mirror of
https://github.com/deepspeedai/DeepSpeed.git
synced 2025-10-20 23:53:48 +08:00
Add cpu accelerator fp16 dtype support --------- Signed-off-by: Lai, Yejing <yejing.lai@intel.com> Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com>
362 lines
10 KiB
Python
362 lines
10 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# DeepSpeed Team
|
|
|
|
from .abstract_accelerator import DeepSpeedAccelerator
|
|
|
|
# During setup stage torch may not be installed, pass on no torch will
|
|
# allow op builder related API to be executed.
|
|
try:
|
|
import torch
|
|
except ImportError as e:
|
|
pass
|
|
|
|
try:
|
|
import oneccl_bindings_for_pytorch # noqa: F401 # type: ignore
|
|
oneccl_imported_p = True
|
|
except ImportError as e:
|
|
oneccl_imported_p = False
|
|
|
|
import os
|
|
|
|
|
|
# accelerator for Intel CPU
|
|
class CPU_Accelerator(DeepSpeedAccelerator):
|
|
|
|
def __init__(self):
|
|
self._name = 'cpu'
|
|
self._compile_backend = "inductor"
|
|
if oneccl_imported_p:
|
|
self._communication_backend_name = 'ccl'
|
|
else:
|
|
# fallback to gloo if oneccl_binding_for_pytorch is not installed
|
|
self._communication_backend_name = 'gloo'
|
|
try:
|
|
import psutil
|
|
mem = psutil.Process().memory_info().rss
|
|
self.max_mem = mem
|
|
except ImportError as e:
|
|
self.max_mem = 0
|
|
|
|
def is_synchronized_device(self):
|
|
return True
|
|
|
|
def use_host_timers(self):
|
|
return self.is_synchronized_device()
|
|
|
|
def resolves_data_dependency(self):
|
|
return self.is_synchronized_device()
|
|
|
|
def handles_memory_backpressure(self):
|
|
return self.is_synchronized_device()
|
|
|
|
# Device APIs
|
|
def device_name(self, device_index=None):
|
|
return 'cpu'
|
|
|
|
def device(self, device_index=None):
|
|
return None
|
|
|
|
def set_device(self, device_index):
|
|
return
|
|
|
|
def current_device(self):
|
|
return os.environ.get('LOCAL_RANK', 0)
|
|
|
|
def current_device_name(self):
|
|
return 'cpu'
|
|
|
|
def device_count(self):
|
|
device_count = int(os.environ.get('LOCAL_SIZE', 0))
|
|
if device_count > 0:
|
|
return device_count
|
|
else:
