Files
DeepSpeed/accelerator/mps_accelerator.py
Polisetty V R K Jyothendra Varma ac935c7fde assumption of torch.initial_seed function accepting seed arg in DeepSpeedAccelerator abstract class is incorrect (#5569)
pytorch API reference -
https://pytorch.org/docs/stable/generated/torch.initial_seed.html
fix return value of manual_seed api for hpu

---------

Co-authored-by: Olatunji Ruwase <olruwase@microsoft.com>
2024-06-12 09:32:17 -07:00

282 lines
6.8 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from .abstract_accelerator import DeepSpeedAccelerator
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
try:
import torch.mps
except ImportError:
pass
class MPS_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = "mps"
self._communication_backend_name = None
self._compile_backend = "inductor"
def is_synchronized_device(self):
return False
def use_host_timers(self):
return self.is_synchronized_device()
def resolves_data_dependency(self):
return self.is_synchronized_device()
def handles_memory_backpressure(self):
return self.is_synchronized_device()
# Device APIs
def device_name(self, device_index=None):
if device_index is None:
return "mps"
return "mps:{}".format(device_index)
def device(self, device_index):
return torch.device("mps", index=0)
def set_device(self, device_index):
return
def current_device(self):
return torch.device("mps", index=0)
def current_device_name(self):
return "mps:0"
def device_count(self):
return 1
def synchronize(self, device_index=None):
return torch.mps.synchronize()
# RNG APIs
def random(self):
return torch.random
def set_rng_state(self, new_state, device_index=None):
return torch.mps.set_rng_state(new_state)
def get_rng_state(self, device_index=None):
return torch.mps.get_rng_state()
def manual_seed(self, seed):
return torch.mps.manual_seed(seed)
def manual_seed_all(self, seed):
return torch.mps.manual_seed(seed)
def seed(self):
return torch.mps.seed()
def initial_seed(self):
return
def default_generator(self, device_index):
return
# Streams/Events
@property
def Stream(self):
return None
def stream(self, stream):
return None
def current_stream(self, device_index=None):
return None
def default_stream(self, device_index=None):
return None
@property
def Event(self):
return None
# Memory management
def empty_cache(self):
return torch.mps.empty_cache()
def memory_allocated(self, device_index=None):
return torch.mps.current_allocated_memory()
def max_memory_allocated(self, device_index=None):
return torch.mps.driver_allocated_memory()
def set_per_process_memory_fraction(self, fraction):
return torch.mps.set_per_process_memory_fraction(fraction)
def reset_max_memory_allocated(self, device_index=None):
return
def memory_cached(self, device_index=None):
return
def max_memory_cached(self, device_index=None):
return
def reset_max_memory_cached(self, device_index=None):
return
def memory_stats(self, device_index=None):
return
def reset_peak_memory_stats(self, device_index=None):
return
def memory_reserved(self, device_index=None):
return
def max_memory_reserved(self, device_index=None):
return
def total_memory(self, device_index=None):
return
def available_memory(self, device_index=None):
return
# Data types
def is_bf16_supported(self):
return False
def is_fp16_supported(self):
return False
def supported_dtypes(self):
return [torch.float]
# Misc
def amp(self):
return
def is_available(self):
return hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
def range_push(self, msg):
return
def range_pop(self):
return
def lazy_call(self, callback):
return
def communication_backend_name(self):
return self._communication_backend_name
def is_triton_supported(self):
return False
# Graph operations
def create_graph(self):
return None
def capture_to_graph(self, graph, pool=None, stream=None):
from deepspeed.runtime.utils import noop_context
return noop_context()
def replay_graph(self, graph):
return
# Tensor operations
@property
def BFloat16Tensor(self):
return
@property
def ByteTensor(self):
return
@property
def DoubleTensor(self):
return
@property
def FloatTensor(self):
return
@property
def HalfTensor(self):
return
@property
def IntTensor(self):
return
@property
def LongTensor(self):
return
def pin_memory(self, tensor, align_bytes=1):
return tensor.pin_memory()
def is_pinned(self, tensor):
return tensor.is_pinned()
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith("mps"):
return True
else:
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder"
except ImportError:
return "deepspeed.ops.op_builder"
# create an instance of op builder, specified by class_name
def create_op_builder(self, op_name):
builder_class = self.get_op_builder(op_name)
if builder_class is not None:
return builder_class()
return None
# return an op builder class, specified by class_name
def get_op_builder(self, class_name):
from deepspeed.ops.op_builder.cpu import NotImplementedBuilder
return NotImplementedBuilder
def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension
def export_envs(self):
return []
# TODO: mpu's visible envs is confirmed, keep as CUDA_VISIBLE_DEVICES
def visible_devices_envs(self):
# TODO: could not find visible devices env for mps
return ['CUDA_VISIBLE_DEVICES']
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))
def get_compile_backend(self):
return self._compile_backend
def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")