Files
DeepSpeed/csrc/includes/deepcompile.h
Junjie Mao 4efd7eca73 DeepCompile: Fuse allgather and downcast (#7588)
With autocast enabled, a majority of weights are downcasted before being
used in calculations. Today zero3_compile gathers the FP32 weights
before they are downcasted. That is sub-optimal because FP32 weights
consumes more bandwidth to allgather and takes more time to downcast.

To reduce communication and downcast time, fuse allgather and downcast
in the dc ops. The target type is now passed to allgather_param() and
prefetch_params_fused() which will downcast the (partial) weights before
launching allgathers.

This corresponds to issue 1 of #7577.

Tested with
https://gist.github.com/eternalNight/3c2cf8c703f1e9e7742d3b7f9e1edae3
(run with `deepspeed --num_gpus=N this_file.py -c -p -m 23` to collect
torch and memory profiles, and with DINOV2_DEPTH = SIGLIP_DEPTH = 3,
LLAMA2_DEPTH = 4 for faster compileation) on 5090 (which has limited
inter-GPU bandwidth), time per step decreases from 438ms to 337ms and
peak GPU memory usage from 9.5GB to 8.5GB.

Profiles of a single step before this PR:

<img width="1235" height="1029" alt="image"
src="https://github.com/user-attachments/assets/d9fe5296-7731-4542-924b-421ff7415054"
/>

<img width="1466" height="616" alt="image"
src="https://github.com/user-attachments/assets/aa192802-8633-4e36-b2c4-f28b1b432663"
/>

After this PR:

<img width="1218" height="1006" alt="image"
src="https://github.com/user-attachments/assets/18a0e09c-155b-4783-adb5-b4d36c5c3691"
/>

<img width="1537" height="559" alt="image"
src="https://github.com/user-attachments/assets/16a2ca74-8a89-4db9-9b68-81844295c61b"
/>

This PR also reduces peak memory usage because the
`fast_free_schedule()` today always arranges param allgathers and
downcasts at the beginning of the graph. While the original FP32 params
can be freed early, all FP16/BF16-casted params are kept in GPU memory
at the beginning of the backward graph, leading to a higher peak in
memory usage.

P.S. Probably due to organization branch rule settings, I don't find
anywhere to allow reviewers to modify the branch. So I'll update the
branch per reviewers' comments and rebase if needed.

Signed-off-by: Junjie Mao <junjie.mao@linux.alibaba.com>
2025-09-29 03:15:33 +00:00