|
|
from deepspeed.utils.numa import get_numa_cores
|
|
# Count NUMA node for number of cpu accelerators. On machine with HBM
|
|
# In flat mode, HBM is in separate NUMA node with no cores on this node.
|
|
# Ignore these NUMA nodes with no cores.
|
|
numa_core_lists = get_numa_cores()
|
|
if not numa_core_lists:
|
|
return 1
|
|
numa_count = 0
|
|
prev_core_list = []
|
|
for core_list in numa_core_lists:
|
|
if len(core_list) > 0 and core_list != prev_core_list:
|
|
numa_count += 1
|
|
prev_core_list = core_list
|
|
return numa_count
|
|
|
|
def synchronize(self, device_index=None):
|
|
return
|
|
|
|
# RNG APIs
|
|
def random(self):
|
|
return torch.random
|
|
|
|
def set_rng_state(self, new_state, device_index=None):
|
|
if device_index is None:
|
|
return torch.set_rng_state(new_state)
|
|
return torch.set_rng_state(new_state, device_index)
|
|
|
|
def get_rng_state(self, device_index=None):
|
|
return torch.get_rng_state()
|
|
|
|
def manual_seed(self, seed):
|
|
return torch.manual_seed(seed)
|
|
|
|
def manual_seed_all(self, seed):
|
|
return torch.manual_seed(seed)
|
|
|
|
def initial_seed(self):
|
|
return torch.initial_seed()
|
|
|
|
def default_generator(self, device_index):
|
|
return torch.default_generator
|
|
|
|
# Streams/Events
|
|
@property
|
|
def Stream(self):
|
|
return None
|
|
|
|
def stream(self, stream):
|
|
from deepspeed.runtime.utils import noop_context
|
|
return noop_context()
|
|
|
|
def current_stream(self, device_index=None):
|
|
return None
|
|
|
|
def default_stream(self, device_index=None):
|
|
return None
|
|
|
|
@property
|
|
def Event(self):
|
|
return None
|
|
|
|
# Memory management
|
|
def empty_cache(self):
|
|
return
|
|
|
|
def get_rss(self):
|
|
import psutil
|
|
mem = psutil.Process().memory_info().rss
|
|
if mem > self.max_mem:
|
|
self.max_mem = mem
|
|
return mem
|
|
|
|
def reset_rss(self):
|
|
import psutil
|
|
mem = psutil.Process().memory_info().rss
|
|
self.max_mem = mem
|
|
return mem
|
|
|
|
def memory_allocated(self, device_index=None):
|
|
return self.get_rss()
|
|
|
|
def max_memory_allocated(self, device_index=None):
|
|
self.get_rss()
|
|
return self.max_mem
|
|
|
|
def reset_max_memory_allocated(self, device_index=None):
|
|
self.reset_rss()
|
|
return
|
|
|
|
def memory_cached(self, device_index=None):
|
|
return self.get_rss()
|
|
|
|
def max_memory_cached(self, device_index=None):
|
|
self.get_rss()
|
|
return self.max_mem
|
|
|
|
def reset_max_memory_cached(self, device_index=None):
|
|
self.reset_rss()
|
|
return
|
|
|
|
def memory_stats(self, device_index=None):
|
|
mem = self.get_rss()
|
|
mem_stat = {}
|
|
mem_stat['allocated_bytes.all.current'] = mem
|
|
mem_stat['allocated_bytes.all.peak'] = self.max_mem
|
|
return mem_stat
|
|
|
|
def reset_peak_memory_stats(self, device_index=None):
|
|
self.reset_rss()
|
|
return
|
|
|
|
def memory_reserved(self, device_index=None):
|
|
return self.get_rss()
|
|
|
|
def max_memory_reserved(self, device_index=None):
|
|
self.get_rss()
|
|
return self.max_mem
|
|
|
|
def total_memory(self, device_index=None):
|
|
import psutil
|
|
return psutil.virtual_memory().total
|
|
|
|
def available_memory(self, device_index=None):
|
|
import psutil
|
|
return psutil.virtual_memory().available
|
|
|
|
# Misc
|
|
def amp(self):
|
|
return torch.cpu.amp
|
|
|
|
def is_available(self):
|
|
return True
|
|
|
|
def range_push(self, msg):
|
|
# TODO itt is currently not supported yet
|
|
# return torch.profiler.itt.range_push(msg)
|
|
return
|
|
|
|
def range_pop(self):
|
|
# TODO itt is currently not supported yet
|
|
# return torch.profiler.itt.range_pop()
|
|
return
|
|
|
|
def lazy_call(self, callback):
|
|
return callback()
|
|
|
|
def communication_backend_name(self):
|
|
return self._communication_backend_name
|
|
|
|
def is_triton_supported(self):
|
|
return False
|
|
|
|
# Data types
|
|
def is_bf16_supported(self):
|
|
return True
|
|
|
|
def is_fp16_supported(self):
|
|
