mirror of
https://github.com/deepspeedai/DeepSpeed.git
synced 2025-10-20 23:53:48 +08:00
226 lines
5.2 KiB
Python
226 lines
5.2 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# DeepSpeed Team
|
|
|
|
import torch
|
|
|
|
from .abstract_accelerator import DeepSpeedAccelerator
|
|
|
|
# During setup stage torch may not be installed, pass on no torch will
|
|
# allow op builder related API to be executed.
|
|
try:
|
|
import torch.mps
|
|
except ImportError:
|
|
pass
|
|
|
|
|
|
class MPS_Accelerator(DeepSpeedAccelerator):
|
|
|
|
def __init__(self):
|
|
self._name = "mps"
|
|
self._communication_backend_name = None
|
|
|
|
def is_synchronized_device(self):
|
|
return False
|
|
|
|
# Device APIs
|
|
def device_name(self, device_index=None):
|
|
if device_index == None:
|
|
return "mps"
|
|
return "mps:{}".format(device_index)
|
|
|
|
def device(self, device_index):
|
|
return torch.device("mps", index=0)
|
|
|
|
def set_device(self, device_index):
|
|
return
|
|
|
|
def current_device(self):
|
|
return torch.device("mps", index=0)
|
|
|
|
def current_device_name(self):
|
|
return "mps:0"
|
|
|
|
def device_count(self):
|
|
return 1
|
|
|
|
def synchronize(self, device_index=None):
|
|
return torch.mps.synchronize()
|
|
|
|
# RNG APIs
|
|
def random(self):
|
|
return torch.random
|
|
|
|
def set_rng_state(self, new_state, device_index=None):
|
|
return torch.mps.set_rng_state(new_state)
|
|
|
|
def get_rng_state(self, device_index=None):
|
|
return torch.mps.get_rng_state()
|
|
|
|
def manual_seed(self, seed):
|
|
return torch.mps.manual_seed(seed)
|
|
|
|
def manual_seed_all(self, seed):
|
|
return torch.mps.manual_seed(seed)
|
|
|
|
def seed(self):
|
|
return torch.mps.seed()
|
|
|
|
def initial_seed(self, seed):
|
|
return
|
|
|
|
def default_generator(self, device_index):
|
|
return
|
|
|
|
# Streams/Events
|
|
@property
|
|
def Stream(self):
|
|
return None
|
|
|
|
def stream(self, stream):
|
|
return None
|
|
|
|
def current_stream(self, device_index=None):
|
|
return None
|
|
|
|
def default_stream(self, device_index=None):
|
|
return None
|
|
|
|
@property
|
|
def Event(self):
|
|
return None
|
|
|
|
# Memory management
|
|
def empty_cache(self):
|
|
return torch.mps.empty_cache()
|
|
|
|
def memory_allocated(self, device_index=None):
|
|
return torch.mps.current_allocated_memory()
|
|
|
|
def max_memory_allocated(self, device_index=None):
|
|
return torch.mps.driver_allocated_memory()
|
|
|
|
def set_per_process_memory_fraction(self, fraction):
|
|
return torch.mps.set_per_process_memory_fraction(fraction)
|
|
|
|
def reset_max_memory_allocated(self, device_index=None):
|
|
return
|
|
|
|
def memory_cached(self, device_index=None):
|
|
return
|
|
|
|
def max_memory_cached(self, device_index=None):
|
|
return
|
|
|
|
def reset_max_memory_cached(self, device_index=None):
|
|
return
|
|
|
|
def memory_stats(self, device_index=None):
|
|
return
|
|
|
|
def reset_peak_memory_stats(self, device_index=None):
|
|
return
|
|
|
|
def memory_reserved(self, device_index=None):
|
|
return
|
|
|
|
def max_memory_reserved(self, device_index=None):
|
|
return
|
|
|
|
def total_memory(self, device_index=None):
|
|
return
|
|
|
|
# Data types
|
|
def is_bf16_supported(self):
|
|
return False
|
|
|
|
def is_fp16_supported(self):
|
|
return False
|
|
|
|
# Misc
|
|
def amp(self):
|
|
return
|
|
|
|
def is_available(self):
|
|
return hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
|
|
|
|
def range_push(self, msg):
|
|
return
|
|
|
|
def range_pop(self):
|
|
return
|
|
|
|
def lazy_call(self, callback):
|
|
return
|
|
|
|
def communication_backend_name(self):
|
|
return self._communication_backend_name
|
|
|
|
# Tensor operations
|
|
@property
|
|
def BFloat16Tensor(self):
|
|
return
|
|
|
|
@property
|
|
def ByteTensor(self):
|
|
return
|
|
|
|
@property
|
|
def DoubleTensor(self):
|
|
return
|
|
|
|
@property
|
|
def FloatTensor(self):
|
|
return
|
|
|
|
@property
|
|
def HalfTensor(self):
|
|
return
|
|
|
|
@property
|
|
def IntTensor(self):
|
|
return
|
|
|
|
@property
|
|
def LongTensor(self):
|
|
return
|
|
|
|
def pin_memory(self, tensor):
|
|
return tensor.pin_memory()
|
|
|
|
def on_accelerator(self, tensor):
|
|
device_str = str(tensor.device)
|
|
if device_str.startswith("mps"):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def op_builder_dir(self):
|
|
try:
|
|
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
|
# if successful this also means we're doing a local install and not JIT compile path
|
|
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
|
|
|
return "op_builder"
|
|
except ImportError:
|
|
return "deepspeed.ops.op_builder"
|
|
|
|
# create an instance of op builder, specified by class_name
|
|
def create_op_builder(self, op_name):
|
|
builder_class = self.get_op_builder(op_name)
|
|
if builder_class != None:
|
|
return builder_class()
|
|
return None
|
|
|
|
# return an op builder class, specified by class_name
|
|
def get_op_builder(self, class_name):
|
|
from deepspeed.ops.op_builder.cpu import NotImplementedBuilder
|
|
|
|
return NotImplementedBuilder
|
|
|
|
def build_extension(self):
|
|
from torch.utils.cpp_extension import BuildExtension
|
|
|
|
return BuildExtension
|