mirror of
https://github.com/deepspeedai/DeepSpeed.git
synced 2025-10-20 15:33:51 +08:00
This PR introduces *DeepCompile*, a new feature that efficiently integrates compiler optimizations with other DeepSpeed features. DeepCompile utilizes torch's dynamo to capture the computation graph and modifies it to incorporate DeepSpeed’s optimizations seamlessly. Currently, DeepCompile supports ZeRO-1 and ZeRO-3, with enhancements such as proactive prefetching and selective unsharding to improve performance. (More details will be added later.) --------- Signed-off-by: Masahiro Tanaka <mtanaka@microsoft.com> Signed-off-by: Olatunji Ruwase <olruwase@microsoft.com> Co-authored-by: zafarsadiq <zafarsadiq120@gmail.com> Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
590 lines
26 KiB
Python
590 lines
26 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# DeepSpeed Team
|
|
|
|
import sys
|
|
import torch
|
|
from collections import OrderedDict
|
|
from deepspeed.utils import z3_leaf_module, set_z3_leaf_module
|
|
from deepspeed.runtime.utils import see_memory_usage
|
|
from deepspeed.runtime.zero.utils import apply_to_tensors_only, is_zero_param
|
|
from deepspeed.runtime.zero.offload_config import OffloadDeviceEnum
|
|
from deepspeed.runtime.zero.partition_parameters import _init_external_params
|
|
from deepspeed.runtime.zero.partition_parameters import *
|
|
from deepspeed.runtime.zero.partitioned_param_coordinator import PartitionedParameterCoordinator, InflightParamRegistry, iter_params
|
|
from deepspeed.accelerator import get_accelerator
|
|
from deepspeed import utils
|
|
|
|
FWD_MODULE_STACK = list()
|
|
|
|
|
|
#for each tensor in outputs run the forward_function and register backward_function as hook
|
|
def _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function, outputs):
|
|
if type(outputs) is tuple:
|
|
touched_outputs = []
|
|
for output in outputs:
|
|
touched_output = _apply_forward_and_backward_to_tensors_only(module, forward_function, backward_function,
|
|
output)
|
|
touched_outputs.append(touched_output)
|
|
return tuple(touched_outputs)
|
|
elif type(outputs) is torch.Tensor:
|
|
forward_function(outputs)
|
|
if outputs.requires_grad:
|
|
outputs.register_hook(backward_function)
|
|
return outputs
|
|
else:
|
|
return outputs
|
|
|
|
|
|
class ZeROOrderedDict(OrderedDict):
|
|
|
|
def __init__(self, parent_module, *args, **kwargs):
|
|
"""A replacement for ``collections.OrderedDict`` to detect external ZeRO params.
|
|
|
|
Args:
|
|
parent_module (``collections.OrderedDict``): the collection to replace
|
|
"""
|
|
|
|
super().__init__(*args, **kwargs)
|
|
self._parent_module = parent_module
|
|
self._in_forward = False
|
|
|
|
def __reduce__(self):
|
|
r0, _, *r2 = super().__reduce__()
|
|
return (r0, (self._parent_module, )) + tuple(r2)
|
|
|
|
def __getitem__(self, key):
|
|
param = super().__getitem__(key)
|
|
|
|
# Params can be registered as None (e.g., bias)
|
|
if param is None:
|
|
return param
|
|
|
|
# TODO: only weaken this check during compilation
|
|
if hasattr(param, "ds_status") and param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
|
if self._parent_module._parameters._in_forward:
|
|
register_external_parameter(FWD_MODULE_STACK[-1], param)
|
|
param.all_gather()
|
|
print_rank_0(f'Registering external parameter from getter {key} ds_id = {param.ds_id}', force=False)
|
|
|
|
return param
|
|
|
|
|
|
