Files
DeepSpeed/deepspeed/compile/inductor.py
Junjie Mao 2a76988958 DeepCompile: Use min_cut_rematerialization for partitioning joint graphs (#7609)
# Motivation

PyTorch provides `min_cut_rematerialization_partition()` to partition a
joint graph while respecting recomputation annotation. That algorithm
forms a data-flow-like graph from the joint graph, adds to edges weights
from some recomputation-cost-related heuristics and applies the min-cut
algorithm to determine which nodes to recompute. Users can force
recomputation of a node by annotating its `node.meta["recompute"]` to
MUST_RECOMPUTE or PREFER_RECOMPUTE, as is implemented in [1].

While originally designed for activation checkpointing,
min_cut_rematerialization can also be used to recompute param aliases.
When partitioning a joint graph, we don't want to save for backward the
gathered parameters and values computed from them via aliasing ops, as
that essentially means the gathered parameter will be saved. Instead of
customizing the partitioner or patching `choose_saved_values_set`, we
can achieve that by annotating such nodes to be MUST_RECOMPUTE.

Both eager and inductor backends can use min_cut_rematerialization
easily. The eager backend can use min-cut by customizing the
partition_fn for `aot_module_simplified`, and is already using that for
graphs with activation checkpointing enabled. The inductor backend uses
that algorithm since torch 2.0.0 [2] and is still the default after the
inductor partitioner is made configurable a few weeks ago [3].

That approach also helps DeepCompile + torch autocast nicely. When
autocast is enabled, downcasted parameters are preferred to be
recomputed. It suffices to mark such casting nodes as must-recompute.

[1]
https://github.com/pytorch/pytorch/blob/main/torch/_functorch/partitioners.py#L1813
[2]
https://github.com/pytorch/pytorch/blob/v2.0.0/torch/_inductor/compile_fx.py#L459
[3] https://github.com/pytorch/pytorch/pull/157580

# Proposal

Motivated by the flexibility and the requirement for optimizing
DeepCompile + autocast, I propose to switch to the min-cut-based
partitioner for both backends. This PR implements that switch, cleans up
dead code and also recomputes downcasted parameters in the backward.

# Preliminary Evaluation

Here's a summary of the tests using
https://gist.github.com/eternalNight/3c2cf8c703f1e9e7742d3b7f9e1edae3 on
a 8x RTX 5090 node.

| Configuration | Base Time (ms) | Base Mem (GB) | Time with this PR
(ms) | Mem with this PR (GB) |

|---------------------|----------------|---------------|------------------------|-----------------------|
| eager + autocast | 551.92 | 12.07 | 571.24 | 9.96 |
| eager + bf16 | 419.87 | 9.47 | 445.76 | 7.30 |
| inductor + autocast | 546.97 | 12.84 | 570.09 | 13.04 |
| inductor + bf16 | 444.03 | 10.01 | 444.70 | 10.19 |

## Reduced memory with eager backend

The initial goal of this PR is to reduce peak memory usage when torch
autocast is enabled. That is achieved according to the first row of the
table, but in two different ways simultaneously.

1. Downcasted parameters during forward are throwed away and recomputed
(by the fused cast + allgather) in the backward pass.
2. Without this PR, `fast_free_schedule` will arange most allgather at
the beginning of the graph. That leads to a even higher peak during
forward, but is no longer seen with PR.
3. By diffing the graphs passed to `add_z3_gather_release`, I noticed
that recomputations selected by min-cut is slightly different (that test
script has activation checkpointing enabled for the LLM module). That
can also impact computation time and memory usage.

Here's the shape of memory usage before this PR with eager backend +
torch autocast. eager + BF16 shows similar shapes. Numbers reported in
the table are peak during forward. The peak memory usage during backend
reduces ~0.7GB in both cases.

<img width="1482" height="629" alt="image"
src="https://github.com/user-attachments/assets/7e7ec859-9a04-4ddd-ba37-c2d475a81058"
/>

After this PR:

<img width="1482" height="453" alt="image"
src="https://github.com/user-attachments/assets/f15c71b8-f823-4aa5-801a-a36188c5e866"
/>

## Similar memory with inductor backend

Unlike eager backend, the inductor backend uses similar memory with or
without this PR. The memory usage pattern is as follows, which requires
further analysis.