606 lines
20 KiB
C++

// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0
// DeepSpeed Team
#pragma once
#define NOMINMAX // Windows idiosyncrasy
// https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c
#define USE_C10D_NCCL
#include <stdio.h>
#include <torch/extension.h>
#include <ATen/cuda/CUDAEvent.h>
#include <c10/cuda/CUDAGuard.h>
#include <c10/cuda/CUDAStream.h>
#include <torch/csrc/cuda/nccl.h>
#include <torch/csrc/distributed/c10d/NCCLUtils.hpp>
#include <torch/csrc/distributed/c10d/ParamCommsUtils.hpp>
#include <torch/csrc/distributed/c10d/ProcessGroup.hpp>
#if __has_include(<torch/csrc/distributed/c10d/symm_mem/SymmetricMemory.hpp>)
#include <torch/csrc/distributed/c10d/symm_mem/SymmetricMemory.hpp>
#else
#include <torch/csrc/distributed/c10d/SymmetricMemory.hpp>
#endif
namespace dc {
template <typename K, typename V>
static bool hasKey(const std::unordered_map<K, V>& map, const K& key)
{
return map.find(key) != map.end();
}
template <typename T>
inline std::string to_string(const T& v)
{
std::stringstream ss;
ss << v;
return ss.str();
}
template <typename L>
size_t productDim(const L& dim)
{
size_t prod = 1;
for (auto d : dim) { prod *= d; }
return prod;
}
template <typename T>
std::string join_as_str(const T& v, const char* delim = ",", const size_t maxlen = 0)
{
std::stringstream ss;
if (!v.empty()) {
auto it = v.begin();
ss << to_string(*it);
it++;
for (; it != v.end(); ++it) {
if (delim) ss << delim;
ss << to_string(*it);
}
}
std::string s = ss.str();
if (maxlen > 0 && s.length() > maxlen) { s = s.substr(0, maxlen) + " ..."; }
return "[" + s + "]";
}
template <typename T>
std::string tensorPtrToString(T* ptr, size_t size, size_t str_len = 100)
{
std::vector<T> vals;
for (size_t i = 0; i < size; i++) {
vals.push_back(*ptr);
ptr++;
}
return join_as_str(vals, ",", str_len);
}
std::string tensorPtrToString(void* ptr,
size_t size,
c10::ScalarType datatype,
size_t max_elem = 20,
size_t max_str_len = 100);
std::string tensorToString(const at::Tensor& t, size_t max_elem = 20, size_t max_str_len = 100);
std::string tensorDimToString(const at::Tensor& t);
at::Tensor test_call(at::Tensor param);
extern c10::intrusive_ptr<c10d::ProcessGroup> process_group;
extern c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> symm_mem;
extern ncclComm_t nccl_comm;
extern bool use_symm_mem;
extern bool profile;
extern bool pre_div_reduce;
extern bool sync_before_reduce; // for debugging
extern bool sync_after_reduce; // for debugging
extern bool sync_before_allgather; // for debugging
extern bool sync_after_allgather; // for debugging
std::vector<int64_t> sizes_to_int_vector(at::IntArrayRef sizes);
void enable_profiling(bool enable);
bool is_profiling();
c10::intrusive_ptr<c10d::symmetric_memory::SymmetricMemory> getSymmMemWorkspace(int64_t size);
void lazy_init_symm_memory();
ncclDataType_t get_nccl_data_type(at::ScalarType scalar_type);
void cleanup();
class ReduceTask {
public:
ReduceTask(long ds_id, at::Tensor grad, at::Tensor send_buf)
: ds_id_(ds_id), grad_(std::move(grad)), send_buf_(std::move(send_buf))
{
}
long getDSId() const { return ds_id_; }
at::Tensor getSendBuf() const { return send_buf_; }
private:
long ds_id_;
at::Tensor grad_;
at::Tensor send_buf_;
};
class ReduceBucket {
public:
ReduceBucket(int64_t size, at::ScalarType scalar_type) : size_(size), scalar_type_(scalar_type)
{
buffer_ = torch::empty({size}, at::TensorOptions().dtype(scalar_type).device(at::kCUDA));
offset_ = 0;
}
int64_t getSize() const { return size_; }
int64_t getOffset() const { return offset_; }
at::Tensor getBuffer() const { return buffer_; }
at::ScalarType getScalarType() const { return scalar_type_; }
void reserve(int64_t size)
{
if (size > size_) {
buffer_ =
torch::empty({size}, at::TensorOptions().dtype(scalar_type_).device(at::kCUDA));
size_ = size;
}
}
at::Tensor allocate(int64_t numel)
{
if (offset_ + numel > size_) {
throw std::runtime_error("Buffer size exceeds the reduce bucket size");
}
at::Tensor result = buffer_.index({torch::indexing::Slice(offset_, offset_ + numel)});
offset_ += numel;
return result;
}
bool shouldFlush(int64_t numel) { return offset_ > 0 && offset_ + numel > size_; }
void reset() { offset_ = 0; }
private:
int64_t size_;
int64_t offset_;
at::Tensor buffer_;
at::ScalarType scalar_type_;
};
class DoubleBufferedReduceBucket {
public:
