Files
DeepSpeed/deepspeed/compile/backend.py
Masahiro Tanaka 227a60c0c4 DeepCompile for enhanced compiler integration (#7154)
This PR introduces *DeepCompile*, a new feature that efficiently
integrates compiler optimizations with other DeepSpeed features.
DeepCompile utilizes torch's dynamo to capture the computation graph and
modifies it to incorporate DeepSpeed’s optimizations seamlessly.

Currently, DeepCompile supports ZeRO-1 and ZeRO-3, with enhancements
such as proactive prefetching and selective unsharding to improve
performance.
(More details will be added later.)

---------

Signed-off-by: Masahiro Tanaka <mtanaka@microsoft.com>
Signed-off-by: Olatunji Ruwase <olruwase@microsoft.com>
Co-authored-by: zafarsadiq <zafarsadiq120@gmail.com>
Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com>
Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2025-04-16 04:33:53 +00:00

280 lines
11 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from typing import Dict, List, Callable
import time
import gc
import torch
from torch.fx import Graph, GraphModule
try:
import torch.utils._pytree as pytree
import torch._dynamo
import torch._inductor.scheduler
from functorch.compile import make_boxed_func
from torch._functorch.aot_autograd import aot_module_simplified
from torch._subclasses.fake_tensor import unset_fake_temporarily
except ImportError:
pass
from deepspeed.accelerator import get_accelerator
from .fx import add_free_activations
from .graph_param import DSGraphParamManager
from .profilers import ProfilingResult
from .profilers.graph_profile import MemoryProfilingInterpreter
from .patch_compiled_func import patch_compiled_func, unpatch_compiled_func, get_backward_inputs
from .util import get_input_nodes, get_activation_node_names, get_index_by_graph_id, get_deepcompile_handle, log_rank0
from .partitioner import get_wrapped_partitioner
from .inductor import register_custom_ops, patch_create_aot_dispatcher_function
remaining_schedule = None
next_pass_step = -1
next_passes = None
current_passes = None
param_manager: Dict[int, DSGraphParamManager] = {}
graph_order = []
profiling_results: Dict[int, ProfilingResult] = {}
opt_pass_times = []
opt_passes = {}
fwd_real_inputs = []
remaining_bwd_compile_count = 0
def register_compile_pass(name: str, opt_pass_fn):
opt_passes[name] = opt_pass_fn
def init_schedule(schedule):
assert isinstance(schedule, list), f"schedule should be a list, but got {type(schedule)}"
for step, passes in schedule:
assert isinstance(step, int), f"Each step in schedule should be an integer, but got {type(step)}"
assert isinstance(passes, list), f"Passes at a certain step should be a list, but got {type(passes)}"
global remaining_schedule
remaining_schedule = schedule
def launch_compile_passes(global_steps: int):
global next_pass_step, next_passes
if len(remaining_schedule) > 0 and global_steps == remaining_schedule[0][0]:
_, next_passes = remaining_schedule.pop(0)
log_rank0(f"Launching compile passes: global_steps={global_steps} passes={next_passes}", True)
torch._dynamo.reset()
get_deepcompile_handle().reset()
patch_compiled_func()
graph_order.clear()
profiling_results.clear()
param_manager.clear()
def set_time_and_tensor_size(graph_id, graph: Graph, mem, bwd, profiling_results):
node_time = []
tensor_sizes = []
for n in graph.nodes:
node_time.append((n.name, n.meta["device_time"] if "device_time" in n.meta else 0.0,
n.meta["wall_time"] if "wall_time" in n.meta else 0.0))
tensor_sizes.append((n.name, n.meta["tensor_size"] if "tensor_size" in n.meta else 0))
if bwd:
profiling_results[graph_id].bwd_graph = graph
profiling_results[graph_id].bwd_time = node_time
profiling_results[graph_id].bwd_tensor_sizes = tensor_sizes
profiling_results[graph_id].bwd_mem = mem
else:
profiling_results[graph_id].fwd_graph = graph
profiling_results[graph_id].fwd_time = node_time
profiling_results[graph_id].fwd_tensor_sizes = tensor_sizes
profiling_results[graph_id].fwd_mem = mem
def run_opt_passes(opt_passes: List[Callable],
gm: GraphModule,
graph_id: int,
graph_order: List[int],
profiling_results,
create_inputs_fn,
mem_budget: float,
param_manager,
bwd: bool,
debug_log=False) -> None:
with unset_fake_temporarily():
get_accelerator().synchronize()
gc.collect()
get_accelerator().empty_cache()
for i, opt_pass_fn in enumerate(opt_passes):
log_rank0(f"Running opt pass {i} for graph {graph_id}. bwd={bwd}", enable=debug_log)
gm_new = opt_pass_fn(gm, graph_id, graph_order, profiling_results, create_inputs_fn, mem_budget, param_manager,
bwd)
if gm_new is not None:
gm = gm_new
gm.graph.lint()
gm.recompile()
mem_prof = MemoryProfilingInterpreter(gm, debug_log=debug_log)
mem_prof.run(*create_inputs_fn())
mem = [(name, current_alloc, delta, peak) for name, current_alloc, delta, peak in mem_prof.mem_record]
set_time_and_tensor_size(graph_id, gm.graph, mem, bwd, profiling_results)