Before this PR:

<img width="1070" height="613" alt="image"
src="https://github.com/user-attachments/assets/317b9a58-d4ef-459f-ac7b-67ef2318a9de"
/>

After this PR:

<img width="911" height="536" alt="image"
src="https://github.com/user-attachments/assets/7e737a81-cf27-402c-aeea-dfe661043fc1"
/>

Signed-off-by: Junjie Mao <junjie.mao@linux.alibaba.com>
2025-10-03 03:39:38 +00:00

222 lines
9.1 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
try:
import torch.utils._pytree as pytree
from torch._functorch.aot_autograd import create_aot_dispatcher_function
from torch._inductor.lowering import register_lowering, fallbacks, add_needs_realized_inputs
from torch._inductor.ir import TensorBox, FallbackKernel, Layout, IRNode
from torch._inductor.virtualized import V
from torch._inductor.scheduler import Scheduler
original_create_aot_dispatcher_function = create_aot_dispatcher_function
except ImportError:
pass
from deepspeed.utils.torch import required_torch_version
from .util import get_input_nodes
from .graph_param import DSGraphParamManager
from .partitioner import get_wrapped_partitioner
def patch_compiler(original_compiler, dc_compiler, z3_partition: bool, graph_id, graph_param_manager, bwd: bool):
def wrapped_compiler(gm, fake_inputs):
mod_graph = dc_compiler(gm, fake_inputs)
# For symint case
if mod_graph is None:
return None
if z3_partition:
# Inductor validates input size estimated by the first trace, where ds tensor is materialized.
# We need to patch the input tensors to avoid the validation error.
patched_inputs = []
if bwd:
param_nodes_bw, _ = graph_param_manager[graph_id].get_bwd_mapping(gm.graph)
param_names = [n.name for n in param_nodes_bw]
else:
param_names = graph_param_manager[graph_id].param_names
input_nodes = get_input_nodes(gm.graph)
for in_node, in_v in zip(input_nodes, fake_inputs):
ds_param = in_node.name in param_names
if ds_param:
from torch._subclasses.fake_tensor import is_fake
from torch._dynamo.utils import to_fake_tensor
assert is_fake(in_v), f"Input {in_v} should be fake tensor"
patched_inputs.append(
to_fake_tensor(torch.empty([0], dtype=in_v.dtype, device=in_v.device), in_v.fake_mode))
else:
patched_inputs.append(in_v)
patched_inputs = tuple(patched_inputs)
else:
patched_inputs = fake_inputs
return original_compiler(gm, patched_inputs)
return wrapped_compiler
def wrap_partition_fn(partition_fn, real_inputs, param_indices):
def wrapped_partition_fn(*args, **kwargs):
fn = get_wrapped_partitioner(True, param_indices, partition_fn=partition_fn)
fw_module, bw_module = fn(*args, **kwargs)
# get parameter names
pm = DSGraphParamManager(fw_module.graph, real_inputs, param_indices)
def fix_placeholder_meta(graph):
for n in graph.nodes:
if n.op == "placeholder" and n.name in pm.param_names:
n.meta["val"] = torch.empty([0], dtype=n.meta["val"].dtype, device=n.meta["val"].device)
fix_placeholder_meta(fw_module.graph)
fix_placeholder_meta(bw_module.graph)
return fw_module, bw_module
return wrapped_partition_fn
def patch_create_aot_dispatcher_function(graph_id: int, z3_partition: bool, make_fw_graph, make_bw_graph, real_inputs,
param_indices, param_manager):
from torch._dynamo.backends.common import AotAutograd
import functools
def patch_aotautograd():
# Unpatch if it was already patched
if hasattr(AotAutograd, "__original_init"):
AotAutograd.__init__ = AotAutograd.__original_init
original_init = AotAutograd.__init__
@functools.wraps(original_init)
def patched_init(self, **kwargs):
kwargs["fw_compiler"] = patch_compiler(kwargs["fw_compiler"],