try:
|
|
if torch.ops.mkldnn._is_mkldnn_fp16_supported():
|
|
return True
|
|
except:
|
|
return False
|
|
|
|
def supported_dtypes(self):
|
|
supported_dtypes = [torch.float, torch.bfloat16]
|
|
if self.is_fp16_supported():
|
|
supported_dtypes.append(torch.float16)
|
|
return supported_dtypes
|
|
|
|
# Graph operations
|
|
def create_graph(self):
|
|
return None
|
|
|
|
def capture_to_graph(self, graph, pool=None, stream=None):
|
|
from deepspeed.runtime.utils import noop_context
|
|
return noop_context()
|
|
|
|
def replay_graph(self, graph):
|
|
return
|
|
|
|
# Tensor operations
|
|
@property
|
|
def BFloat16Tensor(self):
|
|
return torch.BFloat16Tensor
|
|
|
|
@property
|
|
def ByteTensor(self):
|
|
return torch.ByteTensor
|
|
|
|
@property
|
|
def DoubleTensor(self):
|
|
return torch.DoubleTensor
|
|
|
|
@property
|
|
def FloatTensor(self):
|
|
return torch.FloatTensor
|
|
|
|
@property
|
|
def HalfTensor(self):
|
|
return torch.HalfTensor
|
|
|
|
@property
|
|
def IntTensor(self):
|
|
return torch.IntTensor
|
|
|
|
@property
|
|
def LongTensor(self):
|
|
return torch.LongTensor
|
|
|
|
def pin_memory(self, tensor, align_bytes=1):
|
|
return tensor
|
|
|
|
def is_pinned(self, tensor):
|
|
return tensor.is_pinned()
|
|
|
|
def op_builder_dir(self):
|
|
try:
|
|
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
|
# if successful this also means we're doing a local install and not JIT compile path
|
|
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
|
return "op_builder.cpu"
|
|
except ImportError:
|
|
return "deepspeed.ops.op_builder.cpu"
|
|
|
|
def on_accelerator(self, tensor):
|
|
device_str = str(tensor.device)
|
|
if device_str.startswith('cpu'):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
# create an instance of op builder and return, name specified by class_name
|
|
def create_op_builder(self, op_name):
|
|
builder_class = self.get_op_builder(op_name)
|
|
if builder_class is not None:
|
|
return builder_class()
|
|
return None
|
|
|
|
# return an op builder class, name specified by class_name
|
|
def get_op_builder(self, class_name):
|
|
try:
|
|
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
|
# if successful this also means we're doing a local install and not JIT compile path
|
|
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
|
from op_builder.cpu import AsyncIOBuilder, CCLCommBuilder, ShareMemCommBuilder, FusedAdamBuilder, CPUAdamBuilder, NotImplementedBuilder
|
|
except ImportError:
|
|
from deepspeed.ops.op_builder.cpu import AsyncIOBuilder, CCLCommBuilder, ShareMemCommBuilder, FusedAdamBuilder, CPUAdamBuilder, NotImplementedBuilder
|
|
|
|
if class_name == "CCLCommBuilder":
|
|
return CCLCommBuilder
|
|
elif class_name == "ShareMemCommBuilder":
|
|
return ShareMemCommBuilder
|
|
elif class_name == "FusedAdamBuilder":
|
|
return FusedAdamBuilder
|
|
elif class_name == "CPUAdamBuilder":
|
|
return CPUAdamBuilder
|
|
elif class_name == "AsyncIOBuilder":
|
|
return AsyncIOBuilder
|
|
else:
|
|
# return a NotImplementedBuilder to avoid get NoneType[Name] in unit tests
|
|
return NotImplementedBuilder
|
|
|
|
def build_extension(self):
|
|
from torch.utils.cpp_extension import BuildExtension
|
|
return BuildExtension
|
|
|
|
def export_envs(self):
|
|
return []
|
|
|
|
# TODO: cpu's visible envs is confirmed, keep as CUDA_VISIBLE_DEVICES
|
|
def visible_devices_envs(self):
|
|
return ['CUDA_VISIBLE_DEVICES']
|
|
|
|
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
|
|
for env in self.visible_devices_envs():
|
|
current_env[env] = ",".join(map(str, local_accelerator_ids))
|
|
|
|
def get_compile_backend(self):
|
|
return self._compile_backend
|
|
|
|
def set_compile_backend(self, backend):
|
|
supported_backends = torch._dynamo.list_backends(exclude_tags=())
|
|
if backend in supported_backends:
|
|
self._compile_backend = backend
|
|
else:
|
|
raise ValueError(
|
|
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")
|