def _inject_parameters(module, cls):
|
|
for module in module.modules():
|
|
module._original_parameters = module._parameters
|
|
|
|
if cls == ZeROOrderedDict:
|
|
new_param = cls(parent_module=module)
|
|
else:
|
|
new_param = cls()
|
|
|
|
for key, param in module._parameters.items():
|
|
new_param[key] = param
|
|
|
|
module._parameters = new_param
|
|
|
|
|
|
class DeepSpeedZeRoOffload(object):
|
|
|
|
def __init__(
|
|
self,
|
|
module,
|
|
timers,
|
|
ds_config,
|
|
overlap_comm=True,
|
|
prefetch_bucket_size=50000000,
|
|
max_reuse_distance=1000000000,
|
|
max_live_parameters=1000000000,
|
|
param_persistence_threshold=100000,
|
|
model_persistence_threshold=sys.maxsize,
|
|
dp_process_group=None,
|
|
offload_param_config=None,
|
|
mpu=None,
|
|
zero_param_parallel_group=None,
|
|
zero_quantized_weights=False,
|
|
zero_quantized_nontrainable_weights=False,
|
|
zero_module_granularity_threshold=0,
|
|
log_trace_cache_warnings=False,
|
|
):
|
|
|
|
see_memory_usage("DeepSpeedZeRoOffload initialize [begin]", force=True)
|
|
|
|
print_rank_0(f"initialized {__class__.__name__} with args: {locals()}", force=False)
|
|
|
|
self.module = module
|
|
self.timers = timers
|
|
self.dtype = list(module.parameters())[0].dtype
|
|
self.dp_process_group = dp_process_group
|
|
self.offload_device = None
|
|
self.offload_param_pin_memory = False
|
|
self.zero_param_parallel_group = zero_param_parallel_group
|
|
self.zero_quantized_weights = zero_quantized_weights
|
|
self.zero_quantized_nontrainable_weights = zero_quantized_nontrainable_weights
|
|
self.log_trace_cache_warnings = log_trace_cache_warnings
|
|
|
|
if offload_param_config is not None and offload_param_config.device != OffloadDeviceEnum.none:
|
|
self.offload_device = offload_param_config.device
|
|
self.offload_param_pin_memory = offload_param_config.pin_memory
|
|
|
|
self._convert_to_zero_parameters(ds_config, module, mpu)
|
|
|
|
for m in module.modules():
|
|
_init_external_params(m)
|
|
|
|
_inject_parameters(module, ZeROOrderedDict)
|
|
|
|
self.param_numel_persistence_threshold = int(param_persistence_threshold)
|
|
self.model_persistence_threshold = int(model_persistence_threshold)
|
|
self.persistent_parameters = self.mark_persistent_parameters(self.param_numel_persistence_threshold,
|
|
self.model_persistence_threshold)
|
|
|
|
self._prefetch_bucket_sz = int(prefetch_bucket_size)
|
|
self._max_reuse_distance_in_numel = int(max_reuse_distance)
|
|
self._max_available_parameters_in_numel = int(max_live_parameters)
|
|
self.__allgather_stream = None if get_accelerator().is_synchronized_device() else get_accelerator().Stream(
|
|
) if overlap_comm else get_accelerator().default_stream()
|
|
|
|
if not hasattr(module, "ds_inflight_param_registry"):
|
|
module.ds_inflight_param_registry = InflightParamRegistry()
|
|
self.__inflight_param_registry = module.ds_inflight_param_registry
|
|
|
|
self.fast_sharding_for_leaf_module = False
|
|
|
|
if zero_module_granularity_threshold > 0:
|
|
self.min_granularity_value = sys.maxsize
|
|
self.min_granularity_layer = None
|
|
self.granularity_info = set()
|
|
self.z3_leaf_layers = []
|
|
self._set_z3_leaf_modules_by_threshold(module, zero_module_granularity_threshold)
|
|
self.fast_sharding_for_leaf_module = True
|
|
|
|
self.param_coordinator = PartitionedParameterCoordinator(
|
|
prefetch_bucket_sz=self._prefetch_bucket_sz,
|
|
