Files
DeepSpeed/deepspeed/compile/inductor.py
Masahiro Tanaka 227a60c0c4 DeepCompile for enhanced compiler integration (#7154)
This PR introduces *DeepCompile*, a new feature that efficiently
integrates compiler optimizations with other DeepSpeed features.
DeepCompile utilizes torch's dynamo to capture the computation graph and
modifies it to incorporate DeepSpeed’s optimizations seamlessly.

Currently, DeepCompile supports ZeRO-1 and ZeRO-3, with enhancements
such as proactive prefetching and selective unsharding to improve
performance.
(More details will be added later.)

---------

Signed-off-by: Masahiro Tanaka <mtanaka@microsoft.com>
Signed-off-by: Olatunji Ruwase <olruwase@microsoft.com>
Co-authored-by: zafarsadiq <zafarsadiq120@gmail.com>
Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com>
Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2025-04-16 04:33:53 +00:00

215 lines
8.7 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
try:
import torch.utils._pytree as pytree
from torch._functorch.aot_autograd import create_aot_dispatcher_function
from torch._inductor.lowering import register_lowering, fallbacks, add_needs_realized_inputs
from torch._inductor.ir import TensorBox, FallbackKernel, Layout, IRNode
from torch._inductor.virtualized import V
from torch._inductor.scheduler import Scheduler
original_create_aot_dispatcher_function = create_aot_dispatcher_function
except ImportError:
pass
from .util import get_input_nodes
from .graph_param import DSGraphParamManager
def patch_compiler(original_compiler, dc_compiler, z3_partition: bool, graph_id, graph_param_manager, bwd: bool):
def wrapped_compiler(gm, fake_inputs):
mod_graph = dc_compiler(gm, fake_inputs)
# For symint case
if mod_graph is None:
return None
if z3_partition:
# Inductor validates input size estimated by the first trace, where ds tensor is materialized.
# We need to patch the input tensors to avoid the validation error.
patched_inputs = []
if bwd:
param_nodes_bw, _ = graph_param_manager[graph_id].get_bwd_mapping(gm.graph)
param_names = [n.name for n in param_nodes_bw]
else:
param_names = graph_param_manager[graph_id].param_names
input_nodes = get_input_nodes(gm.graph)
for in_node, in_v in zip(input_nodes, fake_inputs):
ds_param = in_node.name in param_names
if ds_param:
from torch._subclasses.fake_tensor import is_fake
from torch._dynamo.utils import to_fake_tensor
assert is_fake(in_v), f"Input {in_v} should be fake tensor"
patched_inputs.append(
to_fake_tensor(torch.empty([0], dtype=in_v.dtype, device=in_v.device), in_v.fake_mode))
else:
patched_inputs.append(in_v)
patched_inputs = tuple(patched_inputs)
else:
patched_inputs = fake_inputs
return original_compiler(gm, patched_inputs)
return wrapped_compiler
def wrap_partition_fn(partition_fn, real_inputs, param_indices):
def wrapped_partition_fn(*args, **kwargs):
fw_module, bw_module = partition_fn(*args, **kwargs)
# get parameter names
pm = DSGraphParamManager(fw_module.graph, real_inputs, param_indices)
def fix_placeholder_meta(graph):
for n in graph.nodes:
if n.op == "placeholder" and n.name in pm.param_names:
n.meta["val"] = torch.empty([0], dtype=n.meta["val"].dtype, device=n.meta["val"].device)
fix_placeholder_meta(fw_module.graph)
fix_placeholder_meta(bw_module.graph)
return fw_module, bw_module
return wrapped_partition_fn
def patch_create_aot_dispatcher_function(graph_id: int, z3_partition: bool, make_fw_graph, make_bw_graph, real_inputs,
param_indices, param_manager):
from torch._dynamo.backends.common import AotAutograd
import functools
def patch_aotautograd():
# Unpatch if it was already patched
if hasattr(AotAutograd, "__original_init"):