DoubleBufferedReduceBucket(int64_t initial_bucket_size, bool enable_double_buffer)
: initial_bucket_size_(initial_bucket_size), enable_double_buffer_(enable_double_buffer)
{
}
void swap(at::ScalarType scalar_type,
at::cuda::CUDAStream rs_stream,
at::cuda::CUDAStream copy_stream)
{
assert(hasKey(current_buffer_, scalar_type));
assert(hasKey(current_buffer_events_, scalar_type));
current_buffer_.at(scalar_type)->reset();
current_buffer_events_.at(scalar_type)->record(rs_stream);
if (enable_double_buffer_) {
assert(hasKey(shadow_buffer_, scalar_type));
assert(hasKey(shadow_buffer_events_, scalar_type));
auto tmp = current_buffer_.at(scalar_type);
current_buffer_[scalar_type] = shadow_buffer_.at(scalar_type);
shadow_buffer_[scalar_type] = tmp;
auto tmp_event = current_buffer_events_.at(scalar_type);
current_buffer_events_[scalar_type] = shadow_buffer_events_.at(scalar_type);
shadow_buffer_events_[scalar_type] = tmp_event;
}
}
std::shared_ptr<ReduceBucket> getBuffer(at::ScalarType scalar_type)
{
if (!hasKey(current_buffer_, scalar_type)) {
current_buffer_[scalar_type] =
std::make_shared<ReduceBucket>(initial_bucket_size_, scalar_type);
current_buffer_events_[scalar_type] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
if (enable_double_buffer_) {
shadow_buffer_[scalar_type] =
std::make_shared<ReduceBucket>(initial_bucket_size_, scalar_type);
shadow_buffer_events_[scalar_type] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
}
}
return current_buffer_.at(scalar_type);
}
std::shared_ptr<at::cuda::CUDAEvent> getEvent(at::ScalarType scalar_type)
{
assert(hasKey(current_buffer_events_, scalar_type));
return current_buffer_events_.at(scalar_type);
}
void clear()
{
current_buffer_.clear();
shadow_buffer_.clear();
current_buffer_events_.clear();
shadow_buffer_events_.clear();
}
private:
int64_t initial_bucket_size_;
bool enable_double_buffer_;
std::unordered_map<at::ScalarType, std::shared_ptr<ReduceBucket>> current_buffer_;
std::unordered_map<at::ScalarType, std::shared_ptr<ReduceBucket>> shadow_buffer_;
std::unordered_map<at::ScalarType, std::shared_ptr<at::cuda::CUDAEvent>> current_buffer_events_;
std::unordered_map<at::ScalarType, std::shared_ptr<at::cuda::CUDAEvent>> shadow_buffer_events_;
};
class DSParam {
public:
DSParam(long id,
std::vector<int64_t> ds_shape,
at::Tensor ds_tensor,
at::Tensor grad_buffer,
bool partitioned,
int64_t offset, // for Z1
bool persistent // for Z3
)
: id_(id),
shape_(std::move(ds_shape)),
ds_tensor_(ds_tensor),
ds_dtype_(ds_tensor.scalar_type()),
grad_buffer_(grad_buffer),
partitioned_(partitioned),
offset_(offset),
persistent_(persistent),
offload_stream_(at::cuda::getStreamFromPool()),
reload_stream_(at::cuda::getStreamFromPool())
{
}
long getId() const { return id_; }
std::vector<int64_t> getShape() const { return shape_; }
at::ScalarType getDtype() const { return ds_dtype_; }
at::Tensor getDSTensor() const
{
// If the reload event exists and is complete, return the reloaded tensor (if defined)
if (reload_done_event_) {
if (!reload_done_event_->query()) {
reload_done_event_->block(at::cuda::getCurrentCUDAStream());
}
if (ds_reload_tensor_.defined()) { return ds_reload_tensor_; }
}
// Otherwise, if an offload event exists, wait for it to complete
if (offload_done_event_) {
if (!offload_done_event_->query()) {
offload_done_event_->block(at::cuda::getCurrentCUDAStream());
}
}
return ds_tensor_;
}
at::Tensor getGradBuffer() const { return grad_buffer_; }
bool isPartitioned() const { return partitioned_; }
int64_t getOffset() const { return offset_; }
void setPersistent(bool persistent) { persistent_ = persistent; }
bool isPersistent() const { return persistent_; }
void offload()
{
// If a reloaded tensor exists, offload its data back to ds_tensor_
if (ds_reload_tensor_.defined()) {
auto comp_stream = at::cuda::getCurrentCUDAStream();
comp_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
// Record completion and wait on the offload stream
comp_done_event_->record(comp_stream);
comp_done_event_->block(offload_stream_);
offload_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
{
at::cuda::CUDAStreamGuard guard(offload_stream_);
ds_tensor_.copy_(ds_reload_tensor_, /*non_blocking=*/true);
ds_reload_tensor_.reset(); // Clear the reloaded tensor
offload_done_event_->record(offload_stream_);
}
// Reset the reload event to indicate that no valid reload is present.