max_reuse_distance_in_numel=self._max_reuse_distance_in_numel,
|
|
max_available_parameters_in_numel=self._max_available_parameters_in_numel,
|
|
allgather_stream=self.__allgather_stream,
|
|
inflight_param_registry=self.__inflight_param_registry,
|
|
prefetch_nvme=self.offload_device == OffloadDeviceEnum.nvme,
|
|
timers=self.timers,
|
|
zero_quantized_weights=self.zero_quantized_weights,
|
|
zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights,
|
|
fast_sharding_for_leaf_module=self.fast_sharding_for_leaf_module,
|
|
log_trace_cache_warnings=self.log_trace_cache_warnings,
|
|
)
|
|
|
|
self.forward_hooks = []
|
|
self.backward_hooks = []
|
|
|
|
self.setup_zero_stage3_hooks()
|
|
print_rank_0(
|
|
f'Created module hooks: forward = {len(self.forward_hooks)}, backward = {len(self.backward_hooks)}',
|
|
force=False)
|
|
|
|
see_memory_usage("DeepSpeedZeRoOffload initialize [end]", force=True)
|
|
|
|
@instrument_w_nvtx
|
|
def partition_all_parameters(self):
|
|
"""Partitioning Parameters that were not partitioned usually if parameters
|
|
of modules whose input parameters do not require grad computation do not
|
|
trigger post call and will therefore will remain unpartitioned"""
|
|
self.get_param_coordinator().release_and_reset_all(self.module)
|
|
for param in iter_params(self.module, recurse=True):
|
|
if param.ds_status != ZeroParamStatus.NOT_AVAILABLE:
|
|
raise RuntimeError(f"{param.ds_summary()} expected to be released")
|
|
|
|
def get_param_coordinator(self):
|
|
return self.param_coordinator
|
|
|
|
def empty_partition_cache(self):
|
|
self.partition_all_parameters()
|
|
|
|
def _convert_to_zero_parameters(self, ds_config, module, mpu):
|
|
non_zero_params = [p for p in module.parameters() if not is_zero_param(p)]
|
|
if non_zero_params:
|
|
zero_params = [p for p in module.parameters() if is_zero_param(p)]
|
|
if zero_params:
|
|
zero_params[0].convert_to_zero_parameters(param_list=non_zero_params)
|
|
else:
|
|
group = None
|
|
if mpu:
|
|
group = mpu.get_data_parallel_group()
|
|
|
|
Init(module=module,
|
|
data_parallel_group=group,
|
|
dtype=self.dtype,
|
|
config_dict_or_path=ds_config,
|
|
remote_device=self.offload_device,
|
|
pin_memory=self.offload_param_pin_memory,
|
|
mpu=mpu,
|
|
zero_param_parallel_group=self.zero_param_parallel_group,
|
|
zero_quantized_weights=self.zero_quantized_weights,
|
|
zero_quantized_nontrainable_weights=self.zero_quantized_nontrainable_weights)
|
|
|
|
def destroy(self):
|
|
self._remove_module_hooks()
|
|
|
|
def _remove_module_hooks(self):
|
|
num_forward_hooks = len(self.forward_hooks)
|
|
num_backward_hooks = len(self.backward_hooks)
|
|
|
|
for hook in self.forward_hooks:
|
|
hook.remove()
|
|
|
|
for hook in self.backward_hooks:
|
|
hook.remove()
|
|
|
|
self.fwd_pre_hook.remove()
|
|
|
|
print_rank_0(f'Deleted module hooks: forward = {num_forward_hooks}, backward = {num_backward_hooks}',
|
|
force=False)
|
|
|
|
def setup_zero_stage3_hooks(self):
|
|
self.hierarchy = 0
|
|
|
|
#reset step if in inference mode
|
|
@instrument_w_nvtx
|
|
def _start_of_forward_hook(module, *args):
|
|
|
|
self.get_param_coordinator().reset_step()
|
|
|
|
self.fwd_pre_hook = self.module.register_forward_pre_hook(_start_of_forward_hook)
|
|
|
|
#likely one of them should be enough but just to be safe
|
|
self._register_deepspeed_module(self.module)
|
|
|
|
# Add top module to stack trace
|
|
global FWD_MODULE_STACK
|
|