AotAutograd.__init__ = AotAutograd.__original_init
original_init = AotAutograd.__init__
@functools.wraps(original_init)
def patched_init(self, **kwargs):
kwargs["fw_compiler"] = patch_compiler(kwargs["fw_compiler"],
make_fw_graph,
z3_partition,
graph_id,
param_manager,
bwd=False)
kwargs["bw_compiler"] = patch_compiler(kwargs["bw_compiler"],
make_bw_graph,
z3_partition,
graph_id,
param_manager,
bwd=True)
kwargs["inference_compiler"] = kwargs["fw_compiler"]
if z3_partition:
kwargs["partition_fn"] = wrap_partition_fn(kwargs["partition_fn"], real_inputs, param_indices)
original_init(self, **kwargs)
AotAutograd.__original_init = original_init
AotAutograd.__init__ = patched_init
patch_aotautograd()
def register_custom_ops():
def fallback_handler_no_reuse(kernel,
never_reuse_input,
never_reuse_output,
force_free_input,
add_to_fallback_set=True):
if add_to_fallback_set:
fallbacks.add(kernel)
def handler(*args, **kwargs):
def wrap_tensors(x):
out = TensorBox.create(x) if isinstance(x, torch._inductor.ir.IRNode) else x
if out is not None and never_reuse_output:
V.graph.never_reuse_buffers.add(out.get_name())
return out
class CustomDCKernel(FallbackKernel):
def __init__(self, op, *args, **kwargs):
super().__init__(op, *args, **kwargs)
def add_to_never_reuse(x):
if isinstance(x, IRNode):
assert hasattr(x, "get_name"), f"x doesn't have get_name {x.__class__}"
V.graph.never_reuse_buffers.add(x.get_name())
if never_reuse_input:
pytree.tree_map(add_to_never_reuse, args)
def get_var_name_for_arg(self, arg: str):
if arg.isidentifier():
return arg
import re
match = re.match(r"reinterpret_tensor\((\w+),", arg)
if match:
return match.group(1)
return None
def codegen(self, wrapper):
if not force_free_input:
return super().codegen(wrapper)
kernel = self.op_overload
self.codegen_comment(wrapper)
args = [*self.codegen_args(), *self.codegen_kwargs()]
V.graph.wrapper_code.generate_fallback_kernel(self, args)
if isinstance(self.layout, Layout):
self.codegen_size_asserts(wrapper)
var_name = self.get_var_name_for_arg(args[0])
if var_name:
wrapper.writeline(f"{var_name} = None")
self.codegen_unbacked_symbol_defs(wrapper)
kernel_cls = CustomDCKernel if force_free_input else FallbackKernel
return pytree.tree_map(wrap_tensors, kernel_cls.create(kernel, *args, **kwargs))
return handler
def register_fallback_no_reuse(op_overload,
never_reuse_input=False,
never_reuse_output=False,
force_free_input=False):
add_needs_realized_inputs(op_overload)
return register_lowering(op_overload, type_promotion_kind=None)(fallback_handler_no_reuse(
op_overload,
never_reuse_input=never_reuse_input,
never_reuse_output=never_reuse_output,
force_free_input=force_free_input))
# Inductor tries to reuse output buffer when possible. We need to disable this behavior for some custom ops.
# -> It seems that memory region is still reused in some cases. So we clone the inputs for some ops.
register_fallback_no_reuse(torch.ops.dc.allgather_param.default, never_reuse_input=False, never_reuse_output=True)
register_fallback_no_reuse(torch.ops.dc.wait_allgather.default, never_reuse_input=True, never_reuse_output=True)
register_fallback_no_reuse(torch.ops.dc.release_param.default, never_reuse_input=True, never_reuse_output=False)
register_fallback_no_reuse(torch.ops.dc.reduce_grad.default,
never_reuse_input=True,
never_reuse_output=True,
force_free_input=True)
register_fallback_no_reuse(torch.ops.dc.free_tensors.default, never_reuse_input=True, never_reuse_output=True)
if not hasattr(Scheduler, "is_dc_patched") or not Scheduler.is_dc_patched:
Scheduler.is_dc_patched = True
Scheduler.dead_node_elimination = lambda _: None