with unset_fake_temporarily():
get_accelerator().synchronize()
gc.collect()
get_accelerator().empty_cache()
def make_backend(backend, compile_kwargs={}, free_activation=False, debug_log=False):
register_custom_ops()
def backend_fn(gm: GraphModule, real_inputs):
graph_id = id(gm.graph)
needs_backward = pytree.tree_any(lambda x: x.requires_grad if torch.is_tensor(x) else False, real_inputs)
global graph_order
graph_order.append((graph_id, needs_backward))
z3_partition = any(hasattr(v, "ds_id") for v in real_inputs)
if z3_partition:
param_indices = [(i, input_val.ds_id, input_val.ds_shape) for i, input_val in enumerate(real_inputs)
if isinstance(input_val, torch.nn.Parameter)]
else:
assert all(hasattr(v, "param_id") for v in real_inputs
if isinstance(v, torch.nn.Parameter)), "All param inputs should have param_id"
param_indices = [(i, input_val.param_id, input_val.shape) for i, input_val in enumerate(real_inputs)
if isinstance(input_val, torch.nn.Parameter)]
global fwd_real_inputs
fwd_real_inputs.append(real_inputs)
global profiling_results
if graph_id not in profiling_results:
profiling_results[graph_id] = ProfilingResult()
profiling_results[graph_id].param_indices = param_indices
profiling_results[graph_id].needs_backward = needs_backward
def make_fw_graph(gm, sample_inputs):
time_start = time.time()
graph_index = len(graph_order) - 1
real_inputs = fwd_real_inputs.pop(0)
param_manager[graph_id] = DSGraphParamManager(gm.graph, real_inputs, param_indices)
real_inputs_with_rng = real_inputs + sample_inputs[len(real_inputs):]
run_opt_passes(
opt_passes=next_passes,
gm=gm,
graph_id=graph_id,
graph_order=graph_order,
profiling_results=profiling_results,
create_inputs_fn=lambda: real_inputs_with_rng,
mem_budget=.0, # unused
param_manager=param_manager,
bwd=False,
debug_log=debug_log)
if needs_backward:
global remaining_bwd_compile_count
remaining_bwd_compile_count += 1
opt_pass_times.append(("fwd", graph_index, graph_id, time.time() - time_start))
log_rank0(
f"Fwd end {graph_index} graph_id={graph_id} alloc_mem={get_accelerator().memory_allocated()} graph={gm.graph}",
enable=debug_log)
return gm.graph
def make_bw_graph(gm, sample_inputs):
time_start = time.time()
graph_index = get_index_by_graph_id(graph_order, graph_id)
log_rank0(
f"Bwd start {graph_index} graph_id={graph_id} alloc_mem={get_accelerator().memory_allocated()} graph={gm.graph}",
enable=debug_log)
bwd_inputs_stack = get_backward_inputs()
if len(bwd_inputs_stack) == 0:
# dynamo calls bw compiler ahead of time when symints are saved for backward. See the details for aot_dispatch_autograd in jit_compile_runtime_wrappers.
# As we currently use actually bwd input values in bw compiler, we return None to skip the compilation there.
# This would need be handled properly in the future.
return None
bwd_real_inputs = bwd_inputs_stack.pop()
run_opt_passes(
opt_passes=next_passes,
gm=gm,
graph_id=graph_id,
graph_order=graph_order,
profiling_results=profiling_results,
create_inputs_fn=lambda: tuple(bwd_real_inputs),
mem_budget=.0, # unused
param_manager=param_manager,
bwd=True,
debug_log=debug_log)
# assert graph_id in param_manager, f"Graph {graph_id} not found in param_manager"
if free_activation:
param_nodes_bw, _ = param_manager[graph_id].get_bwd_mapping(gm.graph)
param_names = [n.name for n in param_nodes_bw]
non_param_input_names = [n.name for n in get_input_nodes(gm.graph) if n.name not in param_names]
add_free_activations(graph_id, gm.graph,
get_activation_node_names(gm.graph, param_nodes_bw, non_param_input_names))
global remaining_bwd_compile_count
remaining_bwd_compile_count -= 1
if remaining_bwd_compile_count == 0:
unpatch_compiled_func()
log_rank0(
f"Bwd end {graph_index} graph_id={graph_id} alloc_mem={get_accelerator().memory_allocated()} graph={gm.graph}",
enable=debug_log)
gm.recompile()
opt_pass_times.append(("bwd", graph_index, graph_id, time.time() - time_start))
return gm.graph
if backend == "eager":
def make_compiler_fn(make_graph_fn):
def compiler_fn(gm, sample_inputs):
return None if make_graph_fn(gm, sample_inputs) is None else make_boxed_func(gm.forward)
return compiler_fn
aot_mod = aot_module_simplified(gm,
real_inputs,
fw_compiler=make_compiler_fn(make_fw_graph),
bw_compiler=make_compiler_fn(make_bw_graph),
partition_fn=get_wrapped_partitioner(param_indices))
return torch._dynamo.optimize(**compile_kwargs)(aot_mod)
elif backend == "inductor":
patch_create_aot_dispatcher_function(graph_id, z3_partition, make_fw_graph, make_bw_graph, real_inputs,
param_indices, param_manager)
from .partitioner import get_wrapped_choose_saved_values_set
torch._functorch.partitioners.choose_saved_values_set = get_wrapped_choose_saved_values_set(param_indices)
return torch._inductor.compile(gm, real_inputs)
raise ValueError(f"Unsupported backend {backend}")
return backend_fn