FWD_MODULE_STACK.append(self.module)
|
|
|
|
def mark_persistent_parameters(self, param_threshold, model_threshold):
|
|
persistent_params = []
|
|
total_persistent_parameters = 0
|
|
params_count = 0
|
|
for name, param in self.module.named_parameters(recurse=True):
|
|
if param.ds_numel + total_persistent_parameters > model_threshold:
|
|
continue
|
|
|
|
if param.ds_numel <= param_threshold:
|
|
params_count += 1
|
|
param.ds_persist = True
|
|
persistent_params.append(param)
|
|
total_persistent_parameters += param.ds_numel
|
|
|
|
print_rank_0(
|
|
f"Parameter Offload: Total persistent parameters: {total_persistent_parameters} in {params_count} params",
|
|
force=True)
|
|
|
|
return persistent_params
|
|
|
|
def _register_deepspeed_module(self, module, count=[0]):
|
|
my_count = count[0]
|
|
module.ds_id = my_count
|
|
|
|
#print(f"{module.__class__} : {module.ds_id}")
|
|
|
|
if z3_leaf_module(module):
|
|
for param in module.parameters():
|
|
param.ds_z3_leaf_module = module
|
|
else:
|
|
for child in module.children():
|
|
count[0] = count[0] + 1
|
|
self._register_deepspeed_module(child, count=count)
|
|
|
|
@torch.compiler.disable
|
|
def _pre_forward_module_hook(module, *args):
|
|
self.pre_sub_module_forward_function(module)
|
|
|
|
@instrument_w_nvtx
|
|
def _post_forward_module_hook(module, input, output):
|
|
|
|
global FWD_MODULE_STACK
|
|
FWD_MODULE_STACK.pop()
|
|
if output is None:
|
|
output = []
|
|
elif not isinstance(output, (list, tuple)):
|
|
if torch.is_tensor(output):
|
|
output = [output]
|
|
else:
|
|
#print(f'got UNKNOWN type {type(output)}')
|
|
outputs = []
|
|
output = output if isinstance(output, dict) else vars(output)
|
|
for name, val in output.items():
|
|
if not name.startswith('__') and torch.is_tensor(val):
|
|
outputs.append(val)
|
|
output = outputs
|
|
|
|
for item in filter(lambda item: is_zero_param(item) or hasattr(item, 'ds_param_alias'), output):
|
|
key = id(item) if hasattr(item, 'ds_id') else id(item.ds_param_alias)
|
|
actual_external_param = item if hasattr(item, 'ds_id') else item.ds_param_alias
|
|
|
|
if not any(key in m._external_params for m in FWD_MODULE_STACK):
|
|
actual_external_param.is_external_param = True
|
|
module_to_register = FWD_MODULE_STACK[-1]
|
|
register_external_parameter(module_to_register, actual_external_param)
|
|
print_rank_0(
|
|
f'Registering dangling parameter for module {module_to_register.__class__.__name__}, ds_id = {actual_external_param.ds_id}.',
|
|
force=False)
|
|
|
|
# It's possible that the parameter was already external to the completed module. If so, remove it the
|
|
# registration as it will be covered by the outer module instead.
|
|
if key in module._external_params:
|
|
print_rank_0(
|
|
f' Unregistering nested dangling parameter from module {module.__class__.__name__}, ds_id = {actual_external_param.ds_id}',
|
|
force=False)
|
|
unregister_external_parameter(module, actual_external_param)
|
|
|
|
actual_external_param.all_gather()
|
|
|
|
self.post_sub_module_forward_function(module)
|
|
|
|
def _bwd_hook_unexpected_inputs_msg(value):
|
|
return f"A module has unknown inputs or outputs type ({type(value)}) and the tensors embedded in it cannot be detected. " \
|
|
"The ZeRO-3 hooks designed to trigger before or after backward pass of the module relies on knowing the input and " \
|
|
"output tensors and therefore may not get triggered properly."