if (reload_done_event_) { reload_done_event_.reset(); }
}
}
void reload()
{
// Reload only if the current ds_tensor_ is on CPU
if (ds_tensor_.device().is_cpu()) {
auto comp_stream = at::cuda::getCurrentCUDAStream();
comp_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
// Record and wait on the reload stream
comp_done_event_->record(comp_stream);
comp_done_event_->block(reload_stream_);
reload_done_event_ = std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
{
at::cuda::CUDAStreamGuard guard(reload_stream_);
ds_reload_tensor_ =
at::empty_like(ds_tensor_, ds_tensor_.options().device(torch::kCUDA));
ds_reload_tensor_.copy_(ds_tensor_, /*non_blocking=*/true);
reload_done_event_->record(reload_stream_);
}
// Reset offload_done_event if it exists to clear any stale offload state.
if (offload_done_event_) { offload_done_event_.reset(); }
}
}
private:
long id_;
std::vector<int64_t> shape_;
at::ScalarType ds_dtype_;
at::Tensor ds_tensor_;
at::Tensor ds_reload_tensor_;
at::Tensor grad_buffer_;
bool partitioned_;
int64_t offset_; // for Z1
bool persistent_; // for Z3
mutable bool is_reloaded = false;
at::cuda::CUDAStream offload_stream_;
at::cuda::CUDAStream reload_stream_;
std::shared_ptr<at::cuda::CUDAEvent> comp_done_event_;
std::shared_ptr<at::cuda::CUDAEvent> offload_done_event_;
std::shared_ptr<at::cuda::CUDAEvent> reload_done_event_;
};
class DSParamRegistry {
public:
DSParamRegistry() {}
~DSParamRegistry() {}
void registerParam(long ds_id,
const std::vector<int64_t>& ds_shape,
at::Tensor ds_tensor,
at::Tensor grad_buffer,
bool partitioned,
int64_t offset, // for Z1
bool persistent // for Z3
)
{
grad_buffer.zero_();
params_.emplace(
ds_id,
DSParam(ds_id, ds_shape, ds_tensor, grad_buffer, partitioned, offset, persistent));
valid_[ds_id] = false;
}
void registerGatheredParam(long ds_id, at::Tensor ds_tensor)
{
gathered_params_.emplace(ds_id, ds_tensor);
}
void unregisterGatheredParam(long ds_id)
{
assert(hasKey(gathered_params_, ds_id));
gathered_params_.erase(ds_id);
valid_[ds_id] = false;
}
const std::unordered_map<long, DSParam>& getParams() const { return params_; }
const DSParam& getParam(long ds_id) const { return params_.at(ds_id); }
const size_t getNumParams() const { return params_.size(); }
const at::Tensor& getGatheredParam(long ds_id) const
{
assert(hasKey(gathered_params_, ds_id));
return gathered_params_.at(ds_id);
}
bool hasGatheredParam(long ds_id) const { return hasKey(gathered_params_, ds_id); }
void setPersistent(long ds_id, bool persistent) { params_.at(ds_id).setPersistent(persistent); }
void offload(long ds_id) { params_.at(ds_id).offload(); }
void reload(long ds_id) { params_.at(ds_id).reload(); }
void setValid(long ds_id, bool valid) { valid_[ds_id] = valid; }
bool isValid(long ds_id) const
{
assert(hasKey(valid_, ds_id));
return valid_.at(ds_id);
}
private:
std::unordered_map<long, DSParam> params_;
std::unordered_map<long, at::Tensor> gathered_params_;
std::unordered_map<long, bool> valid_;
};
class CustomOpExecutor {
public:
CustomOpExecutor(c10::intrusive_ptr<c10d::ProcessGroup> process_group,
std::shared_ptr<DSParamRegistry> param_registry,
std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets,
std::vector<long> ds_ids,
ncclComm_t nccl_comm,
at::cuda::CUDAStream rs_stream,
at::cuda::CUDAStream copy_stream,
bool pre_div_reduce)
: process_group_(process_group),
param_registry_(std::move(param_registry)),
reduce_buckets_(std::move(reduce_buckets)),
ds_ids_(std::move(ds_ids)),
nccl_comm_(nccl_comm),
rs_stream_(rs_stream),
copy_stream_(copy_stream),
pre_div_reduce_(pre_div_reduce)
{
for (long ds_id : ds_ids_) {
has_acc_grad_[ds_id] = false;
rs_comp_done_events_[ds_id] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
rs_copy_done_events_[ds_id] =
std::make_shared<at::cuda::CUDAEvent>(cudaEventDisableTiming);
}
reduce_counter_ = ds_ids_.size();
}
~CustomOpExecutor() {}
virtual void startForward() {}
virtual void endForward() {}
virtual void startBackward(bool update) { param_updated_ = update; }
virtual void endBackward()
{
flushAllReduceBuckets();
// This synchronization ensures all of reduce calls are done before optimizer's step.
at::cuda::stream_synchronize(rs_stream_);
}
virtual at::Tensor reduceGrad(at::Tensor grad_tensor, long ds_id)
{
int world_size = process_group_->getSize();