make_fw_graph,
z3_partition,
graph_id,
param_manager,
bwd=False)
kwargs["bw_compiler"] = patch_compiler(kwargs["bw_compiler"],
make_bw_graph,
z3_partition,
graph_id,
param_manager,
bwd=True)
kwargs["inference_compiler"] = kwargs["fw_compiler"]
if z3_partition:
kwargs["partition_fn"] = wrap_partition_fn(kwargs["partition_fn"], real_inputs, param_indices)
original_init(self, **kwargs)
AotAutograd.__original_init = original_init
AotAutograd.__init__ = patched_init
patch_aotautograd()
def register_custom_ops():
def fallback_handler_no_reuse(kernel,
never_reuse_input,
never_reuse_output,
force_free_input,
add_to_fallback_set=True):
if add_to_fallback_set:
fallbacks.add(kernel)
def handler(*args, **kwargs):
def wrap_tensors(x):
out = TensorBox.create(x) if isinstance(x, torch._inductor.ir.IRNode) else x
if out is not None and never_reuse_output:
V.graph.never_reuse_buffers.add(out.get_name())
return out
class CustomDCKernel(FallbackKernel):
def __init__(self, op, *args, **kwargs):
super().__init__(op, *args, **kwargs)
def add_to_never_reuse(x):
if isinstance(x, IRNode):
assert hasattr(x, "get_name"), f"x doesn't have get_name {x.__class__}"
V.graph.never_reuse_buffers.add(x.get_name())
if never_reuse_input:
pytree.tree_map(add_to_never_reuse, args)
def get_var_name_for_arg(self, arg: str):
if arg.isidentifier():
return arg
import re
match = re.match(r"reinterpret_tensor\((\w+),", arg)
if match:
return match.group(1)
return None
def codegen(self, wrapper):
if not force_free_input:
return super().codegen(wrapper)
kernel = self.op_overload
self.codegen_comment(wrapper)
args = [*self.codegen_args(), *self.codegen_kwargs()]
if required_torch_version(min_version=2.8):
V.graph.wrapper_code.generate_fallback_kernel(self)
else:
V.graph.wrapper_code.generate_fallback_kernel(self, args)
if isinstance(self.layout, Layout):
self.codegen_size_asserts(wrapper)
var_name = self.get_var_name_for_arg(args[0])
if var_name:
wrapper.writeline(f"{var_name} = None")
self.codegen_unbacked_symbol_defs(wrapper)
kernel_cls = CustomDCKernel if force_free_input else FallbackKernel
return pytree.tree_map(wrap_tensors, kernel_cls.create(kernel, *args, **kwargs))
return handler
def register_fallback_no_reuse(op_overload,
never_reuse_input=False,
never_reuse_output=False,
force_free_input=False):
add_needs_realized_inputs(op_overload)
return register_lowering(op_overload, type_promotion_kind=None)(fallback_handler_no_reuse(
op_overload,
never_reuse_input=never_reuse_input,
never_reuse_output=never_reuse_output,
force_free_input=force_free_input))
# Inductor tries to reuse output buffer when possible. We need to disable this behavior for some custom ops.
# -> It seems that memory region is still reused in some cases. So we clone the inputs for some ops.
register_fallback_no_reuse(torch.ops.dc.allgather_param.default, never_reuse_input=False, never_reuse_output=True)
register_fallback_no_reuse(torch.ops.dc.wait_allgather.default, never_reuse_input=True, never_reuse_output=True)
register_fallback_no_reuse(torch.ops.dc.release_param.default, never_reuse_input=True, never_reuse_output=False)
register_fallback_no_reuse(torch.ops.dc.reduce_grad.default,
never_reuse_input=True,
never_reuse_output=True,
force_free_input=True)
register_fallback_no_reuse(torch.ops.dc.free_tensors.default, never_reuse_input=True, never_reuse_output=True)
if not hasattr(Scheduler, "is_dc_patched") or not Scheduler.is_dc_patched:
Scheduler.is_dc_patched = True
Scheduler.dead_node_elimination = lambda _: None