|
|
|
|
def _pre_backward_module_hook(module, inputs, output):
|
|
|
|
return apply_to_tensors_only(module.pre_bwd_fn.apply,
|
|
output,
|
|
warning_msg_fn=_bwd_hook_unexpected_inputs_msg)
|
|
|
|
#This is an alternate to doing _post_backward_module_hook
|
|
#it uses tensor.register_hook instead of using torch.autograd.Function
|
|
def _alternate_post_backward_module_hook(module, inputs):
|
|
module.ds_grads_remaining = 0
|
|
|
|
#print(f"Before Forward {module.__class__.__name__}")
|
|
|
|
def _run_after_backward_hook(*unused):
|
|
module.ds_grads_remaining = module.ds_grads_remaining - 1
|
|
if module.ds_grads_remaining == 0:
|
|
#print(f"After backward {module.__class__.__name__}")
|
|
self.post_sub_module_backward_function(module)
|
|
|
|
def _run_before_forward_function(input):
|
|
if input.requires_grad:
|
|
module.ds_grads_remaining += 1
|
|
|
|
return _apply_forward_and_backward_to_tensors_only(module, _run_before_forward_function,
|
|
_run_after_backward_hook, inputs)
|
|
|
|
@torch.compiler.disable
|
|
def _post_backward_module_hook(module, inputs):
|
|
if not hasattr(module, "ds_grads_remaining"):
|
|
module.ds_grads_remaining = 0
|
|
|
|
return apply_to_tensors_only(module.post_bwd_fn.apply,
|
|
inputs,
|
|
warning_msg_fn=_bwd_hook_unexpected_inputs_msg)
|
|
|
|
# Pre forward hook
|
|
self.forward_hooks.append(module.register_forward_pre_hook(_pre_forward_module_hook))
|
|
|
|
# Post forward hook
|
|
self.forward_hooks.append(module.register_forward_hook(_post_forward_module_hook))
|
|
|
|
# Pre backward hook
|
|
if not hasattr(module, "pre_bwd_fn"):
|
|
|
|
@instrument_w_nvtx
|
|
def _run_before_backward_function(sub_module):
|
|
# some models (e.g. Albert) may run multiple forwards on the same layer in a loop
|
|
# before doing backwards, so each backward will need a pre-fetch - using reference
|
|
# counting to support this scenario
|
|
#print(f"COUNTER before: {sub_module.applied_pre_backward_ref_cnt}")
|
|
if sub_module.applied_pre_backward_ref_cnt > 0:
|
|
self.pre_sub_module_backward_function(sub_module)
|
|
sub_module.applied_pre_backward_ref_cnt -= 1
|
|
#print(f"COUNTER after: {sub_module.applied_pre_backward_ref_cnt}")
|
|
|
|
class PreBackwardFunctionForModule(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, outputs):
|
|
# Capture `module` and _run_before_backward_function
|
|
ctx.module = module
|
|
ctx.pre_backward_function = _run_before_backward_function
|
|
if not hasattr(ctx.module, "applied_pre_backward_ref_cnt"):
|
|
ctx.module.applied_pre_backward_ref_cnt = 0
|
|
ctx.module.applied_pre_backward_ref_cnt += 1
|
|
outputs = outputs.detach()
|
|
return outputs
|
|
|
|
@staticmethod
|
|
def backward(ctx, *args):
|
|
ctx.pre_backward_function(ctx.module)
|
|
return args
|
|
|
|
module.pre_bwd_fn = PreBackwardFunctionForModule
|
|
|
|
self.backward_hooks.append(module.register_forward_hook(_pre_backward_module_hook))
|
|
|
|
# post backward hook
|
|
if not hasattr(module, "post_bwd_fn"):
|
|
|
|
@instrument_w_nvtx
|
|
def _run_after_backward_function(sub_module):
|
|
if sub_module.ds_grads_remaining == 0:
|
|
self.post_sub_module_backward_function(sub_module)
|
|
|
|
class PostBackwardFunctionModule(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
def forward(ctx, output):
|
|
ctx.module = module
|
|
if output.requires_grad:
|
|
#TODO SOME TIMES post backward does not seem to be triggered debug in detail
|
|
#Should only cause increase in memory not correctness issue
|
|
#if output.grad_fn.__class__.__name__ == 'ViewBackward':
|
|
# ctx.view=True
|
|
# print(f"Warning view tensor for input to module : {module.__class__.__name__}. Backward hooks may not trigger properly")
|
|
#assert len(module.parameters(recurse=False)), "The input tensor to the module is a view, and autograd Function or register_hook is not triggered with view tensors."