const DSParam& param = param_registry_->getParam(ds_id);
const auto scalar_type = grad_tensor.scalar_type();
std::shared_ptr<ReduceBucket> reduce_bucket = reduce_buckets_->getBuffer(scalar_type);
auto comp_stream = at::cuda::getCurrentCUDAStream();
if (reduce_bucket->shouldFlush(grad_tensor.numel())) {
int rank = process_group_->getRank();
flushReduceBucket(scalar_type);
// reduce_bucket is swapped in flushReduceBucket if double buffering is enabled
reduce_bucket = reduce_buckets_->getBuffer(scalar_type);
}
if (grad_tensor.numel() > reduce_bucket->getSize()) {
// extend buckets
at::cuda::stream_synchronize(rs_stream_);
reduce_bucket->reserve(grad_tensor.numel());
}
at::Tensor reduce_in_buffer = reduce_bucket->allocate(grad_tensor.numel());
// This ensures the order of reduce_scatter -> copy
// Without this block, copy may start while reduce_scatter is still running
reduce_buckets_->getEvent(scalar_type)->block(comp_stream);
auto copy_src = grad_tensor.contiguous().view({-1}).detach();
// keep references to copy src
reduce_tasks_[scalar_type].emplace_back(ds_id, copy_src, reduce_in_buffer);
// computation must be done before copy
rs_comp_done_events_[ds_id]->record(comp_stream);
rs_comp_done_events_[ds_id]->block(copy_stream_);
{
at::cuda::CUDAStreamGuard guard(copy_stream_);
reduce_in_buffer.copy_(copy_src, true);
rs_copy_done_events_[ds_id]->record(copy_stream_);
}
return at::Tensor();
}
bool hasParam(long ds_id) const { return hasKey(has_acc_grad_, ds_id); }
protected:
c10::intrusive_ptr<c10d::ProcessGroup> process_group_;
std::shared_ptr<DSParamRegistry> param_registry_;
std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets_;
std::vector<long> ds_ids_;
ncclComm_t nccl_comm_;
at::cuda::CUDAStream rs_stream_;
at::cuda::CUDAStream copy_stream_;
std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> rs_comp_done_events_;
std::unordered_map<long, std::shared_ptr<at::cuda::CUDAEvent>> rs_copy_done_events_;
size_t reduce_counter_ = 0;
bool param_updated_ = false;
std::unordered_map<at::ScalarType, std::vector<ReduceTask>> reduce_tasks_;
std::unordered_map<long, bool> has_acc_grad_;
bool pre_div_reduce_;
virtual void flushReduceBucket(at::ScalarType scalar_type) = 0;
void flushAllReduceBuckets()
{
for (const auto& it : reduce_tasks_) { flushReduceBucket(it.first); }
}
// Common helper methods for flushReduceBucket implementations
void blockCopyEvents(at::ScalarType scalar_type)
{
for (const ReduceTask& t : reduce_tasks_.at(scalar_type)) {
auto copy_done_event = rs_copy_done_events_.at(t.getDSId());
copy_done_event->block(rs_stream_);
}
}
void applyPreDivision(at::ScalarType scalar_type)
{
if (pre_div_reduce_) {
at::cuda::CUDAStreamGuard guard(rs_stream_);
for (const ReduceTask& t : reduce_tasks_.at(scalar_type)) {
t.getSendBuf().div_(process_group_->getSize());
}
}
}
ncclRedOp_t getReductionOp() const { return pre_div_reduce_ ? ncclSum : ncclAvg; }
void performCleanup(at::ScalarType scalar_type)
{
reduce_buckets_->swap(scalar_type, rs_stream_, copy_stream_);
// Prevent grad tensor from being released before the copy is done
auto comp_stream = at::cuda::getCurrentCUDAStream();
for (const ReduceTask& t : reduce_tasks_.at(scalar_type)) {
auto copy_done_event = rs_copy_done_events_.at(t.getDSId());
copy_done_event->block(comp_stream);
}
reduce_tasks_[scalar_type].clear();
}
};
template <typename T, typename U>
std::shared_ptr<T> getExecutor(long graph_id,
const std::unordered_map<long, std::shared_ptr<U>>& executors)
{
assert(hasKey(executors, graph_id));
if (auto executor = std::dynamic_pointer_cast<T>(executors.at(graph_id))) { return executor; }
throw std::runtime_error("Invalid executor type");
}
extern std::shared_ptr<DSParamRegistry> param_registry;
extern std::unordered_map<long, std::shared_ptr<CustomOpExecutor>> executors;
extern std::shared_ptr<DoubleBufferedReduceBucket> reduce_buckets;
at::Tensor reduce_grad(at::Tensor grad_tensor, long graph_id, long ds_id);
at::Tensor reduce_grad_meta(at::Tensor grad_tensor, long graph_id, long ds_id);
void free_tensors(std::vector<at::Tensor> tensors);
void free_tensors_meta(std::vector<at::Tensor> tensors);
void init(c10::intrusive_ptr<c10d::ProcessGroup> pg,
pybind11::object& config,
int64_t initial_reduce_bucket_size);
void reset();
void cleanup();
void start_forward();
void end_forward();
void start_backward(bool update);
} // namespace dc