:
|
|
if merged_sd is None:
|
|
merged_sd = sd
|
|
else:
|
|
merged_sd = merge_state(merged_sd, sd)
|
|
|
|
return merged_sd
|
|
|
|
def get_transformer_state(self, tp_index: int, pp_index: int) -> list:
|
|
assert tp_index < self.tp_degree
|
|
assert pp_index < self.pp_degree
|
|
t_list = []
|
|
for fname_list in self.transformer_file_map[(tp_index, pp_index)]:
|
|
sd_list = [torch.load(fname, map_location=torch.device('cpu')) for fname in fname_list]
|
|
sd = self._merge_state_dicts(sd_list)
|
|
t_list.append(sd)
|
|
return t_list
|
|
|
|
def get_pp_transformer_map(self, pp_index: int) -> list:
|
|
assert pp_index < self.pp_degree
|
|
return self.pp_to_transformer_map[pp_index]
|
|
|
|
def get_final_norm_state(self, tp_index: int) -> Dict:
|
|
assert tp_index in self.tp_to_final_norm_map.keys()
|
|
sd = torch.load(self.tp_to_final_norm_map[tp_index][0], map_location=torch.device('cpu'))
|
|
return sd
|
|
|
|
def get_final_norm_files(self, tp_index: int) -> list:
|
|
assert tp_index in self.tp_to_final_norm_map.keys()
|
|
return self.tp_to_final_norm_map[tp_index]
|
|
|
|
def _build_tp_other_layer_map(self, layer_index: int):
|
|
assert layer_index < len(self.layer_files)
|
|
layer_files = get_files_with_prefix(self.layer_files, self.layer_keys[layer_index])
|
|
layer_file_partitions = partition_data(layer_files, self.tp_degree)
|
|
data_map = {i: flist for i, flist in enumerate(layer_file_partitions)}
|
|
return data_map
|
|
|
|
def get_2d_parallel_files(self, tp_index: int, pp_index: int) -> list:
|
|
assert tp_index < self.tp_degree
|
|
assert pp_index < self.pp_degree
|
|
file_indices = self.new_2d_map.get_data(pp_index=pp_index, tp_index=tp_index)
|
|
return [self.mp_rank_files[i] for i in file_indices]
|
|
|
|
def _build_pp_transformer_map(self):
|
|
data_map = {}
|
|
transformer_layers = self.layer_keys[1:-1]
|
|
layers_per_pp = len(transformer_layers) // self.pp_degree
|
|
data_map = {i: transformer_layers[i * layers_per_pp:(i + 1) * layers_per_pp] for i in range(0, self.pp_degree)}
|
|
return data_map
|
|
|
|
def _dump_mapping(self, data_map, map_tag=None):
|
|
if map_tag is not None:
|
|
print(f'Dump mapping: {map_tag}')
|
|
for k, v in data_map.items():
|
|
print(f'{k} = {v}')
|
|
|
|
def _build_transformer_file_map(self):
|
|
transformer_layer_keys = self.layer_keys[1:-1]
|
|
file_map = {}
|
|
# XXX: this is not guaranteed
|
|
layers_per_pp = len(transformer_layer_keys) // self.pp_degree
|
|
if layers_per_pp == 0:
|
|
layers_per_pp = 1
|
|
#print(f"{transformer_layer_keys} {layers_per_pp}")
|
|
for key_index, layer_key in enumerate(transformer_layer_keys):
|
|
pp_index = key_index // layers_per_pp
|
|
layer_files = get_files_with_prefix(self.layer_files, layer_key)
|
|
layer_file_partitions = partition_data(layer_files, self.tp_degree)
|
|
for tp_index in range(self.tp_degree):
|
|
map_key = (tp_index, pp_index)
|
|
if not map_key in file_map.keys():
|
|
file_map[map_key] = []
|
|
file_map[map_key].append(layer_file_partitions[tp_index])
|
|
|
|
return file_map
|
|
|
|
def _sanity_check(self):
|
|
assert len(self.mp_rank_files) % self.tp_degree == 0
|
|
assert len(self.layer_keys) > 2
|
|
assert self.zero_checkpoint.num_files % (self.pp_degree * self.tp_degree) == 0
|
|
# XXX: fix me - isn't always the case
|
|
# only true with --pp-partition-method 'type:transformer|embedding' \
|
|
# assert (len(self.layer_keys) - 2) % self.pp_degree == 0
|
|
|
|
def validate_files(self):
|
|
for file in self.file_list:
|
|
if not os.path.isfile(file):
|
|
print(f'Error: {file} is not existent')
|
|
|
|
def _get_layer_keys(self):
|
|
key_set = set()
|
|
key_len = len(LAYER_FILE_PREFIX) + 2
|
|
for file_path in self.layer_files:
|
|
_, fname = os.path.split(file_path)
|
|
key_set.add(fname[:key_len])
|
|
return sorted(list(key_set))
|
|
|
|
def _merge_state_dicts(self, sd_list):
|
|
merged_sd = {}
|
|
for key in sd_list[0].keys():
|
|
if not key in SEQUENTIAL_LAYERS:
|
|
cat_dim = LAYER_CONCAT_DIM.get(key, 0)
|
|
merged_sd[key] = torch.cat([sd[key] for sd in sd_list], dim=cat_dim)
|
|
else:
|
|
merged_sd[key] = sd_list[0][key]
|
|
|
|
return merged_sd
|
|
|
|
def _validate_folder(self, dir):
|
|
basic_folder_validation(dir)
|
|
|
|
file_list = get_files(dir)
|
|
|
|
for file_prefix in [MODEL_FILE_PREFIX, LAYER_FILE_PREFIX, f'{LAYER_FILE_PREFIX}01']:
|
|
ckpt_files = get_files_with_prefix(file_list, file_prefix)
|
|
assert len(
|
|
ckpt_files
|
|
) > 0, f'{dir} seems a bogus DeepSpeed checkpoint folder: Cannot find {file_prefix}* files in there.'
|