|
|
#if module.ds_grads_remaining == 0:
|
|
# print(f"Before Forward: {ctx.module.__class__.__name__}")
|
|
module.ds_grads_remaining += 1
|
|
ctx.post_backward_function = _run_after_backward_function
|
|
output = output.detach()
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, *args):
|
|
ctx.module.ds_grads_remaining = ctx.module.ds_grads_remaining - 1
|
|
if ctx.module.ds_grads_remaining == 0:
|
|
ctx.post_backward_function(ctx.module)
|
|
return args
|
|
|
|
module.post_bwd_fn = PostBackwardFunctionModule
|
|
|
|
self.backward_hooks.append(module.register_forward_pre_hook(_post_backward_module_hook))
|
|
|
|
@torch.no_grad()
|
|
def pre_sub_module_forward_function(self, sub_module):
|
|
see_memory_usage(f"Before sub module function {sub_module.__class__.__name__}", force=False)
|
|
|
|
global FWD_MODULE_STACK
|
|
FWD_MODULE_STACK.append(sub_module)
|
|
|
|
param_coordinator = self.get_param_coordinator()
|
|
param_coordinator.trace_prologue(sub_module)
|
|
if param_coordinator.is_record_trace():
|
|
param_coordinator.record_module(sub_module)
|
|
param_coordinator.fetch_sub_module(sub_module, forward=True)
|
|
|
|
see_memory_usage(f"Before sub module function {sub_module.__class__.__name__} after fetch", force=False)
|
|
|
|
@torch.no_grad()
|
|
def post_sub_module_forward_function(self, sub_module):
|
|
see_memory_usage(
|
|
f"After sub module function {sub_module.__class__.__name__} {sub_module.ds_id} before release",
|
|
force=False)
|
|
|
|
param_coordinator = self.get_param_coordinator()
|
|
param_coordinator.release_sub_module(sub_module)
|
|
|
|
see_memory_usage(
|
|
f"After sub module function {sub_module.__class__.__name__} {sub_module.ds_id} after release",
|
|
force=False)
|
|
|
|
@torch.no_grad()
|
|
def pre_sub_module_backward_function(self, sub_module):
|
|
# assert sub_module.training, "backward pass is invalid for module in evaluation mode"
|
|
param_coordinator = self.get_param_coordinator()
|
|
param_coordinator.trace_prologue(sub_module)
|
|
if param_coordinator.is_record_trace():
|
|
param_coordinator.record_module(sub_module)
|
|
param_coordinator.fetch_sub_module(sub_module, forward=False)
|
|
|
|
@torch.no_grad()
|
|
def post_sub_module_backward_function(self, sub_module):
|
|
# assert sub_module.training, "backward pass is invalid for module in evaluation mode"
|
|
see_memory_usage(
|
|
f"After sub module backward function {sub_module.__class__.__name__} {sub_module.ds_id} before release",
|
|
force=False)
|
|
|
|
self.get_param_coordinator().release_sub_module(sub_module)
|
|
|
|
see_memory_usage(
|
|
f"After sub module backward function {sub_module.__class__.__name__} {sub_module.ds_id} after release",
|
|
force=False)
|
|
|
|
def _set_z3_leaf_modules_by_threshold(self, module, zero_module_granularity_threshold):
|
|
|
|
self._get_granularity_recursively(module)
|
|
print_rank_0(f"{'MODULE NAME'.ljust(30)}|{'GRANULARITY VALUE'.rjust(20)}", force=True)
|
|
for granularity in self.granularity_info:
|
|
print_rank_0(granularity, force=True)
|
|
|
|
if self.min_granularity_value <= zero_module_granularity_threshold:
|
|
self._set_leaf_by_threshold_preorder(module, zero_module_granularity_threshold)
