Files
DeepSpeed/deepspeed/nvme/torch_fastio_engine.py
Yuanyuan Chen 1c03d1b1bb Fix invalid f-strings (#7457)
Fix invalid f-strings detected by ruff.

---------

Signed-off-by: cyy <cyyever@outlook.com>
Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com>
Co-authored-by: Olatunji Ruwase <tunji.ruwase@snowflake.com>
Co-authored-by: Michael Wyatt <michael.wyatt@snowflake.com>
2025-08-16 18:22:19 +00:00

88 lines
3.4 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
import os
import time
from deepspeed.ops.aio import AsyncIOBuilder
from .test_ds_aio_utils import task_log, create_filename, create_file, create_page_locked_tensor
from .ds_aio_constants import *
from deepspeed.io import FastFileWriter
class Torch_FastIO_Engine(object):
def __init__(self, args, tid, read_op):
assert read_op is False, 'Read operation is not currently supported'
self.ctxt = self._create_context(args, tid, read_op)
self.zipfile_serialization = not args.torch_legacy_save
def fini(self):
if self.ctxt[USE_CPU_LOCKED_TENSOR]:
for buf in [BUFFER, FAST_IO_BUFFER]:
self.ctxt[HANDLE].free_cpu_locked_tensor(self.ctxt[buf])
self.ctxt[BUFFER].detach()
self.ctxt[BUFFER] = None
def read(self, args, tid):
start_time = time.time()
torch.load(f=self.ctxt[FILE], map_location=self.ctxt[BUFFER].device)
end_time = time.time()
self.ctxt[ELAPSED_SEC] += end_time - start_time
def write(self, args, tid):
# Avoid overwriting existing files as it could be artificially faster
if os.path.isfile(self.ctxt[FILE]):
os.remove(self.ctxt[FILE])
ds_file_writer = FastFileWriter(file_path=self.ctxt[FILE],
aio_handle=self.ctxt[HANDLE],
pinned_tensor=self.ctxt[FAST_IO_BUFFER])
start_time = time.time()
torch.save(obj=self.ctxt[BUFFER], f=ds_file_writer, _use_new_zipfile_serialization=self.zipfile_serialization)
ds_file_writer.close() # Force flush to storage
end_time = time.time()
self.ctxt[ELAPSED_SEC] += end_time - start_time
ds_file_writer._dump_state()
def _create_context(self, args, tid, read_op):
io_string = "Read" if read_op else "Write"
device_id, folder = args.mapping_list[tid]
filename = create_filename(folder, args.read, args.io_size, tid)
if args.read and not (os.path.isfile(filename) and os.path.getsize(filename) == args.io_size):
create_file(filename, args.io_size)
io_parallel = args.io_parallel if args.io_parallel else 1
aio_handle = AsyncIOBuilder().load().aio_handle(args.block_size, args.queue_depth, args.single_submit,
not args.sequential_requests, io_parallel)
if args.gpu:
buffer = torch.randint(high=128, size=(args.io_size, ), dtype=torch.uint8, device=f'cuda:{device_id}')
else:
buffer = create_page_locked_tensor(args.io_size, args.use_accelerator_pin_memory, aio_handle)
task_log(tid, f'Allocate tensor of size {args.io_size} bytes')
fast_io_buffer = create_page_locked_tensor(args.fast_io_size, args.use_accelerator_pin_memory, aio_handle)
task_log(tid, 'created torch_fastio engine')
ctxt = {}
ctxt[FILE] = filename
ctxt[NUM_BYTES] = args.io_size
ctxt[BUFFER] = buffer
ctxt[HANDLE] = aio_handle
ctxt[FAST_IO_BUFFER] = fast_io_buffer
ctxt[ELAPSED_SEC] = 0
ctxt[USE_CPU_LOCKED_TENSOR] = not args.use_accelerator_pin_memory
task_log(tid,
f'{io_string} file {filename} of size {args.io_size} bytes from buffer on device {buffer.device}',
force=True)
return ctxt