|
|
utils.logger.info(
|
|
f"z3_leaf_module was set by stage3_module_granularity_threshold:{zero_module_granularity_threshold}")
|
|
for layer in self.z3_leaf_layers:
|
|
print_rank_0(f"{layer.__class__.__name__}:{layer.ds_model_granularity}", force=True)
|
|
else:
|
|
utils.logger.warning(
|
|
f"The smallest module granularity is [{self.min_granularity_layer}:{self.min_granularity_value}]. "\
|
|
f"To make stage3_module_granularity_threshold effective, you need to set stage3_module_granularity_threshold >= {self.min_granularity_value}. "\
|
|
f"Current Value:{zero_module_granularity_threshold}"
|
|
)
|
|
|
|
def _get_granularity_recursively(self, module):
|
|
"""This function is used to recursively obtain the granularity of each module."""
|
|
|
|
# avoid setting as leaf for particularly large models, even if the granularity is very small
|
|
# an oversized leaf module increases the number of live parameters, introducing memory overhead
|
|
Z3_MAX_LEAF_SIZE = 1e9
|
|
|
|
if not list(module.parameters()):
|
|
# skip Modules without parameters, such as GELU, etc.
|
|
module.ds_model_granularity = sys.maxsize
|
|
return 0, 0
|
|
|
|
num_layers = 0
|
|
num_params = 0
|
|
num_params += sum(p.ds_numel for p in module.parameters(recurse=False))
|
|
if not any(module.children()):
|
|
# torch leaf module
|
|
module.ds_model_granularity = sys.maxsize
|
|
return 1, num_params
|
|
|
|
for child in module.children():
|
|
layers_in_child, params_in_child = self._get_granularity_recursively(child)
|
|
num_layers += layers_in_child
|
|
num_params += params_in_child
|
|
|
|
if module.__class__.__name__ in torch.nn.modules.container.__all__:
|
|
# Do not set container modules like ModuleList as leaf modules
|
|
# as this will prevent hooks from being set on their children
|
|
# and they may do not invoke the forward method
|
|
module.ds_model_granularity = sys.maxsize
|
|
return num_layers, num_params
|
|
|
|
num_layers += 1
|
|
ds_model_granularity = (num_params // num_layers) if num_params <= Z3_MAX_LEAF_SIZE else sys.maxsize
|
|
module.ds_model_granularity = ds_model_granularity
|
|
# module.ds_model_num_layers = num_layers
|
|
# module.ds_model_num_params = num_params
|
|
if self.min_granularity_value > ds_model_granularity:
|
|
self.min_granularity_value = ds_model_granularity
|
|
self.min_granularity_layer = module.__class__.__name__
|
|
self.granularity_info.add(f"{module.__class__.__name__.ljust(30)}|{str(ds_model_granularity).rjust(20)}")
|
|
|
|
return num_layers, num_params
|
|
|
|
def _set_leaf_by_threshold_preorder(self, module, granularity_treshhold):
|
|
'''Set modules as leaf modules based on the threshold, prioritizing parent nodes.'''
|
|
|
|
num_params = sum(p.ds_numel for p in module.parameters())
|
|
if num_params == 0:
|
|
# skip Modules without parameters, such as GELU, etc.
|
|
return
|
|
if module.ds_model_granularity <= granularity_treshhold:
|
|
set_z3_leaf_module(module, True)
|
|
self.z3_leaf_layers.append(module)
|
|
return
|
|
|
|
for sub_module in module.children():
|
|
self._set_leaf_by_threshold_preorder(sub_module, granularity_treshhold)
|